linux/net/sched/sch_tbf.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_tbf.c  Token Bucket Filter queue.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  10 *              Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
  11 *                                               original idea by Martin Devera
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/kernel.h>
  18#include <linux/string.h>
  19#include <linux/errno.h>
  20#include <linux/skbuff.h>
  21#include <net/netlink.h>
  22#include <net/pkt_sched.h>
  23
  24
  25/*      Simple Token Bucket Filter.
  26        =======================================
  27
  28        SOURCE.
  29        -------
  30
  31        None.
  32
  33        Description.
  34        ------------
  35
  36        A data flow obeys TBF with rate R and depth B, if for any
  37        time interval t_i...t_f the number of transmitted bits
  38        does not exceed B + R*(t_f-t_i).
  39
  40        Packetized version of this definition:
  41        The sequence of packets of sizes s_i served at moments t_i
  42        obeys TBF, if for any i<=k:
  43
  44        s_i+....+s_k <= B + R*(t_k - t_i)
  45
  46        Algorithm.
  47        ----------
  48
  49        Let N(t_i) be B/R initially and N(t) grow continuously with time as:
  50
  51        N(t+delta) = min{B/R, N(t) + delta}
  52
  53        If the first packet in queue has length S, it may be
  54        transmitted only at the time t_* when S/R <= N(t_*),
  55        and in this case N(t) jumps:
  56
  57        N(t_* + 0) = N(t_* - 0) - S/R.
  58
  59
  60
  61        Actually, QoS requires two TBF to be applied to a data stream.
  62        One of them controls steady state burst size, another
  63        one with rate P (peak rate) and depth M (equal to link MTU)
  64        limits bursts at a smaller time scale.
  65
  66        It is easy to see that P>R, and B>M. If P is infinity, this double
  67        TBF is equivalent to a single one.
  68
  69        When TBF works in reshaping mode, latency is estimated as:
  70
  71        lat = max ((L-B)/R, (L-M)/P)
  72
  73
  74        NOTES.
  75        ------
  76
  77        If TBF throttles, it starts a watchdog timer, which will wake it up
  78        when it is ready to transmit.
  79        Note that the minimal timer resolution is 1/HZ.
  80        If no new packets arrive during this period,
  81        or if the device is not awaken by EOI for some previous packet,
  82        TBF can stop its activity for 1/HZ.
  83
  84
  85        This means, that with depth B, the maximal rate is
  86
  87        R_crit = B*HZ
  88
  89        F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
  90
  91        Note that the peak rate TBF is much more tough: with MTU 1500
  92        P_crit = 150Kbytes/sec. So, if you need greater peak
  93        rates, use alpha with HZ=1000 :-)
  94
  95        With classful TBF, limit is just kept for backwards compatibility.
  96        It is passed to the default bfifo qdisc - if the inner qdisc is
  97        changed the limit is not effective anymore.
