linux/drivers/rtc/rtc-sa1100.c
<<
>>
Prefs
   1/*
   2 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
   3 *
   4 * Copyright (c) 2000 Nils Faerber
   5 *
   6 * Based on rtc.c by Paul Gortmaker
   7 *
   8 * Original Driver by Nils Faerber <nils@kernelconcepts.de>
   9 *
  10 * Modifications from:
  11 *   CIH <cih@coventive.com>
  12 *   Nicolas Pitre <nico@cam.org>
  13 *   Andrew Christian <andrew.christian@hp.com>
  14 *
  15 * Converted to the RTC subsystem and Driver Model
  16 *   by Richard Purdie <rpurdie@rpsys.net>
  17 *
  18 * This program is free software; you can redistribute it and/or
  19 * modify it under the terms of the GNU General Public License
  20 * as published by the Free Software Foundation; either version
  21 * 2 of the License, or (at your option) any later version.
  22 */
  23
  24#include <linux/platform_device.h>
  25#include <linux/module.h>
  26#include <linux/rtc.h>
  27#include <linux/init.h>
  28#include <linux/fs.h>
  29#include <linux/interrupt.h>
  30#include <linux/string.h>
  31#include <linux/pm.h>
  32#include <linux/bitops.h>
  33
  34#include <mach/hardware.h>
  35#include <asm/irq.h>
  36
  37#ifdef CONFIG_ARCH_PXA
  38#include <mach/regs-rtc.h>
  39#include <mach/regs-ost.h>
  40#endif
  41
  42#define RTC_DEF_DIVIDER         32768 - 1
  43#define RTC_DEF_TRIM            0
  44
  45static unsigned long rtc_freq = 1024;
  46static unsigned long timer_freq;
  47static struct rtc_time rtc_alarm;
  48static DEFINE_SPINLOCK(sa1100_rtc_lock);
  49
  50static inline int rtc_periodic_alarm(struct rtc_time *tm)
  51{
  52        return  (tm->tm_year == -1) ||
  53                ((unsigned)tm->tm_mon >= 12) ||
  54                ((unsigned)(tm->tm_mday - 1) >= 31) ||
  55                ((unsigned)tm->tm_hour > 23) ||
  56                ((unsigned)tm->tm_min > 59) ||
  57                ((unsigned)tm->tm_sec > 59);
  58}
  59
  60/*
  61 * Calculate the next alarm time given the requested alarm time mask
  62 * and the current time.
  63 */
  64static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
  65{
  66        unsigned long next_time;
  67        unsigned long now_time;
  68
  69        next->tm_year = now->tm_year;
  70        next->tm_mon = now->tm_mon;
  71        next->tm_mday = now->tm_mday;
  72        next->tm_hour = alrm->tm_hour;
  73        next->tm_min = alrm->tm_min;
  74        next->tm_sec = alrm->tm_sec;
  75
  76        rtc_tm_to_time(now, &now_time);
  77        rtc_tm_to_time(next, &next_time);
  78
  79        if (next_time < now_time) {
  80                /* Advance one day */
  81                next_time += 60 * 60 * 24;
  82                rtc_time_to_tm(next_time, next);
  83        }
  84}
  85
  86static int rtc_update_alarm(struct rtc_time *alrm)
  87{
  88        struct rtc_time alarm_tm, now_tm;
  89        unsigned long now, time;
  90        int ret;
  91
  92        do {
  93                now = RCNR;
  94                rtc_time_to_tm(now, &now_tm);
  95                rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
  96                ret = rtc_tm_to_time(&alarm_tm, &time);
  97                if (ret != 0)
  98                        break;
  99
 100                RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
 101                RTAR = time;
 102        } while (now != RCNR);
 103
 104        return ret;
 105}
 106
 107static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
 108{
 109        struct platform_device *pdev = to_platform_device(dev_id);
 110        struct rtc_device *rtc = platform_get_drvdata(pdev);
 111        unsigned int rtsr;
 112        unsigned long events = 0;
 113
 114        spin_lock(&sa1100_rtc_lock);
 115
 116        rtsr = RTSR;
 117        /* clear interrupt sources */
 118        RTSR = 0;
 119        RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
 120
 121        /* clear alarm interrupt if it has occurred */
 122        if (rtsr & RTSR_AL)
 123                rtsr &= ~RTSR_ALE;
 124        RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
 125
 126        /* update irq data & counter */
 127        if (rtsr & RTSR_AL)
 128                events |= RTC_AF | RTC_IRQF;
 129        if (rtsr & RTSR_HZ)
 130                events |= RTC_UF | RTC_IRQF;
 131
 132        rtc_update_irq(rtc, 1, events);
 133
 134        if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
 135                rtc_update_alarm(&rtc_alarm);
 136
 137        spin_unlock(&sa1100_rtc_lock);
 138
 139        return IRQ_HANDLED;
 140}
 141
 142static int rtc_timer1_count;
 143
 144static irqreturn_t timer1_interrupt(int irq, void *dev_id)
 145{
 146        struct platform_device *pdev = to_platform_device(dev_id);
 147        struct rtc_device *rtc = platform_get_drvdata(pdev);
 148
 149        /*
 150         * If we match for the first time, rtc_timer1_count will be 1.
