linux/drivers/rtc/rtc-cmos.c
<<
>>
Prefs
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/spinlock.h>
  36#include <linux/platform_device.h>
  37#include <linux/mod_devicetable.h>
  38#include <linux/log2.h>
  39
  40/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  41#include <asm-generic/rtc.h>
  42
  43struct cmos_rtc {
  44        struct rtc_device       *rtc;
  45        struct device           *dev;
  46        int                     irq;
  47        struct resource         *iomem;
  48
  49        void                    (*wake_on)(struct device *);
  50        void                    (*wake_off)(struct device *);
  51
  52        u8                      enabled_wake;
  53        u8                      suspend_ctrl;
  54
  55        /* newer hardware extends the original register set */
  56        u8                      day_alrm;
  57        u8                      mon_alrm;
  58        u8                      century;
  59};
  60
  61/* both platform and pnp busses use negative numbers for invalid irqs */
  62#define is_valid_irq(n)         ((n) > 0)
  63
  64static const char driver_name[] = "rtc_cmos";
  65
  66/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  67 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  68 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  69 */
  70#define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
  71
  72static inline int is_intr(u8 rtc_intr)
  73{
  74        if (!(rtc_intr & RTC_IRQF))
  75                return 0;
  76        return rtc_intr & RTC_IRQMASK;
  77}
  78
  79/*----------------------------------------------------------------*/
  80
  81/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  82 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  83 * used in a broken "legacy replacement" mode.  The breakage includes
  84 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  85 * other (better) use.
  86 *
  87 * When that broken mode is in use, platform glue provides a partial
  88 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
  89 * want to use HPET for anything except those IRQs though...
  90 */
  91#ifdef CONFIG_HPET_EMULATE_RTC
  92#include <asm/hpet.h>
  93#else
  94
  95static inline int is_hpet_enabled(void)
  96{
  97        return 0;
  98}
  99
 100static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 101{
 102        return 0;
 103}
 104
 105static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 106{
 107        return 0;
 108}
 109
 110static inline int
 111hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 112{
 113        return 0;
 114}
 115
 116static inline int hpet_set_periodic_freq(unsigned long freq)
 117{
 118        return 0;
 119}
 120
 121static inline int hpet_rtc_dropped_irq(void)
 122{
 123        return 0;
 124}
 125
 126static inline int hpet_rtc_timer_init(void)
 127{
 128        return 0;
 129}
 130
 131extern irq_handler_t hpet_rtc_interrupt;
 132
 133static inline int hpet_register_irq_handler(irq_handler_t handler)
 134{
 135        return 0;
 136}
 137
 138static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 139{
 140        return 0;
 141}
 142
 143#endif
 144
 145/*----------------------------------------------------------------*/
 146
 147#ifdef RTC_PORT
 148
 149/* Most newer x86 systems have two register banks, the first used
 150 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 151 * own rtc_lock ... and we won't worry about access during NMI.
 152 */
 153#define can_bank2       true
 154
 155static inline unsigned char cmos_read_bank2(unsigned char addr)
 156{
 157        outb(addr, RTC_PORT(2));
 158        return inb(RTC_PORT(3));
 159}
 160
 161static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 162{
 163        outb(addr, RTC_PORT(2));
 164        outb(val, RTC_PORT(2));
 165}
 166
 167#else
 168
 169#define can_bank2       false
 170
 171static inline unsigned char cmos_read_bank2(unsigned char addr)
 172{
 173        return 0;
 174}
 175
 176static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 177{
 178}
 179
 180#endif
 181
 182/*----------------------------------------------------------------*/
 183
 184static int cmos_read_time(struct device *dev, struct rtc_time *t)
 185{
 186        /* REVISIT:  if the clock has a "century" register, use
 187         * that instead of the heuristic in get_rtc_time().
 188         * That'll make Y3K compatility (year > 2070) easy!
 189         */
 190        get_rtc_time(t);
 191        return 0;
 192}
 193
 194static int cmos_set_time(struct device *dev, struct rtc_time *t)
 195{
 196        /* REVISIT:  set the "century" register if available
 197         *
 198         * NOTE: this ignores the issue whereby updating the seconds
 199         * takes effect exactly 500ms after we write the register.
 200         * (Also queueing and other delays before we get this far.)
 201         */
 202        return set_rtc_time(t);
 203}
 204
 205static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 206{
 207        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 208        unsigned char   rtc_control;
 209
 210        if (!is_valid_irq(cmos->irq))
 211                return -EIO;
 212
 213        /* Basic alarms only support hour, minute, and seconds fields.
 214         * Some also support day and month, for alarms up to a year in
 215         * the future.