  98*/
  99
 100struct tbf_sched_data
 101{
 102/* Parameters */
 103        u32             limit;          /* Maximal length of backlog: bytes */
 104        u32             buffer;         /* Token bucket depth/rate: MUST BE >= MTU/B */
 105        u32             mtu;
 106        u32             max_size;
 107        struct qdisc_rate_table *R_tab;
 108        struct qdisc_rate_table *P_tab;
 109
 110/* Variables */
 111        long    tokens;                 /* Current number of B tokens */
 112        long    ptokens;                /* Current number of P tokens */
 113        psched_time_t   t_c;            /* Time check-point */
 114        struct Qdisc    *qdisc;         /* Inner qdisc, default - bfifo queue */
 115        struct qdisc_watchdog watchdog; /* Watchdog timer */
 116};
 117
 118#define L2T(q,L)   qdisc_l2t((q)->R_tab,L)
 119#define L2T_P(q,L) qdisc_l2t((q)->P_tab,L)
 120
 121static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch)
 122{
 123        struct tbf_sched_data *q = qdisc_priv(sch);
 124        int ret;
 125
 126        if (qdisc_pkt_len(skb) > q->max_size)
 127                return qdisc_reshape_fail(skb, sch);
 128
 129        ret = qdisc_enqueue(skb, q->qdisc);
 130        if (ret != 0) {
 131                if (net_xmit_drop_count(ret))
 132                        sch->qstats.drops++;
 133                return ret;
 134        }
 135
 136        sch->q.qlen++;
 137        sch->bstats.bytes += qdisc_pkt_len(skb);
 138        sch->bstats.packets++;
 139        return 0;
 140}
 141
 142static unsigned int tbf_drop(struct Qdisc* sch)
 143{
 144        struct tbf_sched_data *q = qdisc_priv(sch);
 145        unsigned int len = 0;
 146
 147        if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
 148                sch->q.qlen--;
 149                sch->qstats.drops++;
 150        }
 151        return len;
 152}
 153
 154static struct sk_buff *tbf_dequeue(struct Qdisc* sch)
 155{
 156        struct tbf_sched_data *q = qdisc_priv(sch);
 157        struct sk_buff *skb;
 158
 159        skb = q->qdisc->ops->peek(q->qdisc);
 160
 161        if (skb) {
 162                psched_time_t now;
 163                long toks;
 164                long ptoks = 0;
 165                unsigned int len = qdisc_pkt_len(skb);
 166
 167                now = psched_get_time();
 168                toks = psched_tdiff_bounded(now, q->t_c, q->buffer);
 169
 170                if (q->P_tab) {
 171                        ptoks = toks + q->ptokens;
 172                        if (ptoks > (long)q->mtu)
 173                                ptoks = q->mtu;
 174                        ptoks -= L2T_P(q, len);
 175                }
 176                toks += q->tokens;
 177                if (toks > (long)q->buffer)
 178                        toks = q->buffer;
 179                toks -= L2T(q, len);
 180
 181                if ((toks|ptoks) >= 0) {
 182                        skb = qdisc_dequeue_peeked(q->qdisc);
 183                        if (unlikely(!skb))
 184                                return NULL;
 185
 186                        q->t_c = now;
 187                        q->tokens = toks;
 188                        q->ptokens = ptoks;
 189                        sch->q.qlen--;
 190                        sch->flags &= ~TCQ_F_THROTTLED;
 191                        return skb;
 192                }
 193
 194                qdisc_watchdog_schedule(&q->watchdog,
 195                                        now + max_t(long, -toks, -ptoks));
 196
 197                /* Maybe we have a shorter packet in the queue,
 198                   which can be sent now. It sounds cool,
 199                   but, however, this is wrong in principle.
 200                   We MUST NOT reorder packets under these circumstances.
 201
 202                   Really, if we split the flow into independent
 203                   subflows, it would be a very good solution.
