1
2
3
4
5
6static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
7{
8 return container_of(rt_se, struct task_struct, rt);
9}
10
11#ifdef CONFIG_RT_GROUP_SCHED
12
13#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
14
15static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
16{
17 return rt_rq->rq;
18}
19
20static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
21{
22 return rt_se->rt_rq;
23}
24
25#else
26
27#define rt_entity_is_task(rt_se) (1)
28
29static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
30{
31 return container_of(rt_rq, struct rq, rt);
32}
33
34static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
35{
36 struct task_struct *p = rt_task_of(rt_se);
37 struct rq *rq = task_rq(p);
38
39 return &rq->rt;
40}
41
42#endif
43
44#ifdef CONFIG_SMP
45
46static inline int rt_overloaded(struct rq *rq)
47{
48 return atomic_read(&rq->rd->rto_count);
49}
50
51static inline void rt_set_overload(struct rq *rq)
52{
53 if (!rq->online)
54 return;
55
56 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
57
58
59
60
61
62
63
64 wmb();
65 atomic_inc(&rq->rd->rto_count);
66}
67
68static inline void rt_clear_overload(struct rq *rq)
69{
70 if (!rq->online)
71 return;
72
73
74 atomic_dec(&rq->rd->rto_count);
75 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
76}
77
78static void update_rt_migration(struct rt_rq *rt_rq)
79{
80 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
81 if (!rt_rq->overloaded) {
82 rt_set_overload(rq_of_rt_rq(rt_rq));
83 rt_rq->overloaded = 1;
84 }
85 } else if (rt_rq->overloaded) {
86 rt_clear_overload(rq_of_rt_rq(rt_rq));
87 rt_rq->overloaded = 0;
88 }
89}
90
91static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
92{
93 if (!rt_entity_is_task(rt_se))
94 return;
95
96 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
97
98 rt_rq->rt_nr_total++;
99 if (rt_se->nr_cpus_allowed > 1)
100 rt_rq->rt_nr_migratory++;
101
102 update_rt_migration(rt_rq);
103}
104
105static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
106{
107 if (!rt_entity_is_task(rt_se))
108 return;
109
110 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
111
112 rt_rq->rt_nr_total--;
113 if (rt_se->nr_cpus_allowed > 1)
114 rt_rq->rt_nr_migratory--;
115
116 update_rt_migration(rt_rq);
117}
118
119static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
120{
121 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
122 plist_node_init(&p->pushable_tasks, p->prio);
123 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
124}
125
126static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
127{
128 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
129}
130
131#else
132
133static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
134{
135}
136
137static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
138{
139}
140
141static inline
142void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
143{
144}
145
146static inline
147void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
148{
149}
150
151#endif
152
153static inline int on_rt_rq(struct sched_rt_entity *rt_se)
154{
155 return !list_empty(&rt_se->run_list);
156}
157
158#ifdef CONFIG_RT_GROUP_SCHED
159
160static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161{
162 if (!rt_rq->tg)
163 return RUNTIME_INF;
164
165 return rt_rq->rt_runtime;
166}
167
168static inline u64 sched_rt_period(struct rt_rq *rt_rq)
169{
170 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
171}
172
173#define for_each_leaf_rt_rq(rt_rq, rq) \
174 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
175
176#define for_each_sched_rt_entity(rt_se) \
177 for (; rt_se; rt_se = rt_se->parent)
178
179static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
180{
181 return rt_se->my_q;
182}
183
184static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
185static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
186
187static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
188{
189 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
190 struct sched_rt_entity *rt_se = rt_rq->rt_se;
191
192 if (rt_rq->rt_nr_running) {
193 if (rt_se && !on_rt_rq(rt_se))
194 enqueue_rt_entity(rt_se);
195 if (rt_rq->highest_prio.curr < curr->prio)
196 resched_task(curr);
197 }
198}
199
200static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
201{
202 struct sched_rt_entity *rt_se = rt_rq->rt_se;
203
204 if (rt_se && on_rt_rq(rt_se))
205 dequeue_rt_entity(rt_se);
206}
207
208static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209{
