linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  13 */
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
  16#include <linux/init.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/sched.h>
  20#include <linux/smp.h>
  21#include <linux/spinlock.h>
  22#include <linux/kallsyms.h>
  23#include <linux/bootmem.h>
  24#include <linux/interrupt.h>
  25#include <linux/ptrace.h>
  26#include <linux/kgdb.h>
  27#include <linux/kdebug.h>
  28
  29#include <asm/bootinfo.h>
  30#include <asm/branch.h>
  31#include <asm/break.h>
  32#include <asm/cpu.h>
  33#include <asm/dsp.h>
  34#include <asm/fpu.h>
  35#include <asm/fpu_emulator.h>
  36#include <asm/mipsregs.h>
  37#include <asm/mipsmtregs.h>
  38#include <asm/module.h>
  39#include <asm/pgtable.h>
  40#include <asm/ptrace.h>
  41#include <asm/sections.h>
  42#include <asm/system.h>
  43#include <asm/tlbdebug.h>
  44#include <asm/traps.h>
  45#include <asm/uaccess.h>
  46#include <asm/watch.h>
  47#include <asm/mmu_context.h>
  48#include <asm/types.h>
  49#include <asm/stacktrace.h>
  50#include <asm/irq.h>
  51
  52extern void check_wait(void);
  53extern asmlinkage void r4k_wait(void);
  54extern asmlinkage void rollback_handle_int(void);
  55extern asmlinkage void handle_int(void);
  56extern asmlinkage void handle_tlbm(void);
  57extern asmlinkage void handle_tlbl(void);
  58extern asmlinkage void handle_tlbs(void);
  59extern asmlinkage void handle_adel(void);
  60extern asmlinkage void handle_ades(void);
  61extern asmlinkage void handle_ibe(void);
  62extern asmlinkage void handle_dbe(void);
  63extern asmlinkage void handle_sys(void);
  64extern asmlinkage void handle_bp(void);
  65extern asmlinkage void handle_ri(void);
  66extern asmlinkage void handle_ri_rdhwr_vivt(void);
  67extern asmlinkage void handle_ri_rdhwr(void);
  68extern asmlinkage void handle_cpu(void);
  69extern asmlinkage void handle_ov(void);
  70extern asmlinkage void handle_tr(void);
  71extern asmlinkage void handle_fpe(void);
  72extern asmlinkage void handle_mdmx(void);
  73extern asmlinkage void handle_watch(void);
  74extern asmlinkage void handle_mt(void);
  75extern asmlinkage void handle_dsp(void);
  76extern asmlinkage void handle_mcheck(void);
  77extern asmlinkage void handle_reserved(void);
  78
  79extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  80        struct mips_fpu_struct *ctx, int has_fpu);
  81
  82#ifdef CONFIG_CPU_CAVIUM_OCTEON
  83extern asmlinkage void octeon_cop2_restore(struct octeon_cop2_state *task);
  84#endif
  85
  86void (*board_be_init)(void);
  87int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  88void (*board_nmi_handler_setup)(void);
  89void (*board_ejtag_handler_setup)(void);
  90void (*board_bind_eic_interrupt)(int irq, int regset);
  91
  92
  93static void show_raw_backtrace(unsigned long reg29)
  94{
  95        unsigned long *sp = (unsigned long *)(reg29 & ~3);
  96        unsigned long addr;
  97
  98        printk("Call Trace:");
  99#ifdef CONFIG_KALLSYMS
 100        printk("\n");
 101#endif
 102        while (!kstack_end(sp)) {
 103                unsigned long __user *p =
 104                        (unsigned long __user *)(unsigned long)sp++;
 105                if (__get_user(addr, p)) {
 106                        printk(" (Bad stack address)");
 107                        break;
 108                }
 109                if (__kernel_text_address(addr))
 110                        print_ip_sym(addr);
 111        }
 112        printk("\n");
 113}
 114
 115#ifdef CONFIG_KALLSYMS
 116int raw_show_trace;
 117static int __init set_raw_show_trace(char *str)
 118{
 119        raw_show_trace = 1;
 120        return 1;
 121}
 122__setup("raw_show_trace", set_raw_show_trace);
 123#endif
 124
 125static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 126{
 127        unsigned long sp = regs->regs[29];
 128        unsigned long ra = regs->regs[31];
 129        unsigned long pc = regs->cp0_epc;
 130
 131        if (raw_show_trace || !__kernel_text_address(pc)) {
 132                show_raw_backtrace(sp);
 133                return;
 134        }
 135        printk("Call Trace:\n");
 136        do {
 137                print_ip_sym(pc);
 138                pc = unwind_stack(task, &sp, pc, &ra);
 139        } while (pc);
 140        printk("\n");
 141}
 142
 143/*
 144 * This routine abuses get_user()/put_user() to reference pointers
 145 * with at least a bit of error checking ...
 146 */
 147static void show_stacktrace(struct task_struct *task,
 148        const struct pt_regs *regs)
 149{
 150        const int field = 2 * sizeof(unsigned long);
 151        long stackdata;
 152        int i;
 153        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 154
 155        printk("Stack :");
 156        i = 0;
 157        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 158                if (i && ((i % (64 / field)) == 0))
 159                        printk("\n       ");
 160                if (i > 39) {
 161                        printk(" ...");
 162                        break;
 163                }
 164
 165                if (__get_user(stackdata, sp++)) {
 166                        printk(" (Bad stack address)");
 167                        break;
 168                }
 169
 170                printk(" %0*lx", field, stackdata);
 171                i++;
 172        }
 173        printk("\n");
 174        show_backtrace(task, regs);
 175}
 176
 177void show_stack(struct task_struct *task, unsigned long *sp)
 178{
 179        struct pt_regs regs;
 180        if (sp) {
 181                regs.regs[29] = (unsigned long)sp;
 182                regs.regs[31] = 0;
 183                regs.cp0_epc = 0;
 184        } else {
 185                if (task && task != current) {
 186                        regs.regs[29] = task->thread.reg29;
 187                        regs.regs[31] = 0;
 188                        regs.cp0_epc = task->thread.reg31;
 189                } else {
 190                        prepare_frametrace(&regs);
 191                }
 192        }
 193        show_stacktrace(task, &regs);
 194}
 195
 196/*
 197 * The architecture-independent dump_stack generator
 198 */
 199void dump_stack(void)
 200{
 201        struct pt_regs regs;
 202
 203        prepare_frametrace(&regs);
 204        show_backtrace(current, &regs);
 205}
 206
 207EXPORT_SYMBOL(dump_stack);
 208
 209static void show_code(unsigned int __user *pc)
 210{
 211        long i;
 212        unsigned short __user *pc16 = NULL;
 213
 214        printk("\nCode:");
 215
 216        if ((unsigned long)pc & 1)
 217                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 218        for(i = -3 ; i < 6 ; i++) {
 219                unsigned int insn;
 220                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 221                        printk(" (Bad address in epc)\n");
 222                        break;
 223                }
 224                printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 225        }
 226}
 227
 228static void __show_regs(const struct pt_regs *regs)
 229{
 230        const int field = 2 * sizeof(unsigned long);
 231        unsigned int cause = regs->cp0_cause;
