linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <scsi/scsi.h>
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_host.h>
  64#include <linux/libata.h>
  65#include <asm/byteorder.h>
  66#include <linux/cdrom.h>
  67
  68#include "libata.h"
  69
  70
  71/* debounce timing parameters in msecs { interval, duration, timeout } */
  72const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  73const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  74const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  75
  76const struct ata_port_operations ata_base_port_ops = {
  77        .prereset               = ata_std_prereset,
  78        .postreset              = ata_std_postreset,
  79        .error_handler          = ata_std_error_handler,
  80};
  81
  82const struct ata_port_operations sata_port_ops = {
  83        .inherits               = &ata_base_port_ops,
  84
  85        .qc_defer               = ata_std_qc_defer,
  86        .hardreset              = sata_std_hardreset,
  87};
  88
  89static unsigned int ata_dev_init_params(struct ata_device *dev,
  90                                        u16 heads, u16 sectors);
  91static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  92static unsigned int ata_dev_set_feature(struct ata_device *dev,
  93                                        u8 enable, u8 feature);
  94static void ata_dev_xfermask(struct ata_device *dev);
  95static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  96
  97unsigned int ata_print_id = 1;
  98static struct workqueue_struct *ata_wq;
  99
 100struct workqueue_struct *ata_aux_wq;
 101
 102struct ata_force_param {
 103        const char      *name;
 104        unsigned int    cbl;
 105        int             spd_limit;
 106        unsigned long   xfer_mask;
 107        unsigned int    horkage_on;
 108        unsigned int    horkage_off;
 109        unsigned int    lflags;
 110};
 111
 112struct ata_force_ent {
 113        int                     port;
 114        int                     device;
 115        struct ata_force_param  param;
 116};
 117
 118static struct ata_force_ent *ata_force_tbl;
 119static int ata_force_tbl_size;
 120
 121static char ata_force_param_buf[PAGE_SIZE] __initdata;
 122/* param_buf is thrown away after initialization, disallow read */
 123module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 124MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 125
 126static int atapi_enabled = 1;
 127module_param(atapi_enabled, int, 0444);
 128MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
 129
 130static int atapi_dmadir = 0;
 131module_param(atapi_dmadir, int, 0444);
 132MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
 133
 134int atapi_passthru16 = 1;
 135module_param(atapi_passthru16, int, 0444);
 136MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
 137
 138int libata_fua = 0;
 139module_param_named(fua, libata_fua, int, 0444);
 140MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
 141
 142static int ata_ignore_hpa;
 143module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 144MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 145
 146static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 147module_param_named(dma, libata_dma_mask, int, 0444);
 148MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 149
 150static int ata_probe_timeout;
 151module_param(ata_probe_timeout, int, 0444);
 152MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 153
 154int libata_noacpi = 0;
 155module_param_named(noacpi, libata_noacpi, int, 0444);
 156MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
 157
 158int libata_allow_tpm = 0;
 159module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 160MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
 161
 162MODULE_AUTHOR("Jeff Garzik");
 163MODULE_DESCRIPTION("Library module for ATA devices");
 164MODULE_LICENSE("GPL");
 165MODULE_VERSION(DRV_VERSION);
 166
 167
 168static bool ata_sstatus_online(u32 sstatus)
 169{
 170        return (sstatus & 0xf) == 0x3;
 171}
 172
 173/**
 174 *      ata_link_next - link iteration helper
 175 *      @link: the previous link, NULL to start
 176 *      @ap: ATA port containing links to iterate
 177 *      @mode: iteration mode, one of ATA_LITER_*
 178 *
 179 *      LOCKING:
 180 *      Host lock or EH context.
 181 *
 182 *      RETURNS:
 183 *      Pointer to the next link.
 184 */
 185struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 186                               enum ata_link_iter_mode mode)
 187{
 188        BUG_ON(mode != ATA_LITER_EDGE &&
 189               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 190
 191        /* NULL link indicates start of iteration */
 192        if (!link)
 193                switch (mode) {
 194                case ATA_LITER_EDGE:
 195                case ATA_LITER_PMP_FIRST:
 196                        if (sata_pmp_attached(ap))
 197                                return ap->pmp_link;
 198                        /* fall through */
 199                case ATA_LITER_HOST_FIRST:
 200                        return &ap->link;
 201                }
 202
 203        /* we just iterated over the host link, what's next? */
 204        if (link == &ap->link)
 205                switch (mode) {
 206                case ATA_LITER_HOST_FIRST:
 207                        if (sata_pmp_attached(ap))
 208                                return ap->pmp_link;
 209                        /* fall through */
 210                case ATA_LITER_PMP_FIRST:
 211                        if (unlikely(ap->slave_link))
 212                                return ap->slave_link;
 213                        /* fall through */
 214                case ATA_LITER_EDGE:
 215                        return NULL;
 216                }
 217
 218        /* slave_link excludes PMP */
 219        if (unlikely(link == ap->slave_link))
 220                return NULL;
 221
 222        /* we were over a PMP link */
 223        if (++link < ap->pmp_link + ap->nr_pmp_links)
 224                return link;
 225
 226        if (mode == ATA_LITER_PMP_FIRST)
 227                return &ap->link;
 228
 229        return NULL;
 230}
 231
 232/**
 233 *      ata_dev_next - device iteration helper
 234 *      @dev: the previous device, NULL to start
 235 *      @link: ATA link containing devices to iterate
 236 *      @mode: iteration mode, one of ATA_DITER_*
 237 *
 238 *      LOCKING:
 239 *      Host lock or EH context.
 240 *
 241 *      RETURNS:
 242 *      Pointer to the next device.
 243 */
 244struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 245                                enum ata_dev_iter_mode mode)
 246{
 247        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 248               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 249
 250        /* NULL dev indicates start of iteration */
 251        if (!dev)
 252                switch (mode) {
 253                case ATA_DITER_ENABLED:
 254                case ATA_DITER_ALL:
 255                        dev = link->device;
 256                        goto check;
 257                case ATA_DITER_ENABLED_REVERSE:
 258                case ATA_DITER_ALL_REVERSE:
 259                        dev = link->device + ata_link_max_devices(link) - 1;
 260                        goto check;
 261                }
 262
 263 next:
 264        /* move to the next one */
 265        switch (mode) {
 266        case ATA_DITER_ENABLED:
 267        case ATA_DITER_ALL:
 268                if (++dev < link->device + ata_link_max_devices(link))
 269                        goto check;
 270                return NULL;
 271        case ATA_DITER_ENABLED_REVERSE:
 272        case ATA_DITER_ALL_REVERSE:
 273                if (--dev >= link->device)
 274                        goto check;
 275                return NULL;
 276        }
 277
 278 check:
 279        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 280            !ata_dev_enabled(dev))
 281                goto next;
 282        return dev;
 283}
 284
 285/**
 286 *      ata_dev_phys_link - find physical link for a device
 287 *      @dev: ATA device to look up physical link for
 288 *
 289 *      Look up physical link which @dev is attached to.  Note that
 290 *      this is different from @dev->link only when @dev is on slave
 291 *      link.  For all other cases, it's the same as @dev->link.
 292 *
 293 *      LOCKING:
 294 *      Don't care.
 295 *
 296 *      RETURNS:
 297 *      Pointer to the found physical link.
 298 */
 299struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 300{
 301        struct ata_port *ap = dev->link->ap;
 302
 303        if (!ap->slave_link)
 304                return dev->link;
 305        if (!dev->devno)
 306                return &ap->link;
 307        return ap->slave_link;
 308}
 309
 310/**
 311 *      ata_force_cbl - force cable type according to libata.force
 312 *      @ap: ATA port of interest
 313 *
 314 *      Force cable type according to libata.force and whine about it.
 315 *      The last entry which has matching port number is used, so it
 316 *      can be specified as part of device force parameters.  For
 317 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 318 *      same effect.
 319 *
 320 *      LOCKING:
 321 *      EH context.
 322 */
 323void ata_force_cbl(struct ata_port *ap)
 324{
 325        int i;
 326
 327        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 328                const struct ata_force_ent *fe = &ata_force_tbl[i];
 329
 330                if (fe->port != -1 && fe->port != ap->print_id)
 331                        continue;
 332
 333                if (fe->param.cbl == ATA_CBL_NONE)
 334                        continue;
 335
 336                ap->cbl = fe->param.cbl;
 337                ata_port_printk(ap, KERN_NOTICE,
 338                                "FORCE: cable set to %s\n", fe->param.name);
 339                return;
 340        }
 341}
 342
 343/**
 344 *      ata_force_link_limits - force link limits according to libata.force
 345 *      @link: ATA link of interest
 346 *
 347 *      Force link flags and SATA spd limit according to libata.force
 348 *      and whine about it.  When only the port part is specified
 349 *      (e.g. 1:), the limit applies to all links connected to both
 350 *      the host link and all fan-out ports connected via PMP.  If the
 351 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 352 *      first fan-out link not the host link.  Device number 15 always
 353 *      points to the host link whether PMP is attached or not.  If the
 354 *      controller has slave link, device number 16 points to it.
 355 *
 356 *      LOCKING:
 357 *      EH context.
 358 */
 359static void ata_force_link_limits(struct ata_link *link)
 360{
 361        bool did_spd = false;
 362        int linkno = link->pmp;
 363        int i;
 364
 365        if (ata_is_host_link(link))
 366                linkno += 15;
 367
 368        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 369                const struct ata_force_ent *fe = &ata_force_tbl[i];
 370
 371                if (fe->port != -1 && fe->port != link->ap->print_id)
 372                        continue;
 373
 374                if (fe->device != -1 && fe->device != linkno)
 375                        continue;
 376
 377                /* only honor the first spd limit */
 378                if (!did_spd && fe->param.spd_limit) {
 379                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 380                        ata_link_printk(link, KERN_NOTICE,
 381                                        "FORCE: PHY spd limit set to %s\n",
 382                                        fe->param.name);
 383                        did_spd = true;
 384                }
 385
 386                /* let lflags stack */
 387                if (fe->param.lflags) {
 388                        link->flags |= fe->param.lflags;
 389                        ata_link_printk(link, KERN_NOTICE,
 390                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 391                                        fe->param.lflags, link->flags);
 392                }
 393        }
 394}
 395
 396/**
 397 *      ata_force_xfermask - force xfermask according to libata.force
 398 *      @dev: ATA device of interest
 399 *
 400 *      Force xfer_mask according to libata.force and whine about it.
 401 *      For consistency with link selection, device number 15 selects
 402 *      the first device connected to the host link.
 403 *
 404 *      LOCKING:
 405 *      EH context.
 406 */
 407static void ata_force_xfermask(struct ata_device *dev)
 408{
 409        int devno = dev->link->pmp + dev->devno;
 410        int alt_devno = devno;
 411        int i;
 412
 413        /* allow n.15/16 for devices attached to host port */
 414        if (ata_is_host_link(dev->link))
 415                alt_devno += 15;
 416
 417        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 418                const struct ata_force_ent *fe = &ata_force_tbl[i];
 419                unsigned long pio_mask, mwdma_mask, udma_mask;
 420
 421                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 422                        continue;
 423
 424                if (fe->device != -1 && fe->device != devno &&
 425                    fe->device != alt_devno)
 426                        continue;
 427
 428                if (!fe->param.xfer_mask)
 429                        continue;
 430
 431                ata_unpack_xfermask(fe->param.xfer_mask,
 432                                    &pio_mask, &mwdma_mask, &udma_mask);
 433                if (udma_mask)
 434                        dev->udma_mask = udma_mask;
 435                else if (mwdma_mask) {
 436                        dev->udma_mask = 0;
 437                        dev->mwdma_mask = mwdma_mask;
 438                } else {
 439                        dev->udma_mask = 0;
 440                        dev->mwdma_mask = 0;
 441                        dev->pio_mask = pio_mask;
 442                }
 443
 444                ata_dev_printk(dev, KERN_NOTICE,
 445                        "FORCE: xfer_mask set to %s\n", fe->param.name);
 446                return;
 447        }
 448}
 449
 450/**
 451 *      ata_force_horkage - force horkage according to libata.force
 452 *      @dev: ATA device of interest
 453 *
 454 *      Force horkage according to libata.force and whine about it.
 455 *      For consistency with link selection, device number 15 selects
 456 *      the first device connected to the host link.
 457 *
 458 *      LOCKING:
 459 *      EH context.
 460 */
 461static void ata_force_horkage(struct ata_device *dev)
 462{
 463        int devno = dev->link->pmp + dev->devno;
 464        int alt_devno = devno;
 465        int i;
 466
 467        /* allow n.15/16 for devices attached to host port */
 468        if (ata_is_host_link(dev->link))
 469                alt_devno += 15;
 470
 471        for (i = 0; i < ata_force_tbl_size; i++) {
 472                const struct ata_force_ent *fe = &ata_force_tbl[i];
 473
 474                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 475                        continue;
 476
 477                if (fe->device != -1 && fe->device != devno &&
 478                    fe->device != alt_devno)
 479                        continue;
 480
 481                if (!(~dev->horkage & fe->param.horkage_on) &&
 482                    !(dev->horkage & fe->param.horkage_off))
 483                        continue;
 484
 485                dev->horkage |= fe->param.horkage_on;
 486                dev->horkage &= ~fe->param.horkage_off;
 487
 488                ata_dev_printk(dev, KERN_NOTICE,
 489                        "FORCE: horkage modified (%s)\n", fe->param.name);
 490        }
 491}
 492
 493/**
 494 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 495 *      @opcode: SCSI opcode
 496 *
 497 *      Determine ATAPI command type from @opcode.
 498 *
 499 *      LOCKING:
 500 *      None.
 501 *
 502 *      RETURNS:
 503 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 504 */
 505int atapi_cmd_type(u8 opcode)
 506{
 507        switch (opcode) {
 508        case GPCMD_READ_10:
 509        case GPCMD_READ_12:
 510                return ATAPI_READ;
 511
 512        case GPCMD_WRITE_10:
 513        case GPCMD_WRITE_12:
 514        case GPCMD_WRITE_AND_VERIFY_10:
 515                return ATAPI_WRITE;
 516
 517        case GPCMD_READ_CD:
 518        case GPCMD_READ_CD_MSF:
 519                return ATAPI_READ_CD;
 520
 521        case ATA_16:
 522        case ATA_12:
 523                if (atapi_passthru16)
 524                        return ATAPI_PASS_THRU;
 525                /* fall thru */
 526        default:
 527                return ATAPI_MISC;
 528        }
 529}
 530
 531/**
 532 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 533 *      @tf: Taskfile to convert
 534 *      @pmp: Port multiplier port
 535 *      @is_cmd: This FIS is for command
 536 *      @fis: Buffer into which data will output
 537 *
 538 *      Converts a standard ATA taskfile to a Serial ATA
 539 *      FIS structure (Register - Host to Device).
 540 *
 541 *      LOCKING:
 542 *      Inherited from caller.
 543 */
 544void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 545{
 546        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 547        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 548        if (is_cmd)
 549                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 550
 551        fis[2] = tf->command;
 552        fis[3] = tf->feature;
 553
 554        fis[4] = tf->lbal;
 555        fis[5] = tf->lbam;
 556        fis[6] = tf->lbah;
 557        fis[7] = tf->device;
 558
 559        fis[8] = tf->hob_lbal;
 560        fis[9] = tf->hob_lbam;
 561        fis[10] = tf->hob_lbah;
 562        fis[11] = tf->hob_feature;
 563
 564        fis[12] = tf->nsect;
 565        fis[13] = tf->hob_nsect;
 566        fis[14] = 0;
 567        fis[15] = tf->ctl;
 568
 569        fis[16] = 0;
 570        fis[17] = 0;
 571        fis[18] = 0;
 572        fis[19] = 0;
 573}
 574
 575/**
 576 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 577 *      @fis: Buffer from which data will be input
 578 *      @tf: Taskfile to output
 579 *
 580 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 581 *
 582 *      LOCKING:
 583 *      Inherited from caller.
 584 */
 585
 586void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 587{
 588        tf->command     = fis[2];       /* status */
 589        tf->feature     = fis[3];       /* error */
 590
 591        tf->lbal        = fis[4];
 592        tf->lbam        = fis[5];
 593        tf->lbah        = fis[6];
 594        tf->device      = fis[7];
 595
 596        tf->hob_lbal    = fis[8];
 597        tf->hob_lbam    = fis[9];
 598        tf->hob_lbah    = fis[10];
 599
 600        tf->nsect       = fis[12];
 601        tf->hob_nsect   = fis[13];
 602}
 603
 604static const u8 ata_rw_cmds[] = {
 605        /* pio multi */
 606        ATA_CMD_READ_MULTI,
 607        ATA_CMD_WRITE_MULTI,
 608        ATA_CMD_READ_MULTI_EXT,
 609        ATA_CMD_WRITE_MULTI_EXT,
 610        0,
 611        0,
 612        0,
 613        ATA_CMD_WRITE_MULTI_FUA_EXT,
 614        /* pio */
 615        ATA_CMD_PIO_READ,
 616        ATA_CMD_PIO_WRITE,
 617        ATA_CMD_PIO_READ_EXT,
 618        ATA_CMD_PIO_WRITE_EXT,
 619        0,
 620        0,
 621        0,
 622        0,
 623        /* dma */
 624        ATA_CMD_READ,
 625        ATA_CMD_WRITE,
 626        ATA_CMD_READ_EXT,
 627        ATA_CMD_WRITE_EXT,
 628        0,
 629        0,
 630        0,
 631        ATA_CMD_WRITE_FUA_EXT
 632};
 633
 634/**
 635 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 636 *      @tf: command to examine and configure
 637 *      @dev: device tf belongs to
 638 *
 639 *      Examine the device configuration and tf->flags to calculate
 640 *      the proper read/write commands and protocol to use.