 204                   This is the main idea of all FQ algorithms
 205                   (cf. CSZ, HPFQ, HFSC)
 206                 */
 207
 208                sch->qstats.overlimits++;
 209        }
 210        return NULL;
 211}
 212
 213static void tbf_reset(struct Qdisc* sch)
 214{
 215        struct tbf_sched_data *q = qdisc_priv(sch);
 216
 217        qdisc_reset(q->qdisc);
 218        sch->q.qlen = 0;
 219        q->t_c = psched_get_time();
 220        q->tokens = q->buffer;
 221        q->ptokens = q->mtu;
 222        qdisc_watchdog_cancel(&q->watchdog);
 223}
 224
 225static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
 226        [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
 227        [TCA_TBF_RTAB]  = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
 228        [TCA_TBF_PTAB]  = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
 229};
 230
 231static int tbf_change(struct Qdisc* sch, struct nlattr *opt)
 232{
 233        int err;
 234        struct tbf_sched_data *q = qdisc_priv(sch);
 235        struct nlattr *tb[TCA_TBF_PTAB + 1];
 236        struct tc_tbf_qopt *qopt;
 237        struct qdisc_rate_table *rtab = NULL;
 238        struct qdisc_rate_table *ptab = NULL;
 239        struct Qdisc *child = NULL;
 240        int max_size,n;
 241
 242        err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
 243        if (err < 0)
 244                return err;
 245
 246        err = -EINVAL;
 247        if (tb[TCA_TBF_PARMS] == NULL)
 248                goto done;
 249
 250        qopt = nla_data(tb[TCA_TBF_PARMS]);
 251        rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
 252        if (rtab == NULL)
 253                goto done;
 254
 255        if (qopt->peakrate.rate) {
 256                if (qopt->peakrate.rate > qopt->rate.rate)
 257                        ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
 258                if (ptab == NULL)
 259                        goto done;
 260        }
 261
 262        for (n = 0; n < 256; n++)
 263                if (rtab->data[n] > qopt->buffer) break;
 264        max_size = (n << qopt->rate.cell_log)-1;
 265        if (ptab) {
 266                int size;
 267
 268                for (n = 0; n < 256; n++)
 269                        if (ptab->data[n] > qopt->mtu) break;
 270                size = (n << qopt->peakrate.cell_log)-1;
 271                if (size < max_size) max_size = size;
 272        }
 273        if (max_size < 0)
 274                goto done;
 275
 276        if (qopt->limit > 0) {
 277                child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
 278                if (IS_ERR(child)) {
 279                        err = PTR_ERR(child);
 280                        goto done;
 281                }
 282        }
 283
 284        sch_tree_lock(sch);
 285        if (child) {
 286                qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
 287                qdisc_destroy(q->qdisc);
 288                q->qdisc = child;
 289        }
 290        q->limit = qopt->limit;
 291        q->mtu = qopt->mtu;
 292        q->max_size = max_size;
 293        q->buffer = qopt->buffer;
 294        q->tokens = q->buffer;
 295        q->ptokens = q->mtu;
 296
 297        swap(q->R_tab, rtab);
 298        swap(q->P_tab, ptab);
 299
 300        sch_tree_unlock(sch);
 301        err = 0;
 302done:
 303        if (rtab)
 304                qdisc_put_rtab(rtab);
 305        if (ptab)
 306                qdisc_put_rtab(ptab);
 307        return err;
 308}
 309
 310static int tbf_init(struct Qdisc* sch, struct nlattr *opt)
 311{
 312        struct tbf_sched_data *q = qdisc_priv(sch);
 313
 314        if (opt == NULL)
 315                return -EINVAL;
 316
 317        q->t_c = psched_get_time();
 318        qdisc_watchdog_init(&q->watchdog, sch);
 319        q->qdisc = &noop_qdisc;
 320
 321        return tbf_change(sch, opt);
 322}
 323
 324static void tbf_destroy(struct Qdisc *sch)
 325{
 326        struct tbf_sched_data *q = qdisc_priv(sch);
 327
 328        qdisc_watchdog_cancel(&q->watchdog);
 329
 330        if (q->P_tab)
 331                qdisc_put_rtab(q->P_tab);
 332        if (q->R_tab)
 333                qdisc_put_rtab(q->R_tab);
 334
 335        qdisc_destroy(q->qdisc);
 336}
 337
 338static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
 339{
 340        struct tbf_sched_data *q = qdisc_priv(sch);
 341        struct nlattr *nest;
 342        struct tc_tbf_qopt opt;
 343
 344        nest = nla_nest_start(skb, TCA_OPTIONS);
 345        if (nest == NULL)
 346                goto nla_put_failure;
 347
 348        opt.limit = q->limit;
 349        opt.rate = q->R_tab->rate;
 350        if (q->P_tab)
 351                opt.peakrate = q->P_tab->rate;
 352        else
 353                memset(&opt.peakrate, 0, sizeof(opt.peakrate));
 354        opt.mtu = q->mtu;
 355        opt.buffer = q->buffer;
 356        NLA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
 357
 358        nla_nest_end(skb, nest);
 359        return skb->len;
 360
 361nla_put_failure:
 362        nla_nest_cancel(skb, nest);
 363        return -1;
 364}
 365
 366static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
 367                          struct sk_buff *skb, struct tcmsg *tcm)
 368{
 369        struct tbf_sched_data *q = qdisc_priv(sch);
 370
 371        if (cl != 1)    /* only one class */
 372                return -ENOENT;
 373
 374        tcm->tcm_handle |= TC_H_MIN(1);
 375        tcm->tcm_info = q->qdisc->handle;
 376
 377        return 0;
 378}
 379
 380static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
 381                     struct Qdisc **old)
 382{
 383        struct tbf_sched_data *q = qdisc_priv(sch);
 384
 385        if (new == NULL)
 386                new = &noop_qdisc;
 387
 388        sch_tree_lock(sch);
 389        *old = q->qdisc;
 390        q->qdisc = new;
 391        qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
 392        qdisc_reset(*old);
 393        sch_tree_unlock(sch);
 394
 395        return 0;
 396}
 397
 398static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
 399{
 400        struct tbf_sched_data *q = qdisc_priv(sch);
 401        return q->qdisc;
 402}
 403
 404static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
 405{
 406        return 1;
 407}
 408
 409static void tbf_put(struct Qdisc *sch, unsigned long arg)
 410{
 411}
 412
 413static int tbf_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
 414                            struct nlattr **tca, unsigned long *arg)
 415{
 416        return -ENOSYS;
 417}
 418
 419static int tbf_delete(struct Qdisc *sch, unsigned long arg)
 420{
 421        return -ENOSYS;
 422}
 423
 424static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
 425{
 426        if (!walker->stop) {
 427                if (walker->count >= walker->skip)
 428                        if (walker->fn(sch, 1, walker) < 0) {
 429                                walker->stop = 1;
 430                                return;
 431                        }
 432                walker->count++;
 433        }
 434}
 435
 436static struct tcf_proto **tbf_find_tcf(struct Qdisc *sch, unsigned long cl)
 437{
 438        return NULL;
 439}
 440
 441static const struct Qdisc_class_ops tbf_class_ops =
 442{
 443        .graft          =       tbf_graft,
 444        .leaf           =       tbf_leaf,
 445        .get            =       tbf_get,
 446        .put            =       tbf_put,
 447        .change         =       tbf_change_class,
 448        .delete         =       tbf_delete,
 449        .walk           =       tbf_walk,
 450        .tcf_chain      =       tbf_find_tcf,
 451        .dump           =       tbf_dump_class,
 452};
 453
 454static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
 455        .next           =       NULL,
 456        .cl_ops         =       &tbf_class_ops,
 457        .id             =       "tbf",
 458        .priv_size      =       sizeof(struct tbf_sched_data),
 459        .enqueue        =       tbf_enqueue,
 460        .dequeue        =       tbf_dequeue,
 461        .peek           =       qdisc_peek_dequeued,
 462        .drop           =       tbf_drop,
 463        .init           =       tbf_init,
 464        .reset          =       tbf_reset,
 465        .destroy        =       tbf_destroy,
 466        .change         =       tbf_change,
 467        .dump           =       tbf_dump,
 468        .owner          =       THIS_MODULE,
 469};
 470
 471static int __init tbf_module_init(void)
 472{
 473        return register_qdisc(&tbf_qdisc_ops);
 474}
 475
 476static void __exit tbf_module_exit(void)
 477{
 478        unregister_qdisc(&tbf_qdisc_ops);
 479}
 480module_init(tbf_module_init)
 481module_exit(tbf_module_exit)
 482MODULE_LICENSE("GPL");
 483