210 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
211}
212
213static int rt_se_boosted(struct sched_rt_entity *rt_se)
214{
215 struct rt_rq *rt_rq = group_rt_rq(rt_se);
216 struct task_struct *p;
217
218 if (rt_rq)
219 return !!rt_rq->rt_nr_boosted;
220
221 p = rt_task_of(rt_se);
222 return p->prio != p->normal_prio;
223}
224
225#ifdef CONFIG_SMP
226static inline const struct cpumask *sched_rt_period_mask(void)
227{
228 return cpu_rq(smp_processor_id())->rd->span;
229}
230#else
231static inline const struct cpumask *sched_rt_period_mask(void)
232{
233 return cpu_online_mask;
234}
235#endif
236
237static inline
238struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
239{
240 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
241}
242
243static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
244{
245 return &rt_rq->tg->rt_bandwidth;
246}
247
248#else
249
250static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
251{
252 return rt_rq->rt_runtime;
253}
254
255static inline u64 sched_rt_period(struct rt_rq *rt_rq)
256{
257 return ktime_to_ns(def_rt_bandwidth.rt_period);
258}
259
260#define for_each_leaf_rt_rq(rt_rq, rq) \
261 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
262
263#define for_each_sched_rt_entity(rt_se) \
264 for (; rt_se; rt_se = NULL)
265
266static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
267{
268 return NULL;
269}
270
271static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
272{
273 if (rt_rq->rt_nr_running)
274 resched_task(rq_of_rt_rq(rt_rq)->curr);
275}
276
277static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
278{
279}
280
281static inline int rt_rq_throttled(struct rt_rq *rt_rq)
282{
283 return rt_rq->rt_throttled;
284}
285
286static inline const struct cpumask *sched_rt_period_mask(void)
287{
288 return cpu_online_mask;
289}
290
291static inline
292struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
293{
294 return &cpu_rq(cpu)->rt;
295}
296
297static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
298{
299 return &def_rt_bandwidth;
300}
301
302#endif
303
304#ifdef CONFIG_SMP
305
306
307
308static int do_balance_runtime(struct rt_rq *rt_rq)
309{
310 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
311 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
312 int i, weight, more = 0;
313 u64 rt_period;
314
315 weight = cpumask_weight(rd->span);
316
317 spin_lock(&rt_b->rt_runtime_lock);
318 rt_period = ktime_to_ns(rt_b->rt_period);
319 for_each_cpu(i, rd->span) {
320 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
321 s64 diff;
322
323 if (iter == rt_rq)
324 continue;
325
326 spin_lock(&iter->rt_runtime_lock);
327
328
329
330
331
332 if (iter->rt_runtime == RUNTIME_INF)
333 goto next;
334
335
336
337
338
339 diff = iter->rt_runtime - iter->rt_time;
340 if (diff > 0) {
341 diff = div_u64((u64)diff, weight);
342 if (rt_rq->rt_runtime + diff > rt_period)
343 diff = rt_period - rt_rq->rt_runtime;
344 iter->rt_runtime -= diff;
345 rt_rq->rt_runtime += diff;
346 more = 1;
347 if (rt_rq->rt_runtime == rt_period) {
348 spin_unlock(&iter->rt_runtime_lock);
349 break;
350 }
351 }
352next:
353 spin_unlock(&iter->rt_runtime_lock);
354 }
355 spin_unlock(&rt_b->rt_runtime_lock);
356
357 return more;
358}
359
360
361
362
363static void __disable_runtime(struct rq *rq)
364{
365 struct root_domain *rd = rq->rd;
366 struct rt_rq *rt_rq;
367
368 if (unlikely(!scheduler_running))
369 return;
370
371 for_each_leaf_rt_rq(rt_rq, rq) {
372 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
373 s64 want;
374 int i;
375
376 spin_lock(&rt_b->rt_runtime_lock);
377 spin_lock(&rt_rq->rt_runtime_lock);
378
379
380
381
382
383 if (rt_rq->rt_runtime == RUNTIME_INF ||
384 rt_rq->rt_runtime == rt_b->rt_runtime)
385 goto balanced;
386 spin_unlock(&rt_rq->rt_runtime_lock);
387
388
389
390
391
392
393 want = rt_b->rt_runtime - rt_rq->rt_runtime;
394
395
396
397
398 for_each_cpu(i, rd->span) {
399 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
400 s64 diff;
401
402
403
404
405 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
406 continue;
407
408 spin_lock(&iter->rt_runtime_lock);
409 if (want > 0) {
410 diff = min_t(s64, iter->rt_runtime, want);
411 iter->rt_runtime -= diff;
412 want -= diff;
413 } else {
414 iter->rt_runtime -= want;
415 want -= want;
416 }
417 spin_unlock(&iter->rt_runtime_lock);
418
419 if (!want)
420 break;
421 }
422
423 spin_lock(&rt_rq->rt_runtime_lock);
424
425
426
427
428 BUG_ON(want);
