linux/drivers/firewire/fw-ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/compiler.h>
  22#include <linux/delay.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/gfp.h>
  25#include <linux/init.h>
  26#include <linux/interrupt.h>
  27#include <linux/kernel.h>
  28#include <linux/mm.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/pci.h>
  32#include <linux/spinlock.h>
  33
  34#include <asm/page.h>
  35#include <asm/system.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "fw-ohci.h"
  42#include "fw-transaction.h"
  43
  44#define DESCRIPTOR_OUTPUT_MORE          0
  45#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  46#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  47#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  48#define DESCRIPTOR_STATUS               (1 << 11)
  49#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  50#define DESCRIPTOR_PING                 (1 << 7)
  51#define DESCRIPTOR_YY                   (1 << 6)
  52#define DESCRIPTOR_NO_IRQ               (0 << 4)
  53#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  54#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  55#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  56#define DESCRIPTOR_WAIT                 (3 << 0)
  57
  58struct descriptor {
  59        __le16 req_count;
  60        __le16 control;
  61        __le32 data_address;
  62        __le32 branch_address;
  63        __le16 res_count;
  64        __le16 transfer_status;
  65} __attribute__((aligned(16)));
  66
  67struct db_descriptor {
  68        __le16 first_size;
  69        __le16 control;
  70        __le16 second_req_count;
  71        __le16 first_req_count;
  72        __le32 branch_address;
  73        __le16 second_res_count;
  74        __le16 first_res_count;
  75        __le32 reserved0;
  76        __le32 first_buffer;
  77        __le32 second_buffer;
  78        __le32 reserved1;
  79} __attribute__((aligned(16)));
  80
  81#define CONTROL_SET(regs)       (regs)
  82#define CONTROL_CLEAR(regs)     ((regs) + 4)
  83#define COMMAND_PTR(regs)       ((regs) + 12)
  84#define CONTEXT_MATCH(regs)     ((regs) + 16)
  85
  86struct ar_buffer {
  87        struct descriptor descriptor;
  88        struct ar_buffer *next;
  89        __le32 data[0];
  90};
  91
  92struct ar_context {
  93        struct fw_ohci *ohci;
  94        struct ar_buffer *current_buffer;
  95        struct ar_buffer *last_buffer;
  96        void *pointer;
  97        u32 regs;
  98        struct tasklet_struct tasklet;
  99};
 100
 101struct context;
 102
 103typedef int (*descriptor_callback_t)(struct context *ctx,
 104                                     struct descriptor *d,
 105                                     struct descriptor *last);
 106
 107/*
 108 * A buffer that contains a block of DMA-able coherent memory used for
 109 * storing a portion of a DMA descriptor program.
 110 */
 111struct descriptor_buffer {
 112        struct list_head list;
 113        dma_addr_t buffer_bus;
 114        size_t buffer_size;
 115        size_t used;
 116        struct descriptor buffer[0];
 117};
 118
 119struct context {
 120        struct fw_ohci *ohci;
 121        u32 regs;
 122        int total_allocation;
 123
 124        /*
 125         * List of page-sized buffers for storing DMA descriptors.
 126         * Head of list contains buffers in use and tail of list contains
 127         * free buffers.
 128         */
 129        struct list_head buffer_list;
 130
 131        /*
 132         * Pointer to a buffer inside buffer_list that contains the tail
 133         * end of the current DMA program.
 134         */
 135        struct descriptor_buffer *buffer_tail;
 136
 137        /*
 138         * The descriptor containing the branch address of the first
 139         * descriptor that has not yet been filled by the device.
 140         */
 141        struct descriptor *last;
 142
 143        /*
 144         * The last descriptor in the DMA program.  It contains the branch
 145         * address that must be updated upon appending a new descriptor.
 146         */
 147        struct descriptor *prev;
 148
 149        descriptor_callback_t callback;
 150
 151        struct tasklet_struct tasklet;
 152};
 153
 154#define IT_HEADER_SY(v)          ((v) <<  0)
 155#define IT_HEADER_TCODE(v)       ((v) <<  4)
 156#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 157#define IT_HEADER_TAG(v)         ((v) << 14)
 158#define IT_HEADER_SPEED(v)       ((v) << 16)
 159#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 160
 161struct iso_context {
 162        struct fw_iso_context base;
 163        struct context context;
 164        int excess_bytes;
 165        void *header;
 166        size_t header_length;
 167};
 168
 169#define CONFIG_ROM_SIZE 1024
 170
 171struct fw_ohci {
 172        struct fw_card card;
 173
 174        __iomem char *registers;
 175        dma_addr_t self_id_bus;
 176        __le32 *self_id_cpu;
 177        struct tasklet_struct bus_reset_tasklet;
 178        int node_id;
 179        int generation;
 180        int request_generation; /* for timestamping incoming requests */
 181        u32 bus_seconds;
 182
 183        bool use_dualbuffer;
 184        bool old_uninorth;
 185        bool bus_reset_packet_quirk;
 186
 187        /*
 188         * Spinlock for accessing fw_ohci data.  Never call out of
 189         * this driver with this lock held.
 190         */
 191        spinlock_t lock;
 192        u32 self_id_buffer[512];
 193
 194        /* Config rom buffers */
 195        __be32 *config_rom;
 196        dma_addr_t config_rom_bus;
 197        __be32 *next_config_rom;
 198        dma_addr_t next_config_rom_bus;
 199        u32 next_header;
 200
 201        struct ar_context ar_request_ctx;
 202        struct ar_context ar_response_ctx;
 203        struct context at_request_ctx;
 204        struct context at_response_ctx;
 205
 206        u32 it_context_mask;
 207        struct iso_context *it_context_list;
 208        u64 ir_context_channels;
 209        u32 ir_context_mask;
 210        struct iso_context *ir_context_list;
 211};
 212
 213static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 214{
 215        return container_of(card, struct fw_ohci, card);
 216}
 217
 218#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 219#define IR_CONTEXT_BUFFER_FILL          0x80000000
 220#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 221#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 222#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 223#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 224
 225#define CONTEXT_RUN     0x8000
 226#define CONTEXT_WAKE    0x1000
 227#define CONTEXT_DEAD    0x0800
 228#define CONTEXT_ACTIVE  0x0400
 229
 230#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 231#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 232#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 233
 234#define FW_OHCI_MAJOR                   240
 235#define OHCI1394_REGISTER_SIZE          0x800
 236#define OHCI_LOOP_COUNT                 500
 237#define OHCI1394_PCI_HCI_Control        0x40
 238#define SELF_ID_BUF_SIZE                0x800
 239#define OHCI_TCODE_PHY_PACKET           0x0e
 240#define OHCI_VERSION_1_1                0x010010
 241
 242static char ohci_driver_name[] = KBUILD_MODNAME;
 243
 244#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
 245
 246#define OHCI_PARAM_DEBUG_AT_AR          1
 247#define OHCI_PARAM_DEBUG_SELFIDS        2
 248#define OHCI_PARAM_DEBUG_IRQS           4
 249#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 250
 251static int param_debug;
 252module_param_named(debug, param_debug, int, 0644);
 253MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 254        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 255        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 256        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 257        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 258        ", or a combination, or all = -1)");
 259
 260static void log_irqs(u32 evt)
 261{
 262        if (likely(!(param_debug &
 263                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 264                return;
 265
 266        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 267            !(evt & OHCI1394_busReset))
 268                return;
 269
 270        fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 271            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 272            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 273            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 274            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 275            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 276            evt & OHCI1394_isochRx              ? " IR"                 : "",
 277            evt & OHCI1394_isochTx              ? " IT"                 : "",
 278            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 279            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 280            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 281            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 282            evt & OHCI1394_busReset             ? " busReset"           : "",
 283            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 284                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 285                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 286                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 287                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 288                    OHCI1394_regAccessFail | OHCI1394_busReset)
 289                                                ? " ?"                  : "");
 290}
 291
 292static const char *speed[] = {
 293        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 294};
 295static const char *power[] = {
 296        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 297        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 298};
 299static const char port[] = { '.', '-', 'p', 'c', };
 300
 301static char _p(u32 *s, int shift)
 302{
 303        return port[*s >> shift & 3];
 304}
 305
 306static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
 307{
 308        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 309                return;
 310
 311        fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
 312                  self_id_count, generation, node_id);
 313
 314        for (; self_id_count--; ++s)
 315                if ((*s & 1 << 23) == 0)
 316                        fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
 317                            "%s gc=%d %s %s%s%s\n",
 318                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 319                            speed[*s >> 14 & 3], *s >> 16 & 63,
 320                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 321                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 322                else
 323                        fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 324                            *s, *s >> 24 & 63,
 325                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 326                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 327}
 328
 329static const char *evts[] = {
 330        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 331        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 332        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 333        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 334        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 335        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 336        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 337        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 338        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 339        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 340        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 341        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 342        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 343        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 344        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 345        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 346        [0x20] = "pending/cancelled",
 347};
 348static const char *tcodes[] = {
 349        [0x0] = "QW req",               [0x1] = "BW req",
 350        [0x2] = "W resp",               [0x3] = "-reserved-",
 351        [0x4] = "QR req",               [0x5] = "BR req",
 352        [0x6] = "QR resp",              [0x7] = "BR resp",
 353        [0x8] = "cycle start",          [0x9] = "Lk req",
 354        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 355        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 356        [0xe] = "link internal",        [0xf] = "-reserved-",
 357};
 358static const char *phys[] = {
 359        [0x0] = "phy config packet",    [0x1] = "link-on packet",
 360        [0x2] = "self-id packet",       [0x3] = "-reserved-",
 361};
 362
 363static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
 364{
 365        int tcode = header[0] >> 4 & 0xf;
 366        char specific[12];
 367
 368        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 369                return;
 370
 371        if (unlikely(evt >= ARRAY_SIZE(evts)))
 372                        evt = 0x1f;
 373
 374        if (evt == OHCI1394_evt_bus_reset) {
 375                fw_notify("A%c evt_bus_reset, generation %d\n",
 376                    dir, (header[2] >> 16) & 0xff);
 377                return;
 378        }
 379
 380        if (header[0] == ~header[1]) {
 381                fw_notify("A%c %s, %s, %08x\n",
 382                    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
 383                return;
 384        }
 385
 386        switch (tcode) {