 641 *
 642 *      LOCKING:
 643 *      caller.
 644 */
 645static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 646{
 647        u8 cmd;
 648
 649        int index, fua, lba48, write;
 650
 651        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 652        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 653        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 654
 655        if (dev->flags & ATA_DFLAG_PIO) {
 656                tf->protocol = ATA_PROT_PIO;
 657                index = dev->multi_count ? 0 : 8;
 658        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 659                /* Unable to use DMA due to host limitation */
 660                tf->protocol = ATA_PROT_PIO;
 661                index = dev->multi_count ? 0 : 8;
 662        } else {
 663                tf->protocol = ATA_PROT_DMA;
 664                index = 16;
 665        }
 666
 667        cmd = ata_rw_cmds[index + fua + lba48 + write];
 668        if (cmd) {
 669                tf->command = cmd;
 670                return 0;
 671        }
 672        return -1;
 673}
 674
 675/**
 676 *      ata_tf_read_block - Read block address from ATA taskfile
 677 *      @tf: ATA taskfile of interest
 678 *      @dev: ATA device @tf belongs to
 679 *
 680 *      LOCKING:
 681 *      None.
 682 *
 683 *      Read block address from @tf.  This function can handle all
 684 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 685 *      flags select the address format to use.
 686 *
 687 *      RETURNS:
 688 *      Block address read from @tf.
 689 */
 690u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 691{
 692        u64 block = 0;
 693
 694        if (tf->flags & ATA_TFLAG_LBA) {
 695                if (tf->flags & ATA_TFLAG_LBA48) {
 696                        block |= (u64)tf->hob_lbah << 40;
 697                        block |= (u64)tf->hob_lbam << 32;
 698                        block |= (u64)tf->hob_lbal << 24;
 699                } else
 700                        block |= (tf->device & 0xf) << 24;
 701
 702                block |= tf->lbah << 16;
 703                block |= tf->lbam << 8;
 704                block |= tf->lbal;
 705        } else {
 706                u32 cyl, head, sect;
 707
 708                cyl = tf->lbam | (tf->lbah << 8);
 709                head = tf->device & 0xf;
 710                sect = tf->lbal;
 711
 712                block = (cyl * dev->heads + head) * dev->sectors + sect;
 713        }
 714
 715        return block;
 716}
 717
 718/**
 719 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 720 *      @tf: Target ATA taskfile
 721 *      @dev: ATA device @tf belongs to
 722 *      @block: Block address
 723 *      @n_block: Number of blocks
 724 *      @tf_flags: RW/FUA etc...
 725 *      @tag: tag
 726 *
 727 *      LOCKING:
 728 *      None.
 729 *
 730 *      Build ATA taskfile @tf for read/write request described by
 731 *      @block, @n_block, @tf_flags and @tag on @dev.
 732 *
 733 *      RETURNS:
 734 *
 735 *      0 on success, -ERANGE if the request is too large for @dev,
 736 *      -EINVAL if the request is invalid.
 737 */
 738int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 739                    u64 block, u32 n_block, unsigned int tf_flags,
 740                    unsigned int tag)
 741{
 742        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 743        tf->flags |= tf_flags;
 744
 745        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 746                /* yay, NCQ */
 747                if (!lba_48_ok(block, n_block))
 748                        return -ERANGE;
 749
 750                tf->protocol = ATA_PROT_NCQ;
 751                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 752
 753                if (tf->flags & ATA_TFLAG_WRITE)
 754                        tf->command = ATA_CMD_FPDMA_WRITE;
 755                else
 756                        tf->command = ATA_CMD_FPDMA_READ;
 757
 758                tf->nsect = tag << 3;
 759                tf->hob_feature = (n_block >> 8) & 0xff;
 760                tf->feature = n_block & 0xff;
 761
 762                tf->hob_lbah = (block >> 40) & 0xff;
 763                tf->hob_lbam = (block >> 32) & 0xff;
 764                tf->hob_lbal = (block >> 24) & 0xff;
 765                tf->lbah = (block >> 16) & 0xff;
 766                tf->lbam = (block >> 8) & 0xff;
 767                tf->lbal = block & 0xff;
 768
 769                tf->device = 1 << 6;
 770                if (tf->flags & ATA_TFLAG_FUA)
 771                        tf->device |= 1 << 7;
 772        } else if (dev->flags & ATA_DFLAG_LBA) {
 773                tf->flags |= ATA_TFLAG_LBA;
 774
 775                if (lba_28_ok(block, n_block)) {
 776                        /* use LBA28 */
 777                        tf->device |= (block >> 24) & 0xf;
 778                } else if (lba_48_ok(block, n_block)) {
 779                        if (!(dev->flags & ATA_DFLAG_LBA48))
 780                                return -ERANGE;
 781
 782                        /* use LBA48 */
 783                        tf->flags |= ATA_TFLAG_LBA48;
 784
 785                        tf->hob_nsect = (n_block >> 8) & 0xff;
 786
 787                        tf->hob_lbah = (block >> 40) & 0xff;
 788                        tf->hob_lbam = (block >> 32) & 0xff;
 789                        tf->hob_lbal = (block >> 24) & 0xff;
 790                } else
 791                        /* request too large even for LBA48 */
 792                        return -ERANGE;
 793
 794                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 795                        return -EINVAL;
 796
 797                tf->nsect = n_block & 0xff;
 798
 799                tf->lbah = (block >> 16) & 0xff;
 800                tf->lbam = (block >> 8) & 0xff;
 801                tf->lbal = block & 0xff;
 802
 803                tf->device |= ATA_LBA;
 804        } else {
 805                /* CHS */
 806                u32 sect, head, cyl, track;
 807
 808                /* The request -may- be too large for CHS addressing. */
 809                if (!lba_28_ok(block, n_block))
 810                        return -ERANGE;
 811
 812                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 813                        return -EINVAL;
 814
 815                /* Convert LBA to CHS */
 816                track = (u32)block / dev->sectors;
 817                cyl   = track / dev->heads;
 818                head  = track % dev->heads;
 819                sect  = (u32)block % dev->sectors + 1;
 820
 821                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 822                        (u32)block, track, cyl, head, sect);
 823
 824                /* Check whether the converted CHS can fit.
 825                   Cylinder: 0-65535
 826                   Head: 0-15
 827                   Sector: 1-255*/
 828                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 829                        return -ERANGE;
 830
 831                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 832                tf->lbal = sect;
 833                tf->lbam = cyl;
 834                tf->lbah = cyl >> 8;
 835                tf->device |= head;
 836        }
 837
 838        return 0;
 839}
 840
 841/**
 842 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 843 *      @pio_mask: pio_mask
 844 *      @mwdma_mask: mwdma_mask
 845 *      @udma_mask: udma_mask
 846 *
 847 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 848 *      unsigned int xfer_mask.
 849 *
 850 *      LOCKING:
 851 *      None.
 852 *
 853 *      RETURNS:
 854 *      Packed xfer_mask.
 855 */
 856unsigned long ata_pack_xfermask(unsigned long pio_mask,
 857                                unsigned long mwdma_mask,
 858                                unsigned long udma_mask)
 859{
 860        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 861                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 862                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 863}
 864
 865/**
 866 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 867 *      @xfer_mask: xfer_mask to unpack
 868 *      @pio_mask: resulting pio_mask
 869 *      @mwdma_mask: resulting mwdma_mask
 870 *      @udma_mask: resulting udma_mask
 871 *
 872 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 873 *      Any NULL distination masks will be ignored.
 874 */
 875void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 876                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 877{
 878        if (pio_mask)
 879                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 880        if (mwdma_mask)
 881                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 882        if (udma_mask)
 883                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 884}
 885
 886static const struct ata_xfer_ent {
 887        int shift, bits;
 888        u8 base;
 889} ata_xfer_tbl[] = {
 890        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 891        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 892        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 893        { -1, },
 894};
 895
 896/**
 897 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 898 *      @xfer_mask: xfer_mask of interest
 899 *
 900 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 901 *      bit of @xfer_mask is considered.
 902 *
 903 *      LOCKING:
 904 *      None.
 905 *
 906 *      RETURNS:
 907 *      Matching XFER_* value, 0xff if no match found.
 908 */
 909u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 910{
 911        int highbit = fls(xfer_mask) - 1;
 912        const struct ata_xfer_ent *ent;
 913
 914        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 915                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 916                        return ent->base + highbit - ent->shift;
 917        return 0xff;
 918}
 919
 920/**
 921 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 922 *      @xfer_mode: XFER_* of interest
 923 *
 924 *      Return matching xfer_mask for @xfer_mode.
 925 *
 926 *      LOCKING:
 927 *      None.
 928 *
 929 *      RETURNS:
 930 *      Matching xfer_mask, 0 if no match found.
 931 */
 932unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 933{
 934        const struct ata_xfer_ent *ent;
 935
 936        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 937                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 938                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 939                                & ~((1 << ent->shift) - 1);
 940        return 0;
 941}
 942
 943/**
 944 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 945 *      @xfer_mode: XFER_* of interest
 946 *
 947 *      Return matching xfer_shift for @xfer_mode.
 948 *
 949 *      LOCKING:
 950 *      None.
 951 *
 952 *      RETURNS:
 953 *      Matching xfer_shift, -1 if no match found.
 954 */
 955int ata_xfer_mode2shift(unsigned long xfer_mode)
 956{
 957        const struct ata_xfer_ent *ent;
 958
 959        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 960                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 961                        return ent->shift;
 962        return -1;
 963}
 964
 965/**
 966 *      ata_mode_string - convert xfer_mask to string
 967 *      @xfer_mask: mask of bits supported; only highest bit counts.
 968 *
 969 *      Determine string which represents the highest speed
 970 *      (highest bit in @modemask).
 971 *
 972 *      LOCKING:
 973 *      None.
 974 *
 975 *      RETURNS:
 976 *      Constant C string representing highest speed listed in
 977 *      @mode_mask, or the constant C string "<n/a>".
 978 */
 979const char *ata_mode_string(unsigned long xfer_mask)
 980{
 981        static const char * const xfer_mode_str[] = {
 982                "PIO0",
 983                "PIO1",
 984                "PIO2",
 985                "PIO3",
 986                "PIO4",
 987                "PIO5",
 988                "PIO6",
 989                "MWDMA0",
 990                "MWDMA1",
 991                "MWDMA2",
 992                "MWDMA3",
 993                "MWDMA4",
 994                "UDMA/16",
 995                "UDMA/25",
 996                "UDMA/33",
 997                "UDMA/44",
 998                "UDMA/66",
 999                "UDMA/100",
1000                "UDMA/133",
1001                "UDMA7",
1002        };
1003        int highbit;
1004
1005        highbit = fls(xfer_mask) - 1;
1006        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007                return xfer_mode_str[highbit];
1008        return "<n/a>";
1009}
1010
1011static const char *sata_spd_string(unsigned int spd)
1012{
1013        static const char * const spd_str[] = {
1014                "1.5 Gbps",
1015                "3.0 Gbps",
1016                "6.0 Gbps",
1017        };
1018
1019        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020                return "<unknown>";
1021        return spd_str[spd - 1];
1022}
1023
1024static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025{
1026        struct ata_link *link = dev->link;
1027        struct ata_port *ap = link->ap;
1028        u32 scontrol;
1029        unsigned int err_mask;
1030        int rc;
1031
1032        /*
1033         * disallow DIPM for drivers which haven't set
1034         * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1035         * phy ready will be set in the interrupt status on
1036         * state changes, which will cause some drivers to
1037         * think there are errors - additionally drivers will
1038         * need to disable hot plug.
1039         */
1040        if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041                ap->pm_policy = NOT_AVAILABLE;
1042                return -EINVAL;
1043        }
1044
1045        /*
1046         * For DIPM, we will only enable it for the
1047         * min_power setting.
1048         *
1049         * Why?  Because Disks are too stupid to know that
1050         * If the host rejects a request to go to SLUMBER
1051         * they should retry at PARTIAL, and instead it
1052         * just would give up.  So, for medium_power to
1053         * work at all, we need to only allow HIPM.
1054         */
1055        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056        if (rc)
1057                return rc;
1058
1059        switch (policy) {
1060        case MIN_POWER:
1061                /* no restrictions on IPM transitions */
1062                scontrol &= ~(0x3 << 8);
1063                rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064                if (rc)
1065                        return rc;
1066
1067                /* enable DIPM */
1068                if (dev->flags & ATA_DFLAG_DIPM)
1069                        err_mask = ata_dev_set_feature(dev,
1070                                        SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071                break;
1072        case MEDIUM_POWER:
1073                /* allow IPM to PARTIAL */
1074                scontrol &= ~(0x1 << 8);
1075                scontrol |= (0x2 << 8);
1076                rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077                if (rc)
1078                        return rc;
1079
1080                /*
1081                 * we don't have to disable DIPM since IPM flags
1082                 * disallow transitions to SLUMBER, which effectively
1083                 * disable DIPM if it does not support PARTIAL
1084                 */
1085                break;
1086        case NOT_AVAILABLE:
1087        case MAX_PERFORMANCE:
1088                /* disable all IPM transitions */
1089                scontrol |= (0x3 << 8);
1090                rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091                if (rc)
1092                        return rc;
1093
1094                /*
1095                 * we don't have to disable DIPM since IPM flags
1096                 * disallow all transitions which effectively
1097                 * disable DIPM anyway.
1098                 */
1099                break;
1100        }
1101
1102        /* FIXME: handle SET FEATURES failure */
1103        (void) err_mask;
1104
1105        return 0;
1106}
1107
1108/**
1109 *      ata_dev_enable_pm - enable SATA interface power management
1110 *      @dev:  device to enable power management
1111 *      @policy: the link power management policy
1112 *
1113 *      Enable SATA Interface power management.  This will enable
1114 *      Device Interface Power Management (DIPM) for min_power
1115 *      policy, and then call driver specific callbacks for
1116 *      enabling Host Initiated Power management.
1117 *
1118 *      Locking: Caller.
1119 *      Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 */
1121void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122{
1123        int rc = 0;
1124        struct ata_port *ap = dev->link->ap;
1125
1126        /* set HIPM first, then DIPM */
1127        if (ap->ops->enable_pm)
1128                rc = ap->ops->enable_pm(ap, policy);
1129        if (rc)
1130                goto enable_pm_out;
1131        rc = ata_dev_set_dipm(dev, policy);
1132
1133enable_pm_out:
1134        if (rc)
1135                ap->pm_policy = MAX_PERFORMANCE;
1136        else
1137                ap->pm_policy = policy;
1138        return /* rc */;        /* hopefully we can use 'rc' eventually */
1139}
1140
1141#ifdef CONFIG_PM
1142/**
1143 *      ata_dev_disable_pm - disable SATA interface power management
1144 *      @dev: device to disable power management
1145 *
1146 *      Disable SATA Interface power management.  This will disable
1147 *      Device Interface Power Management (DIPM) without changing
1148 *      policy,  call driver specific callbacks for disabling Host
1149 *      Initiated Power management.
1150 *
1151 *      Locking: Caller.
1152 *      Returns: void
1153 */
1154static void ata_dev_disable_pm(struct ata_device *dev)
1155{
1156        struct ata_port *ap = dev->link->ap;
1157
1158        ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159        if (ap->ops->disable_pm)
1160                ap->ops->disable_pm(ap);
1161}
1162#endif  /* CONFIG_PM */
1163
1164void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165{
1166        ap->pm_policy = policy;
1167        ap->link.eh_info.action |= ATA_EH_LPM;
1168        ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169        ata_port_schedule_eh(ap);
1170}
1171
1172#ifdef CONFIG_PM
1173static void ata_lpm_enable(struct ata_host *host)
1174{
1175        struct ata_link *link;
1176        struct ata_port *ap;
1177        struct ata_device *dev;
1178        int i;
1179
1180        for (i = 0; i < host->n_ports; i++) {
1181                ap = host->ports[i];
1182                ata_for_each_link(link, ap, EDGE) {
1183                        ata_for_each_dev(dev, link, ALL)
1184                                ata_dev_disable_pm(dev);
1185                }
1186        }
1187}
1188
1189static void ata_lpm_disable(struct ata_host *host)
1190{
1191        int i;
1192
1193        for (i = 0; i < host->n_ports; i++) {
1194                struct ata_port *ap = host->ports[i];
1195                ata_lpm_schedule(ap, ap->pm_policy);
1196        }
1197}
1198#endif  /* CONFIG_PM */
1199
1200/**
1201 *      ata_dev_classify - determine device type based on ATA-spec signature
1202 *      @tf: ATA taskfile register set for device to be identified
1203 *
1204 *      Determine from taskfile register contents whether a device is
1205 *      ATA or ATAPI, as per "Signature and persistence" section
1206 *      of ATA/PI spec (volume 1, sect 5.14).
1207 *
1208 *      LOCKING:
1209 *      None.
1210 *
1211 *      RETURNS:
1212 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 *      %ATA_DEV_UNKNOWN the event of failure.
1214 */
1215unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216{
1217        /* Apple's open source Darwin code hints that some devices only
1218         * put a proper signature into the LBA mid/high registers,
1219         * So, we only check those.  It's sufficient for uniqueness.
1220         *
1221         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222         * signatures for ATA and ATAPI devices attached on SerialATA,
1223         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1224         * spec has never mentioned about using different signatures
1225         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1226         * Multiplier specification began to use 0x69/0x96 to identify
1227         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229         * 0x69/0x96 shortly and described them as reserved for
1230         * SerialATA.
1231         *
1232         * We follow the current spec and consider that 0x69/0x96
1233         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235         * SEMB signature.  This is worked around in
1236         * ata_dev_read_id().