 232        int i;
 233
 234        printk("Cpu %d\n", smp_processor_id());
 235
 236        /*
 237         * Saved main processor registers
 238         */
 239        for (i = 0; i < 32; ) {
 240                if ((i % 4) == 0)
 241                        printk("$%2d   :", i);
 242                if (i == 0)
 243                        printk(" %0*lx", field, 0UL);
 244                else if (i == 26 || i == 27)
 245                        printk(" %*s", field, "");
 246                else
 247                        printk(" %0*lx", field, regs->regs[i]);
 248
 249                i++;
 250                if ((i % 4) == 0)
 251                        printk("\n");
 252        }
 253
 254#ifdef CONFIG_CPU_HAS_SMARTMIPS
 255        printk("Acx    : %0*lx\n", field, regs->acx);
 256#endif
 257        printk("Hi    : %0*lx\n", field, regs->hi);
 258        printk("Lo    : %0*lx\n", field, regs->lo);
 259
 260        /*
 261         * Saved cp0 registers
 262         */
 263        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 264               (void *) regs->cp0_epc);
 265        printk("    %s\n", print_tainted());
 266        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 267               (void *) regs->regs[31]);
 268
 269        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 270
 271        if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 272                if (regs->cp0_status & ST0_KUO)
 273                        printk("KUo ");
 274                if (regs->cp0_status & ST0_IEO)
 275                        printk("IEo ");
 276                if (regs->cp0_status & ST0_KUP)
 277                        printk("KUp ");
 278                if (regs->cp0_status & ST0_IEP)
 279                        printk("IEp ");
 280                if (regs->cp0_status & ST0_KUC)
 281                        printk("KUc ");
 282                if (regs->cp0_status & ST0_IEC)
 283                        printk("IEc ");
 284        } else {
 285                if (regs->cp0_status & ST0_KX)
 286                        printk("KX ");
 287                if (regs->cp0_status & ST0_SX)
 288                        printk("SX ");
 289                if (regs->cp0_status & ST0_UX)
 290                        printk("UX ");
 291                switch (regs->cp0_status & ST0_KSU) {
 292                case KSU_USER:
 293                        printk("USER ");
 294                        break;
 295                case KSU_SUPERVISOR:
 296                        printk("SUPERVISOR ");
 297                        break;
 298                case KSU_KERNEL:
 299                        printk("KERNEL ");
 300                        break;
 301                default:
 302                        printk("BAD_MODE ");
 303                        break;
 304                }
 305                if (regs->cp0_status & ST0_ERL)
 306                        printk("ERL ");
 307                if (regs->cp0_status & ST0_EXL)
 308                        printk("EXL ");
 309                if (regs->cp0_status & ST0_IE)
 310                        printk("IE ");
 311        }
 312        printk("\n");
 313
 314        printk("Cause : %08x\n", cause);
 315
 316        cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 317        if (1 <= cause && cause <= 5)
 318                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 319
 320        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 321               cpu_name_string());
 322}
 323
 324/*
 325 * FIXME: really the generic show_regs should take a const pointer argument.
 326 */
 327void show_regs(struct pt_regs *regs)
 328{
 329        __show_regs((struct pt_regs *)regs);
 330}
 331
 332void show_registers(const struct pt_regs *regs)
 333{
 334        const int field = 2 * sizeof(unsigned long);
 335
 336        __show_regs(regs);
 337        print_modules();
 338        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 339               current->comm, current->pid, current_thread_info(), current,
 340              field, current_thread_info()->tp_value);
 341        if (cpu_has_userlocal) {
 342                unsigned long tls;
 343
 344                tls = read_c0_userlocal();
 345                if (tls != current_thread_info()->tp_value)
 346                        printk("*HwTLS: %0*lx\n", field, tls);
 347        }
 348
 349        show_stacktrace(current, regs);
 350        show_code((unsigned int __user *) regs->cp0_epc);
 351        printk("\n");
 352}
 353
 354static DEFINE_SPINLOCK(die_lock);
 355
 356void __noreturn die(const char * str, const struct pt_regs * regs)
 357{
 358        static int die_counter;
 359#ifdef CONFIG_MIPS_MT_SMTC
 360        unsigned long dvpret = dvpe();
 361#endif /* CONFIG_MIPS_MT_SMTC */
 362
 363        console_verbose();
 364        spin_lock_irq(&die_lock);
 365        bust_spinlocks(1);
 366#ifdef CONFIG_MIPS_MT_SMTC
 367        mips_mt_regdump(dvpret);
 368#endif /* CONFIG_MIPS_MT_SMTC */
 369        printk("%s[#%d]:\n", str, ++die_counter);
 370        show_registers(regs);
 371        add_taint(TAINT_DIE);
 372        spin_unlock_irq(&die_lock);
 373
 374        if (in_interrupt())
 375                panic("Fatal exception in interrupt");
 376
 377        if (panic_on_oops) {
 378                printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
 379                ssleep(5);
 380                panic("Fatal exception");
 381        }
 382
 383        do_exit(SIGSEGV);
 384}
 385
 386extern struct exception_table_entry __start___dbe_table[];
 387extern struct exception_table_entry __stop___dbe_table[];
 388
 389__asm__(
 390"       .section        __dbe_table, \"a\"\n"
 391"       .previous                       \n");
 392
 393/* Given an address, look for it in the exception tables. */
 394static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 395{
 396        const struct exception_table_entry *e;
 397
 398        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 399        if (!e)
 400                e = search_module_dbetables(addr);
 401        return e;
 402}
 403
 404asmlinkage void do_be(struct pt_regs *regs)
 405{
 406        const int field = 2 * sizeof(unsigned long);
 407        const struct exception_table_entry *fixup = NULL;
 408        int data = regs->cp0_cause & 4;
 409        int action = MIPS_BE_FATAL;
 410
 411        /* XXX For now.  Fixme, this searches the wrong table ...  */
 412        if (data && !user_mode(regs))
 413                fixup = search_dbe_tables(exception_epc(regs));
 414
 415        if (fixup)
 416                action = MIPS_BE_FIXUP;
 417
 418        if (board_be_handler)
 419                action = board_be_handler(regs, fixup != NULL);
 420
 421        switch (action) {
 422        case MIPS_BE_DISCARD:
 423                return;
 424        case MIPS_BE_FIXUP:
 425                if (fixup) {
 426                        regs->cp0_epc = fixup->nextinsn;
 427                        return;
 428                }
 429                break;
 430        default:
 431                break;
 432        }
 433
 434        /*
 435         * Assume it would be too dangerous to continue ...