 387        case 0x0: case 0x6: case 0x8:
 388                snprintf(specific, sizeof(specific), " = %08x",
 389                         be32_to_cpu((__force __be32)header[3]));
 390                break;
 391        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 392                snprintf(specific, sizeof(specific), " %x,%x",
 393                         header[3] >> 16, header[3] & 0xffff);
 394                break;
 395        default:
 396                specific[0] = '\0';
 397        }
 398
 399        switch (tcode) {
 400        case 0xe: case 0xa:
 401                fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
 402                break;
 403        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 404                fw_notify("A%c spd %x tl %02x, "
 405                    "%04x -> %04x, %s, "
 406                    "%s, %04x%08x%s\n",
 407                    dir, speed, header[0] >> 10 & 0x3f,
 408                    header[1] >> 16, header[0] >> 16, evts[evt],
 409                    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 410                break;
 411        default:
 412                fw_notify("A%c spd %x tl %02x, "
 413                    "%04x -> %04x, %s, "
 414                    "%s%s\n",
 415                    dir, speed, header[0] >> 10 & 0x3f,
 416                    header[1] >> 16, header[0] >> 16, evts[evt],
 417                    tcodes[tcode], specific);
 418        }
 419}
 420
 421#else
 422
 423#define log_irqs(evt)
 424#define log_selfids(node_id, generation, self_id_count, sid)
 425#define log_ar_at_event(dir, speed, header, evt)
 426
 427#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
 428
 429static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 430{
 431        writel(data, ohci->registers + offset);
 432}
 433
 434static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 435{
 436        return readl(ohci->registers + offset);
 437}
 438
 439static inline void flush_writes(const struct fw_ohci *ohci)
 440{
 441        /* Do a dummy read to flush writes. */
 442        reg_read(ohci, OHCI1394_Version);
 443}
 444
 445static int ohci_update_phy_reg(struct fw_card *card, int addr,
 446                               int clear_bits, int set_bits)
 447{
 448        struct fw_ohci *ohci = fw_ohci(card);
 449        u32 val, old;
 450
 451        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 452        flush_writes(ohci);
 453        msleep(2);
 454        val = reg_read(ohci, OHCI1394_PhyControl);
 455        if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
 456                fw_error("failed to set phy reg bits.\n");
 457                return -EBUSY;
 458        }
 459
 460        old = OHCI1394_PhyControl_ReadData(val);
 461        old = (old & ~clear_bits) | set_bits;
 462        reg_write(ohci, OHCI1394_PhyControl,
 463                  OHCI1394_PhyControl_Write(addr, old));
 464
 465        return 0;
 466}
 467
 468static int ar_context_add_page(struct ar_context *ctx)
 469{
 470        struct device *dev = ctx->ohci->card.device;
 471        struct ar_buffer *ab;
 472        dma_addr_t uninitialized_var(ab_bus);
 473        size_t offset;
 474
 475        ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
 476        if (ab == NULL)
 477                return -ENOMEM;
 478
 479        ab->next = NULL;
 480        memset(&ab->descriptor, 0, sizeof(ab->descriptor));
 481        ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
 482                                                    DESCRIPTOR_STATUS |
 483                                                    DESCRIPTOR_BRANCH_ALWAYS);
 484        offset = offsetof(struct ar_buffer, data);
 485        ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
 486        ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
 487        ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
 488        ab->descriptor.branch_address = 0;
 489
 490        ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
 491        ctx->last_buffer->next = ab;
 492        ctx->last_buffer = ab;
 493
 494        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 495        flush_writes(ctx->ohci);
 496
 497        return 0;
 498}
 499
 500static void ar_context_release(struct ar_context *ctx)
 501{
 502        struct ar_buffer *ab, *ab_next;
 503        size_t offset;
 504        dma_addr_t ab_bus;
 505
 506        for (ab = ctx->current_buffer; ab; ab = ab_next) {
 507                ab_next = ab->next;
 508                offset = offsetof(struct ar_buffer, data);
 509                ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
 510                dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
 511                                  ab, ab_bus);
 512        }
 513}
 514
 515#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 516#define cond_le32_to_cpu(v) \
 517        (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
 518#else
 519#define cond_le32_to_cpu(v) le32_to_cpu(v)
 520#endif
 521
 522static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 523{
 524        struct fw_ohci *ohci = ctx->ohci;
 525        struct fw_packet p;
 526        u32 status, length, tcode;
 527        int evt;
 528
 529        p.header[0] = cond_le32_to_cpu(buffer[0]);
 530        p.header[1] = cond_le32_to_cpu(buffer[1]);
 531        p.header[2] = cond_le32_to_cpu(buffer[2]);
 532
 533        tcode = (p.header[0] >> 4) & 0x0f;
 534        switch (tcode) {
 535        case TCODE_WRITE_QUADLET_REQUEST:
 536        case TCODE_READ_QUADLET_RESPONSE:
 537                p.header[3] = (__force __u32) buffer[3];
 538                p.header_length = 16;
 539                p.payload_length = 0;
 540                break;
 541
 542        case TCODE_READ_BLOCK_REQUEST :
 543                p.header[3] = cond_le32_to_cpu(buffer[3]);
 544                p.header_length = 16;
 545                p.payload_length = 0;
 546                break;
 547
 548        case TCODE_WRITE_BLOCK_REQUEST:
 549        case TCODE_READ_BLOCK_RESPONSE:
 550        case TCODE_LOCK_REQUEST:
 551        case TCODE_LOCK_RESPONSE:
 552                p.header[3] = cond_le32_to_cpu(buffer[3]);
 553                p.header_length = 16;
 554                p.payload_length = p.header[3] >> 16;
 555                break;
 556
 557        case TCODE_WRITE_RESPONSE:
 558        case TCODE_READ_QUADLET_REQUEST:
 559        case OHCI_TCODE_PHY_PACKET:
 560                p.header_length = 12;
 561                p.payload_length = 0;
 562                break;
 563
 564        default:
 565                /* FIXME: Stop context, discard everything, and restart? */
 566                p.header_length = 0;
 567                p.payload_length = 0;
 568        }
 569
 570        p.payload = (void *) buffer + p.header_length;
 571
 572        /* FIXME: What to do about evt_* errors? */
 573        length = (p.header_length + p.payload_length + 3) / 4;
 574        status = cond_le32_to_cpu(buffer[length]);
 575        evt    = (status >> 16) & 0x1f;
 576
 577        p.ack        = evt - 16;
 578        p.speed      = (status >> 21) & 0x7;
 579        p.timestamp  = status & 0xffff;
 580        p.generation = ohci->request_generation;
 581
 582        log_ar_at_event('R', p.speed, p.header, evt);
 583
 584        /*
 585         * The OHCI bus reset handler synthesizes a phy packet with
 586         * the new generation number when a bus reset happens (see
 587         * section 8.4.2.3).  This helps us determine when a request
 588         * was received and make sure we send the response in the same
 589         * generation.  We only need this for requests; for responses
 590         * we use the unique tlabel for finding the matching
 591         * request.
 592         *
 593         * Alas some chips sometimes emit bus reset packets with a
 594         * wrong generation.  We set the correct generation for these
 595         * at a slightly incorrect time (in bus_reset_tasklet).
 596         */
 597        if (evt == OHCI1394_evt_bus_reset) {
 598                if (!ohci->bus_reset_packet_quirk)
 599                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 600        } else if (ctx == &ohci->ar_request_ctx) {
 601                fw_core_handle_request(&ohci->card, &p);
 602        } else {
 603                fw_core_handle_response(&ohci->card, &p);
 604        }
 605
 606        return buffer + length + 1;
 607}
 608
 609static void ar_context_tasklet(unsigned long data)
 610{
 611        struct ar_context *ctx = (struct ar_context *)data;
 612        struct fw_ohci *ohci = ctx->ohci;
 613        struct ar_buffer *ab;
 614        struct descriptor *d;
 615        void *buffer, *end;
 616
 617        ab = ctx->current_buffer;
 618        d = &ab->descriptor;
 619
 620        if (d->res_count == 0) {
 621                size_t size, rest, offset;
 622                dma_addr_t start_bus;
 623                void *start;
 624
 625                /*
 626                 * This descriptor is finished and we may have a
 627                 * packet split across this and the next buffer. We
 628                 * reuse the page for reassembling the split packet.
 629                 */
 630
 631                offset = offsetof(struct ar_buffer, data);
 632                start = buffer = ab;
 633                start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
 634
 635                ab = ab->next;
 636                d = &ab->descriptor;
 637                size = buffer + PAGE_SIZE - ctx->pointer;
 638                rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
 639                memmove(buffer, ctx->pointer, size);
 640                memcpy(buffer + size, ab->data, rest);
 641                ctx->current_buffer = ab;
 642                ctx->pointer = (void *) ab->data + rest;
 643                end = buffer + size + rest;
 644
 645                while (buffer < end)
 646                        buffer = handle_ar_packet(ctx, buffer);
 647
 648                dma_free_coherent(ohci->card.device, PAGE_SIZE,
 649                                  start, start_bus);
 650                ar_context_add_page(ctx);
 651        } else {
 652                buffer = ctx->pointer;
 653                ctx->pointer = end =
 654                        (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
 655
 656                while (buffer < end)
 657                        buffer = handle_ar_packet(ctx, buffer);
 658        }
 659}
 660
 661static int ar_context_init(struct ar_context *ctx,
 662                           struct fw_ohci *ohci, u32 regs)
 663{
 664        struct ar_buffer ab;
 665
 666        ctx->regs        = regs;
 667        ctx->ohci        = ohci;
 668        ctx->last_buffer = &ab;
 669        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 670
 671        ar_context_add_page(ctx);
 672        ar_context_add_page(ctx);
 673        ctx->current_buffer = ab.next;
 674        ctx->pointer = ctx->current_buffer->data;
 675
 676        return 0;
 677}
 678
 679static void ar_context_run(struct ar_context *ctx)
 680{
 681        struct ar_buffer *ab = ctx->current_buffer;
 682        dma_addr_t ab_bus;
 683        size_t offset;
 684
 685        offset = offsetof(struct ar_buffer, data);
 686        ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
 687
 688        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
 689        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
 690        flush_writes(ctx->ohci);
 691}
 692
 693static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
 694{
 695        int b, key;
 696
 697        b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
 698        key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
 699
 700        /* figure out which descriptor the branch address goes in */
 701        if (z == 2 && (b == 3 || key == 2))
 702                return d;
 703        else
 704                return d + z - 1;
 705}
 706
 707static void context_tasklet(unsigned long data)
 708{
 709        struct context *ctx = (struct context *) data;
 710        struct descriptor *d, *last;
 711        u32 address;
 712        int z;
 713        struct descriptor_buffer *desc;
 714
 715        desc = list_entry(ctx->buffer_list.next,
 716                        struct descriptor_buffer, list);
 717        last = ctx->last;
 718        while (last->branch_address != 0) {
 719                struct descriptor_buffer *old_desc = desc;
 720                address = le32_to_cpu(last->branch_address);
 721                z = address & 0xf;
 722                address &= ~0xf;
 723
 724                /* If the branch address points to a buffer outside of the
 725                 * current buffer, advance to the next buffer. */
 726                if (address < desc->buffer_bus ||
 727                                address >= desc->buffer_bus + desc->used)
 728                        desc = list_entry(desc->list.next,
 729                                        struct descriptor_buffer, list);
 730                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
 731                last = find_branch_descriptor(d, z);
 732
 733                if (!ctx->callback(ctx, d, last))
 734                        break;
 735
 736                if (old_desc != desc) {
 737                        /* If we've advanced to the next buffer, move the
 738                         * previous buffer to the free list. */
 739                        unsigned long flags;
 740                        old_desc->used = 0;
 741                        spin_lock_irqsave(&ctx->ohci->lock, flags);
 742                        list_move_tail(&old_desc->list, &ctx->buffer_list);
 743                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
 744                }
 745                ctx->last = last;
 746        }
 747}
 748
 749/*
 750 * Allocate a new buffer and add it to the list of free buffers for this
 751 * context.  Must be called with ohci->lock held.