1237         */
1238        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1239                DPRINTK("found ATA device by sig\n");
1240                return ATA_DEV_ATA;
1241        }
1242
1243        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1244                DPRINTK("found ATAPI device by sig\n");
1245                return ATA_DEV_ATAPI;
1246        }
1247
1248        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1249                DPRINTK("found PMP device by sig\n");
1250                return ATA_DEV_PMP;
1251        }
1252
1253        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1254                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255                return ATA_DEV_SEMB;
1256        }
1257
1258        DPRINTK("unknown device\n");
1259        return ATA_DEV_UNKNOWN;
1260}
1261
1262/**
1263 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1264 *      @id: IDENTIFY DEVICE results we will examine
1265 *      @s: string into which data is output
1266 *      @ofs: offset into identify device page
1267 *      @len: length of string to return. must be an even number.
1268 *
1269 *      The strings in the IDENTIFY DEVICE page are broken up into
1270 *      16-bit chunks.  Run through the string, and output each
1271 *      8-bit chunk linearly, regardless of platform.
1272 *
1273 *      LOCKING:
1274 *      caller.
1275 */
1276
1277void ata_id_string(const u16 *id, unsigned char *s,
1278                   unsigned int ofs, unsigned int len)
1279{
1280        unsigned int c;
1281
1282        BUG_ON(len & 1);
1283
1284        while (len > 0) {
1285                c = id[ofs] >> 8;
1286                *s = c;
1287                s++;
1288
1289                c = id[ofs] & 0xff;
1290                *s = c;
1291                s++;
1292
1293                ofs++;
1294                len -= 2;
1295        }
1296}
1297
1298/**
1299 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1300 *      @id: IDENTIFY DEVICE results we will examine
1301 *      @s: string into which data is output
1302 *      @ofs: offset into identify device page
1303 *      @len: length of string to return. must be an odd number.
1304 *
1305 *      This function is identical to ata_id_string except that it
1306 *      trims trailing spaces and terminates the resulting string with
1307 *      null.  @len must be actual maximum length (even number) + 1.
1308 *
1309 *      LOCKING:
1310 *      caller.
1311 */
1312void ata_id_c_string(const u16 *id, unsigned char *s,
1313                     unsigned int ofs, unsigned int len)
1314{
1315        unsigned char *p;
1316
1317        ata_id_string(id, s, ofs, len - 1);
1318
1319        p = s + strnlen(s, len - 1);
1320        while (p > s && p[-1] == ' ')
1321                p--;
1322        *p = '\0';
1323}
1324
1325static u64 ata_id_n_sectors(const u16 *id)
1326{
1327        if (ata_id_has_lba(id)) {
1328                if (ata_id_has_lba48(id))
1329                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1330                else
1331                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1332        } else {
1333                if (ata_id_current_chs_valid(id))
1334                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1335                               id[ATA_ID_CUR_SECTORS];
1336                else
1337                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1338                               id[ATA_ID_SECTORS];
1339        }
1340}
1341
1342u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1343{
1344        u64 sectors = 0;
1345
1346        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1347        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1348        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1349        sectors |= (tf->lbah & 0xff) << 16;
1350        sectors |= (tf->lbam & 0xff) << 8;
1351        sectors |= (tf->lbal & 0xff);
1352
1353        return sectors;
1354}
1355
1356u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1357{
1358        u64 sectors = 0;
1359
1360        sectors |= (tf->device & 0x0f) << 24;
1361        sectors |= (tf->lbah & 0xff) << 16;
1362        sectors |= (tf->lbam & 0xff) << 8;
1363        sectors |= (tf->lbal & 0xff);
1364
1365        return sectors;
1366}
1367
1368/**
1369 *      ata_read_native_max_address - Read native max address
1370 *      @dev: target device
1371 *      @max_sectors: out parameter for the result native max address
1372 *
1373 *      Perform an LBA48 or LBA28 native size query upon the device in
1374 *      question.
1375 *
1376 *      RETURNS:
1377 *      0 on success, -EACCES if command is aborted by the drive.
1378 *      -EIO on other errors.
1379 */
1380static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1381{
1382        unsigned int err_mask;
1383        struct ata_taskfile tf;
1384        int lba48 = ata_id_has_lba48(dev->id);
1385
1386        ata_tf_init(dev, &tf);
1387
1388        /* always clear all address registers */
1389        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1390
1391        if (lba48) {
1392                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1393                tf.flags |= ATA_TFLAG_LBA48;
1394        } else
1395                tf.command = ATA_CMD_READ_NATIVE_MAX;
1396
1397        tf.protocol |= ATA_PROT_NODATA;
1398        tf.device |= ATA_LBA;
1399
1400        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1401        if (err_mask) {
1402                ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1403                               "max address (err_mask=0x%x)\n", err_mask);
1404                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1405                        return -EACCES;
1406                return -EIO;
1407        }
1408
1409        if (lba48)
1410                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1411        else
1412                *max_sectors = ata_tf_to_lba(&tf) + 1;
1413        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1414                (*max_sectors)--;
1415        return 0;
1416}
1417
1418/**
1419 *      ata_set_max_sectors - Set max sectors
1420 *      @dev: target device
1421 *      @new_sectors: new max sectors value to set for the device
1422 *
1423 *      Set max sectors of @dev to @new_sectors.
1424 *
1425 *      RETURNS:
1426 *      0 on success, -EACCES if command is aborted or denied (due to
1427 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1428 *      errors.
1429 */
1430static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1431{
1432        unsigned int err_mask;
1433        struct ata_taskfile tf;
1434        int lba48 = ata_id_has_lba48(dev->id);
1435
1436        new_sectors--;
1437
1438        ata_tf_init(dev, &tf);
1439
1440        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1441
1442        if (lba48) {
1443                tf.command = ATA_CMD_SET_MAX_EXT;
1444                tf.flags |= ATA_TFLAG_LBA48;
1445
1446                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1447                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1448                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1449        } else {
1450                tf.command = ATA_CMD_SET_MAX;
1451
1452                tf.device |= (new_sectors >> 24) & 0xf;
1453        }
1454
1455        tf.protocol |= ATA_PROT_NODATA;
1456        tf.device |= ATA_LBA;
1457
1458        tf.lbal = (new_sectors >> 0) & 0xff;
1459        tf.lbam = (new_sectors >> 8) & 0xff;
1460        tf.lbah = (new_sectors >> 16) & 0xff;
1461
1462        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1463        if (err_mask) {
1464                ata_dev_printk(dev, KERN_WARNING, "failed to set "
1465                               "max address (err_mask=0x%x)\n", err_mask);
1466                if (err_mask == AC_ERR_DEV &&
1467                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1468                        return -EACCES;
1469                return -EIO;
1470        }
1471
1472        return 0;
1473}
1474
1475/**
1476 *      ata_hpa_resize          -       Resize a device with an HPA set
1477 *      @dev: Device to resize
1478 *
1479 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480 *      it if required to the full size of the media. The caller must check
1481 *      the drive has the HPA feature set enabled.
1482 *
1483 *      RETURNS:
1484 *      0 on success, -errno on failure.
1485 */
1486static int ata_hpa_resize(struct ata_device *dev)
1487{
1488        struct ata_eh_context *ehc = &dev->link->eh_context;
1489        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1490        u64 sectors = ata_id_n_sectors(dev->id);
1491        u64 native_sectors;
1492        int rc;
1493
1494        /* do we need to do it? */
1495        if (dev->class != ATA_DEV_ATA ||
1496            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1497            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1498                return 0;
1499
1500        /* read native max address */
1501        rc = ata_read_native_max_address(dev, &native_sectors);
1502        if (rc) {
1503                /* If device aborted the command or HPA isn't going to
1504                 * be unlocked, skip HPA resizing.
1505                 */
1506                if (rc == -EACCES || !ata_ignore_hpa) {
1507                        ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1508                                       "broken, skipping HPA handling\n");
1509                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1510
1511                        /* we can continue if device aborted the command */
1512                        if (rc == -EACCES)
1513                                rc = 0;
1514                }
1515
1516                return rc;
1517        }
1518
1519        /* nothing to do? */
1520        if (native_sectors <= sectors || !ata_ignore_hpa) {
1521                if (!print_info || native_sectors == sectors)
1522                        return 0;
1523
1524                if (native_sectors > sectors)
1525                        ata_dev_printk(dev, KERN_INFO,
1526                                "HPA detected: current %llu, native %llu\n",
1527                                (unsigned long long)sectors,
1528                                (unsigned long long)native_sectors);
1529                else if (native_sectors < sectors)
1530                        ata_dev_printk(dev, KERN_WARNING,
1531                                "native sectors (%llu) is smaller than "
1532                                "sectors (%llu)\n",
1533                                (unsigned long long)native_sectors,
1534                                (unsigned long long)sectors);
1535                return 0;
1536        }
1537
1538        /* let's unlock HPA */
1539        rc = ata_set_max_sectors(dev, native_sectors);
1540        if (rc == -EACCES) {
1541                /* if device aborted the command, skip HPA resizing */
1542                ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1543                               "(%llu -> %llu), skipping HPA handling\n",
1544                               (unsigned long long)sectors,
1545                               (unsigned long long)native_sectors);
1546                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1547                return 0;
1548        } else if (rc)
1549                return rc;
1550
1551        /* re-read IDENTIFY data */
1552        rc = ata_dev_reread_id(dev, 0);
1553        if (rc) {
1554                ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1555                               "data after HPA resizing\n");
1556                return rc;
1557        }
1558
1559        if (print_info) {
1560                u64 new_sectors = ata_id_n_sectors(dev->id);
1561                ata_dev_printk(dev, KERN_INFO,
1562                        "HPA unlocked: %llu -> %llu, native %llu\n",
1563                        (unsigned long long)sectors,
1564                        (unsigned long long)new_sectors,
1565                        (unsigned long long)native_sectors);
1566        }
1567
1568        return 0;
1569}
1570
1571/**
1572 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1573 *      @id: IDENTIFY DEVICE page to dump
1574 *
1575 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1576 *      page.
1577 *
1578 *      LOCKING:
1579 *      caller.
1580 */
1581
1582static inline void ata_dump_id(const u16 *id)
1583{
1584        DPRINTK("49==0x%04x  "
1585                "53==0x%04x  "
1586                "63==0x%04x  "
1587                "64==0x%04x  "
1588                "75==0x%04x  \n",
1589                id[49],
1590                id[53],
1591                id[63],
1592                id[64],
1593                id[75]);
1594        DPRINTK("80==0x%04x  "
1595                "81==0x%04x  "
1596                "82==0x%04x  "
1597                "83==0x%04x  "
1598                "84==0x%04x  \n",
1599                id[80],
1600                id[81],
1601                id[82],
1602                id[83],
1603                id[84]);
1604        DPRINTK("88==0x%04x  "
1605                "93==0x%04x\n",
1606                id[88],
1607                id[93]);
1608}
1609
1610/**
1611 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1612 *      @id: IDENTIFY data to compute xfer mask from
1613 *
1614 *      Compute the xfermask for this device. This is not as trivial
1615 *      as it seems if we must consider early devices correctly.
1616 *
1617 *      FIXME: pre IDE drive timing (do we care ?).
1618 *
1619 *      LOCKING:
1620 *      None.
1621 *
1622 *      RETURNS:
1623 *      Computed xfermask
1624 */
1625unsigned long ata_id_xfermask(const u16 *id)
1626{
1627        unsigned long pio_mask, mwdma_mask, udma_mask;
1628
1629        /* Usual case. Word 53 indicates word 64 is valid */
1630        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1631                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1632                pio_mask <<= 3;
1633                pio_mask |= 0x7;
1634        } else {
1635                /* If word 64 isn't valid then Word 51 high byte holds
1636                 * the PIO timing number for the maximum. Turn it into
1637                 * a mask.
1638                 */
1639                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1640                if (mode < 5)   /* Valid PIO range */
1641                        pio_mask = (2 << mode) - 1;
1642                else
1643                        pio_mask = 1;
1644
1645                /* But wait.. there's more. Design your standards by
1646                 * committee and you too can get a free iordy field to
1647                 * process. However its the speeds not the modes that
1648                 * are supported... Note drivers using the timing API
1649                 * will get this right anyway
1650                 */
1651        }
1652
1653        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1654
1655        if (ata_id_is_cfa(id)) {
1656                /*
1657                 *      Process compact flash extended modes
1658                 */
1659                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1660                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1661
1662                if (pio)
1663                        pio_mask |= (1 << 5);
1664                if (pio > 1)
1665                        pio_mask |= (1 << 6);
1666                if (dma)
1667                        mwdma_mask |= (1 << 3);
1668                if (dma > 1)
1669                        mwdma_mask |= (1 << 4);
1670        }
1671
1672        udma_mask = 0;
1673        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1674                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1675
1676        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1677}
1678
1679/**
1680 *      ata_pio_queue_task - Queue port_task
1681 *      @ap: The ata_port to queue port_task for
1682 *      @data: data for @fn to use
1683 *      @delay: delay time in msecs for workqueue function
1684 *
1685 *      Schedule @fn(@data) for execution after @delay jiffies using
1686 *      port_task.  There is one port_task per port and it's the
1687 *      user(low level driver)'s responsibility to make sure that only
1688 *      one task is active at any given time.
1689 *
1690 *      libata core layer takes care of synchronization between
1691 *      port_task and EH.  ata_pio_queue_task() may be ignored for EH
1692 *      synchronization.
1693 *
1694 *      LOCKING:
1695 *      Inherited from caller.
1696 */
1697void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1698{
1699        ap->port_task_data = data;
1700
1701        /* may fail if ata_port_flush_task() in progress */
1702        queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1703}
1704
1705/**
1706 *      ata_port_flush_task - Flush port_task
1707 *      @ap: The ata_port to flush port_task for
1708 *
1709 *      After this function completes, port_task is guranteed not to
1710 *      be running or scheduled.
1711 *
1712 *      LOCKING:
1713 *      Kernel thread context (may sleep)
1714 */
1715void ata_port_flush_task(struct ata_port *ap)
1716{
1717        DPRINTK("ENTER\n");
1718
1719        cancel_rearming_delayed_work(&ap->port_task);
1720
1721        if (ata_msg_ctl(ap))
1722                ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1723}
1724
1725static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1726{
1727        struct completion *waiting = qc->private_data;
1728
1729        complete(waiting);
1730}
1731
1732/**
1733 *      ata_exec_internal_sg - execute libata internal command
1734 *      @dev: Device to which the command is sent
1735 *      @tf: Taskfile registers for the command and the result
1736 *      @cdb: CDB for packet command
1737 *      @dma_dir: Data tranfer direction of the command
1738 *      @sgl: sg list for the data buffer of the command
1739 *      @n_elem: Number of sg entries
1740 *      @timeout: Timeout in msecs (0 for default)
1741 *
1742 *      Executes libata internal command with timeout.  @tf contains
1743 *      command on entry and result on return.  Timeout and error
1744 *      conditions are reported via return value.  No recovery action
1745 *      is taken after a command times out.  It's caller's duty to
1746 *      clean up after timeout.
1747 *
1748 *      LOCKING:
1749 *      None.  Should be called with kernel context, might sleep.
1750 *
1751 *      RETURNS:
1752 *      Zero on success, AC_ERR_* mask on failure
1753 */
1754unsigned ata_exec_internal_sg(struct ata_device *dev,
1755                              struct ata_taskfile *tf, const u8 *cdb,
1756                              int dma_dir, struct scatterlist *sgl,
1757                              unsigned int n_elem, unsigned long timeout)
1758{
1759        struct ata_link *link = dev->link;
1760        struct ata_port *ap = link->ap;
1761        u8 command = tf->command;
1762        int auto_timeout = 0;
1763        struct ata_queued_cmd *qc;
1764        unsigned int tag, preempted_tag;
1765        u32 preempted_sactive, preempted_qc_active;
1766        int preempted_nr_active_links;
1767        DECLARE_COMPLETION_ONSTACK(wait);
1768        unsigned long flags;
1769        unsigned int err_mask;
1770        int rc;
1771
1772        spin_lock_irqsave(ap->lock, flags);
1773
1774        /* no internal command while frozen */
1775        if (ap->pflags & ATA_PFLAG_FROZEN) {
1776                spin_unlock_irqrestore(ap->lock, flags);
1777                return AC_ERR_SYSTEM;
1778        }
1779
1780        /* initialize internal qc */
1781
1782        /* XXX: Tag 0 is used for drivers with legacy EH as some
1783         * drivers choke if any other tag is given.  This breaks
1784         * ata_tag_internal() test for those drivers.  Don't use new
1785         * EH stuff without converting to it.
1786         */
1787        if (ap->ops->error_handler)
1788                tag = ATA_TAG_INTERNAL;
1789        else
1790                tag = 0;
1791
1792        if (test_and_set_bit(tag, &ap->qc_allocated))
1793                BUG();
1794        qc = __ata_qc_from_tag(ap, tag);
1795
1796        qc->tag = tag;
1797        qc->scsicmd = NULL;
1798        qc->ap = ap;
1799        qc->dev = dev;
1800        ata_qc_reinit(qc);
1801
1802        preempted_tag = link->active_tag;
1803        preempted_sactive = link->sactive;
1804        preempted_qc_active = ap->qc_active;
1805        preempted_nr_active_links = ap->nr_active_links;
1806        link->active_tag = ATA_TAG_POISON;
1807        link->sactive = 0;
1808        ap->qc_active = 0;
1809        ap->nr_active_links = 0;
1810
1811        /* prepare & issue qc */
1812        qc->tf = *tf;
1813        if (cdb)
1814                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1815        qc->flags |= ATA_QCFLAG_RESULT_TF;
1816        qc->dma_dir = dma_dir;
1817        if (dma_dir != DMA_NONE) {
1818                unsigned int i, buflen = 0;
1819                struct scatterlist *sg;
1820
1821                for_each_sg(sgl, sg, n_elem, i)
1822                        buflen += sg->length;
1823
1824                ata_sg_init(qc, sgl, n_elem);
1825                qc->nbytes = buflen;
1826        }
1827
1828        qc->private_data = &wait;
1829        qc->complete_fn = ata_qc_complete_internal;
1830
1831        ata_qc_issue(qc);
1832
1833        spin_unlock_irqrestore(ap->lock, flags);
1834
1835        if (!timeout) {
1836                if (ata_probe_timeout)
1837                        timeout = ata_probe_timeout * 1000;
1838                else {
1839                        timeout = ata_internal_cmd_timeout(dev, command);
1840                        auto_timeout = 1;
1841                }
1842        }
1843
1844        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1845
1846        ata_port_flush_task(ap);
1847
1848        if (!rc) {
1849                spin_lock_irqsave(ap->lock, flags);
1850
1851                /* We're racing with irq here.  If we lose, the
1852                 * following test prevents us from completing the qc
1853                 * twice.  If we win, the port is frozen and will be
1854                 * cleaned up by ->post_internal_cmd().