 216         */
 217        t->time.tm_mday = -1;
 218        t->time.tm_mon = -1;
 219
 220        spin_lock_irq(&rtc_lock);
 221        t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 222        t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 223        t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 224
 225        if (cmos->day_alrm) {
 226                /* ignore upper bits on readback per ACPI spec */
 227                t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 228                if (!t->time.tm_mday)
 229                        t->time.tm_mday = -1;
 230
 231                if (cmos->mon_alrm) {
 232                        t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 233                        if (!t->time.tm_mon)
 234                                t->time.tm_mon = -1;
 235                }
 236        }
 237
 238        rtc_control = CMOS_READ(RTC_CONTROL);
 239        spin_unlock_irq(&rtc_lock);
 240
 241        /* REVISIT this assumes PC style usage:  always BCD */
 242
 243        if (((unsigned)t->time.tm_sec) < 0x60)
 244                t->time.tm_sec = bcd2bin(t->time.tm_sec);
 245        else
 246                t->time.tm_sec = -1;
 247        if (((unsigned)t->time.tm_min) < 0x60)
 248                t->time.tm_min = bcd2bin(t->time.tm_min);
 249        else
 250                t->time.tm_min = -1;
 251        if (((unsigned)t->time.tm_hour) < 0x24)
 252                t->time.tm_hour = bcd2bin(t->time.tm_hour);
 253        else
 254                t->time.tm_hour = -1;
 255
 256        if (cmos->day_alrm) {
 257                if (((unsigned)t->time.tm_mday) <= 0x31)
 258                        t->time.tm_mday = bcd2bin(t->time.tm_mday);
 259                else
 260                        t->time.tm_mday = -1;
 261                if (cmos->mon_alrm) {
 262                        if (((unsigned)t->time.tm_mon) <= 0x12)
 263                                t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
 264                        else
 265                                t->time.tm_mon = -1;
 266                }
 267        }
 268        t->time.tm_year = -1;
 269
 270        t->enabled = !!(rtc_control & RTC_AIE);
 271        t->pending = 0;
 272
 273        return 0;
 274}
 275
 276static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 277{
 278        unsigned char   rtc_intr;
 279
 280        /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 281         * allegedly some older rtcs need that to handle irqs properly
 282         */
 283        rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 284
 285        if (is_hpet_enabled())
 286                return;
 287
 288        rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 289        if (is_intr(rtc_intr))
 290                rtc_update_irq(cmos->rtc, 1, rtc_intr);
 291}
 292
 293static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 294{
 295        unsigned char   rtc_control;
 296
 297        /* flush any pending IRQ status, notably for update irqs,
 298         * before we enable new IRQs
 299         */
 300        rtc_control = CMOS_READ(RTC_CONTROL);
 301        cmos_checkintr(cmos, rtc_control);
 302
 303        rtc_control |= mask;
 304        CMOS_WRITE(rtc_control, RTC_CONTROL);
 305        hpet_set_rtc_irq_bit(mask);
 306
 307        cmos_checkintr(cmos, rtc_control);
 308}
 309
 310static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 311{
 312        unsigned char   rtc_control;
 313
 314        rtc_control = CMOS_READ(RTC_CONTROL);
 315        rtc_control &= ~mask;
 316        CMOS_WRITE(rtc_control, RTC_CONTROL);
 317        hpet_mask_rtc_irq_bit(mask);
 318
 319        cmos_checkintr(cmos, rtc_control);
 320}
 321
 322static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 323{
 324        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 325        unsigned char   mon, mday, hrs, min, sec;
 326
 327        if (!is_valid_irq(cmos->irq))
 328                return -EIO;
 329
 330        /* REVISIT this assumes PC style usage:  always BCD */
 331
 332        /* Writing 0xff means "don't care" or "match all".  */
 333
 334        mon = t->time.tm_mon + 1;
 335        mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 336
 337        mday = t->time.tm_mday;
 338        mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 339
 340        hrs = t->time.tm_hour;
 341        hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 342
 343        min = t->time.tm_min;
 344        min = (min < 60) ? bin2bcd(min) : 0xff;
 345
 346        sec = t->time.tm_sec;
 347        sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 348
 349        spin_lock_irq(&rtc_lock);
 350
 351        /* next rtc irq must not be from previous alarm setting */
 352        cmos_irq_disable(cmos, RTC_AIE);
 353
 354        /* update alarm */
 355        CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 356        CMOS_WRITE(min, RTC_MINUTES_ALARM);
 357        CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 358
 359        /* the system may support an "enhanced" alarm */
 360        if (cmos->day_alrm) {
 361                CMOS_WRITE(mday, cmos->day_alrm);
 362                if (cmos->mon_alrm)
 363                        CMOS_WRITE(mon, cmos->mon_alrm);
 364        }
 365
 366        /* FIXME the HPET alarm glue currently ignores day_alrm
 367         * and mon_alrm ...