429balanced:
430
431
432
433
434 rt_rq->rt_runtime = RUNTIME_INF;
435 spin_unlock(&rt_rq->rt_runtime_lock);
436 spin_unlock(&rt_b->rt_runtime_lock);
437 }
438}
439
440static void disable_runtime(struct rq *rq)
441{
442 unsigned long flags;
443
444 spin_lock_irqsave(&rq->lock, flags);
445 __disable_runtime(rq);
446 spin_unlock_irqrestore(&rq->lock, flags);
447}
448
449static void __enable_runtime(struct rq *rq)
450{
451 struct rt_rq *rt_rq;
452
453 if (unlikely(!scheduler_running))
454 return;
455
456
457
458
459 for_each_leaf_rt_rq(rt_rq, rq) {
460 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
461
462 spin_lock(&rt_b->rt_runtime_lock);
463 spin_lock(&rt_rq->rt_runtime_lock);
464 rt_rq->rt_runtime = rt_b->rt_runtime;
465 rt_rq->rt_time = 0;
466 rt_rq->rt_throttled = 0;
467 spin_unlock(&rt_rq->rt_runtime_lock);
468 spin_unlock(&rt_b->rt_runtime_lock);
469 }
470}
471
472static void enable_runtime(struct rq *rq)
473{
474 unsigned long flags;
475
476 spin_lock_irqsave(&rq->lock, flags);
477 __enable_runtime(rq);
478 spin_unlock_irqrestore(&rq->lock, flags);
479}
480
481static int balance_runtime(struct rt_rq *rt_rq)
482{
483 int more = 0;
484
485 if (rt_rq->rt_time > rt_rq->rt_runtime) {
486 spin_unlock(&rt_rq->rt_runtime_lock);
487 more = do_balance_runtime(rt_rq);
488 spin_lock(&rt_rq->rt_runtime_lock);
489 }
490
491 return more;
492}
493#else
494static inline int balance_runtime(struct rt_rq *rt_rq)
495{
496 return 0;
497}
498#endif
499
500static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
501{
502 int i, idle = 1;
503 const struct cpumask *span;
504
505 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
506 return 1;
507
508 span = sched_rt_period_mask();
509 for_each_cpu(i, span) {
510 int enqueue = 0;
511 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
512 struct rq *rq = rq_of_rt_rq(rt_rq);
513
514 spin_lock(&rq->lock);
515 if (rt_rq->rt_time) {
516 u64 runtime;
517
518 spin_lock(&rt_rq->rt_runtime_lock);
519 if (rt_rq->rt_throttled)
520 balance_runtime(rt_rq);
521 runtime = rt_rq->rt_runtime;
522 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
523 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
524 rt_rq->rt_throttled = 0;
525 enqueue = 1;
526 }
527 if (rt_rq->rt_time || rt_rq->rt_nr_running)
528 idle = 0;
529 spin_unlock(&rt_rq->rt_runtime_lock);
530 } else if (rt_rq->rt_nr_running)
531 idle = 0;
532
533 if (enqueue)
534 sched_rt_rq_enqueue(rt_rq);
535 spin_unlock(&rq->lock);
536 }
537
538 return idle;
539}
540
541static inline int rt_se_prio(struct sched_rt_entity *rt_se)
542{
543#ifdef CONFIG_RT_GROUP_SCHED
544 struct rt_rq *rt_rq = group_rt_rq(rt_se);
545
546 if (rt_rq)
547 return rt_rq->highest_prio.curr;
548#endif
549
550 return rt_task_of(rt_se)->prio;
551}
552
553static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
554{
555 u64 runtime = sched_rt_runtime(rt_rq);
556
557 if (rt_rq->rt_throttled)
558 return rt_rq_throttled(rt_rq);
559
560 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
561 return 0;
562
563 balance_runtime(rt_rq);
564 runtime = sched_rt_runtime(rt_rq);
565 if (runtime == RUNTIME_INF)
566 return 0;
567
568 if (rt_rq->rt_time > runtime) {
569 rt_rq->rt_throttled = 1;
570 if (rt_rq_throttled(rt_rq)) {
571 sched_rt_rq_dequeue(rt_rq);
572 return 1;
573 }
574 }
575
576 return 0;
577}
578
579
580
581
582
583static void update_curr_rt(struct rq *rq)
584{
585 struct task_struct *curr = rq->curr;
586 struct sched_rt_entity *rt_se = &curr->rt;
587 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
588 u64 delta_exec;
589
590 if (!task_has_rt_policy(curr))
591 return;
592
593 delta_exec = rq->clock - curr->se.exec_start;
594 if (unlikely((s64)delta_exec < 0))
595 delta_exec = 0;
596
597 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
598
599 curr->se.sum_exec_runtime += delta_exec;
600 account_group_exec_runtime(curr, delta_exec);
601
602 curr->se.exec_start = rq->clock;
603 cpuacct_charge(curr, delta_exec);
604
605 if (!rt_bandwidth_enabled())
606 return;
607
608 for_each_sched_rt_entity(rt_se) {
609 rt_rq = rt_rq_of_se(rt_se);
610
611 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
612 spin_lock(&rt_rq->rt_runtime_lock);
613 rt_rq->rt_time += delta_exec;
614 if (sched_rt_runtime_exceeded(rt_rq))
615 resched_task(curr);
616 spin_unlock(&rt_rq->rt_runtime_lock);
617 }
618 }
619}
620
621#if defined CONFIG_SMP
622
623static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
624
625static inline int next_prio(struct rq *rq)