 151         * Otherwise, we wrapped around (very unlikely but
 152         * still possible) so compute the amount of missed periods.
 153         * The match reg is updated only when the data is actually retrieved
 154         * to avoid unnecessary interrupts.
 155         */
 156        OSSR = OSSR_M1; /* clear match on timer1 */
 157
 158        rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
 159
 160        if (rtc_timer1_count == 1)
 161                rtc_timer1_count = (rtc_freq * ((1 << 30) / (timer_freq >> 2)));
 162
 163        return IRQ_HANDLED;
 164}
 165
 166static int sa1100_rtc_read_callback(struct device *dev, int data)
 167{
 168        if (data & RTC_PF) {
 169                /* interpolate missed periods and set match for the next */
 170                unsigned long period = timer_freq / rtc_freq;
 171                unsigned long oscr = OSCR;
 172                unsigned long osmr1 = OSMR1;
 173                unsigned long missed = (oscr - osmr1)/period;
 174                data += missed << 8;
 175                OSSR = OSSR_M1; /* clear match on timer 1 */
 176                OSMR1 = osmr1 + (missed + 1)*period;
 177                /* Ensure we didn't miss another match in the mean time.
 178                 * Here we compare (match - OSCR) 8 instead of 0 --
 179                 * see comment in pxa_timer_interrupt() for explanation.
 180                 */
 181                while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
 182                        data += 0x100;
 183                        OSSR = OSSR_M1; /* clear match on timer 1 */
 184                        OSMR1 = osmr1 + period;
 185                }
 186        }
 187        return data;
 188}
 189
 190static int sa1100_rtc_open(struct device *dev)
 191{
 192        int ret;
 193
 194        ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
 195                                "rtc 1Hz", dev);
 196        if (ret) {
 197                dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
 198                goto fail_ui;
 199        }
 200        ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
 201                                "rtc Alrm", dev);
 202        if (ret) {
 203                dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
 204                goto fail_ai;
 205        }
 206        ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
 207                                "rtc timer", dev);
 208        if (ret) {
 209                dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
 210                goto fail_pi;
 211        }
 212        return 0;
 213
 214 fail_pi:
 215        free_irq(IRQ_RTCAlrm, dev);
 216 fail_ai:
 217        free_irq(IRQ_RTC1Hz, dev);
 218 fail_ui:
 219        return ret;
 220}
 221
 222static void sa1100_rtc_release(struct device *dev)
 223{
 224        spin_lock_irq(&sa1100_rtc_lock);
 225        RTSR = 0;
 226        OIER &= ~OIER_E1;
 227        OSSR = OSSR_M1;
 228        spin_unlock_irq(&sa1100_rtc_lock);
 229
 230        free_irq(IRQ_OST1, dev);
 231        free_irq(IRQ_RTCAlrm, dev);
 232        free_irq(IRQ_RTC1Hz, dev);
 233}
 234
 235
 236static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
 237                unsigned long arg)
 238{
 239        switch(cmd) {
 240        case RTC_AIE_OFF:
 241                spin_lock_irq(&sa1100_rtc_lock);
 242                RTSR &= ~RTSR_ALE;
 243                spin_unlock_irq(&sa1100_rtc_lock);
 244                return 0;
 245        case RTC_AIE_ON:
 246                spin_lock_irq(&sa1100_rtc_lock);
 247                RTSR |= RTSR_ALE;
 248                spin_unlock_irq(&sa1100_rtc_lock);
 249                return 0;
 250        case RTC_UIE_OFF:
 251                spin_lock_irq(&sa1100_rtc_lock);
 252                RTSR &= ~RTSR_HZE;
 253                spin_unlock_irq(&sa1100_rtc_lock);
 254                return 0;
 255        case RTC_UIE_ON:
 256                spin_lock_irq(&sa1100_rtc_lock);
 257                RTSR |= RTSR_HZE;
 258                spin_unlock_irq(&sa1100_rtc_lock);
 259                return 0;
 260        case RTC_PIE_OFF:
 261                spin_lock_irq(&sa1100_rtc_lock);
 262                OIER &= ~OIER_E1;
 263                spin_unlock_irq(&sa1100_rtc_lock);
 264                return 0;
 265        case RTC_PIE_ON:
 266                spin_lock_irq(&sa1100_rtc_lock);
 267                OSMR1 = timer_freq / rtc_freq + OSCR;
 268                OIER |= OIER_E1;
 269                rtc_timer1_count = 1;
 270                spin_unlock_irq(&sa1100_rtc_lock);
 271                return 0;
 272        case RTC_IRQP_READ:
 273                return put_user(rtc_freq, (unsigned long *)arg);
 274        case RTC_IRQP_SET:
 275                if (arg < 1 || arg > timer_freq)
 276                        return -EINVAL;
 277                rtc_freq = arg;
 278                return 0;
 279        }
 280        return -ENOIOCTLCMD;
 281}
 282