 368         */
 369        hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 370
 371        if (t->enabled)
 372                cmos_irq_enable(cmos, RTC_AIE);
 373
 374        spin_unlock_irq(&rtc_lock);
 375
 376        return 0;
 377}
 378
 379static int cmos_irq_set_freq(struct device *dev, int freq)
 380{
 381        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 382        int             f;
 383        unsigned long   flags;
 384
 385        if (!is_valid_irq(cmos->irq))
 386                return -ENXIO;
 387
 388        if (!is_power_of_2(freq))
 389                return -EINVAL;
 390        /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
 391        f = ffs(freq);
 392        if (f-- > 16)
 393                return -EINVAL;
 394        f = 16 - f;
 395
 396        spin_lock_irqsave(&rtc_lock, flags);
 397        hpet_set_periodic_freq(freq);
 398        CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
 399        spin_unlock_irqrestore(&rtc_lock, flags);
 400
 401        return 0;
 402}
 403
 404static int cmos_irq_set_state(struct device *dev, int enabled)
 405{
 406        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 407        unsigned long   flags;
 408
 409        if (!is_valid_irq(cmos->irq))
 410                return -ENXIO;
 411
 412        spin_lock_irqsave(&rtc_lock, flags);
 413
 414        if (enabled)
 415                cmos_irq_enable(cmos, RTC_PIE);
 416        else
 417                cmos_irq_disable(cmos, RTC_PIE);
 418
 419        spin_unlock_irqrestore(&rtc_lock, flags);
 420        return 0;
 421}
 422
 423#if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
 424
 425static int
 426cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
 427{
 428        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 429        unsigned long   flags;
 430
 431        switch (cmd) {
 432        case RTC_AIE_OFF:
 433        case RTC_AIE_ON:
 434        case RTC_UIE_OFF:
 435        case RTC_UIE_ON:
 436                if (!is_valid_irq(cmos->irq))
 437                        return -EINVAL;
 438                break;
 439        /* PIE ON/OFF is handled by cmos_irq_set_state() */
 440        default:
 441                return -ENOIOCTLCMD;
 442        }
 443
 444        spin_lock_irqsave(&rtc_lock, flags);
 445        switch (cmd) {
 446        case RTC_AIE_OFF:       /* alarm off */
 447                cmos_irq_disable(cmos, RTC_AIE);
 448                break;
 449        case RTC_AIE_ON:        /* alarm on */
 450                cmos_irq_enable(cmos, RTC_AIE);
 451                break;
 452        case RTC_UIE_OFF:       /* update off */
 453                cmos_irq_disable(cmos, RTC_UIE);
 454                break;
 455        case RTC_UIE_ON:        /* update on */
 456                cmos_irq_enable(cmos, RTC_UIE);
 457                break;
 458        }
 459        spin_unlock_irqrestore(&rtc_lock, flags);
 460        return 0;
 461}
 462
 463#else
 464#define cmos_rtc_ioctl  NULL
 465#endif
 466
 467#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
 468
 469static int cmos_procfs(struct device *dev, struct seq_file *seq)
 470{
 471        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 472        unsigned char   rtc_control, valid;
 473
 474        spin_lock_irq(&rtc_lock);
 475        rtc_control = CMOS_READ(RTC_CONTROL);
 476        valid = CMOS_READ(RTC_VALID);
 477        spin_unlock_irq(&rtc_lock);
 478
 479        /* NOTE:  at least ICH6 reports battery status using a different
 480         * (non-RTC) bit; and SQWE is ignored on many current systems.
 481         */
 482        return seq_printf(seq,
 483                        "periodic_IRQ\t: %s\n"
 484                        "update_IRQ\t: %s\n"
 485                        "HPET_emulated\t: %s\n"
 486                        // "square_wave\t: %s\n"
 487                        // "BCD\t\t: %s\n"
 488                        "DST_enable\t: %s\n"
 489                        "periodic_freq\t: %d\n"
 490                        "batt_status\t: %s\n",
 491                        (rtc_control & RTC_PIE) ? "yes" : "no",
 492                        (rtc_control & RTC_UIE) ? "yes" : "no",
 493                        is_hpet_enabled() ? "yes" : "no",
 494                        // (rtc_control & RTC_SQWE) ? "yes" : "no",
 495                        // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 496                        (rtc_control & RTC_DST_EN) ? "yes" : "no",
 497                        cmos->rtc->irq_freq,
 498                        (valid & RTC_VRT) ? "okay" : "dead");
 499}
 500
 501#else
 502#define cmos_procfs     NULL
 503#endif
 504
 505static const struct rtc_class_ops cmos_rtc_ops = {
 506        .ioctl          = cmos_rtc_ioctl,
 507        .read_time      = cmos_read_time,
 508        .set_time       = cmos_set_time,
 509        .read_alarm     = cmos_read_alarm,
 510        .set_alarm      = cmos_set_alarm,
 511        .proc           = cmos_procfs,
 512        .irq_set_freq   = cmos_irq_set_freq,
 513        .irq_set_state  = cmos_irq_set_state,
 514};
 515
 516/*----------------------------------------------------------------*/
 517
 518/*
 519 * All these chips have at least 64 bytes of address space, shared by
 520 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 521 * by boot firmware.  Modern chips have 128 or 256 bytes.
 522 */
 523
 524#define NVRAM_OFFSET    (RTC_REG_D + 1)
 525
 526static ssize_t
 527cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
 528                char *buf, loff_t off, size_t count)
 529{
 530        int     retval;
 531
 532        if (unlikely(off >= attr->size))
 533                return 0;
 534        if (unlikely(off < 0))
 535                return -EINVAL;
 536        if ((off + count) > attr->size)
 537                count = attr->size - off;
 538
 539        off += NVRAM_OFFSET;
 540        spin_lock_irq(&rtc_lock);
 541        for (retval = 0; count; count--, off++, retval++) {
 542                if (off < 128)
 543                        *buf++ = CMOS_READ(off);
 544                else if (can_bank2)
 545                        *buf++ = cmos_read_bank2(off);
 546                else
 547                        break;
 548        }
 549        spin_unlock_irq(&rtc_lock);
 550
 551        return retval;
 552}
 553
 554static ssize_t
 555cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
 556                char *buf, loff_t off, size_t count)
 557{
 558        struct cmos_rtc *cmos;
 559        int             retval;
 560
 561        cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
 562        if (unlikely(off >= attr->size))
 563                return -EFBIG;
 564        if (unlikely(off < 0))
 565                return -EINVAL;
 566        if ((off + count) > attr->size)
 567                count = attr->size - off;
 568
 569        /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 570         * checksum on part of the NVRAM data.  That's currently ignored
 571         * here.  If userspace is smart enough to know what fields of
 572         * NVRAM to update, updating checksums is also part of its job.
 573         */
 574        off += NVRAM_OFFSET;
 575        spin_lock_irq(&rtc_lock);
 576        for (retval = 0; count; count--, off++, retval++) {
 577                /* don't trash RTC registers */
 578                if (off == cmos->day_alrm
 579                                || off == cmos->mon_alrm
 580                                || off == cmos->century)
 581                        buf++;
 582                else if (off < 128)
 583                        CMOS_WRITE(*buf++, off);
 584                else if (can_bank2)
 585                        cmos_write_bank2(*buf++, off);
 586                else
 587                        break;
 588        }
 589        spin_unlock_irq(&rtc_lock);
 590
 591        return retval;
 592}
 593
 594static struct bin_attribute nvram = {
 595        .attr = {
 596                .name   = "nvram",
 597                .mode   = S_IRUGO | S_IWUSR,
 598        },
 599
 600        .read   = cmos_nvram_read,
 601        .write  = cmos_nvram_write,
 602        /* size gets set up later */
 603};
 604
 605/*----------------------------------------------------------------*/
 606
 607static struct cmos_rtc  cmos_rtc;
 608
 609static irqreturn_t cmos_interrupt(int irq, void *p)
 610{
 611        u8              irqstat;
 612        u8              rtc_control;
 613
 614        spin_lock(&rtc_lock);
 615
 616        /* When the HPET interrupt handler calls us, the interrupt
 617         * status is passed as arg1 instead of the irq number.  But
 618         * always clear irq status, even when HPET is in the way.
 619         *
 620         * Note that HPET and RTC are almost certainly out of phase,
 621         * giving different IRQ status ...
 622         */
 623        irqstat = CMOS_READ(RTC_INTR_FLAGS);
 624        rtc_control = CMOS_READ(RTC_CONTROL);
 625        if (is_hpet_enabled())
 626                irqstat = (unsigned long)irq & 0xF0;
 627        irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 628
 629        /* All Linux RTC alarms should be treated as if they were oneshot.
 630         * Similar code may be needed in system wakeup paths, in case the
 631         * alarm woke the system.