626{
627 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
628
629 if (next && rt_prio(next->prio))
630 return next->prio;
631 else
632 return MAX_RT_PRIO;
633}
634
635static void
636inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
637{
638 struct rq *rq = rq_of_rt_rq(rt_rq);
639
640 if (prio < prev_prio) {
641
642
643
644
645
646
647 rt_rq->highest_prio.next = prev_prio;
648
649 if (rq->online)
650 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
651
652 } else if (prio == rt_rq->highest_prio.curr)
653
654
655
656
657
658 rt_rq->highest_prio.next = prio;
659 else if (prio < rt_rq->highest_prio.next)
660
661
662
663 rt_rq->highest_prio.next = next_prio(rq);
664}
665
666static void
667dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
668{
669 struct rq *rq = rq_of_rt_rq(rt_rq);
670
671 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
672 rt_rq->highest_prio.next = next_prio(rq);
673
674 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
675 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
676}
677
678#else
679
680static inline
681void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
682static inline
683void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
684
685#endif
686
687#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
688static void
689inc_rt_prio(struct rt_rq *rt_rq, int prio)
690{
691 int prev_prio = rt_rq->highest_prio.curr;
692
693 if (prio < prev_prio)
694 rt_rq->highest_prio.curr = prio;
695
696 inc_rt_prio_smp(rt_rq, prio, prev_prio);
697}
698
699static void
700dec_rt_prio(struct rt_rq *rt_rq, int prio)
701{
702 int prev_prio = rt_rq->highest_prio.curr;
703
704 if (rt_rq->rt_nr_running) {
705
706 WARN_ON(prio < prev_prio);
707
708
709
710
711
712 if (prio == prev_prio) {
713 struct rt_prio_array *array = &rt_rq->active;
714
715 rt_rq->highest_prio.curr =
716 sched_find_first_bit(array->bitmap);
717 }
718
719 } else
720 rt_rq->highest_prio.curr = MAX_RT_PRIO;
721
722 dec_rt_prio_smp(rt_rq, prio, prev_prio);
723}
724
725#else
726
727static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
728static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
729
730#endif
731
732#ifdef CONFIG_RT_GROUP_SCHED
733
734static void
735inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
736{
737 if (rt_se_boosted(rt_se))
738 rt_rq->rt_nr_boosted++;
739
740 if (rt_rq->tg)
741 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
742}
743
744static void
745dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
746{
747 if (rt_se_boosted(rt_se))
748 rt_rq->rt_nr_boosted--;
749
750 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
751}
752
753#else
754
755static void
756inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
757{
758 start_rt_bandwidth(&def_rt_bandwidth);
759}
760
761static inline
762void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
763
764#endif
765
766static inline
767void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
768{
769 int prio = rt_se_prio(rt_se);
770
771 WARN_ON(!rt_prio(prio));
772 rt_rq->rt_nr_running++;
773
774 inc_rt_prio(rt_rq, prio);
775 inc_rt_migration(rt_se, rt_rq);
776 inc_rt_group(rt_se, rt_rq);
777}
778
779static inline
780void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
781{
782 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
783 WARN_ON(!rt_rq->rt_nr_running);
784 rt_rq->rt_nr_running--;
785
786 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
787 dec_rt_migration(rt_se, rt_rq);
788 dec_rt_group(rt_se, rt_rq);
789}
790
791static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
792{
793 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
794 struct rt_prio_array *array = &rt_rq->active;
795 struct rt_rq *group_rq = group_rt_rq(rt_se);
796 struct list_head *queue = array->queue + rt_se_prio(rt_se);
797
798
799
800
801
802
803
804 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
805 return;
806
807 list_add_tail(&rt_se->run_list, queue);
808 __set_bit(rt_se_prio(rt_se), array->bitmap);
809
810 inc_rt_tasks(rt_se, rt_rq);
811}
812
813static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
814{
815 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
816 struct rt_prio_array *array = &rt_rq->active;
817
818 list_del_init(&rt_se->run_list);
819 if (list_empty(array->queue + rt_se_prio(rt_se)))
820 __clear_bit(rt_se_prio(rt_se), array->bitmap);
821
822 dec_rt_tasks(rt_se, rt_rq);
823}
824
825
826
827
828
829static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
830{
831 struct sched_rt_entity *back = NULL;
832
833 for_each_sched_rt_entity(rt_se) {
834 rt_se->back = back;
835 back = rt_se;
836 }
837
838 for (rt_se = back; rt_se; rt_se = rt_se->back) {
839 if (on_rt_rq(rt_se))
840 __dequeue_rt_entity(rt_se);
841 }
842}
843
844static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
845{
846 dequeue_rt_stack(rt_se);
847 for_each_sched_rt_entity(rt_se)
848 __enqueue_rt_entity(rt_se);
849}
850
851static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
852{
853 dequeue_rt_stack(rt_se);
854
855 for_each_sched_rt_entity(rt_se) {
856 struct rt_rq *rt_rq = group_rt_rq(rt_se);
857
858 if (rt_rq && rt_rq->rt_nr_running)
859 __enqueue_rt_entity(rt_se);
860 }
861}
862
863
864
865
866static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
867{
868 struct sched_rt_entity *rt_se = &p->rt;
869
870 if (wakeup)
871 rt_se->timeout = 0;
872
873 enqueue_rt_entity(rt_se);
874
875 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
876 enqueue_pushable_task(rq, p);
877
878 inc_cpu_load(rq, p->se.load.weight);
879}
880
881static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
882{
883 struct sched_rt_entity *rt_se = &p->rt;
884
885 update_curr_rt(rq);
886 dequeue_rt_entity(rt_se);
887
888 dequeue_pushable_task(rq, p);
889
890 dec_cpu_load(rq, p->se.load.weight);
891}
892
893
894
895
896
897static void
898requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
899{
900 if (on_rt_rq(rt_se)) {
901 struct rt_prio_array *array = &rt_rq->active;
902 struct list_head *queue = array->queue + rt_se_prio(rt_se);
903
904 if (head)
905 list_move(&rt_se->run_list, queue);
906 else
907 list_move_tail(&rt_se->run_list, queue);
908 }
909}
910
911static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
912{
913 struct sched_rt_entity *rt_se = &p->rt;
914 struct rt_rq *rt_rq;
915
916 for_each_sched_rt_entity(rt_se) {
917 rt_rq = rt_rq_of_se(rt_se);
918 requeue_rt_entity(rt_rq, rt_se, head);
919 }
920}
921
922static void yield_task_rt(struct rq *rq)
923{
924 requeue_task_rt(rq, rq->curr, 0);
925}
926
927#ifdef CONFIG_SMP
928static int find_lowest_rq(struct task_struct *task);
929
930static int select_task_rq_rt(struct task_struct *p, int sync)
931{
932 struct rq *rq = task_rq(p);
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951 if (unlikely(rt_task(rq->curr)) &&
952 (p->rt.nr_cpus_allowed > 1)) {
953 int cpu = find_lowest_rq(p);
954
955 return (cpu == -1) ? task_cpu(p) : cpu;
956 }
957
958
959
960
961
962 return task_cpu(p);
963}
964
965static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
966{
967 if (rq->curr->rt.nr_cpus_allowed == 1)
968 return;
969
970 if (p->rt.nr_cpus_allowed != 1
971 && cpupri_find(&rq->rd->cpupri, p, NULL))
972 return;
973
974 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
975 return;
976
977
978
979
980
981
982 requeue_task_rt(rq, p, 1);
983 resched_task(rq->curr);
984}
985
986#endif
987
988
989
990
991static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
992{
993 if (p->prio < rq->curr->prio) {
994 resched_task(rq->curr);
995 return;
996 }
997
998#ifdef CONFIG_SMP
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011 if (p->prio == rq->curr->prio && !need_resched())
1012 check_preempt_equal_prio(rq, p);
1013#endif
1014}
1015
1016static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1017 struct rt_rq *rt_rq)
1018{
1019 struct rt_prio_array *array = &rt_rq->active;
1020 struct sched_rt_entity *next = NULL;
1021 struct list_head *queue;
1022 int idx;
1023
1024 idx = sched_find_first_bit(array->bitmap);
1025 BUG_ON(idx >= MAX_RT_PRIO);
1026
1027 queue = array->queue + idx;
1028 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1029
1030 return next;
1031}
1032
1033static struct task_struct *_pick_next_task_rt(struct rq *rq)
1034{
1035 struct sched_rt_entity *rt_se;
1036 struct task_struct *p;
1037 struct rt_rq *rt_rq;
1038
1039 rt_rq = &rq->rt;
1040
1041 if (unlikely(!rt_rq->rt_nr_running))
1042 return NULL;
1043
1044 if (rt_rq_throttled(rt_rq))
1045 return NULL;
1046
1047 do {
1048 rt_se = pick_next_rt_entity(rq, rt_rq);
1049 BUG_ON(!rt_se);
1050 rt_rq = group_rt_rq(rt_se);
1051 } while (rt_rq);
1052
1053 p = rt_task_of(rt_se);
1054 p->se.exec_start = rq->clock;
1055
1056 return p;
1057}
1058
1059static struct task_struct *pick_next_task_rt(struct rq *rq)
1060{
1061 struct task_struct *p = _pick_next_task_rt(rq);
1062
1063
1064 if (p)
1065 dequeue_pushable_task(rq, p);
1066
1067 return p;
1068}
1069
1070static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1071{
1072 update_curr_rt(rq);
1073 p->se.exec_start = 0;
1074
1075
1076
1077
1078
1079 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1080 enqueue_pushable_task(rq, p);
1081}
1082
1083#ifdef CONFIG_SMP
1084
1085
1086#define RT_MAX_TRIES 3
1087
1088static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1089
1090static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1091{
1092 if (!task_running(rq, p) &&
1093 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1094 (p->rt.nr_cpus_allowed > 1))
1095 return 1;
1096 return 0;
1097}
1098
1099
1100static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1101{
1102 struct task_struct *next = NULL;
1103 struct sched_rt_entity *rt_se;
1104 struct rt_prio_array *array;
1105 struct rt_rq *rt_rq;
1106 int idx;
1107
1108 for_each_leaf_rt_rq(rt_rq, rq) {
1109 array = &rt_rq->active;
1110 idx = sched_find_first_bit(array->bitmap);
1111 next_idx:
1112 if (idx >= MAX_RT_PRIO)
1113 continue;
1114 if (next && next->prio < idx)
1115 continue;
1116 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1117 struct task_struct *p = rt_task_of(rt_se);
1118 if (pick_rt_task(rq, p, cpu)) {
1119 next = p;
1120 break;
1121 }
1122 }
1123 if (!next) {
1124 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1125 goto next_idx;
1126 }
1127 }
1128
1129 return next;
1130}
1131
1132static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1133
1134static inline int pick_optimal_cpu(int this_cpu,
1135 const struct cpumask *mask)
1136{
1137 int first;
1138
1139
1140 if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
1141 return this_cpu;
1142
1143 first = cpumask_first(mask);
1144 if (first < nr_cpu_ids)
1145 return first;
1146
1147 return -1;
1148}
1149
1150static int find_lowest_rq(struct task_struct *task)
1151{
1152 struct sched_domain *sd;
1153 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1154 int this_cpu = smp_processor_id();
1155 int cpu = task_cpu(task);
1156 cpumask_var_t domain_mask;
1157
1158 if (task->rt.nr_cpus_allowed == 1)
1159 return -1;
1160
1161 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1162 return -1;
1163
1164
1165
1166
1167
1168
1169 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179 if (cpumask_test_cpu(cpu, lowest_mask))
1180 return cpu;
1181
1182
1183
1184
1185
1186 if (this_cpu == cpu)
1187 this_cpu = -1;
1188
1189 if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1190 for_each_domain(cpu, sd) {
1191 if (sd->flags & SD_WAKE_AFFINE) {
1192 int best_cpu;
1193
1194 cpumask_and(domain_mask,
1195 sched_domain_span(sd),
1196 lowest_mask);
1197
1198 best_cpu = pick_optimal_cpu(this_cpu,
1199 domain_mask);
1200
1201 if (best_cpu != -1) {
1202 free_cpumask_var(domain_mask);
1203 return best_cpu;
1204 }
1205 }
1206 }
1207 free_cpumask_var(domain_mask);
1208 }
1209
1210
1211
1212
1213
1214
1215 return pick_optimal_cpu(this_cpu, lowest_mask);
1216}
1217
1218
1219static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1220{
1221 struct rq *lowest_rq = NULL;
1222 int tries;
1223 int cpu;
1224
1225 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1226 cpu = find_lowest_rq(task);
1227
1228 if ((cpu == -1) || (cpu == rq->cpu))
1229 break;
1230
1231 lowest_rq = cpu_rq(cpu);
1232
1233
1234 if (double_lock_balance(rq, lowest_rq)) {
1235
1236
1237
1238
1239
1240
1241 if (unlikely(task_rq(task) != rq ||
1242 !cpumask_test_cpu(lowest_rq->cpu,
1243 &task->cpus_allowed) ||
1244 task_running(rq, task) ||
1245 !task->se.on_rq)) {
1246
1247 spin_unlock(&lowest_rq->lock);
1248 lowest_rq = NULL;
1249 break;
1250 }
1251 }
1252
1253
1254 if (lowest_rq->rt.highest_prio.curr > task->prio)
1255 break;
1256
1257
1258 double_unlock_balance(rq, lowest_rq);
1259 lowest_rq = NULL;
1260 }
1261
1262 return lowest_rq;
1263}
1264
1265static inline int has_pushable_tasks(struct rq *rq)
1266{
1267 return !plist_head_empty(&rq->rt.pushable_tasks);
1268}
1269
1270static struct task_struct *pick_next_pushable_task(struct rq *rq)
1271{
1272 struct task_struct *p;
1273
1274 if (!has_pushable_tasks(rq))
1275 return NULL;
1276
1277 p = plist_first_entry(&rq->rt.pushable_tasks,
1278 struct task_struct, pushable_tasks);
1279
1280 BUG_ON(rq->cpu != task_cpu(p));
1281 BUG_ON(task_current(rq, p));
1282 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1283
1284 BUG_ON(!p->se.on_rq);
1285 BUG_ON(!rt_task(p));
1286
1287 return p;
1288}
1289
1290
1291
1292
1293
1294
1295static int push_rt_task(struct rq *rq)
1296{
1297 struct task_struct *next_task;
1298 struct rq *lowest_rq;
1299
1300 if (!rq->rt.overloaded)
1301 return 0;
1302
1303 next_task = pick_next_pushable_task(rq);
1304 if (!next_task)
1305 return 0;
1306
1307 retry:
1308 if (unlikely(next_task == rq->curr)) {
1309 WARN_ON(1);
1310 return 0;
1311 }
1312
1313
1314
1315
1316
1317
1318 if (unlikely(next_task->prio < rq->curr->prio)) {
1319 resched_task(rq->curr);
1320 return 0;
1321 }
1322
1323
1324 get_task_struct(next_task);
1325
1326
1327 lowest_rq = find_lock_lowest_rq(next_task, rq);
1328 if (!lowest_rq) {
1329 struct task_struct *task;
1330
1331
1332
1333
1334
1335
1336
1337
1338 task = pick_next_pushable_task(rq);
1339 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1340
1341
1342
1343
1344
1345
1346 dequeue_pushable_task(rq, next_task);
1347 goto out;
1348 }
1349
1350 if (!task)
1351
1352 goto out;
1353
1354
1355
1356
1357 put_task_struct(next_task);
1358 next_task = task;
1359 goto retry;
1360 }
1361
1362 deactivate_task(rq, next_task, 0);
1363 set_task_cpu(next_task, lowest_rq->cpu);
1364 activate_task(lowest_rq, next_task, 0);
1365
1366 resched_task(lowest_rq->curr);
1367
1368 double_unlock_balance(rq, lowest_rq);
1369
1370out:
1371 put_task_struct(next_task);
1372
1373 return 1;
1374}
1375
1376static void push_rt_tasks(struct rq *rq)
1377{
1378
1379 while (push_rt_task(rq))
1380 ;
1381}
1382
1383static int pull_rt_task(struct rq *this_rq)
1384{
1385 int this_cpu = this_rq->cpu, ret = 0, cpu;
1386 struct task_struct *p;
1387 struct rq *src_rq;
1388
1389 if (likely(!rt_overloaded(this_rq)))
1390 return 0;
1391
1392 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1393 if (this_cpu == cpu)
1394 continue;
1395
1396 src_rq = cpu_rq(cpu);
1397
1398
1399
1400
1401
1402
1403
1404
1405 if (src_rq->rt.highest_prio.next >=
1406 this_rq->rt.highest_prio.curr)
1407 continue;
1408
1409
1410
1411
1412
1413
1414 double_lock_balance(this_rq, src_rq);
1415
1416
1417
1418
1419 if (src_rq->rt.rt_nr_running <= 1)
1420 goto skip;
1421
1422 p = pick_next_highest_task_rt(src_rq, this_cpu);
1423
1424
1425
1426
1427
1428 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1429 WARN_ON(p == src_rq->curr);
1430 WARN_ON(!p->se.on_rq);
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440 if (p->prio < src_rq->curr->prio)
1441 goto skip;
1442
1443 ret = 1;
1444
1445 deactivate_task(src_rq, p, 0);
1446 set_task_cpu(p, this_cpu);
1447 activate_task(this_rq, p, 0);
1448
1449
1450
1451
1452
1453
1454 }
1455 skip:
1456 double_unlock_balance(this_rq, src_rq);
1457 }
1458
1459 return ret;
1460}
1461
1462static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1463{
1464
1465 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1466 pull_rt_task(rq);
1467}
1468
1469
1470
1471
1472static int needs_post_schedule_rt(struct rq *rq)
1473{
1474 return has_pushable_tasks(rq);
1475}
1476
1477static void post_schedule_rt(struct rq *rq)
1478{
1479
1480
1481
1482
1483 spin_lock_irq(&rq->lock);
1484 push_rt_tasks(rq);
1485 spin_unlock_irq(&rq->lock);
1486}
1487
1488
1489
1490
1491
1492static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1493{
1494 if (!task_running(rq, p) &&
1495 !test_tsk_need_resched(rq->curr) &&
1496 has_pushable_tasks(rq) &&
1497 p->rt.nr_cpus_allowed > 1)
1498 push_rt_tasks(rq);
1499}
1500
1501static unsigned long
1502load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1503 unsigned long max_load_move,
1504 struct sched_domain *sd, enum cpu_idle_type idle,
1505 int *all_pinned, int *this_best_prio)
1506{
1507
1508 return 0;
1509}
1510
1511static int
1512move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1513 struct sched_domain *sd, enum cpu_idle_type idle)
1514{
1515
1516 return 0;
1517}
1518
1519static void set_cpus_allowed_rt(struct task_struct *p,
1520 const struct cpumask *new_mask)
1521{
1522 int weight = cpumask_weight(new_mask);
1523
1524 BUG_ON(!rt_task(p));
1525
1526
1527
1528
1529
1530 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1531 struct rq *rq = task_rq(p);
1532
1533 if (!task_current(rq, p)) {
1534
1535
1536
1537
1538
1539
1540 if (p->rt.nr_cpus_allowed > 1)
1541 dequeue_pushable_task(rq, p);
1542
1543
1544
1545
1546 if (weight > 1)
1547 enqueue_pushable_task(rq, p);
1548
1549 }
1550
1551 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1552 rq->rt.rt_nr_migratory++;
1553 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1554 BUG_ON(!rq->rt.rt_nr_migratory);
1555 rq->rt.rt_nr_migratory--;
1556 }
1557