1855                 */
1856                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1857                        qc->err_mask |= AC_ERR_TIMEOUT;
1858
1859                        if (ap->ops->error_handler)
1860                                ata_port_freeze(ap);
1861                        else
1862                                ata_qc_complete(qc);
1863
1864                        if (ata_msg_warn(ap))
1865                                ata_dev_printk(dev, KERN_WARNING,
1866                                        "qc timeout (cmd 0x%x)\n", command);
1867                }
1868
1869                spin_unlock_irqrestore(ap->lock, flags);
1870        }
1871
1872        /* do post_internal_cmd */
1873        if (ap->ops->post_internal_cmd)
1874                ap->ops->post_internal_cmd(qc);
1875
1876        /* perform minimal error analysis */
1877        if (qc->flags & ATA_QCFLAG_FAILED) {
1878                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1879                        qc->err_mask |= AC_ERR_DEV;
1880
1881                if (!qc->err_mask)
1882                        qc->err_mask |= AC_ERR_OTHER;
1883
1884                if (qc->err_mask & ~AC_ERR_OTHER)
1885                        qc->err_mask &= ~AC_ERR_OTHER;
1886        }
1887
1888        /* finish up */
1889        spin_lock_irqsave(ap->lock, flags);
1890
1891        *tf = qc->result_tf;
1892        err_mask = qc->err_mask;
1893
1894        ata_qc_free(qc);
1895        link->active_tag = preempted_tag;
1896        link->sactive = preempted_sactive;
1897        ap->qc_active = preempted_qc_active;
1898        ap->nr_active_links = preempted_nr_active_links;
1899
1900        /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1901         * Until those drivers are fixed, we detect the condition
1902         * here, fail the command with AC_ERR_SYSTEM and reenable the
1903         * port.
1904         *
1905         * Note that this doesn't change any behavior as internal
1906         * command failure results in disabling the device in the
1907         * higher layer for LLDDs without new reset/EH callbacks.
1908         *
1909         * Kill the following code as soon as those drivers are fixed.
1910         */
1911        if (ap->flags & ATA_FLAG_DISABLED) {
1912                err_mask |= AC_ERR_SYSTEM;
1913                ata_port_probe(ap);
1914        }
1915
1916        spin_unlock_irqrestore(ap->lock, flags);
1917
1918        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1919                ata_internal_cmd_timed_out(dev, command);
1920
1921        return err_mask;
1922}
1923
1924/**
1925 *      ata_exec_internal - execute libata internal command
1926 *      @dev: Device to which the command is sent
1927 *      @tf: Taskfile registers for the command and the result
1928 *      @cdb: CDB for packet command
1929 *      @dma_dir: Data tranfer direction of the command
1930 *      @buf: Data buffer of the command
1931 *      @buflen: Length of data buffer
1932 *      @timeout: Timeout in msecs (0 for default)
1933 *
1934 *      Wrapper around ata_exec_internal_sg() which takes simple
1935 *      buffer instead of sg list.
1936 *
1937 *      LOCKING:
1938 *      None.  Should be called with kernel context, might sleep.
1939 *
1940 *      RETURNS:
1941 *      Zero on success, AC_ERR_* mask on failure
1942 */
1943unsigned ata_exec_internal(struct ata_device *dev,
1944                           struct ata_taskfile *tf, const u8 *cdb,
1945                           int dma_dir, void *buf, unsigned int buflen,
1946                           unsigned long timeout)
1947{
1948        struct scatterlist *psg = NULL, sg;
1949        unsigned int n_elem = 0;
1950
1951        if (dma_dir != DMA_NONE) {
1952                WARN_ON(!buf);
1953                sg_init_one(&sg, buf, buflen);
1954                psg = &sg;
1955                n_elem++;
1956        }
1957
1958        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1959                                    timeout);
1960}
1961
1962/**
1963 *      ata_do_simple_cmd - execute simple internal command
1964 *      @dev: Device to which the command is sent
1965 *      @cmd: Opcode to execute
1966 *
1967 *      Execute a 'simple' command, that only consists of the opcode
1968 *      'cmd' itself, without filling any other registers
1969 *
1970 *      LOCKING:
1971 *      Kernel thread context (may sleep).
1972 *
1973 *      RETURNS:
1974 *      Zero on success, AC_ERR_* mask on failure
1975 */
1976unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1977{
1978        struct ata_taskfile tf;
1979
1980        ata_tf_init(dev, &tf);
1981
1982        tf.command = cmd;
1983        tf.flags |= ATA_TFLAG_DEVICE;
1984        tf.protocol = ATA_PROT_NODATA;
1985
1986        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1987}
1988
1989/**
1990 *      ata_pio_need_iordy      -       check if iordy needed
1991 *      @adev: ATA device
1992 *
1993 *      Check if the current speed of the device requires IORDY. Used
1994 *      by various controllers for chip configuration.
1995 */
1996
1997unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1998{
1999        /* Controller doesn't support  IORDY. Probably a pointless check
2000           as the caller should know this */
2001        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2002                return 0;
2003        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
2004        if (ata_id_is_cfa(adev->id)
2005            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2006                return 0;
2007        /* PIO3 and higher it is mandatory */
2008        if (adev->pio_mode > XFER_PIO_2)
2009                return 1;
2010        /* We turn it on when possible */
2011        if (ata_id_has_iordy(adev->id))
2012                return 1;
2013        return 0;
2014}
2015
2016/**
2017 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
2018 *      @adev: ATA device
2019 *
2020 *      Compute the highest mode possible if we are not using iordy. Return
2021 *      -1 if no iordy mode is available.
2022 */
2023
2024static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2025{
2026        /* If we have no drive specific rule, then PIO 2 is non IORDY */
2027        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2028                u16 pio = adev->id[ATA_ID_EIDE_PIO];
2029                /* Is the speed faster than the drive allows non IORDY ? */
2030                if (pio) {
2031                        /* This is cycle times not frequency - watch the logic! */
2032                        if (pio > 240)  /* PIO2 is 240nS per cycle */
2033                                return 3 << ATA_SHIFT_PIO;
2034                        return 7 << ATA_SHIFT_PIO;
2035                }
2036        }
2037        return 3 << ATA_SHIFT_PIO;
2038}
2039
2040/**
2041 *      ata_do_dev_read_id              -       default ID read method
2042 *      @dev: device
2043 *      @tf: proposed taskfile
2044 *      @id: data buffer
2045 *
2046 *      Issue the identify taskfile and hand back the buffer containing
2047 *      identify data. For some RAID controllers and for pre ATA devices
2048 *      this function is wrapped or replaced by the driver
2049 */
2050unsigned int ata_do_dev_read_id(struct ata_device *dev,
2051                                        struct ata_taskfile *tf, u16 *id)
2052{
2053        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2054                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2055}
2056
2057/**
2058 *      ata_dev_read_id - Read ID data from the specified device
2059 *      @dev: target device
2060 *      @p_class: pointer to class of the target device (may be changed)
2061 *      @flags: ATA_READID_* flags
2062 *      @id: buffer to read IDENTIFY data into
2063 *
2064 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
2065 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2066 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2067 *      for pre-ATA4 drives.
2068 *
2069 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2070 *      now we abort if we hit that case.
2071 *
2072 *      LOCKING:
2073 *      Kernel thread context (may sleep)
2074 *
2075 *      RETURNS:
2076 *      0 on success, -errno otherwise.
2077 */
2078int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2079                    unsigned int flags, u16 *id)
2080{
2081        struct ata_port *ap = dev->link->ap;
2082        unsigned int class = *p_class;
2083        struct ata_taskfile tf;
2084        unsigned int err_mask = 0;
2085        const char *reason;
2086        bool is_semb = class == ATA_DEV_SEMB;
2087        int may_fallback = 1, tried_spinup = 0;
2088        int rc;
2089
2090        if (ata_msg_ctl(ap))
2091                ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2092
2093retry:
2094        ata_tf_init(dev, &tf);
2095
2096        switch (class) {
2097        case ATA_DEV_SEMB:
2098                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
2099        case ATA_DEV_ATA:
2100                tf.command = ATA_CMD_ID_ATA;
2101                break;
2102        case ATA_DEV_ATAPI:
2103                tf.command = ATA_CMD_ID_ATAPI;
2104                break;
2105        default:
2106                rc = -ENODEV;
2107                reason = "unsupported class";
2108                goto err_out;
2109        }
2110
2111        tf.protocol = ATA_PROT_PIO;
2112
2113        /* Some devices choke if TF registers contain garbage.  Make
2114         * sure those are properly initialized.
2115         */
2116        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2117
2118        /* Device presence detection is unreliable on some
2119         * controllers.  Always poll IDENTIFY if available.
2120         */
2121        tf.flags |= ATA_TFLAG_POLLING;
2122
2123        if (ap->ops->read_id)
2124                err_mask = ap->ops->read_id(dev, &tf, id);
2125        else
2126                err_mask = ata_do_dev_read_id(dev, &tf, id);
2127
2128        if (err_mask) {
2129                if (err_mask & AC_ERR_NODEV_HINT) {
2130                        ata_dev_printk(dev, KERN_DEBUG,
2131                                       "NODEV after polling detection\n");
2132                        return -ENOENT;
2133                }
2134
2135                if (is_semb) {
2136                        ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2137                                       "device w/ SEMB sig, disabled\n");
2138                        /* SEMB is not supported yet */
2139                        *p_class = ATA_DEV_SEMB_UNSUP;
2140                        return 0;
2141                }
2142
2143                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2144                        /* Device or controller might have reported
2145                         * the wrong device class.  Give a shot at the
2146                         * other IDENTIFY if the current one is
2147                         * aborted by the device.
2148                         */
2149                        if (may_fallback) {
2150                                may_fallback = 0;
2151
2152                                if (class == ATA_DEV_ATA)
2153                                        class = ATA_DEV_ATAPI;
2154                                else
2155                                        class = ATA_DEV_ATA;
2156                                goto retry;
2157                        }
2158
2159                        /* Control reaches here iff the device aborted
2160                         * both flavors of IDENTIFYs which happens
2161                         * sometimes with phantom devices.
2162                         */
2163                        ata_dev_printk(dev, KERN_DEBUG,
2164                                       "both IDENTIFYs aborted, assuming NODEV\n");
2165                        return -ENOENT;
2166                }
2167
2168                rc = -EIO;
2169                reason = "I/O error";
2170                goto err_out;
2171        }
2172
2173        /* Falling back doesn't make sense if ID data was read
2174         * successfully at least once.
2175         */
2176        may_fallback = 0;
2177
2178        swap_buf_le16(id, ATA_ID_WORDS);
2179
2180        /* sanity check */
2181        rc = -EINVAL;
2182        reason = "device reports invalid type";
2183
2184        if (class == ATA_DEV_ATA) {
2185                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2186                        goto err_out;
2187        } else {
2188                if (ata_id_is_ata(id))
2189                        goto err_out;
2190        }
2191
2192        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2193                tried_spinup = 1;
2194                /*
2195                 * Drive powered-up in standby mode, and requires a specific
2196                 * SET_FEATURES spin-up subcommand before it will accept
2197                 * anything other than the original IDENTIFY command.
2198                 */
2199                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2200                if (err_mask && id[2] != 0x738c) {
2201                        rc = -EIO;
2202                        reason = "SPINUP failed";
2203                        goto err_out;
2204                }
2205                /*
2206                 * If the drive initially returned incomplete IDENTIFY info,
2207                 * we now must reissue the IDENTIFY command.
2208                 */
2209                if (id[2] == 0x37c8)
2210                        goto retry;
2211        }
2212
2213        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2214                /*
2215                 * The exact sequence expected by certain pre-ATA4 drives is:
2216                 * SRST RESET
2217                 * IDENTIFY (optional in early ATA)
2218                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2219                 * anything else..
2220                 * Some drives were very specific about that exact sequence.
2221                 *
2222                 * Note that ATA4 says lba is mandatory so the second check
2223                 * shoud never trigger.
2224                 */
2225                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2226                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2227                        if (err_mask) {
2228                                rc = -EIO;
2229                                reason = "INIT_DEV_PARAMS failed";
2230                                goto err_out;
2231                        }
2232
2233                        /* current CHS translation info (id[53-58]) might be
2234                         * changed. reread the identify device info.
2235                         */
2236                        flags &= ~ATA_READID_POSTRESET;
2237                        goto retry;
2238                }
2239        }
2240
2241        *p_class = class;
2242
2243        return 0;
2244
2245 err_out:
2246        if (ata_msg_warn(ap))
2247                ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2248                               "(%s, err_mask=0x%x)\n", reason, err_mask);
2249        return rc;
2250}
2251
2252static int ata_do_link_spd_horkage(struct ata_device *dev)
2253{
2254        struct ata_link *plink = ata_dev_phys_link(dev);
2255        u32 target, target_limit;
2256
2257        if (!sata_scr_valid(plink))
2258                return 0;
2259
2260        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2261                target = 1;
2262        else
2263                return 0;
2264
2265        target_limit = (1 << target) - 1;
2266
2267        /* if already on stricter limit, no need to push further */
2268        if (plink->sata_spd_limit <= target_limit)
2269                return 0;
2270
2271        plink->sata_spd_limit = target_limit;
2272
2273        /* Request another EH round by returning -EAGAIN if link is
2274         * going faster than the target speed.  Forward progress is
2275         * guaranteed by setting sata_spd_limit to target_limit above.
2276         */
2277        if (plink->sata_spd > target) {
2278                ata_dev_printk(dev, KERN_INFO,
2279                               "applying link speed limit horkage to %s\n",
2280                               sata_spd_string(target));
2281                return -EAGAIN;
2282        }
2283        return 0;
2284}
2285
2286static inline u8 ata_dev_knobble(struct ata_device *dev)
2287{
2288        struct ata_port *ap = dev->link->ap;
2289
2290        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2291                return 0;
2292
2293        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2294}
2295
2296static void ata_dev_config_ncq(struct ata_device *dev,
2297                               char *desc, size_t desc_sz)
2298{
2299        struct ata_port *ap = dev->link->ap;
2300        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2301
2302        if (!ata_id_has_ncq(dev->id)) {
2303                desc[0] = '\0';
2304                return;
2305        }
2306        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2307                snprintf(desc, desc_sz, "NCQ (not used)");
2308                return;
2309        }
2310        if (ap->flags & ATA_FLAG_NCQ) {
2311                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2312                dev->flags |= ATA_DFLAG_NCQ;
2313        }
2314
2315        if (hdepth >= ddepth)
2316                snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2317        else
2318                snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2319}
2320
2321/**
2322 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2323 *      @dev: Target device to configure
2324 *
2325 *      Configure @dev according to @dev->id.  Generic and low-level
2326 *      driver specific fixups are also applied.