 436         */
 437        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 438               data ? "Data" : "Instruction",
 439               field, regs->cp0_epc, field, regs->regs[31]);
 440        if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
 441            == NOTIFY_STOP)
 442                return;
 443
 444        die_if_kernel("Oops", regs);
 445        force_sig(SIGBUS, current);
 446}
 447
 448/*
 449 * ll/sc, rdhwr, sync emulation
 450 */
 451
 452#define OPCODE 0xfc000000
 453#define BASE   0x03e00000
 454#define RT     0x001f0000
 455#define OFFSET 0x0000ffff
 456#define LL     0xc0000000
 457#define SC     0xe0000000
 458#define SPEC0  0x00000000
 459#define SPEC3  0x7c000000
 460#define RD     0x0000f800
 461#define FUNC   0x0000003f
 462#define SYNC   0x0000000f
 463#define RDHWR  0x0000003b
 464
 465/*
 466 * The ll_bit is cleared by r*_switch.S
 467 */
 468
 469unsigned long ll_bit;
 470
 471static struct task_struct *ll_task = NULL;
 472
 473static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 474{
 475        unsigned long value, __user *vaddr;
 476        long offset;
 477
 478        /*
 479         * analyse the ll instruction that just caused a ri exception
 480         * and put the referenced address to addr.
 481         */
 482
 483        /* sign extend offset */
 484        offset = opcode & OFFSET;
 485        offset <<= 16;
 486        offset >>= 16;
 487
 488        vaddr = (unsigned long __user *)
 489                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 490
 491        if ((unsigned long)vaddr & 3)
 492                return SIGBUS;
 493        if (get_user(value, vaddr))
 494                return SIGSEGV;
 495
 496        preempt_disable();
 497
 498        if (ll_task == NULL || ll_task == current) {
 499                ll_bit = 1;
 500        } else {
 501                ll_bit = 0;
 502        }
 503        ll_task = current;
 504
 505        preempt_enable();
 506
 507        regs->regs[(opcode & RT) >> 16] = value;
 508
 509        return 0;
 510}
 511
 512static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 513{
 514        unsigned long __user *vaddr;
 515        unsigned long reg;
 516        long offset;
 517
 518        /*
 519         * analyse the sc instruction that just caused a ri exception
 520         * and put the referenced address to addr.
 521         */
 522
 523        /* sign extend offset */
 524        offset = opcode & OFFSET;
 525        offset <<= 16;
 526        offset >>= 16;
 527
 528        vaddr = (unsigned long __user *)
 529                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 530        reg = (opcode & RT) >> 16;
 531
 532        if ((unsigned long)vaddr & 3)
 533                return SIGBUS;
 534
 535        preempt_disable();
 536
 537        if (ll_bit == 0 || ll_task != current) {
 538                regs->regs[reg] = 0;
 539                preempt_enable();
 540                return 0;
 541        }
 542
 543        preempt_enable();
 544
 545        if (put_user(regs->regs[reg], vaddr))
 546                return SIGSEGV;
 547
 548        regs->regs[reg] = 1;
 549
 550        return 0;
 551}
 552
 553/*
 554 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 555 * opcodes are supposed to result in coprocessor unusable exceptions if
 556 * executed on ll/sc-less processors.  That's the theory.  In practice a
 557 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 558 * instead, so we're doing the emulation thing in both exception handlers.
 559 */
 560static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 561{
 562        if ((opcode & OPCODE) == LL)
 563                return simulate_ll(regs, opcode);
 564        if ((opcode & OPCODE) == SC)
 565                return simulate_sc(regs, opcode);
 566
 567        return -1;                      /* Must be something else ... */
 568}
 569
 570/*
 571 * Simulate trapping 'rdhwr' instructions to provide user accessible
 572 * registers not implemented in hardware.
 573 */
 574static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 575{
 576        struct thread_info *ti = task_thread_info(current);
 577
 578        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 579                int rd = (opcode & RD) >> 11;
 580                int rt = (opcode & RT) >> 16;
 581                switch (rd) {
 582                case 0:         /* CPU number */
 583                        regs->regs[rt] = smp_processor_id();
 584                        return 0;
 585                case 1:         /* SYNCI length */
 586                        regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 587                                             current_cpu_data.icache.linesz);
 588                        return 0;
 589                case 2:         /* Read count register */
 590                        regs->regs[rt] = read_c0_count();
 591                        return 0;
 592                case 3:         /* Count register resolution */
 593                        switch (current_cpu_data.cputype) {
 594                        case CPU_20KC:
 595                        case CPU_25KF:
 596                                regs->regs[rt] = 1;
 597                                break;
 598                        default:
 599                                regs->regs[rt] = 2;
 600                        }
 601                        return 0;
 602                case 29:
 603                        regs->regs[rt] = ti->tp_value;
 604                        return 0;
 605                default:
 606                        return -1;
 607                }
 608        }
 609
 610        /* Not ours.  */
 611        return -1;
 612}
 613
 614static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 615{
 616        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
 617                return 0;
 618
 619        return -1;                      /* Must be something else ... */
 620}
 621
 622asmlinkage void do_ov(struct pt_regs *regs)
 623{
 624        siginfo_t info;
 625
 626        die_if_kernel("Integer overflow", regs);
 627
 628        info.si_code = FPE_INTOVF;
 629        info.si_signo = SIGFPE;
 630        info.si_errno = 0;
 631        info.si_addr = (void __user *) regs->cp0_epc;
 632        force_sig_info(SIGFPE, &info, current);
 633}
 634
 635/*
 636 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 637 */
 638asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 639{
 640        siginfo_t info;
 641
 642        if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
 643            == NOTIFY_STOP)
 644                return;
 645        die_if_kernel("FP exception in kernel code", regs);
 646
 647        if (fcr31 & FPU_CSR_UNI_X) {
 648                int sig;
 649
 650                /*
 651                 * Unimplemented operation exception.  If we've got the full
 652                 * software emulator on-board, let's use it...
 653                 *
 654                 * Force FPU to dump state into task/thread context.  We're
 655                 * moving a lot of data here for what is probably a single
 656                 * instruction, but the alternative is to pre-decode the FP
 657                 * register operands before invoking the emulator, which seems
 658                 * a bit extreme for what should be an infrequent event.
 659                 */
 660                /* Ensure 'resume' not overwrite saved fp context again. */
 661                lose_fpu(1);
 662
 663                /* Run the emulator */
 664                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
 665
 666                /*
 667                 * We can't allow the emulated instruction to leave any of
 668                 * the cause bit set in $fcr31.
