linux/drivers/rtc/interface.c
<<
>>
Prefs
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/log2.h>
  16
  17int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  18{
  19        int err;
  20
  21        err = mutex_lock_interruptible(&rtc->ops_lock);
  22        if (err)
  23                return err;
  24
  25        if (!rtc->ops)
  26                err = -ENODEV;
  27        else if (!rtc->ops->read_time)
  28                err = -EINVAL;
  29        else {
  30                memset(tm, 0, sizeof(struct rtc_time));
  31                err = rtc->ops->read_time(rtc->dev.parent, tm);
  32        }
  33
  34        mutex_unlock(&rtc->ops_lock);
  35        return err;
  36}
  37EXPORT_SYMBOL_GPL(rtc_read_time);
  38
  39int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
  40{
  41        int err;
  42
  43        err = rtc_valid_tm(tm);
  44        if (err != 0)
  45                return err;
  46
  47        err = mutex_lock_interruptible(&rtc->ops_lock);
  48        if (err)
  49                return err;
  50
  51        if (!rtc->ops)
  52                err = -ENODEV;
  53        else if (rtc->ops->set_time)
  54                err = rtc->ops->set_time(rtc->dev.parent, tm);
  55        else if (rtc->ops->set_mmss) {
  56                unsigned long secs;
  57                err = rtc_tm_to_time(tm, &secs);
  58                if (err == 0)
  59                        err = rtc->ops->set_mmss(rtc->dev.parent, secs);
  60        } else
  61                err = -EINVAL;
  62
  63        mutex_unlock(&rtc->ops_lock);
  64        return err;
  65}
  66EXPORT_SYMBOL_GPL(rtc_set_time);
  67
  68int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
  69{
  70        int err;
  71
  72        err = mutex_lock_interruptible(&rtc->ops_lock);
  73        if (err)
  74                return err;
  75
  76        if (!rtc->ops)
  77                err = -ENODEV;
  78        else if (rtc->ops->set_mmss)
  79                err = rtc->ops->set_mmss(rtc->dev.parent, secs);
  80        else if (rtc->ops->read_time && rtc->ops->set_time) {
  81                struct rtc_time new, old;
  82
  83                err = rtc->ops->read_time(rtc->dev.parent, &old);
  84                if (err == 0) {
  85                        rtc_time_to_tm(secs, &new);
  86
  87                        /*
  88                         * avoid writing when we're going to change the day of
  89                         * the month. We will retry in the next minute. This
  90                         * basically means that if the RTC must not drift
  91                         * by more than 1 minute in 11 minutes.
  92                         */
  93                        if (!((old.tm_hour == 23 && old.tm_min == 59) ||
  94                                (new.tm_hour == 23 && new.tm_min == 59)))
  95                                err = rtc->ops->set_time(rtc->dev.parent,
  96                                                &new);
  97                }
  98        }
  99        else
 100                err = -EINVAL;
 101
 102        mutex_unlock(&rtc->ops_lock);
 103
 104        return err;
 105}
 106EXPORT_SYMBOL_GPL(rtc_set_mmss);
 107
 108static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 109{
 110        int err;
 111
 112        err = mutex_lock_interruptible(&rtc->ops_lock);
 113        if (err)
 114                return err;
 115
 116        if (rtc->ops == NULL)
 117                err = -ENODEV;
 118        else if (!rtc->ops->read_alarm)
 119                err = -EINVAL;
 120        else {
 121                memset(alarm, 0, sizeof(struct rtc_wkalrm));
 122                err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 123        }
 124
 125        mutex_unlock(&rtc->ops_lock);
 126        return err;
 127}
 128
 129int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 130{
 131        int err;
 132        struct rtc_time before, now;
 133        int first_time = 1;
 134        unsigned long t_now, t_alm;
 135        enum { none, day, month, year } missing = none;
 136        unsigned days;
 137
 138        /* The lower level RTC driver may return -1 in some fields,
 139         * creating invalid alarm->time values, for reasons like:
 140         *
 141         *   - The hardware may not be capable of filling them in;
 142         *     many alarms match only on time-of-day fields, not
 143         *     day/month/year calendar data.