2327 *
2328 *      LOCKING:
2329 *      Kernel thread context (may sleep)
2330 *
2331 *      RETURNS:
2332 *      0 on success, -errno otherwise
2333 */
2334int ata_dev_configure(struct ata_device *dev)
2335{
2336        struct ata_port *ap = dev->link->ap;
2337        struct ata_eh_context *ehc = &dev->link->eh_context;
2338        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2339        const u16 *id = dev->id;
2340        unsigned long xfer_mask;
2341        char revbuf[7];         /* XYZ-99\0 */
2342        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2343        char modelbuf[ATA_ID_PROD_LEN+1];
2344        int rc;
2345
2346        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2347                ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2348                               __func__);
2349                return 0;
2350        }
2351
2352        if (ata_msg_probe(ap))
2353                ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2354
2355        /* set horkage */
2356        dev->horkage |= ata_dev_blacklisted(dev);
2357        ata_force_horkage(dev);
2358
2359        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2360                ata_dev_printk(dev, KERN_INFO,
2361                               "unsupported device, disabling\n");
2362                ata_dev_disable(dev);
2363                return 0;
2364        }
2365
2366        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2367            dev->class == ATA_DEV_ATAPI) {
2368                ata_dev_printk(dev, KERN_WARNING,
2369                        "WARNING: ATAPI is %s, device ignored.\n",
2370                        atapi_enabled ? "not supported with this driver"
2371                                      : "disabled");
2372                ata_dev_disable(dev);
2373                return 0;
2374        }
2375
2376        rc = ata_do_link_spd_horkage(dev);
2377        if (rc)
2378                return rc;
2379
2380        /* let ACPI work its magic */
2381        rc = ata_acpi_on_devcfg(dev);
2382        if (rc)
2383                return rc;
2384
2385        /* massage HPA, do it early as it might change IDENTIFY data */
2386        rc = ata_hpa_resize(dev);
2387        if (rc)
2388                return rc;
2389
2390        /* print device capabilities */
2391        if (ata_msg_probe(ap))
2392                ata_dev_printk(dev, KERN_DEBUG,
2393                               "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2394                               "85:%04x 86:%04x 87:%04x 88:%04x\n",
2395                               __func__,
2396                               id[49], id[82], id[83], id[84],
2397                               id[85], id[86], id[87], id[88]);
2398
2399        /* initialize to-be-configured parameters */
2400        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2401        dev->max_sectors = 0;
2402        dev->cdb_len = 0;
2403        dev->n_sectors = 0;
2404        dev->cylinders = 0;
2405        dev->heads = 0;
2406        dev->sectors = 0;
2407        dev->multi_count = 0;
2408
2409        /*
2410         * common ATA, ATAPI feature tests
2411         */
2412
2413        /* find max transfer mode; for printk only */
2414        xfer_mask = ata_id_xfermask(id);
2415
2416        if (ata_msg_probe(ap))
2417                ata_dump_id(id);
2418
2419        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2420        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2421                        sizeof(fwrevbuf));
2422
2423        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2424                        sizeof(modelbuf));
2425
2426        /* ATA-specific feature tests */
2427        if (dev->class == ATA_DEV_ATA) {
2428                if (ata_id_is_cfa(id)) {
2429                        /* CPRM may make this media unusable */
2430                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2431                                ata_dev_printk(dev, KERN_WARNING,
2432                                               "supports DRM functions and may "
2433                                               "not be fully accessable.\n");
2434                        snprintf(revbuf, 7, "CFA");
2435                } else {
2436                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2437                        /* Warn the user if the device has TPM extensions */
2438                        if (ata_id_has_tpm(id))
2439                                ata_dev_printk(dev, KERN_WARNING,
2440                                               "supports DRM functions and may "
2441                                               "not be fully accessable.\n");
2442                }
2443
2444                dev->n_sectors = ata_id_n_sectors(id);
2445
2446                /* get current R/W Multiple count setting */
2447                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2448                        unsigned int max = dev->id[47] & 0xff;
2449                        unsigned int cnt = dev->id[59] & 0xff;
2450                        /* only recognize/allow powers of two here */
2451                        if (is_power_of_2(max) && is_power_of_2(cnt))
2452                                if (cnt <= max)
2453                                        dev->multi_count = cnt;
2454                }
2455
2456                if (ata_id_has_lba(id)) {
2457                        const char *lba_desc;
2458                        char ncq_desc[20];
2459
2460                        lba_desc = "LBA";
2461                        dev->flags |= ATA_DFLAG_LBA;
2462                        if (ata_id_has_lba48(id)) {
2463                                dev->flags |= ATA_DFLAG_LBA48;
2464                                lba_desc = "LBA48";
2465
2466                                if (dev->n_sectors >= (1UL << 28) &&
2467                                    ata_id_has_flush_ext(id))
2468                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2469                        }
2470
2471                        /* config NCQ */
2472                        ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2473
2474                        /* print device info to dmesg */
2475                        if (ata_msg_drv(ap) && print_info) {
2476                                ata_dev_printk(dev, KERN_INFO,
2477                                        "%s: %s, %s, max %s\n",
2478                                        revbuf, modelbuf, fwrevbuf,
2479                                        ata_mode_string(xfer_mask));
2480                                ata_dev_printk(dev, KERN_INFO,
2481                                        "%Lu sectors, multi %u: %s %s\n",
2482                                        (unsigned long long)dev->n_sectors,
2483                                        dev->multi_count, lba_desc, ncq_desc);
2484                        }
2485                } else {
2486                        /* CHS */
2487
2488                        /* Default translation */
2489                        dev->cylinders  = id[1];
2490                        dev->heads      = id[3];
2491                        dev->sectors    = id[6];
2492
2493                        if (ata_id_current_chs_valid(id)) {
2494                                /* Current CHS translation is valid. */
2495                                dev->cylinders = id[54];
2496                                dev->heads     = id[55];
2497                                dev->sectors   = id[56];
2498                        }
2499
2500                        /* print device info to dmesg */
2501                        if (ata_msg_drv(ap) && print_info) {
2502                                ata_dev_printk(dev, KERN_INFO,
2503                                        "%s: %s, %s, max %s\n",
2504                                        revbuf, modelbuf, fwrevbuf,
2505                                        ata_mode_string(xfer_mask));
2506                                ata_dev_printk(dev, KERN_INFO,
2507                                        "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2508                                        (unsigned long long)dev->n_sectors,
2509                                        dev->multi_count, dev->cylinders,
2510                                        dev->heads, dev->sectors);
2511                        }
2512                }
2513
2514                dev->cdb_len = 16;
2515        }
2516
2517        /* ATAPI-specific feature tests */
2518        else if (dev->class == ATA_DEV_ATAPI) {
2519                const char *cdb_intr_string = "";
2520                const char *atapi_an_string = "";
2521                const char *dma_dir_string = "";
2522                u32 sntf;
2523
2524                rc = atapi_cdb_len(id);
2525                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2526                        if (ata_msg_warn(ap))
2527                                ata_dev_printk(dev, KERN_WARNING,
2528                                               "unsupported CDB len\n");
2529                        rc = -EINVAL;
2530                        goto err_out_nosup;
2531                }
2532                dev->cdb_len = (unsigned int) rc;
2533
2534                /* Enable ATAPI AN if both the host and device have
2535                 * the support.  If PMP is attached, SNTF is required
2536                 * to enable ATAPI AN to discern between PHY status
2537                 * changed notifications and ATAPI ANs.
2538                 */
2539                if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2540                    (!sata_pmp_attached(ap) ||
2541                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2542                        unsigned int err_mask;
2543
2544                        /* issue SET feature command to turn this on */
2545                        err_mask = ata_dev_set_feature(dev,
2546                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2547                        if (err_mask)
2548                                ata_dev_printk(dev, KERN_ERR,
2549                                        "failed to enable ATAPI AN "
2550                                        "(err_mask=0x%x)\n", err_mask);
2551                        else {
2552                                dev->flags |= ATA_DFLAG_AN;
2553                                atapi_an_string = ", ATAPI AN";
2554                        }
2555                }
2556
2557                if (ata_id_cdb_intr(dev->id)) {
2558                        dev->flags |= ATA_DFLAG_CDB_INTR;
2559                        cdb_intr_string = ", CDB intr";
2560                }
2561
2562                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2563                        dev->flags |= ATA_DFLAG_DMADIR;
2564                        dma_dir_string = ", DMADIR";
2565                }
2566
2567                /* print device info to dmesg */
2568                if (ata_msg_drv(ap) && print_info)
2569                        ata_dev_printk(dev, KERN_INFO,
2570                                       "ATAPI: %s, %s, max %s%s%s%s\n",
2571                                       modelbuf, fwrevbuf,
2572                                       ata_mode_string(xfer_mask),
2573                                       cdb_intr_string, atapi_an_string,
2574                                       dma_dir_string);
2575        }
2576
2577        /* determine max_sectors */
2578        dev->max_sectors = ATA_MAX_SECTORS;
2579        if (dev->flags & ATA_DFLAG_LBA48)
2580                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2581
2582        if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2583                if (ata_id_has_hipm(dev->id))
2584                        dev->flags |= ATA_DFLAG_HIPM;
2585                if (ata_id_has_dipm(dev->id))
2586                        dev->flags |= ATA_DFLAG_DIPM;
2587        }
2588
2589        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2590           200 sectors */
2591        if (ata_dev_knobble(dev)) {
2592                if (ata_msg_drv(ap) && print_info)
2593                        ata_dev_printk(dev, KERN_INFO,
2594                                       "applying bridge limits\n");
2595                dev->udma_mask &= ATA_UDMA5;
2596                dev->max_sectors = ATA_MAX_SECTORS;
2597        }
2598
2599        if ((dev->class == ATA_DEV_ATAPI) &&
2600            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2601                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2602                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2603        }
2604
2605        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2606                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2607                                         dev->max_sectors);
2608
2609        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2610                dev->horkage |= ATA_HORKAGE_IPM;
2611
2612                /* reset link pm_policy for this port to no pm */
2613                ap->pm_policy = MAX_PERFORMANCE;
2614        }
2615
2616        if (ap->ops->dev_config)
2617                ap->ops->dev_config(dev);
2618
2619        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2620                /* Let the user know. We don't want to disallow opens for
2621                   rescue purposes, or in case the vendor is just a blithering
2622                   idiot. Do this after the dev_config call as some controllers
2623                   with buggy firmware may want to avoid reporting false device
2624                   bugs */
2625
2626                if (print_info) {
2627                        ata_dev_printk(dev, KERN_WARNING,
2628"Drive reports diagnostics failure. This may indicate a drive\n");
2629                        ata_dev_printk(dev, KERN_WARNING,
2630"fault or invalid emulation. Contact drive vendor for information.\n");
2631                }
2632        }
2633
2634        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2635                ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2636                               "firmware update to be fully functional.\n");
2637                ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2638                               "or visit http://ata.wiki.kernel.org.\n");
2639        }
2640
2641        return 0;
2642
2643err_out_nosup:
2644        if (ata_msg_probe(ap))
2645                ata_dev_printk(dev, KERN_DEBUG,
2646                               "%s: EXIT, err\n", __func__);
2647        return rc;
2648}
2649
2650/**
2651 *      ata_cable_40wire        -       return 40 wire cable type
2652 *      @ap: port
2653 *
2654 *      Helper method for drivers which want to hardwire 40 wire cable
2655 *      detection.
2656 */
2657
2658int ata_cable_40wire(struct ata_port *ap)
2659{
2660        return ATA_CBL_PATA40;
2661}
2662
2663/**
2664 *      ata_cable_80wire        -       return 80 wire cable type
2665 *      @ap: port
2666 *
2667 *      Helper method for drivers which want to hardwire 80 wire cable
2668 *      detection.
2669 */
2670
2671int ata_cable_80wire(struct ata_port *ap)
2672{
2673        return ATA_CBL_PATA80;
2674}
2675
2676/**
2677 *      ata_cable_unknown       -       return unknown PATA cable.
2678 *      @ap: port
2679 *
2680 *      Helper method for drivers which have no PATA cable detection.
2681 */
2682
2683int ata_cable_unknown(struct ata_port *ap)
2684{
2685        return ATA_CBL_PATA_UNK;
2686}
2687
2688/**
2689 *      ata_cable_ignore        -       return ignored PATA cable.
2690 *      @ap: port
2691 *
2692 *      Helper method for drivers which don't use cable type to limit
2693 *      transfer mode.
2694 */
2695int ata_cable_ignore(struct ata_port *ap)
2696{
2697        return ATA_CBL_PATA_IGN;
2698}
2699
2700/**
2701 *      ata_cable_sata  -       return SATA cable type
2702 *      @ap: port
2703 *
2704 *      Helper method for drivers which have SATA cables
2705 */
2706
2707int ata_cable_sata(struct ata_port *ap)
2708{
2709        return ATA_CBL_SATA;
2710}
2711
2712/**
2713 *      ata_bus_probe - Reset and probe ATA bus
2714 *      @ap: Bus to probe
2715 *
2716 *      Master ATA bus probing function.  Initiates a hardware-dependent
2717 *      bus reset, then attempts to identify any devices found on
2718 *      the bus.
2719 *
2720 *      LOCKING:
2721 *      PCI/etc. bus probe sem.
2722 *
2723 *      RETURNS:
2724 *      Zero on success, negative errno otherwise.
2725 */
2726
2727int ata_bus_probe(struct ata_port *ap)
2728{
2729        unsigned int classes[ATA_MAX_DEVICES];
2730        int tries[ATA_MAX_DEVICES];
2731        int rc;
2732        struct ata_device *dev;
2733
2734        ata_port_probe(ap);
2735
2736        ata_for_each_dev(dev, &ap->link, ALL)
2737                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2738
2739 retry:
2740        ata_for_each_dev(dev, &ap->link, ALL) {
2741                /* If we issue an SRST then an ATA drive (not ATAPI)
2742                 * may change configuration and be in PIO0 timing. If
2743                 * we do a hard reset (or are coming from power on)
2744                 * this is true for ATA or ATAPI. Until we've set a
2745                 * suitable controller mode we should not touch the
2746                 * bus as we may be talking too fast.
2747                 */
2748                dev->pio_mode = XFER_PIO_0;
2749
2750                /* If the controller has a pio mode setup function
2751                 * then use it to set the chipset to rights. Don't
2752                 * touch the DMA setup as that will be dealt with when
2753                 * configuring devices.
2754                 */
2755                if (ap->ops->set_piomode)
2756                        ap->ops->set_piomode(ap, dev);
2757        }
2758
2759        /* reset and determine device classes */
2760        ap->ops->phy_reset(ap);
2761
2762        ata_for_each_dev(dev, &ap->link, ALL) {
2763                if (!(ap->flags & ATA_FLAG_DISABLED) &&
2764                    dev->class != ATA_DEV_UNKNOWN)
2765                        classes[dev->devno] = dev->class;
2766                else
2767                        classes[dev->devno] = ATA_DEV_NONE;
2768
2769                dev->class = ATA_DEV_UNKNOWN;
2770        }
2771
2772        ata_port_probe(ap);
2773
2774        /* read IDENTIFY page and configure devices. We have to do the identify
2775           specific sequence bass-ackwards so that PDIAG- is released by
2776           the slave device */
2777
2778        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2779                if (tries[dev->devno])
2780                        dev->class = classes[dev->devno];
2781
2782                if (!ata_dev_enabled(dev))
2783                        continue;
2784
2785                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2786                                     dev->id);
2787                if (rc)
2788                        goto fail;
2789        }
2790
2791        /* Now ask for the cable type as PDIAG- should have been released */
2792        if (ap->ops->cable_detect)
2793                ap->cbl = ap->ops->cable_detect(ap);
2794
2795        /* We may have SATA bridge glue hiding here irrespective of
2796         * the reported cable types and sensed types.  When SATA
2797         * drives indicate we have a bridge, we don't know which end
2798         * of the link the bridge is which is a problem.
2799         */
2800        ata_for_each_dev(dev, &ap->link, ENABLED)
2801                if (ata_id_is_sata(dev->id))
2802                        ap->cbl = ATA_CBL_SATA;
2803
2804        /* After the identify sequence we can now set up the devices. We do
2805           this in the normal order so that the user doesn't get confused */
2806
2807        ata_for_each_dev(dev, &ap->link, ENABLED) {
2808                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2809                rc = ata_dev_configure(dev);
2810                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2811                if (rc)
2812                        goto fail;
2813        }
2814
2815        /* configure transfer mode */
2816        rc = ata_set_mode(&ap->link, &dev);
2817        if (rc)
2818                goto fail;
2819
2820        ata_for_each_dev(dev, &ap->link, ENABLED)
2821                return 0;
2822
2823        /* no device present, disable port */
2824        ata_port_disable(ap);
2825        return -ENODEV;
2826
2827 fail:
2828        tries[dev->devno]--;
2829
2830        switch (rc) {
2831        case -EINVAL:
2832                /* eeek, something went very wrong, give up */
2833                tries[dev->devno] = 0;
2834                break;
2835
2836        case -ENODEV:
2837                /* give it just one more chance */
2838                tries[dev->devno] = min(tries[dev->devno], 1);
2839        case -EIO:
2840                if (tries[dev->devno] == 1) {
2841                        /* This is the last chance, better to slow
2842                         * down than lose it.
2843                         */
2844                        sata_down_spd_limit(&ap->link, 0);
2845                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2846                }
2847        }
2848
2849        if (!tries[dev->devno])
2850                ata_dev_disable(dev);
2851
2852        goto retry;
2853}
2854
2855/**
2856 *      ata_port_probe - Mark port as enabled
2857 *      @ap: Port for which we indicate enablement
2858 *
2859 *      Modify @ap data structure such that the system
2860 *      thinks that the entire port is enabled.
2861 *
2862 *      LOCKING: host lock, or some other form of
2863 *      serialization.
2864 */
2865
2866void ata_port_probe(struct ata_port *ap)
2867{
2868        ap->flags &= ~ATA_FLAG_DISABLED;
2869}
2870
2871/**
2872 *      sata_print_link_status - Print SATA link status
2873 *      @link: SATA link to printk link status about
2874 *
2875 *      This function prints link speed and status of a SATA link.
2876 *
2877 *      LOCKING:
2878 *      None.
2879 */
2880static void sata_print_link_status(struct ata_link *link)
2881{
2882        u32 sstatus, scontrol, tmp;
2883
2884        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2885                return;
2886        sata_scr_read(link, SCR_CONTROL, &scontrol);
2887
2888        if (ata_phys_link_online(link)) {
2889                tmp = (sstatus >> 4) & 0xf;
2890                ata_link_printk(link, KERN_INFO,
2891                                "SATA link up %s (SStatus %X SControl %X)\n",
2892                                sata_spd_string(tmp), sstatus, scontrol);
2893        } else {
2894                ata_link_printk(link, KERN_INFO,
2895                                "SATA link down (SStatus %X SControl %X)\n",
2896                                sstatus, scontrol);
2897        }
2898}
2899
2900/**
2901 *      ata_dev_pair            -       return other device on cable
2902 *      @adev: device
2903 *
2904 *      Obtain the other device on the same cable, or if none is
2905 *      present NULL is returned
2906 */
2907
2908struct ata_device *ata_dev_pair(struct ata_device *adev)
2909{
2910        struct ata_link *link = adev->link;
2911        struct ata_device *pair = &link->device[1 - adev->devno];
2912        if (!ata_dev_enabled(pair))
2913                return NULL;
2914        return pair;
2915}
2916
2917/**
2918 *      ata_port_disable - Disable port.
2919 *      @ap: Port to be disabled.
2920 *
2921 *      Modify @ap data structure such that the system
2922 *      thinks that the entire port is disabled, and should
2923 *      never attempt to probe or communicate with devices
2924 *      on this port.
2925 *
2926 *      LOCKING: host lock, or some other form of
2927 *      serialization.