 669                 */
 670                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 671
 672                /* Restore the hardware register state */
 673                own_fpu(1);     /* Using the FPU again.  */
 674
 675                /* If something went wrong, signal */
 676                if (sig)
 677                        force_sig(sig, current);
 678
 679                return;
 680        } else if (fcr31 & FPU_CSR_INV_X)
 681                info.si_code = FPE_FLTINV;
 682        else if (fcr31 & FPU_CSR_DIV_X)
 683                info.si_code = FPE_FLTDIV;
 684        else if (fcr31 & FPU_CSR_OVF_X)
 685                info.si_code = FPE_FLTOVF;
 686        else if (fcr31 & FPU_CSR_UDF_X)
 687                info.si_code = FPE_FLTUND;
 688        else if (fcr31 & FPU_CSR_INE_X)
 689                info.si_code = FPE_FLTRES;
 690        else
 691                info.si_code = __SI_FAULT;
 692        info.si_signo = SIGFPE;
 693        info.si_errno = 0;
 694        info.si_addr = (void __user *) regs->cp0_epc;
 695        force_sig_info(SIGFPE, &info, current);
 696}
 697
 698static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 699        const char *str)
 700{
 701        siginfo_t info;
 702        char b[40];
 703
 704        if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
 705                return;
 706
 707        /*
 708         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 709         * insns, even for trap and break codes that indicate arithmetic
 710         * failures.  Weird ...
 711         * But should we continue the brokenness???  --macro
 712         */
 713        switch (code) {
 714        case BRK_OVERFLOW:
 715        case BRK_DIVZERO:
 716                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 717                die_if_kernel(b, regs);
 718                if (code == BRK_DIVZERO)
 719                        info.si_code = FPE_INTDIV;
 720                else
 721                        info.si_code = FPE_INTOVF;
 722                info.si_signo = SIGFPE;
 723                info.si_errno = 0;
 724                info.si_addr = (void __user *) regs->cp0_epc;
 725                force_sig_info(SIGFPE, &info, current);
 726                break;
 727        case BRK_BUG:
 728                die_if_kernel("Kernel bug detected", regs);
 729                force_sig(SIGTRAP, current);
 730                break;
 731        case BRK_MEMU:
 732                /*
 733                 * Address errors may be deliberately induced by the FPU
 734                 * emulator to retake control of the CPU after executing the
 735                 * instruction in the delay slot of an emulated branch.
 736                 *
 737                 * Terminate if exception was recognized as a delay slot return
 738                 * otherwise handle as normal.
 739                 */
 740                if (do_dsemulret(regs))
 741                        return;
 742
 743                die_if_kernel("Math emu break/trap", regs);
 744                force_sig(SIGTRAP, current);
 745                break;
 746        default:
 747                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 748                die_if_kernel(b, regs);
 749                force_sig(SIGTRAP, current);
 750        }
 751}
 752
 753asmlinkage void do_bp(struct pt_regs *regs)
 754{
 755        unsigned int opcode, bcode;
 756
 757        if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 758                goto out_sigsegv;
 759
 760        /*
 761         * There is the ancient bug in the MIPS assemblers that the break
 762         * code starts left to bit 16 instead to bit 6 in the opcode.
 763         * Gas is bug-compatible, but not always, grrr...
 764         * We handle both cases with a simple heuristics.  --macro
 765         */
 766        bcode = ((opcode >> 6) & ((1 << 20) - 1));
 767        if (bcode >= (1 << 10))
 768                bcode >>= 10;
 769
 770        do_trap_or_bp(regs, bcode, "Break");
 771        return;
 772
 773out_sigsegv:
 774        force_sig(SIGSEGV, current);
 775}
 776
 777asmlinkage void do_tr(struct pt_regs *regs)
 778{
 779        unsigned int opcode, tcode = 0;
 780
 781        if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 782                goto out_sigsegv;
 783
 784        /* Immediate versions don't provide a code.  */
 785        if (!(opcode & OPCODE))
 786                tcode = ((opcode >> 6) & ((1 << 10) - 1));
 787
 788        do_trap_or_bp(regs, tcode, "Trap");
 789        return;
 790
 791out_sigsegv:
 792        force_sig(SIGSEGV, current);
 793}
 794
 795asmlinkage void do_ri(struct pt_regs *regs)
 796{
 797        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 798        unsigned long old_epc = regs->cp0_epc;
 799        unsigned int opcode = 0;
 800        int status = -1;
 801
 802        if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
 803            == NOTIFY_STOP)
 804                return;
 805
 806        die_if_kernel("Reserved instruction in kernel code", regs);
 807
 808        if (unlikely(compute_return_epc(regs) < 0))
 809                return;
 810
 811        if (unlikely(get_user(opcode, epc) < 0))
 812                status = SIGSEGV;
 813
 814        if (!cpu_has_llsc && status < 0)
 815                status = simulate_llsc(regs, opcode);
 816
 817        if (status < 0)
 818                status = simulate_rdhwr(regs, opcode);
 819
 820        if (status < 0)
 821                status = simulate_sync(regs, opcode);
 822
 823        if (status < 0)
 824                status = SIGILL;
 825
 826        if (unlikely(status > 0)) {
 827                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
 828                force_sig(status, current);
 829        }
 830}
 831
 832/*
 833 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 834 * emulated more than some threshold number of instructions, force migration to
 835 * a "CPU" that has FP support.
 836 */
 837static void mt_ase_fp_affinity(void)
 838{
 839#ifdef CONFIG_MIPS_MT_FPAFF
 840        if (mt_fpemul_threshold > 0 &&
 841             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 842                /*
 843                 * If there's no FPU present, or if the application has already
 844                 * restricted the allowed set to exclude any CPUs with FPUs,
 845                 * we'll skip the procedure.
 846                 */
 847                if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 848                        cpumask_t tmask;
 849
 850                        current->thread.user_cpus_allowed
 851                                = current->cpus_allowed;
 852                        cpus_and(tmask, current->cpus_allowed,
 853                                mt_fpu_cpumask);
 854                        set_cpus_allowed(current, tmask);
 855                        set_thread_flag(TIF_FPUBOUND);
 856                }
 857        }
 858#endif /* CONFIG_MIPS_MT_FPAFF */
 859}
 860
 861asmlinkage void do_cpu(struct pt_regs *regs)
 862{
 863        unsigned int __user *epc;
 864        unsigned long old_epc;
 865        unsigned int opcode;
 866        unsigned int cpid;
 867        int status;
 868        unsigned long __maybe_unused flags;
 869
 870        die_if_kernel("do_cpu invoked from kernel context!", regs);
 871
 872        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 873
 874        switch (cpid) {
 875        case 0:
 876                epc = (unsigned int __user *)exception_epc(regs);
 877                old_epc = regs->cp0_epc;
 878                opcode = 0;
 879                status = -1;
 880
 881                if (unlikely(compute_return_epc(regs) < 0))
 882                        return;
 883
 884                if (unlikely(get_user(opcode, epc) < 0))
 885                        status = SIGSEGV;
 886
 887                if (!cpu_has_llsc && status < 0)
 888                        status = simulate_llsc(regs, opcode);
 889
 890                if (status < 0)
 891                        status = simulate_rdhwr(regs, opcode);
 892
 893                if (status < 0)
 894                        status = SIGILL;
 895
 896                if (unlikely(status > 0)) {
 897                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
 898                        force_sig(status, current);
 899                }
 900
 901                return;
 902
 903        case 1:
 904                if (used_math())        /* Using the FPU again.  */
 905                        own_fpu(1);
 906                else {                  /* First time FPU user.  */
 907                        init_fpu();
 908                        set_used_math();
 909                }
 910
 911                if (!raw_cpu_has_fpu) {
 912                        int sig;
 913                        sig = fpu_emulator_cop1Handler(regs,
 914                                                &current->thread.fpu, 0);
 915                        if (sig)
 916                                force_sig(sig, current);
 917                        else
 918                                mt_ase_fp_affinity();
 919                }
 920
 921                return;
 922
 923        case 2:
 924#ifdef CONFIG_CPU_CAVIUM_OCTEON
 925                prefetch(&current->thread.cp2);
 926                local_irq_save(flags);
 927                KSTK_STATUS(current) |= ST0_CU2;
 928                status = read_c0_status();
 929                write_c0_status(status | ST0_CU2);
 930                octeon_cop2_restore(&(current->thread.cp2));
 931                write_c0_status(status & ~ST0_CU2);
 932                local_irq_restore(flags);
 933                return;
 934#endif
 935        case 3:
 936                break;
 937        }
 938
 939        force_sig(SIGILL, current);
 940}
 941
 942asmlinkage void do_mdmx(struct pt_regs *regs)
 943{
 944        force_sig(SIGILL, current);
 945}
 946
 947/*
 948 * Called with interrupts disabled.