 752 */
 753static int context_add_buffer(struct context *ctx)
 754{
 755        struct descriptor_buffer *desc;
 756        dma_addr_t uninitialized_var(bus_addr);
 757        int offset;
 758
 759        /*
 760         * 16MB of descriptors should be far more than enough for any DMA
 761         * program.  This will catch run-away userspace or DoS attacks.
 762         */
 763        if (ctx->total_allocation >= 16*1024*1024)
 764                return -ENOMEM;
 765
 766        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
 767                        &bus_addr, GFP_ATOMIC);
 768        if (!desc)
 769                return -ENOMEM;
 770
 771        offset = (void *)&desc->buffer - (void *)desc;
 772        desc->buffer_size = PAGE_SIZE - offset;
 773        desc->buffer_bus = bus_addr + offset;
 774        desc->used = 0;
 775
 776        list_add_tail(&desc->list, &ctx->buffer_list);
 777        ctx->total_allocation += PAGE_SIZE;
 778
 779        return 0;
 780}
 781
 782static int context_init(struct context *ctx, struct fw_ohci *ohci,
 783                        u32 regs, descriptor_callback_t callback)
 784{
 785        ctx->ohci = ohci;
 786        ctx->regs = regs;
 787        ctx->total_allocation = 0;
 788
 789        INIT_LIST_HEAD(&ctx->buffer_list);
 790        if (context_add_buffer(ctx) < 0)
 791                return -ENOMEM;
 792
 793        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
 794                        struct descriptor_buffer, list);
 795
 796        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
 797        ctx->callback = callback;
 798
 799        /*
 800         * We put a dummy descriptor in the buffer that has a NULL
 801         * branch address and looks like it's been sent.  That way we
 802         * have a descriptor to append DMA programs to.
 803         */
 804        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
 805        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
 806        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
 807        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
 808        ctx->last = ctx->buffer_tail->buffer;
 809        ctx->prev = ctx->buffer_tail->buffer;
 810
 811        return 0;
 812}
 813
 814static void context_release(struct context *ctx)
 815{
 816        struct fw_card *card = &ctx->ohci->card;
 817        struct descriptor_buffer *desc, *tmp;
 818
 819        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
 820                dma_free_coherent(card->device, PAGE_SIZE, desc,
 821                        desc->buffer_bus -
 822                        ((void *)&desc->buffer - (void *)desc));
 823}
 824
 825/* Must be called with ohci->lock held */
 826static struct descriptor *context_get_descriptors(struct context *ctx,
 827                                                  int z, dma_addr_t *d_bus)
 828{
 829        struct descriptor *d = NULL;
 830        struct descriptor_buffer *desc = ctx->buffer_tail;
 831
 832        if (z * sizeof(*d) > desc->buffer_size)
 833                return NULL;
 834
 835        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
 836                /* No room for the descriptor in this buffer, so advance to the
 837                 * next one. */
 838
 839                if (desc->list.next == &ctx->buffer_list) {
 840                        /* If there is no free buffer next in the list,
 841                         * allocate one. */
 842                        if (context_add_buffer(ctx) < 0)
 843                                return NULL;
 844                }
 845                desc = list_entry(desc->list.next,
 846                                struct descriptor_buffer, list);
 847                ctx->buffer_tail = desc;
 848        }
 849
 850        d = desc->buffer + desc->used / sizeof(*d);
 851        memset(d, 0, z * sizeof(*d));
 852        *d_bus = desc->buffer_bus + desc->used;
 853
 854        return d;
 855}
 856
 857static void context_run(struct context *ctx, u32 extra)
 858{
 859        struct fw_ohci *ohci = ctx->ohci;
 860
 861        reg_write(ohci, COMMAND_PTR(ctx->regs),
 862                  le32_to_cpu(ctx->last->branch_address));
 863        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
 864        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
 865        flush_writes(ohci);
 866}
 867
 868static void context_append(struct context *ctx,
 869                           struct descriptor *d, int z, int extra)
 870{
 871        dma_addr_t d_bus;
 872        struct descriptor_buffer *desc = ctx->buffer_tail;
 873
 874        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
 875
 876        desc->used += (z + extra) * sizeof(*d);
 877        ctx->prev->branch_address = cpu_to_le32(d_bus | z);
 878        ctx->prev = find_branch_descriptor(d, z);
 879
 880        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 881        flush_writes(ctx->ohci);
 882}
 883
 884static void context_stop(struct context *ctx)
 885{
 886        u32 reg;
 887        int i;
 888
 889        reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 890        flush_writes(ctx->ohci);
 891
 892        for (i = 0; i < 10; i++) {
 893                reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
 894                if ((reg & CONTEXT_ACTIVE) == 0)
 895                        return;
 896
 897                mdelay(1);
 898        }
 899        fw_error("Error: DMA context still active (0x%08x)\n", reg);
 900}
 901
 902struct driver_data {
 903        struct fw_packet *packet;
 904};
 905
 906/*
 907 * This function apppends a packet to the DMA queue for transmission.
 908 * Must always be called with the ochi->lock held to ensure proper
 909 * generation handling and locking around packet queue manipulation.
 910 */
 911static int at_context_queue_packet(struct context *ctx,
 912                                   struct fw_packet *packet)
 913{
 914        struct fw_ohci *ohci = ctx->ohci;
 915        dma_addr_t d_bus, uninitialized_var(payload_bus);
 916        struct driver_data *driver_data;
 917        struct descriptor *d, *last;
 918        __le32 *header;
 919        int z, tcode;
 920        u32 reg;
 921
 922        d = context_get_descriptors(ctx, 4, &d_bus);
 923        if (d == NULL) {
 924                packet->ack = RCODE_SEND_ERROR;
 925                return -1;
 926        }
 927
 928        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
 929        d[0].res_count = cpu_to_le16(packet->timestamp);
 930
 931        /*
 932         * The DMA format for asyncronous link packets is different
 933         * from the IEEE1394 layout, so shift the fields around
 934         * accordingly.  If header_length is 8, it's a PHY packet, to
 935         * which we need to prepend an extra quadlet.
 936         */
 937
 938        header = (__le32 *) &d[1];
 939        switch (packet->header_length) {
 940        case 16:
 941        case 12:
 942                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
 943                                        (packet->speed << 16));
 944                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
 945                                        (packet->header[0] & 0xffff0000));
 946                header[2] = cpu_to_le32(packet->header[2]);
 947
 948                tcode = (packet->header[0] >> 4) & 0x0f;
 949                if (TCODE_IS_BLOCK_PACKET(tcode))
 950                        header[3] = cpu_to_le32(packet->header[3]);
 951                else
 952                        header[3] = (__force __le32) packet->header[3];
 953
 954                d[0].req_count = cpu_to_le16(packet->header_length);
 955                break;
 956
 957        case 8:
 958                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
 959                                        (packet->speed << 16));
 960                header[1] = cpu_to_le32(packet->header[0]);
 961                header[2] = cpu_to_le32(packet->header[1]);
 962                d[0].req_count = cpu_to_le16(12);
 963                break;
 964
 965        case 4:
 966                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
 967                                        (packet->speed << 16));
 968                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
 969                d[0].req_count = cpu_to_le16(8);
 970                break;
 971
 972        default:
 973                /* BUG(); */
 974                packet->ack = RCODE_SEND_ERROR;
 975                return -1;
 976        }
 977
 978        driver_data = (struct driver_data *) &d[3];
 979        driver_data->packet = packet;
 980        packet->driver_data = driver_data;
 981
 982        if (packet->payload_length > 0) {
 983                payload_bus =
 984                        dma_map_single(ohci->card.device, packet->payload,
 985                                       packet->payload_length, DMA_TO_DEVICE);
 986                if (dma_mapping_error(ohci->card.device, payload_bus)) {
 987                        packet->ack = RCODE_SEND_ERROR;
 988                        return -1;
 989                }
 990                packet->payload_bus = payload_bus;
 991
 992                d[2].req_count    = cpu_to_le16(packet->payload_length);
 993                d[2].data_address = cpu_to_le32(payload_bus);
 994                last = &d[2];
 995                z = 3;
 996        } else {
 997                last = &d[0];
 998                z = 2;
 999        }
1000
1001        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1002                                     DESCRIPTOR_IRQ_ALWAYS |
1003                                     DESCRIPTOR_BRANCH_ALWAYS);
1004
1005        /*
1006         * If the controller and packet generations don't match, we need to
1007         * bail out and try again.  If IntEvent.busReset is set, the AT context
1008         * is halted, so appending to the context and trying to run it is
1009         * futile.  Most controllers do the right thing and just flush the AT
1010         * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1011         * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1012         * up stalling out.  So we just bail out in software and try again
1013         * later, and everyone is happy.
1014         * FIXME: Document how the locking works.