2928 */
2929
2930void ata_port_disable(struct ata_port *ap)
2931{
2932        ap->link.device[0].class = ATA_DEV_NONE;
2933        ap->link.device[1].class = ATA_DEV_NONE;
2934        ap->flags |= ATA_FLAG_DISABLED;
2935}
2936
2937/**
2938 *      sata_down_spd_limit - adjust SATA spd limit downward
2939 *      @link: Link to adjust SATA spd limit for
2940 *      @spd_limit: Additional limit
2941 *
2942 *      Adjust SATA spd limit of @link downward.  Note that this
2943 *      function only adjusts the limit.  The change must be applied
2944 *      using sata_set_spd().
2945 *
2946 *      If @spd_limit is non-zero, the speed is limited to equal to or
2947 *      lower than @spd_limit if such speed is supported.  If
2948 *      @spd_limit is slower than any supported speed, only the lowest
2949 *      supported speed is allowed.
2950 *
2951 *      LOCKING:
2952 *      Inherited from caller.
2953 *
2954 *      RETURNS:
2955 *      0 on success, negative errno on failure
2956 */
2957int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2958{
2959        u32 sstatus, spd, mask;
2960        int rc, bit;
2961
2962        if (!sata_scr_valid(link))
2963                return -EOPNOTSUPP;
2964
2965        /* If SCR can be read, use it to determine the current SPD.
2966         * If not, use cached value in link->sata_spd.
2967         */
2968        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2969        if (rc == 0 && ata_sstatus_online(sstatus))
2970                spd = (sstatus >> 4) & 0xf;
2971        else
2972                spd = link->sata_spd;
2973
2974        mask = link->sata_spd_limit;
2975        if (mask <= 1)
2976                return -EINVAL;
2977
2978        /* unconditionally mask off the highest bit */
2979        bit = fls(mask) - 1;
2980        mask &= ~(1 << bit);
2981
2982        /* Mask off all speeds higher than or equal to the current
2983         * one.  Force 1.5Gbps if current SPD is not available.
2984         */
2985        if (spd > 1)
2986                mask &= (1 << (spd - 1)) - 1;
2987        else
2988                mask &= 1;
2989
2990        /* were we already at the bottom? */
2991        if (!mask)
2992                return -EINVAL;
2993
2994        if (spd_limit) {
2995                if (mask & ((1 << spd_limit) - 1))
2996                        mask &= (1 << spd_limit) - 1;
2997                else {
2998                        bit = ffs(mask) - 1;
2999                        mask = 1 << bit;
3000                }
3001        }
3002
3003        link->sata_spd_limit = mask;
3004
3005        ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3006                        sata_spd_string(fls(mask)));
3007
3008        return 0;
3009}
3010
3011static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3012{
3013        struct ata_link *host_link = &link->ap->link;
3014        u32 limit, target, spd;
3015
3016        limit = link->sata_spd_limit;
3017
3018        /* Don't configure downstream link faster than upstream link.
3019         * It doesn't speed up anything and some PMPs choke on such
3020         * configuration.
3021         */
3022        if (!ata_is_host_link(link) && host_link->sata_spd)
3023                limit &= (1 << host_link->sata_spd) - 1;
3024
3025        if (limit == UINT_MAX)
3026                target = 0;
3027        else
3028                target = fls(limit);
3029
3030        spd = (*scontrol >> 4) & 0xf;
3031        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3032
3033        return spd != target;
3034}
3035
3036/**
3037 *      sata_set_spd_needed - is SATA spd configuration needed
3038 *      @link: Link in question
3039 *
3040 *      Test whether the spd limit in SControl matches
3041 *      @link->sata_spd_limit.  This function is used to determine
3042 *      whether hardreset is necessary to apply SATA spd
3043 *      configuration.
3044 *
3045 *      LOCKING:
3046 *      Inherited from caller.
3047 *
3048 *      RETURNS:
3049 *      1 if SATA spd configuration is needed, 0 otherwise.
3050 */
3051static int sata_set_spd_needed(struct ata_link *link)
3052{
3053        u32 scontrol;
3054
3055        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3056                return 1;
3057
3058        return __sata_set_spd_needed(link, &scontrol);
3059}
3060
3061/**
3062 *      sata_set_spd - set SATA spd according to spd limit
3063 *      @link: Link to set SATA spd for
3064 *
3065 *      Set SATA spd of @link according to sata_spd_limit.
3066 *
3067 *      LOCKING:
3068 *      Inherited from caller.
3069 *
3070 *      RETURNS:
3071 *      0 if spd doesn't need to be changed, 1 if spd has been
3072 *      changed.  Negative errno if SCR registers are inaccessible.
3073 */
3074int sata_set_spd(struct ata_link *link)
3075{
3076        u32 scontrol;
3077        int rc;
3078
3079        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3080                return rc;
3081
3082        if (!__sata_set_spd_needed(link, &scontrol))
3083                return 0;
3084
3085        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3086                return rc;
3087
3088        return 1;
3089}
3090
3091/*
3092 * This mode timing computation functionality is ported over from
3093 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3094 */
3095/*
3096 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3097 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3098 * for UDMA6, which is currently supported only by Maxtor drives.
3099 *
3100 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3101 */
3102
3103static const struct ata_timing ata_timing[] = {
3104/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3105        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3106        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3107        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3108        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3109        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3110        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3111        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3112
3113        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3114        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3115        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3116
3117        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3118        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3119        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3120        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3121        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3122
3123/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3124        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3125        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3126        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3127        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3128        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3129        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3130        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3131
3132        { 0xFF }
3133};
3134
3135#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
3136#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
3137
3138static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3139{
3140        q->setup        = EZ(t->setup      * 1000,  T);
3141        q->act8b        = EZ(t->act8b      * 1000,  T);
3142        q->rec8b        = EZ(t->rec8b      * 1000,  T);
3143        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
3144        q->active       = EZ(t->active     * 1000,  T);
3145        q->recover      = EZ(t->recover    * 1000,  T);
3146        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
3147        q->cycle        = EZ(t->cycle      * 1000,  T);
3148        q->udma         = EZ(t->udma       * 1000, UT);
3149}
3150
3151void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3152                      struct ata_timing *m, unsigned int what)
3153{
3154        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3155        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3156        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3157        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3158        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3159        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3160        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3161        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3162        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3163}
3164
3165const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3166{
3167        const struct ata_timing *t = ata_timing;
3168
3169        while (xfer_mode > t->mode)
3170                t++;
3171
3172        if (xfer_mode == t->mode)
3173                return t;
3174        return NULL;
3175}
3176
3177int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3178                       struct ata_timing *t, int T, int UT)
3179{
3180        const struct ata_timing *s;
3181        struct ata_timing p;
3182
3183        /*
3184         * Find the mode.
3185         */
3186
3187        if (!(s = ata_timing_find_mode(speed)))
3188                return -EINVAL;
3189
3190        memcpy(t, s, sizeof(*s));
3191
3192        /*
3193         * If the drive is an EIDE drive, it can tell us it needs extended
3194         * PIO/MW_DMA cycle timing.
3195         */
3196
3197        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3198                memset(&p, 0, sizeof(p));
3199                if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3200                        if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3201                                            else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3202                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3203                        p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3204                }
3205                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3206        }
3207
3208        /*
3209         * Convert the timing to bus clock counts.
3210         */
3211
3212        ata_timing_quantize(t, t, T, UT);
3213
3214        /*
3215         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3216         * S.M.A.R.T * and some other commands. We have to ensure that the
3217         * DMA cycle timing is slower/equal than the fastest PIO timing.
3218         */
3219
3220        if (speed > XFER_PIO_6) {
3221                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3222                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3223        }
3224
3225        /*
3226         * Lengthen active & recovery time so that cycle time is correct.
3227         */
3228
3229        if (t->act8b + t->rec8b < t->cyc8b) {
3230                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3231                t->rec8b = t->cyc8b - t->act8b;
3232        }
3233
3234        if (t->active + t->recover < t->cycle) {
3235                t->active += (t->cycle - (t->active + t->recover)) / 2;
3236                t->recover = t->cycle - t->active;
3237        }
3238
3239        /* In a few cases quantisation may produce enough errors to
3240           leave t->cycle too low for the sum of active and recovery
3241           if so we must correct this */
3242        if (t->active + t->recover > t->cycle)
3243                t->cycle = t->active + t->recover;
3244
3245        return 0;
3246}
3247
3248/**
3249 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3250 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3251 *      @cycle: cycle duration in ns
3252 *
3253 *      Return matching xfer mode for @cycle.  The returned mode is of
3254 *      the transfer type specified by @xfer_shift.  If @cycle is too
3255 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3256 *      than the fastest known mode, the fasted mode is returned.
3257 *
3258 *      LOCKING:
3259 *      None.
3260 *
3261 *      RETURNS:
3262 *      Matching xfer_mode, 0xff if no match found.
3263 */
3264u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3265{
3266        u8 base_mode = 0xff, last_mode = 0xff;
3267        const struct ata_xfer_ent *ent;
3268        const struct ata_timing *t;
3269
3270        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3271                if (ent->shift == xfer_shift)
3272                        base_mode = ent->base;
3273
3274        for (t = ata_timing_find_mode(base_mode);
3275             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3276                unsigned short this_cycle;
3277
3278                switch (xfer_shift) {
3279                case ATA_SHIFT_PIO:
3280                case ATA_SHIFT_MWDMA:
3281                        this_cycle = t->cycle;
3282                        break;
3283                case ATA_SHIFT_UDMA:
3284                        this_cycle = t->udma;
3285                        break;
3286                default:
3287                        return 0xff;
3288                }
3289
3290                if (cycle > this_cycle)
3291                        break;
3292
3293                last_mode = t->mode;
3294        }
3295
3296        return last_mode;
3297}
3298
3299/**
3300 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3301 *      @dev: Device to adjust xfer masks
3302 *      @sel: ATA_DNXFER_* selector
3303 *
3304 *      Adjust xfer masks of @dev downward.  Note that this function
3305 *      does not apply the change.  Invoking ata_set_mode() afterwards
3306 *      will apply the limit.
3307 *
3308 *      LOCKING:
3309 *      Inherited from caller.
3310 *
3311 *      RETURNS:
3312 *      0 on success, negative errno on failure
3313 */
3314int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3315{
3316        char buf[32];
3317        unsigned long orig_mask, xfer_mask;
3318        unsigned long pio_mask, mwdma_mask, udma_mask;
3319        int quiet, highbit;
3320
3321        quiet = !!(sel & ATA_DNXFER_QUIET);
3322        sel &= ~ATA_DNXFER_QUIET;
3323
3324        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3325                                                  dev->mwdma_mask,
3326                                                  dev->udma_mask);
3327        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3328
3329        switch (sel) {
3330        case ATA_DNXFER_PIO:
3331                highbit = fls(pio_mask) - 1;
3332                pio_mask &= ~(1 << highbit);
3333                break;
3334
3335        case ATA_DNXFER_DMA:
3336                if (udma_mask) {
3337                        highbit = fls(udma_mask) - 1;
3338                        udma_mask &= ~(1 << highbit);
3339                        if (!udma_mask)
3340                                return -ENOENT;
3341                } else if (mwdma_mask) {
3342                        highbit = fls(mwdma_mask) - 1;
3343                        mwdma_mask &= ~(1 << highbit);
3344                        if (!mwdma_mask)
3345                                return -ENOENT;
3346                }
3347                break;
3348
3349        case ATA_DNXFER_40C:
3350                udma_mask &= ATA_UDMA_MASK_40C;
3351                break;
3352
3353        case ATA_DNXFER_FORCE_PIO0:
3354                pio_mask &= 1;
3355        case ATA_DNXFER_FORCE_PIO:
3356                mwdma_mask = 0;
3357                udma_mask = 0;
3358                break;
3359
3360        default:
3361                BUG();
3362        }
3363
3364        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3365
3366        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3367                return -ENOENT;
3368
3369        if (!quiet) {
3370                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3371                        snprintf(buf, sizeof(buf), "%s:%s",
3372                                 ata_mode_string(xfer_mask),
3373                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3374                else
3375                        snprintf(buf, sizeof(buf), "%s",
3376                                 ata_mode_string(xfer_mask));
3377
3378                ata_dev_printk(dev, KERN_WARNING,
3379                               "limiting speed to %s\n", buf);
3380        }
3381
3382        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3383                            &dev->udma_mask);
3384
3385        return 0;
3386}
3387
3388static int ata_dev_set_mode(struct ata_device *dev)
3389{
3390        struct ata_eh_context *ehc = &dev->link->eh_context;
3391        const char *dev_err_whine = "";
3392        int ign_dev_err = 0;
3393        unsigned int err_mask;
3394        int rc;
3395
3396        dev->flags &= ~ATA_DFLAG_PIO;
3397        if (dev->xfer_shift == ATA_SHIFT_PIO)
3398                dev->flags |= ATA_DFLAG_PIO;
3399
3400        err_mask = ata_dev_set_xfermode(dev);
3401
3402        if (err_mask & ~AC_ERR_DEV)
3403                goto fail;
3404
3405        /* revalidate */
3406        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3407        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3408        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3409        if (rc)
3410                return rc;
3411
3412        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3413                /* Old CFA may refuse this command, which is just fine */
3414                if (ata_id_is_cfa(dev->id))
3415                        ign_dev_err = 1;
3416                /* Catch several broken garbage emulations plus some pre
3417                   ATA devices */
3418                if (ata_id_major_version(dev->id) == 0 &&
3419                                        dev->pio_mode <= XFER_PIO_2)
3420                        ign_dev_err = 1;
3421                /* Some very old devices and some bad newer ones fail
3422                   any kind of SET_XFERMODE request but support PIO0-2
3423                   timings and no IORDY */
3424                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3425                        ign_dev_err = 1;
3426        }
3427        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3428           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3429        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3430            dev->dma_mode == XFER_MW_DMA_0 &&
3431            (dev->id[63] >> 8) & 1)
3432                ign_dev_err = 1;
3433
3434        /* if the device is actually configured correctly, ignore dev err */
3435        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3436                ign_dev_err = 1;
3437
3438        if (err_mask & AC_ERR_DEV) {
3439                if (!ign_dev_err)
3440                        goto fail;
3441                else
3442                        dev_err_whine = " (device error ignored)";
3443        }
3444
3445        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3446                dev->xfer_shift, (int)dev->xfer_mode);
3447
3448        ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3449                       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3450                       dev_err_whine);
3451
3452        return 0;
3453
3454 fail:
3455        ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3456                       "(err_mask=0x%x)\n", err_mask);
3457        return -EIO;
3458}
3459
3460/**
3461 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3462 *      @link: link on which timings will be programmed
3463 *      @r_failed_dev: out parameter for failed device
3464 *
3465 *      Standard implementation of the function used to tune and set
3466 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3467 *      ata_dev_set_mode() fails, pointer to the failing device is
3468 *      returned in @r_failed_dev.
3469 *
3470 *      LOCKING:
3471 *      PCI/etc. bus probe sem.
3472 *
3473 *      RETURNS:
3474 *      0 on success, negative errno otherwise
3475 */
3476
3477int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3478{
3479        struct ata_port *ap = link->ap;
3480        struct ata_device *dev;
3481        int rc = 0, used_dma = 0, found = 0;
3482
3483        /* step 1: calculate xfer_mask */
3484        ata_for_each_dev(dev, link, ENABLED) {
3485                unsigned long pio_mask, dma_mask;
3486                unsigned int mode_mask;
3487
3488                mode_mask = ATA_DMA_MASK_ATA;
3489                if (dev->class == ATA_DEV_ATAPI)
3490                        mode_mask = ATA_DMA_MASK_ATAPI;
3491                else if (ata_id_is_cfa(dev->id))
3492                        mode_mask = ATA_DMA_MASK_CFA;
3493
3494                ata_dev_xfermask(dev);
3495                ata_force_xfermask(dev);
3496
3497                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3498                dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3499
3500                if (libata_dma_mask & mode_mask)
3501                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3502                else
3503                        dma_mask = 0;
3504
3505                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3506                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3507
3508                found = 1;
3509                if (ata_dma_enabled(dev))
3510                        used_dma = 1;
3511        }
3512        if (!found)
3513                goto out;
3514
3515        /* step 2: always set host PIO timings */
3516        ata_for_each_dev(dev, link, ENABLED) {
3517                if (dev->pio_mode == 0xff) {
3518                        ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3519                        rc = -EINVAL;
3520                        goto out;
3521                }
3522
3523                dev->xfer_mode = dev->pio_mode;
3524                dev->xfer_shift = ATA_SHIFT_PIO;
3525                if (ap->ops->set_piomode)
3526                        ap->ops->set_piomode(ap, dev);
3527        }
3528
3529        /* step 3: set host DMA timings */
3530        ata_for_each_dev(dev, link, ENABLED) {
3531                if (!ata_dma_enabled(dev))
3532                        continue;
3533
3534                dev->xfer_mode = dev->dma_mode;
3535                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3536                if (ap->ops->set_dmamode)
3537                        ap->ops->set_dmamode(ap, dev);
3538        }
3539
3540        /* step 4: update devices' xfer mode */
3541        ata_for_each_dev(dev, link, ENABLED) {
3542                rc = ata_dev_set_mode(dev);
3543                if (rc)
3544                        goto out;
3545        }
3546
3547        /* Record simplex status. If we selected DMA then the other
3548         * host channels are not permitted to do so.
3549         */
3550        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3551                ap->host->simplex_claimed = ap;
3552
3553 out:
3554        if (rc)
3555                *r_failed_dev = dev;
3556        return rc;
3557}
3558
3559/**
3560 *      ata_wait_ready - wait for link to become ready
3561 *      @link: link to be waited on
3562 *      @deadline: deadline jiffies for the operation
3563 *      @check_ready: callback to check link readiness
3564 *
3565 *      Wait for @link to become ready.  @check_ready should return
3566 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3567 *      link doesn't seem to be occupied, other errno for other error
3568 *      conditions.