 144         *
 145         *   - Some hardware uses illegal values as "wildcard" match
 146         *     values, which non-Linux firmware (like a BIOS) may try
 147         *     to set up as e.g. "alarm 15 minutes after each hour".
 148         *     Linux uses only oneshot alarms.
 149         *
 150         * When we see that here, we deal with it by using values from
 151         * a current RTC timestamp for any missing (-1) values.  The
 152         * RTC driver prevents "periodic alarm" modes.
 153         *
 154         * But this can be racey, because some fields of the RTC timestamp
 155         * may have wrapped in the interval since we read the RTC alarm,
 156         * which would lead to us inserting inconsistent values in place
 157         * of the -1 fields.
 158         *
 159         * Reading the alarm and timestamp in the reverse sequence
 160         * would have the same race condition, and not solve the issue.
 161         *
 162         * So, we must first read the RTC timestamp,
 163         * then read the RTC alarm value,
 164         * and then read a second RTC timestamp.
 165         *
 166         * If any fields of the second timestamp have changed
 167         * when compared with the first timestamp, then we know
 168         * our timestamp may be inconsistent with that used by
 169         * the low-level rtc_read_alarm_internal() function.
 170         *
 171         * So, when the two timestamps disagree, we just loop and do
 172         * the process again to get a fully consistent set of values.
 173         *
 174         * This could all instead be done in the lower level driver,
 175         * but since more than one lower level RTC implementation needs it,
 176         * then it's probably best best to do it here instead of there..
 177         */
 178
 179        /* Get the "before" timestamp */
 180        err = rtc_read_time(rtc, &before);
 181        if (err < 0)
 182                return err;
 183        do {
 184                if (!first_time)
 185                        memcpy(&before, &now, sizeof(struct rtc_time));
 186                first_time = 0;
 187
 188                /* get the RTC alarm values, which may be incomplete */
 189                err = rtc_read_alarm_internal(rtc, alarm);
 190                if (err)
 191                        return err;
 192                if (!alarm->enabled)
 193                        return 0;
 194
 195                /* full-function RTCs won't have such missing fields */
 196                if (rtc_valid_tm(&alarm->time) == 0)
 197                        return 0;
 198
 199                /* get the "after" timestamp, to detect wrapped fields */
 200                err = rtc_read_time(rtc, &now);
 201                if (err < 0)
 202                        return err;
 203
 204                /* note that tm_sec is a "don't care" value here: */
 205        } while (   before.tm_min   != now.tm_min
 206                 || before.tm_hour  != now.tm_hour
 207                 || before.tm_mon   != now.tm_mon
 208                 || before.tm_year  != now.tm_year);
 209
 210        /* Fill in the missing alarm fields using the timestamp; we
 211         * know there's at least one since alarm->time is invalid.
 212         */
 213        if (alarm->time.tm_sec == -1)
 214                alarm->time.tm_sec = now.tm_sec;
 215        if (alarm->time.tm_min == -1)
 216                alarm->time.tm_min = now.tm_min;
 217        if (alarm->time.tm_hour == -1)
 218                alarm->time.tm_hour = now.tm_hour;
 219
 220        /* For simplicity, only support date rollover for now */
 221        if (alarm->time.tm_mday == -1) {
 222                alarm->time.tm_mday = now.tm_mday;
 223                missing = day;
 224        }
 225        if (alarm->time.tm_mon == -1) {
 226                alarm->time.tm_mon = now.tm_mon;
 227                if (missing == none)
 228                        missing = month;
 229        }
 230        if (alarm->time.tm_year == -1) {
 231                alarm->time.tm_year = now.tm_year;
 232                if (missing == none)
 233                        missing = year;
 234        }
 235
 236        /* with luck, no rollover is needed */
 237        rtc_tm_to_time(&now, &t_now);
 238        rtc_tm_to_time(&alarm->time, &t_alm);
 239        if (t_now < t_alm)
 240                goto done;
 241
 242        switch (missing) {
 243
 244        /* 24 hour rollover ... if it's now 10am Monday, an alarm that
 245         * that will trigger at 5am will do so at 5am Tuesday, which
 246         * could also be in the next month or year.  This is a common
 247         * case, especially for PCs.