 949 */
 950asmlinkage void do_watch(struct pt_regs *regs)
 951{
 952        u32 cause;
 953
 954        /*
 955         * Clear WP (bit 22) bit of cause register so we don't loop
 956         * forever.
 957         */
 958        cause = read_c0_cause();
 959        cause &= ~(1 << 22);
 960        write_c0_cause(cause);
 961
 962        /*
 963         * If the current thread has the watch registers loaded, save
 964         * their values and send SIGTRAP.  Otherwise another thread
 965         * left the registers set, clear them and continue.
 966         */
 967        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
 968                mips_read_watch_registers();
 969                local_irq_enable();
 970                force_sig(SIGTRAP, current);
 971        } else {
 972                mips_clear_watch_registers();
 973                local_irq_enable();
 974        }
 975}
 976
 977asmlinkage void do_mcheck(struct pt_regs *regs)
 978{
 979        const int field = 2 * sizeof(unsigned long);
 980        int multi_match = regs->cp0_status & ST0_TS;
 981
 982        show_regs(regs);
 983
 984        if (multi_match) {
 985                printk("Index   : %0x\n", read_c0_index());
 986                printk("Pagemask: %0x\n", read_c0_pagemask());
 987                printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
 988                printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
 989                printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
 990                printk("\n");
 991                dump_tlb_all();
 992        }
 993
 994        show_code((unsigned int __user *) regs->cp0_epc);
 995
 996        /*
 997         * Some chips may have other causes of machine check (e.g. SB1
 998         * graduation timer)
 999         */
1000        panic("Caught Machine Check exception - %scaused by multiple "
1001              "matching entries in the TLB.",
1002              (multi_match) ? "" : "not ");
1003}
1004
1005asmlinkage void do_mt(struct pt_regs *regs)
1006{
1007        int subcode;
1008
1009        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1010                        >> VPECONTROL_EXCPT_SHIFT;
1011        switch (subcode) {
1012        case 0:
1013                printk(KERN_DEBUG "Thread Underflow\n");
1014                break;
1015        case 1:
1016                printk(KERN_DEBUG "Thread Overflow\n");
1017                break;
1018        case 2:
1019                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1020                break;
1021        case 3:
1022                printk(KERN_DEBUG "Gating Storage Exception\n");
1023                break;
1024        case 4:
1025                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1026                break;
1027        case 5:
1028                printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1029                break;
1030        default:
1031                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1032                        subcode);
1033                break;
1034        }
1035        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1036
1037        force_sig(SIGILL, current);
1038}
1039
1040
1041asmlinkage void do_dsp(struct pt_regs *regs)
1042{
1043        if (cpu_has_dsp)
1044                panic("Unexpected DSP exception\n");
1045
1046        force_sig(SIGILL, current);
1047}
1048
1049asmlinkage void do_reserved(struct pt_regs *regs)
1050{
1051        /*
1052         * Game over - no way to handle this if it ever occurs.  Most probably
1053         * caused by a new unknown cpu type or after another deadly
1054         * hard/software error.
1055         */
1056        show_regs(regs);
1057        panic("Caught reserved exception %ld - should not happen.",
1058              (regs->cp0_cause & 0x7f) >> 2);
1059}
1060
1061static int __initdata l1parity = 1;
1062static int __init nol1parity(char *s)
1063{
1064        l1parity = 0;
1065        return 1;
1066}
1067__setup("nol1par", nol1parity);
1068static int __initdata l2parity = 1;
1069static int __init nol2parity(char *s)
1070{
1071        l2parity = 0;
1072        return 1;
1073}
1074__setup("nol2par", nol2parity);
1075
1076/*
1077 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1078 * it different ways.
1079 */
1080static inline void parity_protection_init(void)
1081{
1082        switch (current_cpu_type()) {
1083        case CPU_24K:
1084        case CPU_34K:
1085        case CPU_74K:
1086        case CPU_1004K:
1087                {
1088#define ERRCTL_PE       0x80000000
1089#define ERRCTL_L2P      0x00800000
1090                        unsigned long errctl;
1091                        unsigned int l1parity_present, l2parity_present;
1092
1093                        errctl = read_c0_ecc();
1094                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1095
1096                        /* probe L1 parity support */
1097                        write_c0_ecc(errctl | ERRCTL_PE);
1098                        back_to_back_c0_hazard();
1099                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1100
1101                        /* probe L2 parity support */
1102                        write_c0_ecc(errctl|ERRCTL_L2P);
1103                        back_to_back_c0_hazard();
1104                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1105
1106                        if (l1parity_present && l2parity_present) {
1107                                if (l1parity)
1108                                        errctl |= ERRCTL_PE;
1109                                if (l1parity ^ l2parity)
1110                                        errctl |= ERRCTL_L2P;
1111                        } else if (l1parity_present) {
1112                                if (l1parity)
1113                                        errctl |= ERRCTL_PE;
1114                        } else if (l2parity_present) {
1115                                if (l2parity)
1116                                        errctl |= ERRCTL_L2P;
1117                        } else {
1118                                /* No parity available */
1119                        }
1120
1121                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1122
1123                        write_c0_ecc(errctl);
1124                        back_to_back_c0_hazard();
1125                        errctl = read_c0_ecc();
1126                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1127
1128                        if (l1parity_present)
1129                                printk(KERN_INFO "Cache parity protection %sabled\n",
1130                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1131
1132                        if (l2parity_present) {
1133                                if (l1parity_present && l1parity)
1134                                        errctl ^= ERRCTL_L2P;
1135                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1136                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1137                        }
1138                }
1139                break;
1140
1141        case CPU_5KC:
1142                write_c0_ecc(0x80000000);
1143                back_to_back_c0_hazard();
1144                /* Set the PE bit (bit 31) in the c0_errctl register. */
1145                printk(KERN_INFO "Cache parity protection %sabled\n",
1146                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1147                break;
1148        case CPU_20KC:
1149        case CPU_25KF:
1150                /* Clear the DE bit (bit 16) in the c0_status register. */
1151                printk(KERN_INFO "Enable cache parity protection for "
1152                       "MIPS 20KC/25KF CPUs.\n");
1153                clear_c0_status(ST0_DE);
1154                break;
1155        default:
1156                break;
1157        }
1158}
1159
1160asmlinkage void cache_parity_error(void)
1161{
1162        const int field = 2 * sizeof(unsigned long);
1163        unsigned int reg_val;
1164
1165        /* For the moment, report the problem and hang. */
1166        printk("Cache error exception:\n");
1167        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1168        reg_val = read_c0_cacheerr();
1169        printk("c0_cacheerr == %08x\n", reg_val);
1170
1171        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1172               reg_val & (1<<30) ? "secondary" : "primary",
1173               reg_val & (1<<31) ? "data" : "insn");
1174        printk("Error bits: %s%s%s%s%s%s%s\n",
1175               reg_val & (1<<29) ? "ED " : "",
1176               reg_val & (1<<28) ? "ET " : "",
1177               reg_val & (1<<26) ? "EE " : "",
1178               reg_val & (1<<25) ? "EB " : "",
1179               reg_val & (1<<24) ? "EI " : "",
1180               reg_val & (1<<23) ? "E1 " : "",
1181               reg_val & (1<<22) ? "E0 " : "");
1182        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1183
1184#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1185        if (reg_val & (1<<22))
1186                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1187
1188        if (reg_val & (1<<23))
1189                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1190#endif
1191
1192        panic("Can't handle the cache error!");
1193}
1194
1195/*
1196 * SDBBP EJTAG debug exception handler.
1197 * We skip the instruction and return to the next instruction.
1198 */
1199void ejtag_exception_handler(struct pt_regs *regs)
1200{
1201        const int field = 2 * sizeof(unsigned long);
1202        unsigned long depc, old_epc;
1203        unsigned int debug;
1204
1205        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1206        depc = read_c0_depc();
1207        debug = read_c0_debug();
1208        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1209        if (debug & 0x80000000) {
1210                /*
1211                 * In branch delay slot.
1212                 * We cheat a little bit here and use EPC to calculate the
1213                 * debug return address (DEPC). EPC is restored after the
1214                 * calculation.
1215                 */
1216                old_epc = regs->cp0_epc;
1217                regs->cp0_epc = depc;
1218                __compute_return_epc(regs);
1219                depc = regs->cp0_epc;
1220                regs->cp0_epc = old_epc;
1221        } else
1222                depc += 4;
1223        write_c0_depc(depc);
1224
1225#if 0
1226        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1227        write_c0_debug(debug | 0x100);
1228#endif
1229}
1230
1231/*
1232 * NMI exception handler.
1233 */
1234NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1235{
1236        bust_spinlocks(1);
1237        printk("NMI taken!!!!\n");
1238        die("NMI", regs);
1239}
1240
1241#define VECTORSPACING 0x100     /* for EI/VI mode */
1242
1243unsigned long ebase;
1244unsigned long exception_handlers[32];
1245unsigned long vi_handlers[64];
1246
1247/*
1248 * As a side effect of the way this is implemented we're limited
1249 * to interrupt handlers in the address range from
1250 * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ...
1251 */
1252void *set_except_vector(int n, void *addr)
1253{
1254        unsigned long handler = (unsigned long) addr;
1255        unsigned long old_handler = exception_handlers[n];
1256
1257        exception_handlers[n] = handler;
1258        if (n == 0 && cpu_has_divec) {
1259                *(u32 *)(ebase + 0x200) = 0x08000000 |
1260                                          (0x03ffffff & (handler >> 2));
1261                local_flush_icache_range(ebase + 0x200, ebase + 0x204);
1262        }
1263        return (void *)old_handler;
1264}
1265
1266static asmlinkage void do_default_vi(void)
1267{
1268        show_regs(get_irq_regs());
1269        panic("Caught unexpected vectored interrupt.");
1270}
1271
1272static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1273{
1274        unsigned long handler;
1275        unsigned long old_handler = vi_handlers[n];
1276        int srssets = current_cpu_data.srsets;
1277        u32 *w;
1278        unsigned char *b;
1279
1280        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1281
1282        if (addr == NULL) {
1283                handler = (unsigned long) do_default_vi;
1284                srs = 0;
1285        } else
1286                handler = (unsigned long) addr;
1287        vi_handlers[n] = (unsigned long) addr;
1288
1289        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1290
1291        if (srs >= srssets)
1292                panic("Shadow register set %d not supported", srs);
1293
1294        if (cpu_has_veic) {
1295                if (board_bind_eic_interrupt)
1296                        board_bind_eic_interrupt(n, srs);
1297        } else if (cpu_has_vint) {
1298                /* SRSMap is only defined if shadow sets are implemented */
1299                if (srssets > 1)
1300                        change_c0_srsmap(0xf << n*4, srs << n*4);
1301        }
1302
1303        if (srs == 0) {
1304                /*
1305                 * If no shadow set is selected then use the default handler
1306                 * that does normal register saving and a standard interrupt exit
1307                 */
1308
1309                extern char except_vec_vi, except_vec_vi_lui;
1310                extern char except_vec_vi_ori, except_vec_vi_end;
1311                extern char rollback_except_vec_vi;
1312                char *vec_start = (cpu_wait == r4k_wait) ?
1313                        &rollback_except_vec_vi : &except_vec_vi;
1314#ifdef CONFIG_MIPS_MT_SMTC
1315                /*
1316                 * We need to provide the SMTC vectored interrupt handler
1317                 * not only with the address of the handler, but with the
1318                 * Status.IM bit to be masked before going there.
1319                 */
1320                extern char except_vec_vi_mori;
1321                const int mori_offset = &except_vec_vi_mori - vec_start;
1322#endif /* CONFIG_MIPS_MT_SMTC */
1323                const int handler_len = &except_vec_vi_end - vec_start;
1324                const int lui_offset = &except_vec_vi_lui - vec_start;
1325                const int ori_offset = &except_vec_vi_ori - vec_start;
1326
1327                if (handler_len > VECTORSPACING) {
1328                        /*
1329                         * Sigh... panicing won't help as the console
1330                         * is probably not configured :(
1331                         */
1332                        panic("VECTORSPACING too small");
1333                }
1334
1335                memcpy(b, vec_start, handler_len);
1336#ifdef CONFIG_MIPS_MT_SMTC
1337                BUG_ON(n > 7);  /* Vector index %d exceeds SMTC maximum. */
1338
1339                w = (u32 *)(b + mori_offset);
1340                *w = (*w & 0xffff0000) | (0x100 << n);
1341#endif /* CONFIG_MIPS_MT_SMTC */
1342                w = (u32 *)(b + lui_offset);
1343                *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1344                w = (u32 *)(b + ori_offset);
1345                *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1346                local_flush_icache_range((unsigned long)b,
1347                                         (unsigned long)(b+handler_len));
1348        }
1349        else {
1350                /*
1351                 * In other cases jump directly to the interrupt handler
1352                 *
1353                 * It is the handlers responsibility to save registers if required
1354                 * (eg hi/lo) and return from the exception using "eret"
1355                 */
1356                w = (u32 *)b;
1357                *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1358                *w = 0;
1359                local_flush_icache_range((unsigned long)b,
1360                                         (unsigned long)(b+8));
1361        }
1362
1363        return (void *)old_handler;
1364}
1365
1366void *set_vi_handler(int n, vi_handler_t addr)
1367{
1368        return set_vi_srs_handler(n, addr, 0);
1369}
1370
1371/*
1372 * This is used by native signal handling
1373 */
1374asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1375asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1376
1377extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1378extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1379
1380extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1381extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1382
1383#ifdef CONFIG_SMP
1384static int smp_save_fp_context(struct sigcontext __user *sc)
1385{
1386        return raw_cpu_has_fpu
1387               ? _save_fp_context(sc)
1388               : fpu_emulator_save_context(sc);
1389}
1390
1391static int smp_restore_fp_context(struct sigcontext __user *sc)
1392{
1393        return raw_cpu_has_fpu
1394               ? _restore_fp_context(sc)
1395               : fpu_emulator_restore_context(sc);
1396}
1397#endif
1398
1399static inline void signal_init(void)
1400{
1401#ifdef CONFIG_SMP
1402        /* For now just do the cpu_has_fpu check when the functions are invoked */
1403        save_fp_context = smp_save_fp_context;
1404        restore_fp_context = smp_restore_fp_context;
1405#else
1406        if (cpu_has_fpu) {
1407                save_fp_context = _save_fp_context;
1408                restore_fp_context = _restore_fp_context;
1409        } else {
1410                save_fp_context = fpu_emulator_save_context;
1411                restore_fp_context = fpu_emulator_restore_context;
1412        }
1413#endif
1414}
1415
1416#ifdef CONFIG_MIPS32_COMPAT
1417
1418/*
1419 * This is used by 32-bit signal stuff on the 64-bit kernel
1420 */
1421asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1422asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1423
1424extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1425extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1426
1427extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1428extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1429
1430static inline void signal32_init(void)
1431{
1432        if (cpu_has_fpu) {
1433                save_fp_context32 = _save_fp_context32;
1434                restore_fp_context32 = _restore_fp_context32;
1435        } else {
1436                save_fp_context32 = fpu_emulator_save_context32;
1437                restore_fp_context32 = fpu_emulator_restore_context32;
1438        }
1439}
1440#endif
1441
1442extern void cpu_cache_init(void);
1443extern void tlb_init(void);
1444extern void flush_tlb_handlers(void);
1445
1446/*
1447 * Timer interrupt
1448 */
1449int cp0_compare_irq;
1450
1451/*
1452 * Performance counter IRQ or -1 if shared with timer
1453 */
1454int cp0_perfcount_irq;
1455EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1456
1457static int __cpuinitdata noulri;
1458
1459static int __init ulri_disable(char *s)
1460{
1461        pr_info("Disabling ulri\n");
1462        noulri = 1;
1463
1464        return 1;
1465}
1466__setup("noulri", ulri_disable);
1467
1468void __cpuinit per_cpu_trap_init(void)
1469{
1470        unsigned int cpu = smp_processor_id();
1471        unsigned int status_set = ST0_CU0;
1472#ifdef CONFIG_MIPS_MT_SMTC
1473        int secondaryTC = 0;
1474        int bootTC = (cpu == 0);
1475
1476        /*
1477         * Only do per_cpu_trap_init() for first TC of Each VPE.
1478         * Note that this hack assumes that the SMTC init code
1479         * assigns TCs consecutively and in ascending order.
1480         */
1481
1482        if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1483            ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1484                secondaryTC = 1;
1485#endif /* CONFIG_MIPS_MT_SMTC */
1486
1487        /*
1488         * Disable coprocessors and select 32-bit or 64-bit addressing
1489         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1490         * flag that some firmware may have left set and the TS bit (for
1491         * IP27).  Set XX for ISA IV code to work.
1492         */
1493#ifdef CONFIG_64BIT
1494        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1495#endif
1496        if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1497                status_set |= ST0_XX;
1498        if (cpu_has_dsp)
1499                status_set |= ST0_MX;
1500
1501        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1502                         status_set);
1503
1504        if (cpu_has_mips_r2) {
1505                unsigned int enable = 0x0000000f;
1506
1507                if (!noulri && cpu_has_userlocal)
1508                        enable |= (1 << 29);
1509
1510                write_c0_hwrena(enable);
1511        }
1512
1513#ifdef CONFIG_CPU_CAVIUM_OCTEON
1514        write_c0_hwrena(0xc000000f); /* Octeon has register 30 and 31 */
1515#endif
1516
1517#ifdef CONFIG_MIPS_MT_SMTC
1518        if (!secondaryTC) {
1519#endif /* CONFIG_MIPS_MT_SMTC */
1520
1521        if (cpu_has_veic || cpu_has_vint) {
1522                unsigned long sr = set_c0_status(ST0_BEV);
1523                write_c0_ebase(ebase);
1524                write_c0_status(sr);
1525                /* Setting vector spacing enables EI/VI mode  */
1526                change_c0_intctl(0x3e0, VECTORSPACING);
1527        }
1528        if (cpu_has_divec) {
1529                if (cpu_has_mipsmt) {
1530                        unsigned int vpflags = dvpe();
1531                        set_c0_cause(CAUSEF_IV);
1532                        evpe(vpflags);
1533                } else
1534                        set_c0_cause(CAUSEF_IV);
1535        }
1536
1537        /*
1538         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1539         *
1540         *  o read IntCtl.IPTI to determine the timer interrupt
1541         *  o read IntCtl.IPPCI to determine the performance counter interrupt
1542         */
1543        if (cpu_has_mips_r2) {
1544                cp0_compare_irq = (read_c0_intctl() >> 29) & 7;
1545                cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7;
1546                if (cp0_perfcount_irq == cp0_compare_irq)
1547                        cp0_perfcount_irq = -1;
1548        } else {
1549                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1550                cp0_perfcount_irq = -1;
1551        }
1552
1553#ifdef CONFIG_MIPS_MT_SMTC
1554        }
1555#endif /* CONFIG_MIPS_MT_SMTC */
1556
1557        cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1558        TLBMISS_HANDLER_SETUP();
1559
1560        atomic_inc(&init_mm.mm_count);
1561        current->active_mm = &init_mm;
1562        BUG_ON(current->mm);
1563        enter_lazy_tlb(&init_mm, current);
1564
1565#ifdef CONFIG_MIPS_MT_SMTC
1566        if (bootTC) {
1567#endif /* CONFIG_MIPS_MT_SMTC */
1568                cpu_cache_init();
1569                tlb_init();
1570#ifdef CONFIG_MIPS_MT_SMTC
1571        } else if (!secondaryTC) {
1572                /*
1573                 * First TC in non-boot VPE must do subset of tlb_init()
1574                 * for MMU countrol registers.
1575                 */
1576                write_c0_pagemask(PM_DEFAULT_MASK);
1577                write_c0_wired(0);
1578        }
1579#endif /* CONFIG_MIPS_MT_SMTC */
1580}
1581
1582/* Install CPU exception handler */
1583void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1584{
1585        memcpy((void *)(ebase + offset), addr, size);
1586        local_flush_icache_range(ebase + offset, ebase + offset + size);
1587}
1588
1589static char panic_null_cerr[] __cpuinitdata =
1590        "Trying to set NULL cache error exception handler";
1591
1592/*
1593 * Install uncached CPU exception handler.
1594 * This is suitable only for the cache error exception which is the only
1595 * exception handler that is being run uncached.
1596 */
1597void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1598        unsigned long size)
1599{
1600#ifdef CONFIG_32BIT
1601        unsigned long uncached_ebase = KSEG1ADDR(ebase);
1602#endif
1603#ifdef CONFIG_64BIT
1604        unsigned long uncached_ebase = TO_UNCAC(ebase);
1605#endif
1606
1607        if (!addr)
1608                panic(panic_null_cerr);
1609
1610        memcpy((void *)(uncached_ebase + offset), addr, size);
1611}
1612
1613static int __initdata rdhwr_noopt;
1614static int __init set_rdhwr_noopt(char *str)
1615{
1616        rdhwr_noopt = 1;
1617        return 1;
1618}
1619
1620__setup("rdhwr_noopt", set_rdhwr_noopt);
1621
1622void __init trap_init(void)
1623{
1624        extern char except_vec3_generic, except_vec3_r4000;
1625        extern char except_vec4;
1626        unsigned long i;
1627        int rollback;
1628
1629        check_wait();
1630        rollback = (cpu_wait == r4k_wait);
1631
1632#if defined(CONFIG_KGDB)
1633        if (kgdb_early_setup)
1634                return; /* Already done */
1635#endif
1636
1637        if (cpu_has_veic || cpu_has_vint) {
1638                unsigned long size = 0x200 + VECTORSPACING*64;
1639                ebase = (unsigned long)
1640                        __alloc_bootmem(size, 1 << fls(size), 0);
1641        } else {
1642                ebase = CAC_BASE;
1643                if (cpu_has_mips_r2)
1644                        ebase += (read_c0_ebase() & 0x3ffff000);
1645        }
1646
1647        per_cpu_trap_init();
1648
1649        /*
1650         * Copy the generic exception handlers to their final destination.
1651         * This will be overriden later as suitable for a particular
1652         * configuration.
1653         */
1654        set_handler(0x180, &except_vec3_generic, 0x80);
1655
1656        /*
1657         * Setup default vectors
1658         */
1659        for (i = 0; i <= 31; i++)
1660                set_except_vector(i, handle_reserved);
1661
1662        /*
1663         * Copy the EJTAG debug exception vector handler code to it's final
1664         * destination.
1665         */
1666        if (cpu_has_ejtag && board_ejtag_handler_setup)
1667                board_ejtag_handler_setup();
1668
1669        /*
1670         * Only some CPUs have the watch exceptions.
1671         */
1672        if (cpu_has_watch)
1673                set_except_vector(23, handle_watch);
1674
1675        /*
1676         * Initialise interrupt handlers
1677         */
1678        if (cpu_has_veic || cpu_has_vint) {
1679                int nvec = cpu_has_veic ? 64 : 8;
1680                for (i = 0; i < nvec; i++)
1681                        set_vi_handler(i, NULL);
1682        }
1683        else if (cpu_has_divec)
1684                set_handler(0x200, &except_vec4, 0x8);
1685
1686        /*
1687         * Some CPUs can enable/disable for cache parity detection, but does
1688         * it different ways.
1689         */
1690        parity_protection_init();
1691
1692        /*
1693         * The Data Bus Errors / Instruction Bus Errors are signaled
1694         * by external hardware.  Therefore these two exceptions
1695         * may have board specific handlers.
1696         */
1697        if (board_be_init)
1698                board_be_init();
1699
1700        set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1701        set_except_vector(1, handle_tlbm);
1702        set_except_vector(2, handle_tlbl);
1703        set_except_vector(3, handle_tlbs);
1704
1705        set_except_vector(4, handle_adel);
1706        set_except_vector(5, handle_ades);
1707
1708        set_except_vector(6, handle_ibe);
1709        set_except_vector(7, handle_dbe);
1710
1711        set_except_vector(8, handle_sys);
1712        set_except_vector(9, handle_bp);
1713        set_except_vector(10, rdhwr_noopt ? handle_ri :
1714                          (cpu_has_vtag_icache ?
1715                           handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1716        set_except_vector(11, handle_cpu);
1717        set_except_vector(12, handle_ov);
1718        set_except_vector(13, handle_tr);
1719
1720        if (current_cpu_type() == CPU_R6000 ||
1721            current_cpu_type() == CPU_R6000A) {
1722                /*
1723                 * The R6000 is the only R-series CPU that features a machine
1724                 * check exception (similar to the R4000 cache error) and
1725                 * unaligned ldc1/sdc1 exception.  The handlers have not been
1726                 * written yet.  Well, anyway there is no R6000 machine on the
1727                 * current list of targets for Linux/MIPS.
1728                 * (Duh, crap, there is someone with a triple R6k machine)
1729                 */
1730                //set_except_vector(14, handle_mc);
1731                //set_except_vector(15, handle_ndc);
1732        }
1733
1734
1735        if (board_nmi_handler_setup)
1736                board_nmi_handler_setup();
1737
1738        if (cpu_has_fpu && !cpu_has_nofpuex)
1739                set_except_vector(15, handle_fpe);
1740
1741        set_except_vector(22, handle_mdmx);
1742
1743        if (cpu_has_mcheck)
1744                set_except_vector(24, handle_mcheck);
1745
1746        if (cpu_has_mipsmt)
1747                set_except_vector(25, handle_mt);
1748
1749        set_except_vector(26, handle_dsp);
1750
1751        if (cpu_has_vce)
1752                /* Special exception: R4[04]00 uses also the divec space. */
1753                memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1754        else if (cpu_has_4kex)
1755                memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1756        else
1757                memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1758
1759        signal_init();
1760#ifdef CONFIG_MIPS32_COMPAT
1761        signal32_init();
1762#endif
1763
1764        local_flush_icache_range(ebase, ebase + 0x400);
1765        flush_tlb_handlers();
1766
1767        sort_extable(__start___dbe_table, __stop___dbe_table);
1768}
1769