3569 *
3570 *      Transient -ENODEV conditions are allowed for
3571 *      ATA_TMOUT_FF_WAIT.
3572 *
3573 *      LOCKING:
3574 *      EH context.
3575 *
3576 *      RETURNS:
3577 *      0 if @linke is ready before @deadline; otherwise, -errno.
3578 */
3579int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3580                   int (*check_ready)(struct ata_link *link))
3581{
3582        unsigned long start = jiffies;
3583        unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3584        int warned = 0;
3585
3586        /* Slave readiness can't be tested separately from master.  On
3587         * M/S emulation configuration, this function should be called
3588         * only on the master and it will handle both master and slave.
3589         */
3590        WARN_ON(link == link->ap->slave_link);
3591
3592        if (time_after(nodev_deadline, deadline))
3593                nodev_deadline = deadline;
3594
3595        while (1) {
3596                unsigned long now = jiffies;
3597                int ready, tmp;
3598
3599                ready = tmp = check_ready(link);
3600                if (ready > 0)
3601                        return 0;
3602
3603                /* -ENODEV could be transient.  Ignore -ENODEV if link
3604                 * is online.  Also, some SATA devices take a long
3605                 * time to clear 0xff after reset.  For example,
3606                 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3607                 * GoVault needs even more than that.  Wait for
3608                 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3609                 *
3610                 * Note that some PATA controllers (pata_ali) explode
3611                 * if status register is read more than once when
3612                 * there's no device attached.
3613                 */
3614                if (ready == -ENODEV) {
3615                        if (ata_link_online(link))
3616                                ready = 0;
3617                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3618                                 !ata_link_offline(link) &&
3619                                 time_before(now, nodev_deadline))
3620                                ready = 0;
3621                }
3622
3623                if (ready)
3624                        return ready;
3625                if (time_after(now, deadline))
3626                        return -EBUSY;
3627
3628                if (!warned && time_after(now, start + 5 * HZ) &&
3629                    (deadline - now > 3 * HZ)) {
3630                        ata_link_printk(link, KERN_WARNING,
3631                                "link is slow to respond, please be patient "
3632                                "(ready=%d)\n", tmp);
3633                        warned = 1;
3634                }
3635
3636                msleep(50);
3637        }
3638}
3639
3640/**
3641 *      ata_wait_after_reset - wait for link to become ready after reset
3642 *      @link: link to be waited on
3643 *      @deadline: deadline jiffies for the operation
3644 *      @check_ready: callback to check link readiness
3645 *
3646 *      Wait for @link to become ready after reset.
3647 *
3648 *      LOCKING:
3649 *      EH context.
3650 *
3651 *      RETURNS:
3652 *      0 if @linke is ready before @deadline; otherwise, -errno.
3653 */
3654int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3655                                int (*check_ready)(struct ata_link *link))
3656{
3657        msleep(ATA_WAIT_AFTER_RESET);
3658
3659        return ata_wait_ready(link, deadline, check_ready);
3660}
3661
3662/**
3663 *      sata_link_debounce - debounce SATA phy status
3664 *      @link: ATA link to debounce SATA phy status for
3665 *      @params: timing parameters { interval, duratinon, timeout } in msec
3666 *      @deadline: deadline jiffies for the operation
3667 *
3668*       Make sure SStatus of @link reaches stable state, determined by
3669 *      holding the same value where DET is not 1 for @duration polled
3670 *      every @interval, before @timeout.  Timeout constraints the
3671 *      beginning of the stable state.  Because DET gets stuck at 1 on
3672 *      some controllers after hot unplugging, this functions waits
3673 *      until timeout then returns 0 if DET is stable at 1.
3674 *
3675 *      @timeout is further limited by @deadline.  The sooner of the
3676 *      two is used.
3677 *
3678 *      LOCKING:
3679 *      Kernel thread context (may sleep)
3680 *
3681 *      RETURNS:
3682 *      0 on success, -errno on failure.
3683 */
3684int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3685                       unsigned long deadline)
3686{
3687        unsigned long interval = params[0];
3688        unsigned long duration = params[1];
3689        unsigned long last_jiffies, t;
3690        u32 last, cur;
3691        int rc;
3692
3693        t = ata_deadline(jiffies, params[2]);
3694        if (time_before(t, deadline))
3695                deadline = t;
3696
3697        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3698                return rc;
3699        cur &= 0xf;
3700
3701        last = cur;
3702        last_jiffies = jiffies;
3703
3704        while (1) {
3705                msleep(interval);
3706                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3707                        return rc;
3708                cur &= 0xf;
3709
3710                /* DET stable? */
3711                if (cur == last) {
3712                        if (cur == 1 && time_before(jiffies, deadline))
3713                                continue;
3714                        if (time_after(jiffies,
3715                                       ata_deadline(last_jiffies, duration)))
3716                                return 0;
3717                        continue;
3718                }
3719
3720                /* unstable, start over */
3721                last = cur;
3722                last_jiffies = jiffies;
3723
3724                /* Check deadline.  If debouncing failed, return
3725                 * -EPIPE to tell upper layer to lower link speed.
3726                 */
3727                if (time_after(jiffies, deadline))
3728                        return -EPIPE;
3729        }
3730}
3731
3732/**
3733 *      sata_link_resume - resume SATA link
3734 *      @link: ATA link to resume SATA
3735 *      @params: timing parameters { interval, duratinon, timeout } in msec
3736 *      @deadline: deadline jiffies for the operation
3737 *
3738 *      Resume SATA phy @link and debounce it.
3739 *
3740 *      LOCKING:
3741 *      Kernel thread context (may sleep)
3742 *
3743 *      RETURNS:
3744 *      0 on success, -errno on failure.
3745 */
3746int sata_link_resume(struct ata_link *link, const unsigned long *params,
3747                     unsigned long deadline)
3748{
3749        u32 scontrol, serror;
3750        int rc;
3751
3752        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3753                return rc;
3754
3755        scontrol = (scontrol & 0x0f0) | 0x300;
3756
3757        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3758                return rc;
3759
3760        /* Some PHYs react badly if SStatus is pounded immediately
3761         * after resuming.  Delay 200ms before debouncing.
3762         */
3763        msleep(200);
3764
3765        if ((rc = sata_link_debounce(link, params, deadline)))
3766                return rc;
3767
3768        /* clear SError, some PHYs require this even for SRST to work */
3769        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3770                rc = sata_scr_write(link, SCR_ERROR, serror);
3771
3772        return rc != -EINVAL ? rc : 0;
3773}
3774
3775/**
3776 *      ata_std_prereset - prepare for reset
3777 *      @link: ATA link to be reset
3778 *      @deadline: deadline jiffies for the operation
3779 *
3780 *      @link is about to be reset.  Initialize it.  Failure from
3781 *      prereset makes libata abort whole reset sequence and give up
3782 *      that port, so prereset should be best-effort.  It does its
3783 *      best to prepare for reset sequence but if things go wrong, it
3784 *      should just whine, not fail.
3785 *
3786 *      LOCKING:
3787 *      Kernel thread context (may sleep)
3788 *
3789 *      RETURNS:
3790 *      0 on success, -errno otherwise.
3791 */
3792int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3793{
3794        struct ata_port *ap = link->ap;
3795        struct ata_eh_context *ehc = &link->eh_context;
3796        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3797        int rc;
3798
3799        /* if we're about to do hardreset, nothing more to do */
3800        if (ehc->i.action & ATA_EH_HARDRESET)
3801                return 0;
3802
3803        /* if SATA, resume link */
3804        if (ap->flags & ATA_FLAG_SATA) {
3805                rc = sata_link_resume(link, timing, deadline);
3806                /* whine about phy resume failure but proceed */
3807                if (rc && rc != -EOPNOTSUPP)
3808                        ata_link_printk(link, KERN_WARNING, "failed to resume "
3809                                        "link for reset (errno=%d)\n", rc);
3810        }
3811
3812        /* no point in trying softreset on offline link */
3813        if (ata_phys_link_offline(link))
3814                ehc->i.action &= ~ATA_EH_SOFTRESET;
3815
3816        return 0;
3817}
3818
3819/**
3820 *      sata_link_hardreset - reset link via SATA phy reset
3821 *      @link: link to reset
3822 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3823 *      @deadline: deadline jiffies for the operation
3824 *      @online: optional out parameter indicating link onlineness
3825 *      @check_ready: optional callback to check link readiness
3826 *
3827 *      SATA phy-reset @link using DET bits of SControl register.
3828 *      After hardreset, link readiness is waited upon using
3829 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3830 *      allowed to not specify @check_ready and wait itself after this
3831 *      function returns.  Device classification is LLD's
3832 *      responsibility.
3833 *
3834 *      *@online is set to one iff reset succeeded and @link is online
3835 *      after reset.
3836 *
3837 *      LOCKING:
3838 *      Kernel thread context (may sleep)
3839 *
3840 *      RETURNS:
3841 *      0 on success, -errno otherwise.
3842 */
3843int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3844                        unsigned long deadline,
3845                        bool *online, int (*check_ready)(struct ata_link *))
3846{
3847        u32 scontrol;
3848        int rc;
3849
3850        DPRINTK("ENTER\n");
3851
3852        if (online)
3853                *online = false;
3854
3855        if (sata_set_spd_needed(link)) {
3856                /* SATA spec says nothing about how to reconfigure
3857                 * spd.  To be on the safe side, turn off phy during
3858                 * reconfiguration.  This works for at least ICH7 AHCI
3859                 * and Sil3124.
3860                 */
3861                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3862                        goto out;
3863
3864                scontrol = (scontrol & 0x0f0) | 0x304;
3865
3866                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3867                        goto out;
3868
3869                sata_set_spd(link);
3870        }
3871
3872        /* issue phy wake/reset */
3873        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3874                goto out;
3875
3876        scontrol = (scontrol & 0x0f0) | 0x301;
3877
3878        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3879                goto out;
3880
3881        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3882         * 10.4.2 says at least 1 ms.
3883         */
3884        msleep(1);
3885
3886        /* bring link back */
3887        rc = sata_link_resume(link, timing, deadline);
3888        if (rc)
3889                goto out;
3890        /* if link is offline nothing more to do */
3891        if (ata_phys_link_offline(link))
3892                goto out;
3893
3894        /* Link is online.  From this point, -ENODEV too is an error. */
3895        if (online)
3896                *online = true;
3897
3898        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3899                /* If PMP is supported, we have to do follow-up SRST.
3900                 * Some PMPs don't send D2H Reg FIS after hardreset if
3901                 * the first port is empty.  Wait only for
3902                 * ATA_TMOUT_PMP_SRST_WAIT.
3903                 */
3904                if (check_ready) {
3905                        unsigned long pmp_deadline;
3906
3907                        pmp_deadline = ata_deadline(jiffies,
3908                                                    ATA_TMOUT_PMP_SRST_WAIT);
3909                        if (time_after(pmp_deadline, deadline))
3910                                pmp_deadline = deadline;
3911                        ata_wait_ready(link, pmp_deadline, check_ready);
3912                }
3913                rc = -EAGAIN;
3914                goto out;
3915        }
3916
3917        rc = 0;
3918        if (check_ready)
3919                rc = ata_wait_ready(link, deadline, check_ready);
3920 out:
3921        if (rc && rc != -EAGAIN) {
3922                /* online is set iff link is online && reset succeeded */
3923                if (online)
3924                        *online = false;
3925                ata_link_printk(link, KERN_ERR,
3926                                "COMRESET failed (errno=%d)\n", rc);
3927        }
3928        DPRINTK("EXIT, rc=%d\n", rc);
3929        return rc;
3930}
3931
3932/**
3933 *      sata_std_hardreset - COMRESET w/o waiting or classification
3934 *      @link: link to reset
3935 *      @class: resulting class of attached device
3936 *      @deadline: deadline jiffies for the operation
3937 *
3938 *      Standard SATA COMRESET w/o waiting or classification.
3939 *
3940 *      LOCKING:
3941 *      Kernel thread context (may sleep)
3942 *
3943 *      RETURNS:
3944 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3945 */
3946int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3947                       unsigned long deadline)
3948{
3949        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3950        bool online;
3951        int rc;
3952
3953        /* do hardreset */
3954        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3955        return online ? -EAGAIN : rc;
3956}
3957
3958/**
3959 *      ata_std_postreset - standard postreset callback
3960 *      @link: the target ata_link
3961 *      @classes: classes of attached devices
3962 *
3963 *      This function is invoked after a successful reset.  Note that
3964 *      the device might have been reset more than once using
3965 *      different reset methods before postreset is invoked.
3966 *
3967 *      LOCKING:
3968 *      Kernel thread context (may sleep)
3969 */
3970void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3971{
3972        u32 serror;
3973
3974        DPRINTK("ENTER\n");
3975
3976        /* reset complete, clear SError */
3977        if (!sata_scr_read(link, SCR_ERROR, &serror))
3978                sata_scr_write(link, SCR_ERROR, serror);
3979
3980        /* print link status */
3981        sata_print_link_status(link);
3982
3983        DPRINTK("EXIT\n");
3984}
3985
3986/**
3987 *      ata_dev_same_device - Determine whether new ID matches configured device
3988 *      @dev: device to compare against
3989 *      @new_class: class of the new device
3990 *      @new_id: IDENTIFY page of the new device
3991 *
3992 *      Compare @new_class and @new_id against @dev and determine
3993 *      whether @dev is the device indicated by @new_class and
3994 *      @new_id.
3995 *
3996 *      LOCKING:
3997 *      None.
3998 *
3999 *      RETURNS:
4000 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
4001 */
4002static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4003                               const u16 *new_id)
4004{
4005        const u16 *old_id = dev->id;
4006        unsigned char model[2][ATA_ID_PROD_LEN + 1];
4007        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4008
4009        if (dev->class != new_class) {
4010                ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4011                               dev->class, new_class);
4012                return 0;
4013        }
4014
4015        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4016        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4017        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4018        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4019
4020        if (strcmp(model[0], model[1])) {
4021                ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4022                               "'%s' != '%s'\n", model[0], model[1]);
4023                return 0;
4024        }
4025
4026        if (strcmp(serial[0], serial[1])) {
4027                ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4028                               "'%s' != '%s'\n", serial[0], serial[1]);
4029                return 0;
4030        }
4031
4032        return 1;
4033}
4034
4035/**
4036 *      ata_dev_reread_id - Re-read IDENTIFY data
4037 *      @dev: target ATA device
4038 *      @readid_flags: read ID flags
4039 *
4040 *      Re-read IDENTIFY page and make sure @dev is still attached to
4041 *      the port.
4042 *
4043 *      LOCKING:
4044 *      Kernel thread context (may sleep)
4045 *
4046 *      RETURNS:
4047 *      0 on success, negative errno otherwise
4048 */
4049int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4050{
4051        unsigned int class = dev->class;
4052        u16 *id = (void *)dev->link->ap->sector_buf;
4053        int rc;
4054
4055        /* read ID data */
4056        rc = ata_dev_read_id(dev, &class, readid_flags, id);
4057        if (rc)
4058                return rc;
4059
4060        /* is the device still there? */
4061        if (!ata_dev_same_device(dev, class, id))
4062                return -ENODEV;
4063
4064        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4065        return 0;
4066}
4067
4068/**
4069 *      ata_dev_revalidate - Revalidate ATA device
4070 *      @dev: device to revalidate
4071 *      @new_class: new class code
4072 *      @readid_flags: read ID flags
4073 *
4074 *      Re-read IDENTIFY page, make sure @dev is still attached to the
4075 *      port and reconfigure it according to the new IDENTIFY page.