1015         */
1016        if (ohci->generation != packet->generation ||
1017            reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1018                if (packet->payload_length > 0)
1019                        dma_unmap_single(ohci->card.device, payload_bus,
1020                                         packet->payload_length, DMA_TO_DEVICE);
1021                packet->ack = RCODE_GENERATION;
1022                return -1;
1023        }
1024
1025        context_append(ctx, d, z, 4 - z);
1026
1027        /* If the context isn't already running, start it up. */
1028        reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1029        if ((reg & CONTEXT_RUN) == 0)
1030                context_run(ctx, 0);
1031
1032        return 0;
1033}
1034
1035static int handle_at_packet(struct context *context,
1036                            struct descriptor *d,
1037                            struct descriptor *last)
1038{
1039        struct driver_data *driver_data;
1040        struct fw_packet *packet;
1041        struct fw_ohci *ohci = context->ohci;
1042        int evt;
1043
1044        if (last->transfer_status == 0)
1045                /* This descriptor isn't done yet, stop iteration. */
1046                return 0;
1047
1048        driver_data = (struct driver_data *) &d[3];
1049        packet = driver_data->packet;
1050        if (packet == NULL)
1051                /* This packet was cancelled, just continue. */
1052                return 1;
1053
1054        if (packet->payload_bus)
1055                dma_unmap_single(ohci->card.device, packet->payload_bus,
1056                                 packet->payload_length, DMA_TO_DEVICE);
1057
1058        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1059        packet->timestamp = le16_to_cpu(last->res_count);
1060
1061        log_ar_at_event('T', packet->speed, packet->header, evt);
1062
1063        switch (evt) {
1064        case OHCI1394_evt_timeout:
1065                /* Async response transmit timed out. */
1066                packet->ack = RCODE_CANCELLED;
1067                break;
1068
1069        case OHCI1394_evt_flushed:
1070                /*
1071                 * The packet was flushed should give same error as
1072                 * when we try to use a stale generation count.
1073                 */
1074                packet->ack = RCODE_GENERATION;
1075                break;
1076
1077        case OHCI1394_evt_missing_ack:
1078                /*
1079                 * Using a valid (current) generation count, but the
1080                 * node is not on the bus or not sending acks.
1081                 */
1082                packet->ack = RCODE_NO_ACK;
1083                break;
1084
1085        case ACK_COMPLETE + 0x10:
1086        case ACK_PENDING + 0x10:
1087        case ACK_BUSY_X + 0x10:
1088        case ACK_BUSY_A + 0x10:
1089        case ACK_BUSY_B + 0x10:
1090        case ACK_DATA_ERROR + 0x10:
1091        case ACK_TYPE_ERROR + 0x10:
1092                packet->ack = evt - 0x10;
1093                break;
1094
1095        default:
1096                packet->ack = RCODE_SEND_ERROR;
1097                break;
1098        }
1099
1100        packet->callback(packet, &ohci->card, packet->ack);
1101
1102        return 1;
1103}
1104
1105#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1106#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1107#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1108#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1109#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1110
1111static void handle_local_rom(struct fw_ohci *ohci,
1112                             struct fw_packet *packet, u32 csr)
1113{
1114        struct fw_packet response;
1115        int tcode, length, i;
1116
1117        tcode = HEADER_GET_TCODE(packet->header[0]);
1118        if (TCODE_IS_BLOCK_PACKET(tcode))
1119                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1120        else
1121                length = 4;
1122
1123        i = csr - CSR_CONFIG_ROM;
1124        if (i + length > CONFIG_ROM_SIZE) {
1125                fw_fill_response(&response, packet->header,
1126                                 RCODE_ADDRESS_ERROR, NULL, 0);
1127        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1128                fw_fill_response(&response, packet->header,
1129                                 RCODE_TYPE_ERROR, NULL, 0);
1130        } else {
1131                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1132                                 (void *) ohci->config_rom + i, length);
1133        }
1134
1135        fw_core_handle_response(&ohci->card, &response);
1136}
1137
1138static void handle_local_lock(struct fw_ohci *ohci,
1139                              struct fw_packet *packet, u32 csr)
1140{
1141        struct fw_packet response;
1142        int tcode, length, ext_tcode, sel;
1143        __be32 *payload, lock_old;
1144        u32 lock_arg, lock_data;
1145
1146        tcode = HEADER_GET_TCODE(packet->header[0]);
1147        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1148        payload = packet->payload;
1149        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1150
1151        if (tcode == TCODE_LOCK_REQUEST &&
1152            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1153                lock_arg = be32_to_cpu(payload[0]);
1154                lock_data = be32_to_cpu(payload[1]);
1155        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1156                lock_arg = 0;
1157                lock_data = 0;
1158        } else {
1159                fw_fill_response(&response, packet->header,
1160                                 RCODE_TYPE_ERROR, NULL, 0);
1161                goto out;
1162        }
1163
1164        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1165        reg_write(ohci, OHCI1394_CSRData, lock_data);
1166        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1167        reg_write(ohci, OHCI1394_CSRControl, sel);
1168
1169        if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1170                lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1171        else
1172                fw_notify("swap not done yet\n");
1173
1174        fw_fill_response(&response, packet->header,
1175                         RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1176 out:
1177        fw_core_handle_response(&ohci->card, &response);
1178}
1179
1180static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1181{
1182        u64 offset;
1183        u32 csr;
1184
1185        if (ctx == &ctx->ohci->at_request_ctx) {
1186                packet->ack = ACK_PENDING;
1187                packet->callback(packet, &ctx->ohci->card, packet->ack);
1188        }
1189
1190        offset =
1191                ((unsigned long long)
1192                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1193                packet->header[2];
1194        csr = offset - CSR_REGISTER_BASE;
1195
1196        /* Handle config rom reads. */
1197        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1198                handle_local_rom(ctx->ohci, packet, csr);
1199        else switch (csr) {
1200        case CSR_BUS_MANAGER_ID:
1201        case CSR_BANDWIDTH_AVAILABLE:
1202        case CSR_CHANNELS_AVAILABLE_HI:
1203        case CSR_CHANNELS_AVAILABLE_LO:
1204                handle_local_lock(ctx->ohci, packet, csr);
1205                break;
1206        default:
1207                if (ctx == &ctx->ohci->at_request_ctx)
1208                        fw_core_handle_request(&ctx->ohci->card, packet);
1209                else
1210                        fw_core_handle_response(&ctx->ohci->card, packet);
1211                break;
1212        }
1213
1214        if (ctx == &ctx->ohci->at_response_ctx) {
1215                packet->ack = ACK_COMPLETE;
1216                packet->callback(packet, &ctx->ohci->card, packet->ack);
1217        }
1218}
1219
1220static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1221{
1222        unsigned long flags;
1223        int ret;
1224
1225        spin_lock_irqsave(&ctx->ohci->lock, flags);
1226
1227        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1228            ctx->ohci->generation == packet->generation) {
1229                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1230                handle_local_request(ctx, packet);
1231                return;
1232        }
1233
1234        ret = at_context_queue_packet(ctx, packet);
1235        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1236
1237        if (ret < 0)
1238                packet->callback(packet, &ctx->ohci->card, packet->ack);
1239
1240}
1241
1242static void bus_reset_tasklet(unsigned long data)
1243{
1244        struct fw_ohci *ohci = (struct fw_ohci *)data;
1245        int self_id_count, i, j, reg;
1246        int generation, new_generation;
1247        unsigned long flags;
1248        void *free_rom = NULL;
1249        dma_addr_t free_rom_bus = 0;
1250
1251        reg = reg_read(ohci, OHCI1394_NodeID);
1252        if (!(reg & OHCI1394_NodeID_idValid)) {
1253                fw_notify("node ID not valid, new bus reset in progress\n");
1254                return;
1255        }
1256        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1257                fw_notify("malconfigured bus\n");
1258                return;
1259        }
1260        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1261                               OHCI1394_NodeID_nodeNumber);
1262
1263        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1264        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1265                fw_notify("inconsistent self IDs\n");
1266                return;
1267        }
1268        /*
1269         * The count in the SelfIDCount register is the number of
1270         * bytes in the self ID receive buffer.  Since we also receive
1271         * the inverted quadlets and a header quadlet, we shift one
1272         * bit extra to get the actual number of self IDs.
1273         */
1274        self_id_count = (reg >> 3) & 0x3ff;
1275        if (self_id_count == 0) {
1276                fw_notify("inconsistent self IDs\n");
1277                return;
1278        }
1279        generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1280        rmb();
1281
1282        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1283                if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1284                        fw_notify("inconsistent self IDs\n");
1285                        return;
1286                }
1287                ohci->self_id_buffer[j] =
1288                                cond_le32_to_cpu(ohci->self_id_cpu[i]);
1289        }
1290        rmb();
1291
1292        /*
1293         * Check the consistency of the self IDs we just read.  The
1294         * problem we face is that a new bus reset can start while we
1295         * read out the self IDs from the DMA buffer. If this happens,
1296         * the DMA buffer will be overwritten with new self IDs and we
1297         * will read out inconsistent data.  The OHCI specification
1298         * (section 11.2) recommends a technique similar to
1299         * linux/seqlock.h, where we remember the generation of the
1300         * self IDs in the buffer before reading them out and compare
1301         * it to the current generation after reading them out.  If
1302         * the two generations match we know we have a consistent set
1303         * of self IDs.
1304         */
1305
1306        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1307        if (new_generation != generation) {
1308                fw_notify("recursive bus reset detected, "
1309                          "discarding self ids\n");
1310                return;
1311        }
1312
1313        /* FIXME: Document how the locking works. */
1314        spin_lock_irqsave(&ohci->lock, flags);
1315
1316        ohci->generation = generation;
1317        context_stop(&ohci->at_request_ctx);
1318        context_stop(&ohci->at_response_ctx);
1319        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1320
1321        if (ohci->bus_reset_packet_quirk)
1322                ohci->request_generation = generation;
1323
1324        /*
1325         * This next bit is unrelated to the AT context stuff but we
1326         * have to do it under the spinlock also.  If a new config rom
1327         * was set up before this reset, the old one is now no longer
1328         * in use and we can free it. Update the config rom pointers
1329         * to point to the current config rom and clear the
1330         * next_config_rom pointer so a new udpate can take place.