 283static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
 284{
 285        rtc_time_to_tm(RCNR, tm);
 286        return 0;
 287}
 288
 289static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
 290{
 291        unsigned long time;
 292        int ret;
 293
 294        ret = rtc_tm_to_time(tm, &time);
 295        if (ret == 0)
 296                RCNR = time;
 297        return ret;
 298}
 299
 300static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 301{
 302        u32     rtsr;
 303
 304        memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
 305        rtsr = RTSR;
 306        alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
 307        alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
 308        return 0;
 309}
 310
 311static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 312{
 313        int ret;
 314
 315        spin_lock_irq(&sa1100_rtc_lock);
 316        ret = rtc_update_alarm(&alrm->time);
 317        if (ret == 0) {
 318                if (alrm->enabled)
 319                        RTSR |= RTSR_ALE;
 320                else
 321                        RTSR &= ~RTSR_ALE;
 322        }
 323        spin_unlock_irq(&sa1100_rtc_lock);
 324
 325        return ret;
 326}
 327
 328static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
 329{
 330        seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
 331        seq_printf(seq, "update_IRQ\t: %s\n",
 332                        (RTSR & RTSR_HZE) ? "yes" : "no");
 333        seq_printf(seq, "periodic_IRQ\t: %s\n",
 334                        (OIER & OIER_E1) ? "yes" : "no");
 335        seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
 336
 337        return 0;
 338}
 339
 340static const struct rtc_class_ops sa1100_rtc_ops = {
 341        .open = sa1100_rtc_open,
 342        .read_callback = sa1100_rtc_read_callback,
 343        .release = sa1100_rtc_release,
 344        .ioctl = sa1100_rtc_ioctl,
 345        .read_time = sa1100_rtc_read_time,
 346        .set_time = sa1100_rtc_set_time,
 347        .read_alarm = sa1100_rtc_read_alarm,
 348        .set_alarm = sa1100_rtc_set_alarm,
 349        .proc = sa1100_rtc_proc,
 350};
 351
 352static int sa1100_rtc_probe(struct platform_device *pdev)
 353{
 354        struct rtc_device *rtc;
 355
 356        timer_freq = get_clock_tick_rate();
 357
 358        /*
 359         * According to the manual we should be able to let RTTR be zero
 360         * and then a default diviser for a 32.768KHz clock is used.
 361         * Apparently this doesn't work, at least for my SA1110 rev 5.
 362         * If the clock divider is uninitialized then reset it to the
 363         * default value to get the 1Hz clock.
 364         */
 365        if (RTTR == 0) {
 366                RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
 367                dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
 368                /* The current RTC value probably doesn't make sense either */
 369                RCNR = 0;
 370        }
 371
 372        device_init_wakeup(&pdev->dev, 1);
 373
 374        rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
 375                                THIS_MODULE);
 376
 377        if (IS_ERR(rtc))
 378                return PTR_ERR(rtc);
 379
 380        platform_set_drvdata(pdev, rtc);
 381
 382        return 0;
 383}
 384
 385static int sa1100_rtc_remove(struct platform_device *pdev)
 386{
 387        struct rtc_device *rtc = platform_get_drvdata(pdev);
 388
 389        if (rtc)
 390                rtc_device_unregister(rtc);
 391
 392        return 0;
 393}
 394
 395#ifdef CONFIG_PM
 396static int sa1100_rtc_suspend(struct platform_device *pdev, pm_message_t state)
 397{
 398        if (device_may_wakeup(&pdev->dev))
 399                enable_irq_wake(IRQ_RTCAlrm);
 400        return 0;
 401}
 402
 403static int sa1100_rtc_resume(struct platform_device *pdev)
 404{
 405        if (device_may_wakeup(&pdev->dev))
 406                disable_irq_wake(IRQ_RTCAlrm);
 407        return 0;
 408}
 409#else
 410#define sa1100_rtc_suspend      NULL
 411#define sa1100_rtc_resume       NULL
 412#endif
 413
 414static struct platform_driver sa1100_rtc_driver = {
 415        .probe          = sa1100_rtc_probe,
 416        .remove         = sa1100_rtc_remove,
 417        .suspend        = sa1100_rtc_suspend,
 418        .resume         = sa1100_rtc_resume,
 419        .driver         = {
 420                .name           = "sa1100-rtc",
 421        },
 422};
 423
 424static int __init sa1100_rtc_init(void)
 425{
 426        return platform_driver_register(&sa1100_rtc_driver);
 427}
 428
 429static void __exit sa1100_rtc_exit(void)
 430{
 431        platform_driver_unregister(&sa1100_rtc_driver);
 432}
 433
 434module_init(sa1100_rtc_init);
 435module_exit(sa1100_rtc_exit);
 436
 437MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
 438MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
 439MODULE_LICENSE("GPL");
 440MODULE_ALIAS("platform:sa1100-rtc");
 441