 632         */
 633        if (irqstat & RTC_AIE) {
 634                rtc_control &= ~RTC_AIE;
 635                CMOS_WRITE(rtc_control, RTC_CONTROL);
 636                hpet_mask_rtc_irq_bit(RTC_AIE);
 637
 638                CMOS_READ(RTC_INTR_FLAGS);
 639        }
 640        spin_unlock(&rtc_lock);
 641
 642        if (is_intr(irqstat)) {
 643                rtc_update_irq(p, 1, irqstat);
 644                return IRQ_HANDLED;
 645        } else
 646                return IRQ_NONE;
 647}
 648
 649#ifdef  CONFIG_PNP
 650#define INITSECTION
 651
 652#else
 653#define INITSECTION     __init
 654#endif
 655
 656static int INITSECTION
 657cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 658{
 659        struct cmos_rtc_board_info      *info = dev->platform_data;
 660        int                             retval = 0;
 661        unsigned char                   rtc_control;
 662        unsigned                        address_space;
 663
 664        /* there can be only one ... */
 665        if (cmos_rtc.dev)
 666                return -EBUSY;
 667
 668        if (!ports)
 669                return -ENODEV;
 670
 671        /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 672         *
 673         * REVISIT non-x86 systems may instead use memory space resources
 674         * (needing ioremap etc), not i/o space resources like this ...
 675         */
 676        ports = request_region(ports->start,
 677                        ports->end + 1 - ports->start,
 678                        driver_name);
 679        if (!ports) {
 680                dev_dbg(dev, "i/o registers already in use\n");
 681                return -EBUSY;
 682        }
 683
 684        cmos_rtc.irq = rtc_irq;
 685        cmos_rtc.iomem = ports;
 686
 687        /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 688         * driver did, but don't reject unknown configs.   Old hardware
 689         * won't address 128 bytes.  Newer chips have multiple banks,
 690         * though they may not be listed in one I/O resource.
 691         */
 692#if     defined(CONFIG_ATARI)
 693        address_space = 64;
 694#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__)
 695        address_space = 128;
 696#else
 697#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 698        address_space = 128;
 699#endif
 700        if (can_bank2 && ports->end > (ports->start + 1))
 701                address_space = 256;
 702
 703        /* For ACPI systems extension info comes from the FADT.  On others,
 704         * board specific setup provides it as appropriate.  Systems where
 705         * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 706         * some almost-clones) can provide hooks to make that behave.
 707         *
 708         * Note that ACPI doesn't preclude putting these registers into
 709         * "extended" areas of the chip, including some that we won't yet
 710         * expect CMOS_READ and friends to handle.
 711         */
 712        if (info) {
 713                if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 714                        cmos_rtc.day_alrm = info->rtc_day_alarm;
 715                if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 716                        cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 717                if (info->rtc_century && info->rtc_century < 128)
 718                        cmos_rtc.century = info->rtc_century;
 719
 720                if (info->wake_on && info->wake_off) {
 721                        cmos_rtc.wake_on = info->wake_on;
 722                        cmos_rtc.wake_off = info->wake_off;
 723                }
 724        }
 725
 726        cmos_rtc.rtc = rtc_device_register(driver_name, dev,
 727                                &cmos_rtc_ops, THIS_MODULE);
 728        if (IS_ERR(cmos_rtc.rtc)) {
 729                retval = PTR_ERR(cmos_rtc.rtc);
 730                goto cleanup0;
 731        }
 732
 733        cmos_rtc.dev = dev;
 734        dev_set_drvdata(dev, &cmos_rtc);
 735        rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 736
 737        spin_lock_irq(&rtc_lock);
 738
 739        /* force periodic irq to CMOS reset default of 1024Hz;
 740         *
 741         * REVISIT it's been reported that at least one x86_64 ALI mobo
 742         * doesn't use 32KHz here ... for portability we might need to
 743         * do something about other clock frequencies.
 744         */
 745        cmos_rtc.rtc->irq_freq = 1024;
 746        hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 747        CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 748
 749        /* disable irqs */
 750        cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 751
 752        rtc_control = CMOS_READ(RTC_CONTROL);
 753
 754        spin_unlock_irq(&rtc_lock);
 755
 756        /* FIXME teach the alarm code how to handle binary mode;
 757         * <asm-generic/rtc.h> doesn't know 12-hour mode either.
 758         */
 759        if (is_valid_irq(rtc_irq) &&
 760            (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) {
 761                dev_dbg(dev, "only 24-hr BCD mode supported\n");
 762                retval = -ENXIO;
 763                goto cleanup1;
 764        }
 765
 766        if (is_valid_irq(rtc_irq)) {
 767                irq_handler_t rtc_cmos_int_handler;
 768
 769                if (is_hpet_enabled()) {
 770                        int err;
 771
 772                        rtc_cmos_int_handler = hpet_rtc_interrupt;
 773                        err = hpet_register_irq_handler(cmos_interrupt);
 774                        if (err != 0) {
 775                                printk(KERN_WARNING "hpet_register_irq_handler "
 776                                                " failed in rtc_init().");
 777                                goto cleanup1;
 778                        }
 779                } else
 780                        rtc_cmos_int_handler = cmos_interrupt;
 781
 782                retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 783                                IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
 784                                cmos_rtc.rtc);
 785                if (retval < 0) {
 786                        dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 787                        goto cleanup1;
 788                }
 789        }
 790        hpet_rtc_timer_init();
 791
 792        /* export at least the first block of NVRAM */
 793        nvram.size = address_space - NVRAM_OFFSET;
 794        retval = sysfs_create_bin_file(&dev->kobj, &nvram);
 795        if (retval < 0) {
 796                dev_dbg(dev, "can't create nvram file? %d\n", retval);
 797                goto cleanup2;
 798        }
 799
 800        pr_info("%s: %s%s, %zd bytes nvram%s\n",
 801                dev_name(&cmos_rtc.rtc->dev),
 802                !is_valid_irq(rtc_irq) ? "no alarms" :
 803                        cmos_rtc.mon_alrm ? "alarms up to one year" :
 804                        cmos_rtc.day_alrm ? "alarms up to one month" :
 805                        "alarms up to one day",
 806                cmos_rtc.century ? ", y3k" : "",
 807                nvram.size,
 808                is_hpet_enabled() ? ", hpet irqs" : "");
 809
 810        return 0;
 811
 812cleanup2:
 813        if (is_valid_irq(rtc_irq))
 814                free_irq(rtc_irq, cmos_rtc.rtc);
 815cleanup1:
 816        cmos_rtc.dev = NULL;
 817        rtc_device_unregister(cmos_rtc.rtc);
 818cleanup0:
 819        release_region(ports->start, ports->end + 1 - ports->start);
 820        return retval;
 821}
 822
 823static void cmos_do_shutdown(void)
 824{
 825        spin_lock_irq(&rtc_lock);
 826        cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 827        spin_unlock_irq(&rtc_lock);
 828}
 829
 830static void __exit cmos_do_remove(struct device *dev)
 831{
 832        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 833        struct resource *ports;
 834
 835        cmos_do_shutdown();
 836
 837        sysfs_remove_bin_file(&dev->kobj, &nvram);
 838
 839        if (is_valid_irq(cmos->irq)) {
 840                free_irq(cmos->irq, cmos->rtc);
 841                hpet_unregister_irq_handler(cmos_interrupt);
 842        }
 843
 844        rtc_device_unregister(cmos->rtc);
 845        cmos->rtc = NULL;
 846
 847        ports = cmos->iomem;
 848        release_region(ports->start, ports->end + 1 - ports->start);
 849        cmos->iomem = NULL;
 850
 851        cmos->dev = NULL;
 852        dev_set_drvdata(dev, NULL);
 853}
 854
 855#ifdef  CONFIG_PM
 856
 857static int cmos_suspend(struct device *dev, pm_message_t mesg)
 858{
 859        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 860        unsigned char   tmp;
 861
 862        /* only the alarm might be a wakeup event source */
 863        spin_lock_irq(&rtc_lock);
 864        cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 865        if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 866                unsigned char   mask;
 867
 868                if (device_may_wakeup(dev))
 869                        mask = RTC_IRQMASK & ~RTC_AIE;
 870                else
 871                        mask = RTC_IRQMASK;
 872                tmp &= ~mask;
 873                CMOS_WRITE(tmp, RTC_CONTROL);
 874                hpet_mask_rtc_irq_bit(mask);
 875
 876                cmos_checkintr(cmos, tmp);
 877        }
 878        spin_unlock_irq(&rtc_lock);
 879
 880        if (tmp & RTC_AIE) {
 881                cmos->enabled_wake = 1;
 882                if (cmos->wake_on)
 883                        cmos->wake_on(dev);
 884                else
 885                        enable_irq_wake(cmos->irq);
 886        }
 887
 888        pr_debug("%s: suspend%s, ctrl %02x\n",
 889                        dev_name(&cmos_rtc.rtc->dev),
 890                        (tmp & RTC_AIE) ? ", alarm may wake" : "",
 891                        tmp);
 892
 893        return 0;
 894}
 895
 896/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 897 * after a detour through G3 "mechanical off", although the ACPI spec
 898 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 899 * distinctions between S4 and S5 are pointless.  So when the hardware
 900 * allows, don't draw that distinction.
 901 */
 902static inline int cmos_poweroff(struct device *dev)
 903{
 904        return cmos_suspend(dev, PMSG_HIBERNATE);
 905}
 906
 907static int cmos_resume(struct device *dev)
 908{
 909        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 910        unsigned char   tmp = cmos->suspend_ctrl;
 911
 912        /* re-enable any irqs previously active */
 913        if (tmp & RTC_IRQMASK) {
 914                unsigned char   mask;
 915
 916                if (cmos->enabled_wake) {
 917                        if (cmos->wake_off)
 918                                cmos->wake_off(dev);
 919                        else
 920                                disable_irq_wake(cmos->irq);
 921                        cmos->enabled_wake = 0;
 922                }
 923
 924                spin_lock_irq(&rtc_lock);
 925                do {
 926                        CMOS_WRITE(tmp, RTC_CONTROL);
 927                        hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
 928
 929                        mask = CMOS_READ(RTC_INTR_FLAGS);
 930                        mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
 931                        if (!is_hpet_enabled() || !is_intr(mask))
 932                                break;
 933
 934                        /* force one-shot behavior if HPET blocked
 935                         * the wake alarm's irq
 936                         */
 937                        rtc_update_irq(cmos->rtc, 1, mask);
 938                        tmp &= ~RTC_AIE;
 939                        hpet_mask_rtc_irq_bit(RTC_AIE);
 940                } while (mask & RTC_AIE);
 941                spin_unlock_irq(&rtc_lock);
 942        }
 943
 944        pr_debug("%s: resume, ctrl %02x\n",
 945                        dev_name(&cmos_rtc.rtc->dev),
 946                        tmp);
 947
 948        return 0;
 949}
 950
 951#else
 952#define cmos_suspend    NULL
 953#define cmos_resume     NULL
 954
 955static inline int cmos_poweroff(struct device *dev)
 956{
 957        return -ENOSYS;
 958}
 959
 960#endif
 961
 962/*----------------------------------------------------------------*/
 963
 964/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
 965 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
 966 * probably list them in similar PNPBIOS tables; so PNP is more common.
 967 *
 968 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
 969 * predate even PNPBIOS should set up platform_bus devices.
 970 */
 971
 972#ifdef  CONFIG_ACPI
 973
 974#include <linux/acpi.h>
 975
 976#ifdef  CONFIG_PM
 977static u32 rtc_handler(void *context)
 978{
 979        acpi_clear_event(ACPI_EVENT_RTC);
 980        acpi_disable_event(ACPI_EVENT_RTC, 0);
 981        return ACPI_INTERRUPT_HANDLED;
 982}
 983
 984static inline void rtc_wake_setup(void)
 985{
 986        acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
 987        /*
 988         * After the RTC handler is installed, the Fixed_RTC event should
 989         * be disabled. Only when the RTC alarm is set will it be enabled.
 990         */
 991        acpi_clear_event(ACPI_EVENT_RTC);
 992        acpi_disable_event(ACPI_EVENT_RTC, 0);
 993}
 994
 995static void rtc_wake_on(struct device *dev)
 996{
 997        acpi_clear_event(ACPI_EVENT_RTC);
 998        acpi_enable_event(ACPI_EVENT_RTC, 0);
 999}
1000
1001static void rtc_wake_off(struct device *dev)
1002{
1003        acpi_disable_event(ACPI_EVENT_RTC, 0);
1004}
1005#else
1006#define rtc_wake_setup()        do{}while(0)
1007#define rtc_wake_on             NULL
1008#define rtc_wake_off            NULL
1009#endif
1010
1011/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1012 * its device node and pass extra config data.  This helps its driver use
1013 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1014 * that this board's RTC is wakeup-capable (per ACPI spec).
1015 */
1016static struct cmos_rtc_board_info acpi_rtc_info;
1017
1018static void __devinit
1019cmos_wake_setup(struct device *dev)
1020{
1021        if (acpi_disabled)
1022                return;
1023
1024        rtc_wake_setup();
1025        acpi_rtc_info.wake_on = rtc_wake_on;
1026        acpi_rtc_info.wake_off = rtc_wake_off;
1027
1028        /* workaround bug in some ACPI tables */
1029        if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1030                dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1031                        acpi_gbl_FADT.month_alarm);
1032                acpi_gbl_FADT.month_alarm = 0;
1033        }
1034
1035        acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1036        acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1037        acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1038
1039        /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1040        if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1041                dev_info(dev, "RTC can wake from S4\n");
1042
1043        dev->platform_data = &acpi_rtc_info;
1044
1045        /* RTC always wakes from S1/S2/S3, and often S4/STD */
1046        device_init_wakeup(dev, 1);
1047}
1048
1049#else
1050
1051static void __devinit
1052cmos_wake_setup(struct device *dev)
1053{
1054}
1055
1056#endif
1057
1058#ifdef  CONFIG_PNP
1059
1060#include <linux/pnp.h>
1061
1062static int __devinit
1063cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1064{
1065        cmos_wake_setup(&pnp->dev);
1066
1067        if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1068                /* Some machines contain a PNP entry for the RTC, but
1069                 * don't define the IRQ. It should always be safe to
1070                 * hardcode it in these cases
1071                 */
1072                return cmos_do_probe(&pnp->dev,
1073                                pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1074        else
1075                return cmos_do_probe(&pnp->dev,
1076                                pnp_get_resource(pnp, IORESOURCE_IO, 0),
1077                                pnp_irq(pnp, 0));
1078}
1079
1080static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1081{
1082        cmos_do_remove(&pnp->dev);
1083}
1084
1085#ifdef  CONFIG_PM
1086
1087static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1088{
1089        return cmos_suspend(&pnp->dev, mesg);
1090}
1091
1092static int cmos_pnp_resume(struct pnp_dev *pnp)
1093{
1094        return cmos_resume(&pnp->dev);
1095}
1096
1097#else
1098#define cmos_pnp_suspend        NULL
1099#define cmos_pnp_resume         NULL
1100#endif
1101
1102static void cmos_pnp_shutdown(struct device *pdev)
1103{
1104        if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
1105                return;
1106
1107        cmos_do_shutdown();
1108}
1109
1110static const struct pnp_device_id rtc_ids[] = {
1111        { .id = "PNP0b00", },
1112        { .id = "PNP0b01", },
1113        { .id = "PNP0b02", },
1114        { },
1115};
1116MODULE_DEVICE_TABLE(pnp, rtc_ids);
1117
1118static struct pnp_driver cmos_pnp_driver = {
1119        .name           = (char *) driver_name,
1120        .id_table       = rtc_ids,
1121        .probe          = cmos_pnp_probe,
1122        .remove         = __exit_p(cmos_pnp_remove),
1123
1124        /* flag ensures resume() gets called, and stops syslog spam */
1125        .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1126        .suspend        = cmos_pnp_suspend,
1127        .resume         = cmos_pnp_resume,
1128        .driver         = {
1129                .name     = (char *)driver_name,
1130                .shutdown = cmos_pnp_shutdown,
1131        }
1132};
1133
1134#endif  /* CONFIG_PNP */
1135
1136/*----------------------------------------------------------------*/
1137
1138/* Platform setup should have set up an RTC device, when PNP is
1139 * unavailable ... this could happen even on (older) PCs.
1140 */
1141
1142static int __init cmos_platform_probe(struct platform_device *pdev)
1143{
1144        cmos_wake_setup(&pdev->dev);
1145        return cmos_do_probe(&pdev->dev,
1146                        platform_get_resource(pdev, IORESOURCE_IO, 0),
1147                        platform_get_irq(pdev, 0));
1148}
1149
1150static int __exit cmos_platform_remove(struct platform_device *pdev)
1151{
1152        cmos_do_remove(&pdev->dev);
1153        return 0;
1154}
1155
1156static void cmos_platform_shutdown(struct platform_device *pdev)
1157{
1158        if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1159                return;
1160
1161        cmos_do_shutdown();
1162}
1163
1164/* work with hotplug and coldplug */
1165MODULE_ALIAS("platform:rtc_cmos");
1166
1167static struct platform_driver cmos_platform_driver = {
1168        .remove         = __exit_p(cmos_platform_remove),
1169        .shutdown       = cmos_platform_shutdown,
1170        .driver = {
1171                .name           = (char *) driver_name,
1172                .suspend        = cmos_suspend,
1173                .resume         = cmos_resume,
1174        }
1175};
1176
1177static int __init cmos_init(void)
1178{
1179        int retval = 0;
1180
1181#ifdef  CONFIG_PNP
1182        pnp_register_driver(&cmos_pnp_driver);
1183#endif
1184
1185        if (!cmos_rtc.dev)
1186                retval = platform_driver_probe(&cmos_platform_driver,
1187                                               cmos_platform_probe);
1188
1189        if (retval == 0)
1190                return 0;
1191
1192#ifdef  CONFIG_PNP
1193        pnp_unregister_driver(&cmos_pnp_driver);
1194#endif
1195        return retval;
1196}
1197module_init(cmos_init);
1198
1199static void __exit cmos_exit(void)
1200{
1201#ifdef  CONFIG_PNP
1202        pnp_unregister_driver(&cmos_pnp_driver);
1203#endif
1204        platform_driver_unregister(&cmos_platform_driver);
1205}
1206module_exit(cmos_exit);
1207
1208
1209MODULE_AUTHOR("David Brownell");
1210MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1211MODULE_LICENSE("GPL");
1212