 248         */
 249        case day:
 250                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 251                t_alm += 24 * 60 * 60;
 252                rtc_time_to_tm(t_alm, &alarm->time);
 253                break;
 254
 255        /* Month rollover ... if it's the 31th, an alarm on the 3rd will
 256         * be next month.  An alarm matching on the 30th, 29th, or 28th
 257         * may end up in the month after that!  Many newer PCs support
 258         * this type of alarm.
 259         */
 260        case month:
 261                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 262                do {
 263                        if (alarm->time.tm_mon < 11)
 264                                alarm->time.tm_mon++;
 265                        else {
 266                                alarm->time.tm_mon = 0;
 267                                alarm->time.tm_year++;
 268                        }
 269                        days = rtc_month_days(alarm->time.tm_mon,
 270                                        alarm->time.tm_year);
 271                } while (days < alarm->time.tm_mday);
 272                break;
 273
 274        /* Year rollover ... easy except for leap years! */
 275        case year:
 276                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 277                do {
 278                        alarm->time.tm_year++;
 279                } while (rtc_valid_tm(&alarm->time) != 0);
 280                break;
 281
 282        default:
 283                dev_warn(&rtc->dev, "alarm rollover not handled\n");
 284        }
 285
 286done:
 287        return 0;
 288}
 289EXPORT_SYMBOL_GPL(rtc_read_alarm);
 290
 291int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 292{
 293        int err;
 294
 295        err = rtc_valid_tm(&alarm->time);
 296        if (err != 0)
 297                return err;
 298
 299        err = mutex_lock_interruptible(&rtc->ops_lock);
 300        if (err)
 301                return err;
 302
 303        if (!rtc->ops)
 304                err = -ENODEV;
 305        else if (!rtc->ops->set_alarm)
 306                err = -EINVAL;
 307        else
 308                err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 309
 310        mutex_unlock(&rtc->ops_lock);
 311        return err;
 312}
 313EXPORT_SYMBOL_GPL(rtc_set_alarm);
 314
 315int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 316{
 317        int err = mutex_lock_interruptible(&rtc->ops_lock);
 318        if (err)
 319                return err;
 320
 321        if (!rtc->ops)
 322                err = -ENODEV;
 323        else if (!rtc->ops->alarm_irq_enable)
 324                err = -EINVAL;
 325        else
 326                err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 327
 328        mutex_unlock(&rtc->ops_lock);
 329        return err;
 330}
 331EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 332
 333int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 334{
 335        int err = mutex_lock_interruptible(&rtc->ops_lock);
 336        if (err)
 337                return err;
 338
 339#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 340        if (enabled == 0 && rtc->uie_irq_active) {
 341                mutex_unlock(&rtc->ops_lock);
 342                return rtc_dev_update_irq_enable_emul(rtc, enabled);
 343        }
 344#endif
 345
 346        if (!rtc->ops)
 347                err = -ENODEV;
 348        else if (!rtc->ops->update_irq_enable)
 349                err = -EINVAL;
 350        else
 351                err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
 352
 353        mutex_unlock(&rtc->ops_lock);
 354
 355#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 356        /*
 357         * Enable emulation if the driver did not provide
 358         * the update_irq_enable function pointer or if returned
 359         * -EINVAL to signal that it has been configured without
 360         * interrupts or that are not available at the moment.
 361         */
 362        if (err == -EINVAL)
 363                err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 364#endif
 365        return err;
 366}
 367EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 368
 369/**
 370 * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
 371 * @rtc: the rtc device
 372 * @num: how many irqs are being reported (usually one)
 373 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 374 * Context: in_interrupt(), irqs blocked
 375 */
 376void rtc_update_irq(struct rtc_device *rtc,
 377                unsigned long num, unsigned long events)
 378{
 379        spin_lock(&rtc->irq_lock);
 380        rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
 381        spin_unlock(&rtc->irq_lock);
 382
 383        spin_lock(&rtc->irq_task_lock);
 384        if (rtc->irq_task)
 385                rtc->irq_task->func(rtc->irq_task->private_data);
 386        spin_unlock(&rtc->irq_task_lock);
 387
 388        wake_up_interruptible(&rtc->irq_queue);
 389        kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 390}
 391EXPORT_SYMBOL_GPL(rtc_update_irq);
 392
 393static int __rtc_match(struct device *dev, void *data)
 394{
 395        char *name = (char *)data;
 396
 397        if (strcmp(dev_name(dev), name) == 0)
 398                return 1;
 399        return 0;
 400}
 401
 402struct rtc_device *rtc_class_open(char *name)
 403{
 404        struct device *dev;
 405        struct rtc_device *rtc = NULL;
 406
 407        dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 408        if (dev)
 409                rtc = to_rtc_device(dev);
 410
 411        if (rtc) {
 412                if (!try_module_get(rtc->owner)) {
 413                        put_device(dev);
 414                        rtc = NULL;
 415                }
 416        }
 417
 418        return rtc;
 419}
 420EXPORT_SYMBOL_GPL(rtc_class_open);
 421
 422void rtc_class_close(struct rtc_device *rtc)
 423{
 424        module_put(rtc->owner);
 425        put_device(&rtc->dev);
 426}
 427EXPORT_SYMBOL_GPL(rtc_class_close);
 428
 429int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 430{
 431        int retval = -EBUSY;
 432
 433        if (task == NULL || task->func == NULL)
 434                return -EINVAL;
 435
 436        /* Cannot register while the char dev is in use */
 437        if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 438                return -EBUSY;
 439
 440        spin_lock_irq(&rtc->irq_task_lock);
 441        if (rtc->irq_task == NULL) {
 442                rtc->irq_task = task;
 443                retval = 0;
 444        }
 445        spin_unlock_irq(&rtc->irq_task_lock);
 446
 447        clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 448
 449        return retval;
 450}
 451EXPORT_SYMBOL_GPL(rtc_irq_register);
 452
 453void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 454{
 455        spin_lock_irq(&rtc->irq_task_lock);
 456        if (rtc->irq_task == task)
 457                rtc->irq_task = NULL;
 458        spin_unlock_irq(&rtc->irq_task_lock);
 459}
 460EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 461
 462/**
 463 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 464 * @rtc: the rtc device
 465 * @task: currently registered with rtc_irq_register()
 466 * @enabled: true to enable periodic IRQs
 467 * Context: any
 468 *
 469 * Note that rtc_irq_set_freq() should previously have been used to
 470 * specify the desired frequency of periodic IRQ task->func() callbacks.
 471 */
 472int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 473{
 474        int err = 0;
 475        unsigned long flags;
 476
 477        if (rtc->ops->irq_set_state == NULL)
 478                return -ENXIO;
 479
 480        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 481        if (rtc->irq_task != NULL && task == NULL)
 482                err = -EBUSY;
 483        if (rtc->irq_task != task)
 484                err = -EACCES;
 485        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 486
 487        if (err == 0)
 488                err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
 489
 490        return err;
 491}
 492EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 493
 494/**
 495 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 496 * @rtc: the rtc device
 497 * @task: currently registered with rtc_irq_register()
 498 * @freq: positive frequency with which task->func() will be called
 499 * Context: any
 500 *
 501 * Note that rtc_irq_set_state() is used to enable or disable the
 502 * periodic IRQs.
 503 */
 504int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 505{
 506        int err = 0;
 507        unsigned long flags;
 508
 509        if (rtc->ops->irq_set_freq == NULL)
 510                return -ENXIO;
 511
 512        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 513        if (rtc->irq_task != NULL && task == NULL)
 514                err = -EBUSY;
 515        if (rtc->irq_task != task)
 516                err = -EACCES;
 517        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 518
 519        if (err == 0) {
 520                err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
 521                if (err == 0)
 522                        rtc->irq_freq = freq;
 523        }
 524        return err;
 525}
 526EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 527