1331         */
1332
1333        if (ohci->next_config_rom != NULL) {
1334                if (ohci->next_config_rom != ohci->config_rom) {
1335                        free_rom      = ohci->config_rom;
1336                        free_rom_bus  = ohci->config_rom_bus;
1337                }
1338                ohci->config_rom      = ohci->next_config_rom;
1339                ohci->config_rom_bus  = ohci->next_config_rom_bus;
1340                ohci->next_config_rom = NULL;
1341
1342                /*
1343                 * Restore config_rom image and manually update
1344                 * config_rom registers.  Writing the header quadlet
1345                 * will indicate that the config rom is ready, so we
1346                 * do that last.
1347                 */
1348                reg_write(ohci, OHCI1394_BusOptions,
1349                          be32_to_cpu(ohci->config_rom[2]));
1350                ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1351                reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1352        }
1353
1354#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1355        reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1356        reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1357#endif
1358
1359        spin_unlock_irqrestore(&ohci->lock, flags);
1360
1361        if (free_rom)
1362                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1363                                  free_rom, free_rom_bus);
1364
1365        log_selfids(ohci->node_id, generation,
1366                    self_id_count, ohci->self_id_buffer);
1367
1368        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1369                                 self_id_count, ohci->self_id_buffer);
1370}
1371
1372static irqreturn_t irq_handler(int irq, void *data)
1373{
1374        struct fw_ohci *ohci = data;
1375        u32 event, iso_event, cycle_time;
1376        int i;
1377
1378        event = reg_read(ohci, OHCI1394_IntEventClear);
1379
1380        if (!event || !~event)
1381                return IRQ_NONE;
1382
1383        /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1384        reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1385        log_irqs(event);
1386
1387        if (event & OHCI1394_selfIDComplete)
1388                tasklet_schedule(&ohci->bus_reset_tasklet);
1389
1390        if (event & OHCI1394_RQPkt)
1391                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1392
1393        if (event & OHCI1394_RSPkt)
1394                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1395
1396        if (event & OHCI1394_reqTxComplete)
1397                tasklet_schedule(&ohci->at_request_ctx.tasklet);
1398
1399        if (event & OHCI1394_respTxComplete)
1400                tasklet_schedule(&ohci->at_response_ctx.tasklet);
1401
1402        iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1403        reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1404
1405        while (iso_event) {
1406                i = ffs(iso_event) - 1;
1407                tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1408                iso_event &= ~(1 << i);
1409        }
1410
1411        iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1412        reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1413
1414        while (iso_event) {
1415                i = ffs(iso_event) - 1;
1416                tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1417                iso_event &= ~(1 << i);
1418        }
1419
1420        if (unlikely(event & OHCI1394_regAccessFail))
1421                fw_error("Register access failure - "
1422                         "please notify linux1394-devel@lists.sf.net\n");
1423
1424        if (unlikely(event & OHCI1394_postedWriteErr))
1425                fw_error("PCI posted write error\n");
1426
1427        if (unlikely(event & OHCI1394_cycleTooLong)) {
1428                if (printk_ratelimit())
1429                        fw_notify("isochronous cycle too long\n");
1430                reg_write(ohci, OHCI1394_LinkControlSet,
1431                          OHCI1394_LinkControl_cycleMaster);
1432        }
1433
1434        if (event & OHCI1394_cycle64Seconds) {
1435                cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1436                if ((cycle_time & 0x80000000) == 0)
1437                        ohci->bus_seconds++;
1438        }
1439
1440        return IRQ_HANDLED;
1441}
1442
1443static int software_reset(struct fw_ohci *ohci)
1444{
1445        int i;
1446
1447        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1448
1449        for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1450                if ((reg_read(ohci, OHCI1394_HCControlSet) &
1451                     OHCI1394_HCControl_softReset) == 0)
1452                        return 0;
1453                msleep(1);
1454        }
1455
1456        return -EBUSY;
1457}
1458
1459static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1460{
1461        struct fw_ohci *ohci = fw_ohci(card);
1462        struct pci_dev *dev = to_pci_dev(card->device);
1463        u32 lps;
1464        int i;
1465
1466        if (software_reset(ohci)) {
1467                fw_error("Failed to reset ohci card.\n");
1468                return -EBUSY;
1469        }
1470
1471        /*
1472         * Now enable LPS, which we need in order to start accessing
1473         * most of the registers.  In fact, on some cards (ALI M5251),
1474         * accessing registers in the SClk domain without LPS enabled
1475         * will lock up the machine.  Wait 50msec to make sure we have
1476         * full link enabled.  However, with some cards (well, at least
1477         * a JMicron PCIe card), we have to try again sometimes.
1478         */
1479        reg_write(ohci, OHCI1394_HCControlSet,
1480                  OHCI1394_HCControl_LPS |
1481                  OHCI1394_HCControl_postedWriteEnable);
1482        flush_writes(ohci);
1483
1484        for (lps = 0, i = 0; !lps && i < 3; i++) {
1485                msleep(50);
1486                lps = reg_read(ohci, OHCI1394_HCControlSet) &
1487                      OHCI1394_HCControl_LPS;
1488        }
1489
1490        if (!lps) {
1491                fw_error("Failed to set Link Power Status\n");
1492                return -EIO;
1493        }
1494
1495        reg_write(ohci, OHCI1394_HCControlClear,
1496                  OHCI1394_HCControl_noByteSwapData);
1497
1498        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1499        reg_write(ohci, OHCI1394_LinkControlClear,
1500                  OHCI1394_LinkControl_rcvPhyPkt);
1501        reg_write(ohci, OHCI1394_LinkControlSet,
1502                  OHCI1394_LinkControl_rcvSelfID |
1503                  OHCI1394_LinkControl_cycleTimerEnable |
1504                  OHCI1394_LinkControl_cycleMaster);
1505
1506        reg_write(ohci, OHCI1394_ATRetries,
1507                  OHCI1394_MAX_AT_REQ_RETRIES |
1508                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1509                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1510
1511        ar_context_run(&ohci->ar_request_ctx);
1512        ar_context_run(&ohci->ar_response_ctx);
1513
1514        reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1515        reg_write(ohci, OHCI1394_IntEventClear, ~0);
1516        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1517        reg_write(ohci, OHCI1394_IntMaskSet,
1518                  OHCI1394_selfIDComplete |
1519                  OHCI1394_RQPkt | OHCI1394_RSPkt |
1520                  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1521                  OHCI1394_isochRx | OHCI1394_isochTx |
1522                  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1523                  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1524                  OHCI1394_masterIntEnable);
1525        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1526                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1527
1528        /* Activate link_on bit and contender bit in our self ID packets.*/
1529        if (ohci_update_phy_reg(card, 4, 0,
1530                                PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1531                return -EIO;
1532
1533        /*
1534         * When the link is not yet enabled, the atomic config rom
1535         * update mechanism described below in ohci_set_config_rom()
1536         * is not active.  We have to update ConfigRomHeader and
1537         * BusOptions manually, and the write to ConfigROMmap takes
1538         * effect immediately.  We tie this to the enabling of the
1539         * link, so we have a valid config rom before enabling - the
1540         * OHCI requires that ConfigROMhdr and BusOptions have valid
1541         * values before enabling.
1542         *
1543         * However, when the ConfigROMmap is written, some controllers
1544         * always read back quadlets 0 and 2 from the config rom to
1545         * the ConfigRomHeader and BusOptions registers on bus reset.
1546         * They shouldn't do that in this initial case where the link
1547         * isn't enabled.  This means we have to use the same
1548         * workaround here, setting the bus header to 0 and then write
1549         * the right values in the bus reset tasklet.
1550         */
1551
1552        if (config_rom) {
1553                ohci->next_config_rom =
1554                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1555                                           &ohci->next_config_rom_bus,
1556                                           GFP_KERNEL);
1557                if (ohci->next_config_rom == NULL)
1558                        return -ENOMEM;
1559
1560                memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1561                fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1562        } else {
1563                /*
1564                 * In the suspend case, config_rom is NULL, which
1565                 * means that we just reuse the old config rom.
1566                 */
1567                ohci->next_config_rom = ohci->config_rom;
1568                ohci->next_config_rom_bus = ohci->config_rom_bus;
1569        }
1570
1571        ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1572        ohci->next_config_rom[0] = 0;
1573        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1574        reg_write(ohci, OHCI1394_BusOptions,
1575                  be32_to_cpu(ohci->next_config_rom[2]));
1576        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1577
1578        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1579
1580        if (request_irq(dev->irq, irq_handler,
1581                        IRQF_SHARED, ohci_driver_name, ohci)) {
1582                fw_error("Failed to allocate shared interrupt %d.\n",
1583                         dev->irq);
1584                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1585                                  ohci->config_rom, ohci->config_rom_bus);
1586                return -EIO;
1587        }
1588
1589        reg_write(ohci, OHCI1394_HCControlSet,
1590                  OHCI1394_HCControl_linkEnable |
1591                  OHCI1394_HCControl_BIBimageValid);
1592        flush_writes(ohci);
1593
1594        /*
1595         * We are ready to go, initiate bus reset to finish the
1596         * initialization.
1597         */
1598
1599        fw_core_initiate_bus_reset(&ohci->card, 1);
1600
1601        return 0;
1602}
1603
1604static int ohci_set_config_rom(struct fw_card *card,
1605                               u32 *config_rom, size_t length)
1606{
1607        struct fw_ohci *ohci;
1608        unsigned long flags;
1609        int ret = -EBUSY;
1610        __be32 *next_config_rom;
1611        dma_addr_t uninitialized_var(next_config_rom_bus);
1612
1613        ohci = fw_ohci(card);
1614
1615        /*
1616         * When the OHCI controller is enabled, the config rom update
1617         * mechanism is a bit tricky, but easy enough to use.  See
1618         * section 5.5.6 in the OHCI specification.
1619         *
1620         * The OHCI controller caches the new config rom address in a
1621         * shadow register (ConfigROMmapNext) and needs a bus reset
1622         * for the changes to take place.  When the bus reset is
1623         * detected, the controller loads the new values for the
1624         * ConfigRomHeader and BusOptions registers from the specified
1625         * config rom and loads ConfigROMmap from the ConfigROMmapNext
1626         * shadow register. All automatically and atomically.
1627         *
1628         * Now, there's a twist to this story.  The automatic load of
1629         * ConfigRomHeader and BusOptions doesn't honor the
1630         * noByteSwapData bit, so with a be32 config rom, the
1631         * controller will load be32 values in to these registers
1632         * during the atomic update, even on litte endian
1633         * architectures.  The workaround we use is to put a 0 in the
1634         * header quadlet; 0 is endian agnostic and means that the
1635         * config rom isn't ready yet.  In the bus reset tasklet we
1636         * then set up the real values for the two registers.
1637         *
1638         * We use ohci->lock to avoid racing with the code that sets
1639         * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1640         */
1641
1642        next_config_rom =
1643                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1644                                   &next_config_rom_bus, GFP_KERNEL);
1645        if (next_config_rom == NULL)
1646                return -ENOMEM;
1647
1648        spin_lock_irqsave(&ohci->lock, flags);
1649
1650        if (ohci->next_config_rom == NULL) {
1651                ohci->next_config_rom = next_config_rom;
1652                ohci->next_config_rom_bus = next_config_rom_bus;
1653
1654                memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1655                fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1656                                  length * 4);
1657
1658                ohci->next_header = config_rom[0];
1659                ohci->next_config_rom[0] = 0;
1660
1661                reg_write(ohci, OHCI1394_ConfigROMmap,
1662                          ohci->next_config_rom_bus);
1663                ret = 0;
1664        }
1665
1666        spin_unlock_irqrestore(&ohci->lock, flags);
1667
1668        /*
1669         * Now initiate a bus reset to have the changes take
1670         * effect. We clean up the old config rom memory and DMA
1671         * mappings in the bus reset tasklet, since the OHCI
1672         * controller could need to access it before the bus reset
1673         * takes effect.
1674         */
1675        if (ret == 0)
1676                fw_core_initiate_bus_reset(&ohci->card, 1);
1677        else
1678                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1679                                  next_config_rom, next_config_rom_bus);
1680
1681        return ret;
1682}
1683
1684static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1685{
1686        struct fw_ohci *ohci = fw_ohci(card);
1687
1688        at_context_transmit(&ohci->at_request_ctx, packet);
1689}
1690
1691static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1692{
1693        struct fw_ohci *ohci = fw_ohci(card);
1694
1695        at_context_transmit(&ohci->at_response_ctx, packet);
1696}
1697
1698static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1699{
1700        struct fw_ohci *ohci = fw_ohci(card);
1701        struct context *ctx = &ohci->at_request_ctx;
1702        struct driver_data *driver_data = packet->driver_data;
1703        int ret = -ENOENT;
1704
1705        tasklet_disable(&ctx->tasklet);
1706
1707        if (packet->ack != 0)
1708                goto out;
1709
1710        if (packet->payload_bus)
1711                dma_unmap_single(ohci->card.device, packet->payload_bus,
1712                                 packet->payload_length, DMA_TO_DEVICE);
1713
1714        log_ar_at_event('T', packet->speed, packet->header, 0x20);
1715        driver_data->packet = NULL;
1716        packet->ack = RCODE_CANCELLED;
1717        packet->callback(packet, &ohci->card, packet->ack);
1718        ret = 0;
1719 out:
1720        tasklet_enable(&ctx->tasklet);
1721
1722        return ret;
1723}
1724
1725static int ohci_enable_phys_dma(struct fw_card *card,
1726                                int node_id, int generation)
1727{
1728#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1729        return 0;
1730#else
1731        struct fw_ohci *ohci = fw_ohci(card);
1732        unsigned long flags;
1733        int n, ret = 0;
1734
1735        /*
1736         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1737         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1738         */
1739
1740        spin_lock_irqsave(&ohci->lock, flags);
1741
1742        if (ohci->generation != generation) {
1743                ret = -ESTALE;
1744                goto out;
1745        }
1746
1747        /*
1748         * Note, if the node ID contains a non-local bus ID, physical DMA is
1749         * enabled for _all_ nodes on remote buses.
1750         */
1751
1752        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1753        if (n < 32)
1754                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1755        else
1756                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1757
1758        flush_writes(ohci);
1759 out:
1760        spin_unlock_irqrestore(&ohci->lock, flags);
1761
1762        return ret;
1763#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1764}
1765
1766static u64 ohci_get_bus_time(struct fw_card *card)
1767{
1768        struct fw_ohci *ohci = fw_ohci(card);
1769        u32 cycle_time;
1770        u64 bus_time;
1771
1772        cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1773        bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1774
1775        return bus_time;
1776}
1777
1778static void copy_iso_headers(struct iso_context *ctx, void *p)
1779{
1780        int i = ctx->header_length;
1781
1782        if (i + ctx->base.header_size > PAGE_SIZE)
1783                return;
1784
1785        /*
1786         * The iso header is byteswapped to little endian by
1787         * the controller, but the remaining header quadlets
1788         * are big endian.  We want to present all the headers
1789         * as big endian, so we have to swap the first quadlet.
1790         */
1791        if (ctx->base.header_size > 0)
1792                *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1793        if (ctx->base.header_size > 4)
1794                *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1795        if (ctx->base.header_size > 8)
1796                memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1797        ctx->header_length += ctx->base.header_size;
1798}
1799
1800static int handle_ir_dualbuffer_packet(struct context *context,
1801                                       struct descriptor *d,
1802                                       struct descriptor *last)
1803{
1804        struct iso_context *ctx =
1805                container_of(context, struct iso_context, context);
1806        struct db_descriptor *db = (struct db_descriptor *) d;
1807        __le32 *ir_header;
1808        size_t header_length;
1809        void *p, *end;
1810
1811        if (db->first_res_count != 0 && db->second_res_count != 0) {
1812                if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1813                        /* This descriptor isn't done yet, stop iteration. */
1814                        return 0;
1815                }
1816                ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1817        }
1818
1819        header_length = le16_to_cpu(db->first_req_count) -
1820                le16_to_cpu(db->first_res_count);
1821
1822        p = db + 1;
1823        end = p + header_length;
1824        while (p < end) {
1825                copy_iso_headers(ctx, p);
1826                ctx->excess_bytes +=
1827                        (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1828                p += max(ctx->base.header_size, (size_t)8);
1829        }
1830
1831        ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1832                le16_to_cpu(db->second_res_count);
1833
1834        if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1835                ir_header = (__le32 *) (db + 1);
1836                ctx->base.callback(&ctx->base,
1837                                   le32_to_cpu(ir_header[0]) & 0xffff,
1838                                   ctx->header_length, ctx->header,
1839                                   ctx->base.callback_data);
1840                ctx->header_length = 0;
1841        }
1842
1843        return 1;
1844}
1845
1846static int handle_ir_packet_per_buffer(struct context *context,
1847                                       struct descriptor *d,
1848                                       struct descriptor *last)
1849{
1850        struct iso_context *ctx =
1851                container_of(context, struct iso_context, context);
1852        struct descriptor *pd;
1853        __le32 *ir_header;
1854        void *p;
1855
1856        for (pd = d; pd <= last; pd++) {
1857                if (pd->transfer_status)
1858                        break;
1859        }
1860        if (pd > last)
1861                /* Descriptor(s) not done yet, stop iteration */
1862                return 0;
1863
1864        p = last + 1;
1865        copy_iso_headers(ctx, p);
1866
1867        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1868                ir_header = (__le32 *) p;
1869                ctx->base.callback(&ctx->base,
1870                                   le32_to_cpu(ir_header[0]) & 0xffff,
1871                                   ctx->header_length, ctx->header,
1872                                   ctx->base.callback_data);
1873                ctx->header_length = 0;
1874        }
1875
1876        return 1;
1877}
1878
1879static int handle_it_packet(struct context *context,
1880                            struct descriptor *d,
1881                            struct descriptor *last)
1882{
1883        struct iso_context *ctx =
1884                container_of(context, struct iso_context, context);
1885
1886        if (last->transfer_status == 0)
1887                /* This descriptor isn't done yet, stop iteration. */
1888                return 0;
1889
1890        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1891                ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1892                                   0, NULL, ctx->base.callback_data);
1893
1894        return 1;
1895}
1896
1897static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1898                                int type, int channel, size_t header_size)
1899{
1900        struct fw_ohci *ohci = fw_ohci(card);
1901        struct iso_context *ctx, *list;
1902        descriptor_callback_t callback;
1903        u64 *channels, dont_care = ~0ULL;
1904        u32 *mask, regs;
1905        unsigned long flags;
1906        int index, ret = -ENOMEM;
1907
1908        if (type == FW_ISO_CONTEXT_TRANSMIT) {
1909                channels = &dont_care;
1910                mask = &ohci->it_context_mask;
1911                list = ohci->it_context_list;
1912                callback = handle_it_packet;
1913        } else {
1914                channels = &ohci->ir_context_channels;
1915                mask = &ohci->ir_context_mask;
1916                list = ohci->ir_context_list;
1917                if (ohci->use_dualbuffer)
1918                        callback = handle_ir_dualbuffer_packet;
1919                else
1920                        callback = handle_ir_packet_per_buffer;
1921        }
1922
1923        spin_lock_irqsave(&ohci->lock, flags);
1924        index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1925        if (index >= 0) {
1926                *channels &= ~(1ULL << channel);
1927                *mask &= ~(1 << index);
1928        }
1929        spin_unlock_irqrestore(&ohci->lock, flags);
1930
1931        if (index < 0)
1932                return ERR_PTR(-EBUSY);
1933
1934        if (type == FW_ISO_CONTEXT_TRANSMIT)
1935                regs = OHCI1394_IsoXmitContextBase(index);
1936        else
1937                regs = OHCI1394_IsoRcvContextBase(index);
1938
1939        ctx = &list[index];
1940        memset(ctx, 0, sizeof(*ctx));
1941        ctx->header_length = 0;
1942        ctx->header = (void *) __get_free_page(GFP_KERNEL);
1943        if (ctx->header == NULL)
1944                goto out;
1945
1946        ret = context_init(&ctx->context, ohci, regs, callback);
1947        if (ret < 0)
1948                goto out_with_header;
1949
1950        return &ctx->base;
1951
1952 out_with_header:
1953        free_page((unsigned long)ctx->header);
1954 out:
1955        spin_lock_irqsave(&ohci->lock, flags);
1956        *mask |= 1 << index;
1957        spin_unlock_irqrestore(&ohci->lock, flags);
1958
1959        return ERR_PTR(ret);
1960}
1961
1962static int ohci_start_iso(struct fw_iso_context *base,
1963                          s32 cycle, u32 sync, u32 tags)
1964{
1965        struct iso_context *ctx = container_of(base, struct iso_context, base);
1966        struct fw_ohci *ohci = ctx->context.ohci;
1967        u32 control, match;
1968        int index;
1969
1970        if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1971                index = ctx - ohci->it_context_list;
1972                match = 0;
1973                if (cycle >= 0)
1974                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1975                                (cycle & 0x7fff) << 16;
1976
1977                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1978                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1979                context_run(&ctx->context, match);
1980        } else {
1981                index = ctx - ohci->ir_context_list;
1982                control = IR_CONTEXT_ISOCH_HEADER;
1983                if (ohci->use_dualbuffer)
1984                        control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1985                match = (tags << 28) | (sync << 8) | ctx->base.channel;
1986                if (cycle >= 0) {
1987                        match |= (cycle & 0x07fff) << 12;
1988                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1989                }
1990
1991                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1992                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1993                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1994                context_run(&ctx->context, control);
1995        }
1996
1997        return 0;
1998}
1999
2000static int ohci_stop_iso(struct fw_iso_context *base)
2001{
2002        struct fw_ohci *ohci = fw_ohci(base->card);
2003        struct iso_context *ctx = container_of(base, struct iso_context, base);
2004        int index;
2005
2006        if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2007                index = ctx - ohci->it_context_list;
2008                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2009        } else {
2010                index = ctx - ohci->ir_context_list;
2011                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2012        }
2013        flush_writes(ohci);
2014        context_stop(&ctx->context);
2015
2016        return 0;
2017}
2018
2019static void ohci_free_iso_context(struct fw_iso_context *base)
2020{
2021        struct fw_ohci *ohci = fw_ohci(base->card);
2022        struct iso_context *ctx = container_of(base, struct iso_context, base);
2023        unsigned long flags;
2024        int index;
2025
2026        ohci_stop_iso(base);
2027        context_release(&ctx->context);
2028        free_page((unsigned long)ctx->header);
2029
2030        spin_lock_irqsave(&ohci->lock, flags);
2031
2032        if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2033                index = ctx - ohci->it_context_list;
2034                ohci->it_context_mask |= 1 << index;
2035        } else {
2036                index = ctx - ohci->ir_context_list;
2037                ohci->ir_context_mask |= 1 << index;
2038                ohci->ir_context_channels |= 1ULL << base->channel;
2039        }
2040
2041        spin_unlock_irqrestore(&ohci->lock, flags);
2042}
2043
2044static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2045                                   struct fw_iso_packet *packet,
2046                                   struct fw_iso_buffer *buffer,
2047                                   unsigned long payload)
2048{
2049        struct iso_context *ctx = container_of(base, struct iso_context, base);
2050        struct descriptor *d, *last, *pd;
2051        struct fw_iso_packet *p;
2052        __le32 *header;
2053        dma_addr_t d_bus, page_bus;
2054        u32 z, header_z, payload_z, irq;
2055        u32 payload_index, payload_end_index, next_page_index;
2056        int page, end_page, i, length, offset;
2057
2058        /*
2059         * FIXME: Cycle lost behavior should be configurable: lose
2060         * packet, retransmit or terminate..
2061         */
2062
2063        p = packet;
2064        payload_index = payload;
2065
2066        if (p->skip)
2067                z = 1;
2068        else
2069                z = 2;
2070        if (p->header_length > 0)
2071                z++;
2072
2073        /* Determine the first page the payload isn't contained in. */
2074        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2075        if (p->payload_length > 0)
2076                payload_z = end_page - (payload_index >> PAGE_SHIFT);
2077        else
2078                payload_z = 0;
2079
2080        z += payload_z;
2081
2082        /* Get header size in number of descriptors. */
2083        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2084
2085        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2086        if (d == NULL)
2087                return -ENOMEM;
2088
2089        if (!p->skip) {
2090                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2091                d[0].req_count = cpu_to_le16(8);
2092
2093                header = (__le32 *) &d[1];
2094                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2095                                        IT_HEADER_TAG(p->tag) |
2096                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2097                                        IT_HEADER_CHANNEL(ctx->base.channel) |
2098                                        IT_HEADER_SPEED(ctx->base.speed));
2099                header[1] =
2100                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2101                                                          p->payload_length));
2102        }
2103
2104        if (p->header_length > 0) {
2105                d[2].req_count    = cpu_to_le16(p->header_length);
2106                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2107                memcpy(&d[z], p->header, p->header_length);
2108        }
2109
2110        pd = d + z - payload_z;
2111        payload_end_index = payload_index + p->payload_length;
2112        for (i = 0; i < payload_z; i++) {
2113                page               = payload_index >> PAGE_SHIFT;
2114                offset             = payload_index & ~PAGE_MASK;
2115                next_page_index    = (page + 1) << PAGE_SHIFT;
2116                length             =
2117                        min(next_page_index, payload_end_index) - payload_index;
2118                pd[i].req_count    = cpu_to_le16(length);
2119
2120                page_bus = page_private(buffer->pages[page]);
2121                pd[i].data_address = cpu_to_le32(page_bus + offset);
2122
2123                payload_index += length;
2124        }
2125
2126        if (p->interrupt)
2127                irq = DESCRIPTOR_IRQ_ALWAYS;
2128        else
2129                irq = DESCRIPTOR_NO_IRQ;
2130
2131        last = z == 2 ? d : d + z - 1;
2132        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2133                                     DESCRIPTOR_STATUS |
2134                                     DESCRIPTOR_BRANCH_ALWAYS |
2135                                     irq);
2136
2137        context_append(&ctx->context, d, z, header_z);
2138
2139        return 0;
2140}
2141
2142static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2143                                             struct fw_iso_packet *packet,
2144                                             struct fw_iso_buffer *buffer,
2145                                             unsigned long payload)
2146{
2147        struct iso_context *ctx = container_of(base, struct iso_context, base);
2148        struct db_descriptor *db = NULL;
2149        struct descriptor *d;
2150        struct fw_iso_packet *p;
2151        dma_addr_t d_bus, page_bus;
2152        u32 z, header_z, length, rest;
2153        int page, offset, packet_count, header_size;
2154
2155        /*
2156         * FIXME: Cycle lost behavior should be configurable: lose
2157         * packet, retransmit or terminate..
2158         */
2159
2160        p = packet;
2161        z = 2;
2162
2163        /*
2164         * The OHCI controller puts the isochronous header and trailer in the
2165         * buffer, so we need at least 8 bytes.
2166         */
2167        packet_count = p->header_length / ctx->base.header_size;
2168        header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2169
2170        /* Get header size in number of descriptors. */
2171        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2172        page     = payload >> PAGE_SHIFT;
2173        offset   = payload & ~PAGE_MASK;
2174        rest     = p->payload_length;
2175
2176        /* FIXME: make packet-per-buffer/dual-buffer a context option */
2177        while (rest > 0) {
2178                d = context_get_descriptors(&ctx->context,
2179                                            z + header_z, &d_bus);
2180                if (d == NULL)
2181                        return -ENOMEM;
2182
2183                db = (struct db_descriptor *) d;
2184                db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2185                                          DESCRIPTOR_BRANCH_ALWAYS);
2186                db->first_size =
2187                    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2188                if (p->skip && rest == p->payload_length) {
2189                        db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2190                        db->first_req_count = db->first_size;
2191                } else {
2192                        db->first_req_count = cpu_to_le16(header_size);
2193                }
2194                db->first_res_count = db->first_req_count;
2195                db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2196
2197                if (p->skip && rest == p->payload_length)
2198                        length = 4;
2199                else if (offset + rest < PAGE_SIZE)
2200                        length = rest;
2201                else
2202                        length = PAGE_SIZE - offset;
2203
2204                db->second_req_count = cpu_to_le16(length);
2205                db->second_res_count = db->second_req_count;
2206                page_bus = page_private(buffer->pages[page]);
2207                db->second_buffer = cpu_to_le32(page_bus + offset);
2208
2209                if (p->interrupt && length == rest)
2210                        db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2211
2212                context_append(&ctx->context, d, z, header_z);
2213                offset = (offset + length) & ~PAGE_MASK;
2214                rest -= length;
2215                if (offset == 0)
2216                        page++;
2217        }
2218
2219        return 0;
2220}
2221
2222static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2223                                        struct fw_iso_packet *packet,
2224                                        struct fw_iso_buffer *buffer,
2225                                        unsigned long payload)
2226{
2227        struct iso_context *ctx = container_of(base, struct iso_context, base);
2228        struct descriptor *d = NULL, *pd = NULL;
2229        struct fw_iso_packet *p = packet;
2230        dma_addr_t d_bus, page_bus;
2231        u32 z, header_z, rest;
2232        int i, j, length;
2233        int page, offset, packet_count, header_size, payload_per_buffer;
2234
2235        /*
2236         * The OHCI controller puts the isochronous header and trailer in the
2237         * buffer, so we need at least 8 bytes.
2238         */
2239        packet_count = p->header_length / ctx->base.header_size;
2240        header_size  = max(ctx->base.header_size, (size_t)8);
2241
2242        /* Get header size in number of descriptors. */
2243        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2244        page     = payload >> PAGE_SHIFT;
2245        offset   = payload & ~PAGE_MASK;
2246        payload_per_buffer = p->payload_length / packet_count;
2247
2248        for (i = 0; i < packet_count; i++) {
2249                /* d points to the header descriptor */
2250                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2251                d = context_get_descriptors(&ctx->context,
2252                                z + header_z, &d_bus);
2253                if (d == NULL)
2254                        return -ENOMEM;
2255
2256                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2257                                              DESCRIPTOR_INPUT_MORE);
2258                if (p->skip && i == 0)
2259                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2260                d->req_count    = cpu_to_le16(header_size);
2261                d->res_count    = d->req_count;
2262                d->transfer_status = 0;
2263                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2264
2265                rest = payload_per_buffer;
2266                for (j = 1; j < z; j++) {
2267                        pd = d + j;
2268                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2269                                                  DESCRIPTOR_INPUT_MORE);
2270
2271                        if (offset + rest < PAGE_SIZE)
2272                                length = rest;
2273                        else
2274                                length = PAGE_SIZE - offset;
2275                        pd->req_count = cpu_to_le16(length);
2276                        pd->res_count = pd->req_count;
2277                        pd->transfer_status = 0;
2278
2279                        page_bus = page_private(buffer->pages[page]);
2280                        pd->data_address = cpu_to_le32(page_bus + offset);
2281
2282                        offset = (offset + length) & ~PAGE_MASK;
2283                        rest -= length;
2284                        if (offset == 0)
2285                                page++;
2286                }
2287                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2288                                          DESCRIPTOR_INPUT_LAST |
2289                                          DESCRIPTOR_BRANCH_ALWAYS);
2290                if (p->interrupt && i == packet_count - 1)
2291                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2292
2293                context_append(&ctx->context, d, z, header_z);
2294        }
2295
2296        return 0;
2297}
2298
2299static int ohci_queue_iso(struct fw_iso_context *base,
2300                          struct fw_iso_packet *packet,
2301                          struct fw_iso_buffer *buffer,
2302                          unsigned long payload)
2303{
2304        struct iso_context *ctx = container_of(base, struct iso_context, base);
2305        unsigned long flags;
2306        int ret;
2307
2308        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2309        if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2310                ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2311        else if (ctx->context.ohci->use_dualbuffer)
2312                ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2313                                                        buffer, payload);
2314        else
2315                ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2316                                                        buffer, payload);
2317        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2318
2319        return ret;
2320}
2321
2322static const struct fw_card_driver ohci_driver = {
2323        .enable                 = ohci_enable,
2324        .update_phy_reg         = ohci_update_phy_reg,
2325        .set_config_rom         = ohci_set_config_rom,
2326        .send_request           = ohci_send_request,
2327        .send_response          = ohci_send_response,
2328        .cancel_packet          = ohci_cancel_packet,
2329        .enable_phys_dma        = ohci_enable_phys_dma,
2330        .get_bus_time           = ohci_get_bus_time,
2331
2332        .allocate_iso_context   = ohci_allocate_iso_context,
2333        .free_iso_context       = ohci_free_iso_context,
2334        .queue_iso              = ohci_queue_iso,
2335        .start_iso              = ohci_start_iso,
2336        .stop_iso               = ohci_stop_iso,
2337};
2338
2339#ifdef CONFIG_PPC_PMAC
2340static void ohci_pmac_on(struct pci_dev *dev)
2341{
2342        if (machine_is(powermac)) {
2343                struct device_node *ofn = pci_device_to_OF_node(dev);
2344
2345                if (ofn) {
2346                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2347                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2348                }
2349        }
2350}
2351
2352static void ohci_pmac_off(struct pci_dev *dev)
2353{
2354        if (machine_is(powermac)) {
2355                struct device_node *ofn = pci_device_to_OF_node(dev);
2356
2357                if (ofn) {
2358                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2359                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2360                }
2361        }
2362}
2363#else
2364#define ohci_pmac_on(dev)
2365#define ohci_pmac_off(dev)
2366#endif /* CONFIG_PPC_PMAC */
2367
2368static int __devinit pci_probe(struct pci_dev *dev,
2369                               const struct pci_device_id *ent)
2370{
2371        struct fw_ohci *ohci;
2372        u32 bus_options, max_receive, link_speed, version;
2373        u64 guid;
2374        int err;
2375        size_t size;
2376
2377        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2378        if (ohci == NULL) {
2379                err = -ENOMEM;
2380                goto fail;
2381        }
2382
2383        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2384
2385        ohci_pmac_on(dev);
2386
2387        err = pci_enable_device(dev);
2388        if (err) {
2389                fw_error("Failed to enable OHCI hardware\n");
2390                goto fail_free;
2391        }
2392
2393        pci_set_master(dev);
2394        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2395        pci_set_drvdata(dev, ohci);
2396
2397        spin_lock_init(&ohci->lock);
2398
2399        tasklet_init(&ohci->bus_reset_tasklet,
2400                     bus_reset_tasklet, (unsigned long)ohci);
2401
2402        err = pci_request_region(dev, 0, ohci_driver_name);
2403        if (err) {
2404                fw_error("MMIO resource unavailable\n");
2405                goto fail_disable;
2406        }
2407
2408        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2409        if (ohci->registers == NULL) {
2410                fw_error("Failed to remap registers\n");
2411                err = -ENXIO;
2412                goto fail_iomem;
2413        }
2414
2415        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2416        ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2417
2418/* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2419#if !defined(CONFIG_X86_32)
2420        /* dual-buffer mode is broken with descriptor addresses above 2G */
2421        if (dev->vendor == PCI_VENDOR_ID_TI &&
2422            dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2423                ohci->use_dualbuffer = false;
2424#endif
2425
2426#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2427        ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2428                             dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2429#endif
2430        ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2431
2432        ar_context_init(&ohci->ar_request_ctx, ohci,
2433                        OHCI1394_AsReqRcvContextControlSet);
2434
2435        ar_context_init(&ohci->ar_response_ctx, ohci,
2436                        OHCI1394_AsRspRcvContextControlSet);
2437
2438        context_init(&ohci->at_request_ctx, ohci,
2439                     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2440
2441        context_init(&ohci->at_response_ctx, ohci,
2442                     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2443
2444        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2445        ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2446        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2447        size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2448        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2449
2450        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2451        ohci->ir_context_channels = ~0ULL;
2452        ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2453        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2454        size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2455        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2456
2457        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2458                err = -ENOMEM;
2459                goto fail_contexts;
2460        }
2461
2462        /* self-id dma buffer allocation */
2463        ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2464                                               SELF_ID_BUF_SIZE,
2465                                               &ohci->self_id_bus,
2466                                               GFP_KERNEL);
2467        if (ohci->self_id_cpu == NULL) {
2468                err = -ENOMEM;
2469                goto fail_contexts;
2470        }
2471
2472        bus_options = reg_read(ohci, OHCI1394_BusOptions);
2473        max_receive = (bus_options >> 12) & 0xf;
2474        link_speed = bus_options & 0x7;
2475        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2476                reg_read(ohci, OHCI1394_GUIDLo);
2477
2478        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2479        if (err)
2480                goto fail_self_id;
2481
2482        fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2483                  dev_name(&dev->dev), version >> 16, version & 0xff);
2484
2485        return 0;
2486
2487 fail_self_id:
2488        dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2489                          ohci->self_id_cpu, ohci->self_id_bus);
2490 fail_contexts:
2491        kfree(ohci->ir_context_list);
2492        kfree(ohci->it_context_list);
2493        context_release(&ohci->at_response_ctx);
2494        context_release(&ohci->at_request_ctx);
2495        ar_context_release(&ohci->ar_response_ctx);
2496        ar_context_release(&ohci->ar_request_ctx);
2497        pci_iounmap(dev, ohci->registers);
2498 fail_iomem:
2499        pci_release_region(dev, 0);
2500 fail_disable:
2501        pci_disable_device(dev);
2502 fail_free:
2503        kfree(&ohci->card);
2504        ohci_pmac_off(dev);
2505 fail:
2506        if (err == -ENOMEM)
2507                fw_error("Out of memory\n");
2508
2509        return err;
2510}
2511
2512static void pci_remove(struct pci_dev *dev)
2513{
2514        struct fw_ohci *ohci;
2515
2516        ohci = pci_get_drvdata(dev);
2517        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2518        flush_writes(ohci);
2519        fw_core_remove_card(&ohci->card);
2520
2521        /*
2522         * FIXME: Fail all pending packets here, now that the upper
2523         * layers can't queue any more.
2524         */
2525
2526        software_reset(ohci);
2527        free_irq(dev->irq, ohci);
2528
2529        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2530                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2531                                  ohci->next_config_rom, ohci->next_config_rom_bus);
2532        if (ohci->config_rom)
2533                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2534                                  ohci->config_rom, ohci->config_rom_bus);
2535        dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2536                          ohci->self_id_cpu, ohci->self_id_bus);
2537        ar_context_release(&ohci->ar_request_ctx);
2538        ar_context_release(&ohci->ar_response_ctx);
2539        context_release(&ohci->at_request_ctx);
2540        context_release(&ohci->at_response_ctx);
2541        kfree(ohci->it_context_list);
2542        kfree(ohci->ir_context_list);
2543        pci_iounmap(dev, ohci->registers);
2544        pci_release_region(dev, 0);
2545        pci_disable_device(dev);
2546        kfree(&ohci->card);
2547        ohci_pmac_off(dev);
2548
2549        fw_notify("Removed fw-ohci device.\n");
2550}
2551
2552#ifdef CONFIG_PM
2553static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2554{
2555        struct fw_ohci *ohci = pci_get_drvdata(dev);
2556        int err;
2557
2558        software_reset(ohci);
2559        free_irq(dev->irq, ohci);
2560        err = pci_save_state(dev);
2561        if (err) {
2562                fw_error("pci_save_state failed\n");
2563                return err;
2564        }
2565        err = pci_set_power_state(dev, pci_choose_state(dev, state));
2566        if (err)
2567                fw_error("pci_set_power_state failed with %d\n", err);
2568        ohci_pmac_off(dev);
2569
2570        return 0;
2571}
2572
2573static int pci_resume(struct pci_dev *dev)
2574{
2575        struct fw_ohci *ohci = pci_get_drvdata(dev);
2576        int err;
2577
2578        ohci_pmac_on(dev);
2579        pci_set_power_state(dev, PCI_D0);
2580        pci_restore_state(dev);
2581        err = pci_enable_device(dev);
2582        if (err) {
2583                fw_error("pci_enable_device failed\n");
2584                return err;
2585        }
2586
2587        return ohci_enable(&ohci->card, NULL, 0);
2588}
2589#endif
2590
2591static struct pci_device_id pci_table[] = {
2592        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2593        { }
2594};
2595
2596MODULE_DEVICE_TABLE(pci, pci_table);
2597
2598static struct pci_driver fw_ohci_pci_driver = {
2599        .name           = ohci_driver_name,
2600        .id_table       = pci_table,
2601        .probe          = pci_probe,
2602        .remove         = pci_remove,
2603#ifdef CONFIG_PM
2604        .resume         = pci_resume,
2605        .suspend        = pci_suspend,
2606#endif
2607};
2608
2609MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2610MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2611MODULE_LICENSE("GPL");
2612
2613/* Provide a module alias so root-on-sbp2 initrds don't break. */
2614#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2615MODULE_ALIAS("ohci1394");
2616#endif
2617
2618static int __init fw_ohci_init(void)
2619{
2620        return pci_register_driver(&fw_ohci_pci_driver);
2621}
2622
2623static void __exit fw_ohci_cleanup(void)
2624{
2625        pci_unregister_driver(&fw_ohci_pci_driver);
2626}
2627
2628module_init(fw_ohci_init);
2629module_exit(fw_ohci_cleanup);
2630