1558 update_rt_migration(&rq->rt);
1559 }
1560
1561 cpumask_copy(&p->cpus_allowed, new_mask);
1562 p->rt.nr_cpus_allowed = weight;
1563}
1564
1565
1566static void rq_online_rt(struct rq *rq)
1567{
1568 if (rq->rt.overloaded)
1569 rt_set_overload(rq);
1570
1571 __enable_runtime(rq);
1572
1573 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1574}
1575
1576
1577static void rq_offline_rt(struct rq *rq)
1578{
1579 if (rq->rt.overloaded)
1580 rt_clear_overload(rq);
1581
1582 __disable_runtime(rq);
1583
1584 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1585}
1586
1587
1588
1589
1590
1591static void switched_from_rt(struct rq *rq, struct task_struct *p,
1592 int running)
1593{
1594
1595
1596
1597
1598
1599
1600
1601 if (!rq->rt.rt_nr_running)
1602 pull_rt_task(rq);
1603}
1604
1605static inline void init_sched_rt_class(void)
1606{
1607 unsigned int i;
1608
1609 for_each_possible_cpu(i)
1610 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1611 GFP_KERNEL, cpu_to_node(i));
1612}
1613#endif
1614
1615
1616
1617
1618
1619
1620static void switched_to_rt(struct rq *rq, struct task_struct *p,
1621 int running)
1622{
1623 int check_resched = 1;
1624
1625
1626
1627
1628
1629
1630
1631
1632 if (!running) {
1633#ifdef CONFIG_SMP
1634 if (rq->rt.overloaded && push_rt_task(rq) &&
1635
1636 rq != task_rq(p))
1637 check_resched = 0;
1638#endif
1639 if (check_resched && p->prio < rq->curr->prio)
1640 resched_task(rq->curr);
1641 }
1642}
1643
1644
1645
1646
1647
1648static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1649 int oldprio, int running)
1650{
1651 if (running) {
1652#ifdef CONFIG_SMP
1653
1654
1655
1656
1657 if (oldprio < p->prio)
1658 pull_rt_task(rq);
1659
1660
1661
1662
1663
1664
1665 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1666 resched_task(p);
1667#else
1668
1669 if (oldprio < p->prio)
1670 resched_task(p);
1671#endif
1672 } else {
1673
1674
1675
1676
1677
1678 if (p->prio < rq->curr->prio)
1679 resched_task(rq->curr);
1680 }
1681}
1682
1683static void watchdog(struct rq *rq, struct task_struct *p)
1684{
1685 unsigned long soft, hard;
1686
1687 if (!p->signal)
1688 return;
1689
1690 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1691 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1692
1693 if (soft != RLIM_INFINITY) {
1694 unsigned long next;
1695
1696 p->rt.timeout++;
1697 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1698 if (p->rt.timeout > next)
1699 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1700 }
1701}
1702
1703static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1704{
1705 update_curr_rt(rq);
1706
1707 watchdog(rq, p);
1708
1709
1710
1711
1712
1713 if (p->policy != SCHED_RR)
1714 return;
1715
1716 if (--p->rt.time_slice)
1717 return;
1718
1719 p->rt.time_slice = DEF_TIMESLICE;
1720
1721
1722
1723
1724
1725 if (p->rt.run_list.prev != p->rt.run_list.next) {
1726 requeue_task_rt(rq, p, 0);
1727 set_tsk_need_resched(p);
1728 }
1729}
1730
1731static void set_curr_task_rt(struct rq *rq)
1732{
1733 struct task_struct *p = rq->curr;
1734
1735 p->se.exec_start = rq->clock;
1736
1737
1738 dequeue_pushable_task(rq, p);
1739}
1740
1741static const struct sched_class rt_sched_class = {
1742 .next = &fair_sched_class,
1743 .enqueue_task = enqueue_task_rt,
1744 .dequeue_task = dequeue_task_rt,
1745 .yield_task = yield_task_rt,
1746
1747 .check_preempt_curr = check_preempt_curr_rt,
1748
1749 .pick_next_task = pick_next_task_rt,
1750 .put_prev_task = put_prev_task_rt,
1751
1752#ifdef CONFIG_SMP
1753 .select_task_rq = select_task_rq_rt,
1754
1755 .load_balance = load_balance_rt,
1756 .move_one_task = move_one_task_rt,
1757 .set_cpus_allowed = set_cpus_allowed_rt,
1758 .rq_online = rq_online_rt,
1759 .rq_offline = rq_offline_rt,
1760 .pre_schedule = pre_schedule_rt,
1761 .needs_post_schedule = needs_post_schedule_rt,
1762 .post_schedule = post_schedule_rt,
1763 .task_wake_up = task_wake_up_rt,
1764 .switched_from = switched_from_rt,
1765#endif
1766
1767 .set_curr_task = set_curr_task_rt,
1768 .task_tick = task_tick_rt,
1769
1770 .prio_changed = prio_changed_rt,
1771 .switched_to = switched_to_rt,
1772};
1773
1774#ifdef CONFIG_SCHED_DEBUG
1775extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1776
1777static void print_rt_stats(struct seq_file *m, int cpu)
1778{
1779 struct rt_rq *rt_rq;
1780
1781 rcu_read_lock();
1782 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1783 print_rt_rq(m, cpu, rt_rq);
1784 rcu_read_unlock();
1785}
1786#endif
1787
1788