4076 *
4077 *      LOCKING:
4078 *      Kernel thread context (may sleep)
4079 *
4080 *      RETURNS:
4081 *      0 on success, negative errno otherwise
4082 */
4083int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4084                       unsigned int readid_flags)
4085{
4086        u64 n_sectors = dev->n_sectors;
4087        int rc;
4088
4089        if (!ata_dev_enabled(dev))
4090                return -ENODEV;
4091
4092        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4093        if (ata_class_enabled(new_class) &&
4094            new_class != ATA_DEV_ATA &&
4095            new_class != ATA_DEV_ATAPI &&
4096            new_class != ATA_DEV_SEMB) {
4097                ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4098                               dev->class, new_class);
4099                rc = -ENODEV;
4100                goto fail;
4101        }
4102
4103        /* re-read ID */
4104        rc = ata_dev_reread_id(dev, readid_flags);
4105        if (rc)
4106                goto fail;
4107
4108        /* configure device according to the new ID */
4109        rc = ata_dev_configure(dev);
4110        if (rc)
4111                goto fail;
4112
4113        /* verify n_sectors hasn't changed */
4114        if (dev->class == ATA_DEV_ATA && n_sectors &&
4115            dev->n_sectors != n_sectors) {
4116                ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4117                               "%llu != %llu\n",
4118                               (unsigned long long)n_sectors,
4119                               (unsigned long long)dev->n_sectors);
4120
4121                /* restore original n_sectors */
4122                dev->n_sectors = n_sectors;
4123
4124                rc = -ENODEV;
4125                goto fail;
4126        }
4127
4128        return 0;
4129
4130 fail:
4131        ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4132        return rc;
4133}
4134
4135struct ata_blacklist_entry {
4136        const char *model_num;
4137        const char *model_rev;
4138        unsigned long horkage;
4139};
4140
4141static const struct ata_blacklist_entry ata_device_blacklist [] = {
4142        /* Devices with DMA related problems under Linux */
4143        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4144        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4145        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4146        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4147        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4148        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4149        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4150        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4151        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4152        { "CRD-8480B",          NULL,           ATA_HORKAGE_NODMA },
4153        { "CRD-8482B",          NULL,           ATA_HORKAGE_NODMA },
4154        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4155        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4156        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4157        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4158        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4159        { "HITACHI CDR-8335",   NULL,           ATA_HORKAGE_NODMA },
4160        { "HITACHI CDR-8435",   NULL,           ATA_HORKAGE_NODMA },
4161        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4162        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4163        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4164        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4165        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4166        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4167        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4168        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4169        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4170        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4171        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4172        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4173        /* Odd clown on sil3726/4726 PMPs */
4174        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4175
4176        /* Weird ATAPI devices */
4177        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4178        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4179
4180        /* Devices we expect to fail diagnostics */
4181
4182        /* Devices where NCQ should be avoided */
4183        /* NCQ is slow */
4184        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4185        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4186        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4187        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4188        /* NCQ is broken */
4189        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4190        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4191        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4192        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4193        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4194
4195        /* Seagate NCQ + FLUSH CACHE firmware bug */
4196        { "ST31500341AS",       "SD15",         ATA_HORKAGE_NONCQ |
4197                                                ATA_HORKAGE_FIRMWARE_WARN },
4198        { "ST31500341AS",       "SD16",         ATA_HORKAGE_NONCQ |
4199                                                ATA_HORKAGE_FIRMWARE_WARN },
4200        { "ST31500341AS",       "SD17",         ATA_HORKAGE_NONCQ |
4201                                                ATA_HORKAGE_FIRMWARE_WARN },
4202        { "ST31500341AS",       "SD18",         ATA_HORKAGE_NONCQ |
4203                                                ATA_HORKAGE_FIRMWARE_WARN },
4204        { "ST31500341AS",       "SD19",         ATA_HORKAGE_NONCQ |
4205                                                ATA_HORKAGE_FIRMWARE_WARN },
4206
4207        { "ST31000333AS",       "SD15",         ATA_HORKAGE_NONCQ |
4208                                                ATA_HORKAGE_FIRMWARE_WARN },
4209        { "ST31000333AS",       "SD16",         ATA_HORKAGE_NONCQ |
4210                                                ATA_HORKAGE_FIRMWARE_WARN },
4211        { "ST31000333AS",       "SD17",         ATA_HORKAGE_NONCQ |
4212                                                ATA_HORKAGE_FIRMWARE_WARN },
4213        { "ST31000333AS",       "SD18",         ATA_HORKAGE_NONCQ |
4214                                                ATA_HORKAGE_FIRMWARE_WARN },
4215        { "ST31000333AS",       "SD19",         ATA_HORKAGE_NONCQ |
4216                                                ATA_HORKAGE_FIRMWARE_WARN },
4217
4218        { "ST3640623AS",        "SD15",         ATA_HORKAGE_NONCQ |
4219                                                ATA_HORKAGE_FIRMWARE_WARN },
4220        { "ST3640623AS",        "SD16",         ATA_HORKAGE_NONCQ |
4221                                                ATA_HORKAGE_FIRMWARE_WARN },
4222        { "ST3640623AS",        "SD17",         ATA_HORKAGE_NONCQ |
4223                                                ATA_HORKAGE_FIRMWARE_WARN },
4224        { "ST3640623AS",        "SD18",         ATA_HORKAGE_NONCQ |
4225                                                ATA_HORKAGE_FIRMWARE_WARN },
4226        { "ST3640623AS",        "SD19",         ATA_HORKAGE_NONCQ |
4227                                                ATA_HORKAGE_FIRMWARE_WARN },
4228
4229        { "ST3640323AS",        "SD15",         ATA_HORKAGE_NONCQ |
4230                                                ATA_HORKAGE_FIRMWARE_WARN },
4231        { "ST3640323AS",        "SD16",         ATA_HORKAGE_NONCQ |
4232                                                ATA_HORKAGE_FIRMWARE_WARN },
4233        { "ST3640323AS",        "SD17",         ATA_HORKAGE_NONCQ |
4234                                                ATA_HORKAGE_FIRMWARE_WARN },
4235        { "ST3640323AS",        "SD18",         ATA_HORKAGE_NONCQ |
4236                                                ATA_HORKAGE_FIRMWARE_WARN },
4237        { "ST3640323AS",        "SD19",         ATA_HORKAGE_NONCQ |
4238                                                ATA_HORKAGE_FIRMWARE_WARN },
4239
4240        { "ST3320813AS",        "SD15",         ATA_HORKAGE_NONCQ |
4241                                                ATA_HORKAGE_FIRMWARE_WARN },
4242        { "ST3320813AS",        "SD16",         ATA_HORKAGE_NONCQ |
4243                                                ATA_HORKAGE_FIRMWARE_WARN },
4244        { "ST3320813AS",        "SD17",         ATA_HORKAGE_NONCQ |
4245                                                ATA_HORKAGE_FIRMWARE_WARN },
4246        { "ST3320813AS",        "SD18",         ATA_HORKAGE_NONCQ |
4247                                                ATA_HORKAGE_FIRMWARE_WARN },
4248        { "ST3320813AS",        "SD19",         ATA_HORKAGE_NONCQ |
4249                                                ATA_HORKAGE_FIRMWARE_WARN },
4250
4251        { "ST3320613AS",        "SD15",         ATA_HORKAGE_NONCQ |
4252                                                ATA_HORKAGE_FIRMWARE_WARN },
4253        { "ST3320613AS",        "SD16",         ATA_HORKAGE_NONCQ |
4254                                                ATA_HORKAGE_FIRMWARE_WARN },
4255        { "ST3320613AS",        "SD17",         ATA_HORKAGE_NONCQ |
4256                                                ATA_HORKAGE_FIRMWARE_WARN },
4257        { "ST3320613AS",        "SD18",         ATA_HORKAGE_NONCQ |
4258                                                ATA_HORKAGE_FIRMWARE_WARN },
4259        { "ST3320613AS",        "SD19",         ATA_HORKAGE_NONCQ |
4260                                                ATA_HORKAGE_FIRMWARE_WARN },
4261
4262        /* Blacklist entries taken from Silicon Image 3124/3132
4263           Windows driver .inf file - also several Linux problem reports */
4264        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4265        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4266        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4267
4268        /* devices which puke on READ_NATIVE_MAX */
4269        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4270        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4271        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4272        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4273
4274        /* Devices which report 1 sector over size HPA */
4275        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4276        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4277        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4278
4279        /* Devices which get the IVB wrong */
4280        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4281        /* Maybe we should just blacklist TSSTcorp... */
4282        { "TSSTcorp CDDVDW SH-S202H", "SB00",     ATA_HORKAGE_IVB, },
4283        { "TSSTcorp CDDVDW SH-S202H", "SB01",     ATA_HORKAGE_IVB, },
4284        { "TSSTcorp CDDVDW SH-S202J", "SB00",     ATA_HORKAGE_IVB, },
4285        { "TSSTcorp CDDVDW SH-S202J", "SB01",     ATA_HORKAGE_IVB, },
4286        { "TSSTcorp CDDVDW SH-S202N", "SB00",     ATA_HORKAGE_IVB, },
4287        { "TSSTcorp CDDVDW SH-S202N", "SB01",     ATA_HORKAGE_IVB, },
4288
4289        /* Devices that do not need bridging limits applied */
4290        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4291
4292        /* Devices which aren't very happy with higher link speeds */
4293        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4294
4295        /* End Marker */
4296        { }
4297};
4298
4299static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4300{
4301        const char *p;
4302        int len;
4303
4304        /*
4305         * check for trailing wildcard: *\0
4306         */
4307        p = strchr(patt, wildchar);
4308        if (p && ((*(p + 1)) == 0))
4309                len = p - patt;
4310        else {
4311                len = strlen(name);
4312                if (!len) {
4313                        if (!*patt)
4314                                return 0;
4315                        return -1;
4316                }
4317        }
4318
4319        return strncmp(patt, name, len);
4320}
4321
4322static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4323{
4324        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4325        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4326        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4327
4328        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4329        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4330
4331        while (ad->model_num) {
4332                if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4333                        if (ad->model_rev == NULL)
4334                                return ad->horkage;
4335                        if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4336                                return ad->horkage;
4337                }
4338                ad++;
4339        }
4340        return 0;
4341}
4342
4343static int ata_dma_blacklisted(const struct ata_device *dev)
4344{
4345        /* We don't support polling DMA.
4346         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4347         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4348         */
4349        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4350            (dev->flags & ATA_DFLAG_CDB_INTR))
4351                return 1;
4352        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4353}
4354
4355/**
4356 *      ata_is_40wire           -       check drive side detection
4357 *      @dev: device
4358 *
4359 *      Perform drive side detection decoding, allowing for device vendors
4360 *      who can't follow the documentation.
4361 */
4362
4363static int ata_is_40wire(struct ata_device *dev)
4364{
4365        if (dev->horkage & ATA_HORKAGE_IVB)
4366                return ata_drive_40wire_relaxed(dev->id);
4367        return ata_drive_40wire(dev->id);
4368}
4369
4370/**
4371 *      cable_is_40wire         -       40/80/SATA decider
4372 *      @ap: port to consider
4373 *
4374 *      This function encapsulates the policy for speed management
4375 *      in one place. At the moment we don't cache the result but
4376 *      there is a good case for setting ap->cbl to the result when
4377 *      we are called with unknown cables (and figuring out if it
4378 *      impacts hotplug at all).
4379 *
4380 *      Return 1 if the cable appears to be 40 wire.
4381 */
4382
4383static int cable_is_40wire(struct ata_port *ap)
4384{
4385        struct ata_link *link;
4386        struct ata_device *dev;
4387
4388        /* If the controller thinks we are 40 wire, we are. */
4389        if (ap->cbl == ATA_CBL_PATA40)
4390                return 1;
4391
4392        /* If the controller thinks we are 80 wire, we are. */
4393        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4394                return 0;
4395
4396        /* If the system is known to be 40 wire short cable (eg
4397         * laptop), then we allow 80 wire modes even if the drive
4398         * isn't sure.
4399         */
4400        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4401                return 0;
4402
4403        /* If the controller doesn't know, we scan.
4404         *
4405         * Note: We look for all 40 wire detects at this point.  Any
4406         *       80 wire detect is taken to be 80 wire cable because
4407         * - in many setups only the one drive (slave if present) will
4408         *   give a valid detect
4409         * - if you have a non detect capable drive you don't want it
4410         *   to colour the choice
4411         */
4412        ata_for_each_link(link, ap, EDGE) {
4413                ata_for_each_dev(dev, link, ENABLED) {
4414                        if (!ata_is_40wire(dev))
4415                                return 0;
4416                }
4417        }
4418        return 1;
4419}
4420
4421/**
4422 *      ata_dev_xfermask - Compute supported xfermask of the given device
4423 *      @dev: Device to compute xfermask for
4424 *
4425 *      Compute supported xfermask of @dev and store it in
4426 *      dev->*_mask.  This function is responsible for applying all
4427 *      known limits including host controller limits, device
4428 *      blacklist, etc...
4429 *
4430 *      LOCKING:
4431 *      None.
4432 */
4433static void ata_dev_xfermask(struct ata_device *dev)
4434{
4435        struct ata_link *link = dev->link;
4436        struct ata_port *ap = link->ap;
4437        struct ata_host *host = ap->host;
4438        unsigned long xfer_mask;
4439
4440        /* controller modes available */
4441        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4442                                      ap->mwdma_mask, ap->udma_mask);
4443
4444        /* drive modes available */
4445        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4446                                       dev->mwdma_mask, dev->udma_mask);
4447        xfer_mask &= ata_id_xfermask(dev->id);
4448
4449        /*
4450         *      CFA Advanced TrueIDE timings are not allowed on a shared
4451         *      cable
4452         */
4453        if (ata_dev_pair(dev)) {
4454                /* No PIO5 or PIO6 */
4455                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4456                /* No MWDMA3 or MWDMA 4 */
4457                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4458        }
4459
4460        if (ata_dma_blacklisted(dev)) {
4461                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4462                ata_dev_printk(dev, KERN_WARNING,
4463                               "device is on DMA blacklist, disabling DMA\n");
4464        }
4465
4466        if ((host->flags & ATA_HOST_SIMPLEX) &&
4467            host->simplex_claimed && host->simplex_claimed != ap) {
4468                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4469                ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4470                               "other device, disabling DMA\n");
4471        }
4472
4473        if (ap->flags & ATA_FLAG_NO_IORDY)
4474                xfer_mask &= ata_pio_mask_no_iordy(dev);
4475
4476        if (ap->ops->mode_filter)
4477                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4478
4479        /* Apply cable rule here.  Don't apply it early because when
4480         * we handle hot plug the cable type can itself change.
4481         * Check this last so that we know if the transfer rate was
4482         * solely limited by the cable.
4483         * Unknown or 80 wire cables reported host side are checked
4484         * drive side as well. Cases where we know a 40wire cable
4485         * is used safely for 80 are not checked here.
4486         */
4487        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4488                /* UDMA/44 or higher would be available */
4489                if (cable_is_40wire(ap)) {
4490                        ata_dev_printk(dev, KERN_WARNING,
4491                                 "limited to UDMA/33 due to 40-wire cable\n");
4492                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4493                }
4494
4495        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4496                            &dev->mwdma_mask, &dev->udma_mask);
4497}
4498
4499/**
4500 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4501 *      @dev: Device to which command will be sent
4502 *
4503 *      Issue SET FEATURES - XFER MODE command to device @dev
4504 *      on port @ap.
4505 *
4506 *      LOCKING:
4507 *      PCI/etc. bus probe sem.
4508 *
4509 *      RETURNS:
4510 *      0 on success, AC_ERR_* mask otherwise.
4511 */
4512
4513static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4514{
4515        struct ata_taskfile tf;
4516        unsigned int err_mask;
4517
4518        /* set up set-features taskfile */
4519        DPRINTK("set features - xfer mode\n");
4520
4521        /* Some controllers and ATAPI devices show flaky interrupt
4522         * behavior after setting xfer mode.  Use polling instead.
4523         */
4524        ata_tf_init(dev, &tf);
4525        tf.command = ATA_CMD_SET_FEATURES;
4526        tf.feature = SETFEATURES_XFER;
4527        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4528        tf.protocol = ATA_PROT_NODATA;
4529        /* If we are using IORDY we must send the mode setting command */
4530        if (ata_pio_need_iordy(dev))
4531                tf.nsect = dev->xfer_mode;
4532        /* If the device has IORDY and the controller does not - turn it off */
4533        else if (ata_id_has_iordy(dev->id))
4534                tf.nsect = 0x01;
4535        else /* In the ancient relic department - skip all of this */
4536                return 0;
4537
4538        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4539
4540        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4541        return err_mask;
4542}
4543/**
4544 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4545 *      @dev: Device to which command will be sent
4546 *      @enable: Whether to enable or disable the feature
4547 *      @feature: The sector count represents the feature to set
4548 *
4549 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4550 *      on port @ap with sector count
4551 *
4552 *      LOCKING:
4553 *      PCI/etc. bus probe sem.
4554 *
4555 *      RETURNS:
4556 *      0 on success, AC_ERR_* mask otherwise.
4557 */
4558static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4559                                        u8 feature)
4560{
4561        struct ata_taskfile tf;
4562        unsigned int err_mask;
4563
4564        /* set up set-features taskfile */
4565        DPRINTK("set features - SATA features\n");
4566
4567        ata_tf_init(dev, &tf);
4568        tf.command = ATA_CMD_SET_FEATURES;
4569        tf.feature = enable;
4570        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4571        tf.protocol = ATA_PROT_NODATA;
4572        tf.nsect = feature;
4573
4574        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4575
4576        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4577        return err_mask;
4578}
4579
4580/**
4581 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4582 *      @dev: Device to which command will be sent
4583 *      @heads: Number of heads (taskfile parameter)
4584 *      @sectors: Number of sectors (taskfile parameter)
4585 *
4586 *      LOCKING:
4587 *      Kernel thread context (may sleep)
4588 *
4589 *      RETURNS:
4590 *      0 on success, AC_ERR_* mask otherwise.
4591 */
4592static unsigned int ata_dev_init_params(struct ata_device *dev,
4593                                        u16 heads, u16 sectors)
4594{
4595        struct ata_taskfile tf;
4596        unsigned int err_mask;
4597
4598        /* Number of sectors per track 1-255. Number of heads 1-16 */
4599        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4600                return AC_ERR_INVALID;
4601
4602        /* set up init dev params taskfile */
4603        DPRINTK("init dev params \n");
4604
4605        ata_tf_init(dev, &tf);
4606        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4607        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4608        tf.protocol = ATA_PROT_NODATA;
4609        tf.nsect = sectors;
4610        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4611
4612        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4613        /* A clean abort indicates an original or just out of spec drive
4614           and we should continue as we issue the setup based on the
4615           drive reported working geometry */
4616        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4617                err_mask = 0;
4618
4619        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4620        return err_mask;
4621}
4622
4623/**
4624 *      ata_sg_clean - Unmap DMA memory associated with command
4625 *      @qc: Command containing DMA memory to be released
4626 *
4627 *      Unmap all mapped DMA memory associated with this command.
4628 *
4629 *      LOCKING:
4630 *      spin_lock_irqsave(host lock)
4631 */
4632void ata_sg_clean(struct ata_queued_cmd *qc)
4633{
4634        struct ata_port *ap = qc->ap;
4635        struct scatterlist *sg = qc->sg;
4636        int dir = qc->dma_dir;
4637
4638        WARN_ON_ONCE(sg == NULL);
4639
4640        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4641
4642        if (qc->n_elem)
4643                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4644
4645        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4646        qc->sg = NULL;
4647}
4648
4649/**
4650 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4651 *      @qc: Metadata associated with taskfile to check
4652 *
4653 *      Allow low-level driver to filter ATA PACKET commands, returning
4654 *      a status indicating whether or not it is OK to use DMA for the
4655 *      supplied PACKET command.
4656 *
4657 *      LOCKING: