linux/arch/mips/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1995 Linus Torvalds
   7 * Copyright (C) 1995 Waldorf Electronics
   8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
   9 * Copyright (C) 1996 Stoned Elipot
  10 * Copyright (C) 1999 Silicon Graphics, Inc.
  11 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
  12 */
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/module.h>
  16#include <linux/screen_info.h>
  17#include <linux/bootmem.h>
  18#include <linux/initrd.h>
  19#include <linux/root_dev.h>
  20#include <linux/highmem.h>
  21#include <linux/console.h>
  22#include <linux/pfn.h>
  23#include <linux/debugfs.h>
  24
  25#include <asm/addrspace.h>
  26#include <asm/bootinfo.h>
  27#include <asm/bugs.h>
  28#include <asm/cache.h>
  29#include <asm/cpu.h>
  30#include <asm/sections.h>
  31#include <asm/setup.h>
  32#include <asm/smp-ops.h>
  33#include <asm/system.h>
  34
  35struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  36
  37EXPORT_SYMBOL(cpu_data);
  38
  39#ifdef CONFIG_VT
  40struct screen_info screen_info;
  41#endif
  42
  43/*
  44 * Despite it's name this variable is even if we don't have PCI
  45 */
  46unsigned int PCI_DMA_BUS_IS_PHYS;
  47
  48EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  49
  50/*
  51 * Setup information
  52 *
  53 * These are initialized so they are in the .data section
  54 */
  55unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  56
  57EXPORT_SYMBOL(mips_machtype);
  58
  59struct boot_mem_map boot_mem_map;
  60
  61static char command_line[CL_SIZE];
  62       char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
  63
  64/*
  65 * mips_io_port_base is the begin of the address space to which x86 style
  66 * I/O ports are mapped.
  67 */
  68const unsigned long mips_io_port_base __read_mostly = -1;
  69EXPORT_SYMBOL(mips_io_port_base);
  70
  71static struct resource code_resource = { .name = "Kernel code", };
  72static struct resource data_resource = { .name = "Kernel data", };
  73
  74void __init add_memory_region(phys_t start, phys_t size, long type)
  75{
  76        int x = boot_mem_map.nr_map;
  77        struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
  78
  79        /* Sanity check */
  80        if (start + size < start) {
  81                pr_warning("Trying to add an invalid memory region, skipped\n");
  82                return;
  83        }
  84
  85        /*
  86         * Try to merge with previous entry if any.  This is far less than
  87         * perfect but is sufficient for most real world cases.
  88         */
  89        if (x && prev->addr + prev->size == start && prev->type == type) {
  90                prev->size += size;
  91                return;
  92        }
  93
  94        if (x == BOOT_MEM_MAP_MAX) {
  95                pr_err("Ooops! Too many entries in the memory map!\n");
  96                return;
  97        }
  98
  99        boot_mem_map.map[x].addr = start;
 100        boot_mem_map.map[x].size = size;
 101        boot_mem_map.map[x].type = type;
 102        boot_mem_map.nr_map++;
 103}
 104
 105static void __init print_memory_map(void)
 106{
 107        int i;
 108        const int field = 2 * sizeof(unsigned long);
 109
 110        for (i = 0; i < boot_mem_map.nr_map; i++) {
 111                printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
 112                       field, (unsigned long long) boot_mem_map.map[i].size,
 113                       field, (unsigned long long) boot_mem_map.map[i].addr);
 114
 115                switch (boot_mem_map.map[i].type) {
 116                case BOOT_MEM_RAM:
 117                        printk(KERN_CONT "(usable)\n");
 118                        break;
 119                case BOOT_MEM_ROM_DATA:
 120                        printk(KERN_CONT "(ROM data)\n");
 121                        break;
 122                case BOOT_MEM_RESERVED:
 123                        printk(KERN_CONT "(reserved)\n");
 124                        break;
 125                default:
 126                        printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
 127                        break;
 128                }
 129        }
 130}
 131
 132/*
 133 * Manage initrd
 134 */
 135#ifdef CONFIG_BLK_DEV_INITRD
 136
 137static int __init rd_start_early(char *p)
 138{
 139        unsigned long start = memparse(p, &p);
 140
 141#ifdef CONFIG_64BIT
 142        /* Guess if the sign extension was forgotten by bootloader */
 143        if (start < XKPHYS)
 144                start = (int)start;
 145#endif
 146        initrd_start = start;
 147        initrd_end += start;
 148        return 0;
 149}
 150early_param("rd_start", rd_start_early);
 151
 152static int __init rd_size_early(char *p)
 153{
 154        initrd_end += memparse(p, &p);
 155        return 0;
 156}
 157early_param("rd_size", rd_size_early);
 158
 159/* it returns the next free pfn after initrd */
 160static unsigned long __init init_initrd(void)
 161{
 162        unsigned long end;
 163
 164        /*
 165         * Board specific code or command line parser should have
 166         * already set up initrd_start and initrd_end. In these cases
 167         * perfom sanity checks and use them if all looks good.
 168         */
 169        if (!initrd_start || initrd_end <= initrd_start) {
 170#ifdef CONFIG_PROBE_INITRD_HEADER
 171                u32 *initrd_header;
 172
 173                /*
 174                 * See if initrd has been added to the kernel image by
 175                 * arch/mips/boot/addinitrd.c. In that case a header is
 176                 * prepended to initrd and is made up by 8 bytes. The first
 177                 * word is a magic number and the second one is the size of
 178                 * initrd.  Initrd start must be page aligned in any cases.
 179                 */
 180                initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
 181                if (initrd_header[0] != 0x494E5244)
 182                        goto disable;
 183                initrd_start = (unsigned long)(initrd_header + 2);
 184                initrd_end = initrd_start + initrd_header[1];
 185#else
 186                goto disable;
 187#endif
 188        }
 189
 190        if (initrd_start & ~PAGE_MASK) {
 191                pr_err("initrd start must be page aligned\n");
 192                goto disable;
 193        }
 194        if (initrd_start < PAGE_OFFSET) {
 195                pr_err("initrd start < PAGE_OFFSET\n");
 196                goto disable;
 197        }
 198
 199        /*
 200         * Sanitize initrd addresses. For example firmware
 201         * can't guess if they need to pass them through
 202         * 64-bits values if the kernel has been built in pure
 203         * 32-bit. We need also to switch from KSEG0 to XKPHYS
 204         * addresses now, so the code can now safely use __pa().
 205         */
 206        end = __pa(initrd_end);
 207        initrd_end = (unsigned long)__va(end);
 208        initrd_start = (unsigned long)__va(__pa(initrd_start));
 209
 210        ROOT_DEV = Root_RAM0;
 211        return PFN_UP(end);
 212disable:
 213        initrd_start = 0;
 214        initrd_end = 0;
 215        return 0;
 216}
 217
 218static void __init finalize_initrd(void)
 219{
 220        unsigned long size = initrd_end - initrd_start;
 221
 222        if (size == 0) {
 223                printk(KERN_INFO "Initrd not found or empty");
 224                goto disable;
 225        }
 226        if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
 227                printk(KERN_ERR "Initrd extends beyond end of memory");
 228                goto disable;
 229        }
 230
 231        reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
 232        initrd_below_start_ok = 1;
 233
 234        pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
 235                initrd_start, size);
 236        return;
 237disable:
 238        printk(KERN_CONT " - disabling initrd\n");
 239        initrd_start = 0;
 240        initrd_end = 0;
 241}
 242
 243#else  /* !CONFIG_BLK_DEV_INITRD */
 244
 245static unsigned long __init init_initrd(void)
 246{
 247        return 0;
 248}
 249
 250#define finalize_initrd()       do {} while (0)
 251
 252#endif
 253
 254/*
 255 * Initialize the bootmem allocator. It also setup initrd related data
 256 * if needed.
 257 */
 258#ifdef CONFIG_SGI_IP27
 259
 260static void __init bootmem_init(void)
 261{
 262        init_initrd();
 263        finalize_initrd();
 264}
 265
 266#else  /* !CONFIG_SGI_IP27 */
 267
 268static void __init bootmem_init(void)
 269{
 270        unsigned long reserved_end;
 271        unsigned long mapstart = ~0UL;
 272        unsigned long bootmap_size;
 273        int i;
 274
 275        /*
 276         * Init any data related to initrd. It's a nop if INITRD is
 277         * not selected. Once that done we can determine the low bound
 278         * of usable memory.
 279         */
 280        reserved_end = max(init_initrd(),
 281                           (unsigned long) PFN_UP(__pa_symbol(&_end)));
 282
 283        /*
 284         * max_low_pfn is not a number of pages. The number of pages
 285         * of the system is given by 'max_low_pfn - min_low_pfn'.
 286         */
 287        min_low_pfn = ~0UL;
 288        max_low_pfn = 0;
 289
 290        /*
 291         * Find the highest page frame number we have available.
 292         */
 293        for (i = 0; i < boot_mem_map.nr_map; i++) {
 294                unsigned long start, end;
 295
 296                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 297                        continue;
 298
 299                start = PFN_UP(boot_mem_map.map[i].addr);
 300                end = PFN_DOWN(boot_mem_map.map[i].addr
 301                                + boot_mem_map.map[i].size);
 302
 303                if (end > max_low_pfn)
 304                        max_low_pfn = end;
 305                if (start < min_low_pfn)
 306                        min_low_pfn = start;
 307                if (end <= reserved_end)
 308                        continue;
 309                if (start >= mapstart)
 310                        continue;
 311                mapstart = max(reserved_end, start);
 312        }
 313
 314        if (min_low_pfn >= max_low_pfn)
 315                panic("Incorrect memory mapping !!!");
 316        if (min_low_pfn > ARCH_PFN_OFFSET) {
 317                pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
 318                        (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
 319                        min_low_pfn - ARCH_PFN_OFFSET);
 320        } else if (min_low_pfn < ARCH_PFN_OFFSET) {
 321                pr_info("%lu free pages won't be used\n",
 322                        ARCH_PFN_OFFSET - min_low_pfn);
 323        }
 324        min_low_pfn = ARCH_PFN_OFFSET;
 325
 326        /*
 327         * Determine low and high memory ranges
 328         */
 329        max_pfn = max_low_pfn;
 330        if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
 331#ifdef CONFIG_HIGHMEM
 332                highstart_pfn = PFN_DOWN(HIGHMEM_START);
 333                highend_pfn = max_low_pfn;
 334#endif
 335                max_low_pfn = PFN_DOWN(HIGHMEM_START);
 336        }
 337
 338        /*
 339         * Initialize the boot-time allocator with low memory only.
 340         */
 341        bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
 342                                         min_low_pfn, max_low_pfn);
 343
 344
 345        for (i = 0; i < boot_mem_map.nr_map; i++) {
 346                unsigned long start, end;
 347
 348                start = PFN_UP(boot_mem_map.map[i].addr);
 349                end = PFN_DOWN(boot_mem_map.map[i].addr
 350                                + boot_mem_map.map[i].size);
 351
 352                if (start <= min_low_pfn)
 353                        start = min_low_pfn;
 354                if (start >= end)
 355                        continue;
 356
 357#ifndef CONFIG_HIGHMEM
 358                if (end > max_low_pfn)
 359                        end = max_low_pfn;
 360
 361                /*
 362                 * ... finally, is the area going away?
 363                 */
 364                if (end <= start)
 365                        continue;
 366#endif
 367
 368                add_active_range(0, start, end);
 369        }
 370
 371        /*
 372         * Register fully available low RAM pages with the bootmem allocator.
 373         */
 374        for (i = 0; i < boot_mem_map.nr_map; i++) {
 375                unsigned long start, end, size;
 376
 377                /*
 378                 * Reserve usable memory.
 379                 */
 380                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 381                        continue;
 382
 383                start = PFN_UP(boot_mem_map.map[i].addr);
 384                end   = PFN_DOWN(boot_mem_map.map[i].addr
 385                                    + boot_mem_map.map[i].size);
 386                /*
 387                 * We are rounding up the start address of usable memory
 388                 * and at the end of the usable range downwards.
 389                 */
 390                if (start >= max_low_pfn)
 391                        continue;
 392                if (start < reserved_end)
 393                        start = reserved_end;
 394                if (end > max_low_pfn)
 395                        end = max_low_pfn;
 396
 397                /*
 398                 * ... finally, is the area going away?
 399                 */
 400                if (end <= start)
 401                        continue;
 402                size = end - start;
 403
 404                /* Register lowmem ranges */
 405                free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
 406                memory_present(0, start, end);
 407        }
 408
 409        /*
 410         * Reserve the bootmap memory.
 411         */
 412        reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
 413
 414        /*
 415         * Reserve initrd memory if needed.
 416         */
 417        finalize_initrd();
 418}
 419
 420#endif  /* CONFIG_SGI_IP27 */
 421
 422/*
 423 * arch_mem_init - initialize memory management subsystem
 424 *
 425 *  o plat_mem_setup() detects the memory configuration and will record detected
 426 *    memory areas using add_memory_region.
 427 *
 428 * At this stage the memory configuration of the system is known to the
 429 * kernel but generic memory management system is still entirely uninitialized.
 430 *
 431 *  o bootmem_init()
 432 *  o sparse_init()
 433 *  o paging_init()
 434 *
 435 * At this stage the bootmem allocator is ready to use.
 436 *
 437 * NOTE: historically plat_mem_setup did the entire platform initialization.
 438 *       This was rather impractical because it meant plat_mem_setup had to
 439 * get away without any kind of memory allocator.  To keep old code from
 440 * breaking plat_setup was just renamed to plat_setup and a second platform
 441 * initialization hook for anything else was introduced.
 442 */
 443
 444static int usermem __initdata = 0;
 445
 446static int __init early_parse_mem(char *p)
 447{
 448        unsigned long start, size;
 449
 450        /*
 451         * If a user specifies memory size, we
 452         * blow away any automatically generated
 453         * size.
 454         */
 455        if (usermem == 0) {
 456                boot_mem_map.nr_map = 0;
 457                usermem = 1;
 458        }
 459        start = 0;
 460        size = memparse(p, &p);
 461        if (*p == '@')
 462                start = memparse(p + 1, &p);
 463
 464        add_memory_region(start, size, BOOT_MEM_RAM);
 465        return 0;
 466}
 467early_param("mem", early_parse_mem);
 468
 469static void __init arch_mem_init(char **cmdline_p)
 470{
 471        extern void plat_mem_setup(void);
 472
 473        /* call board setup routine */
 474        plat_mem_setup();
 475
 476        pr_info("Determined physical RAM map:\n");
 477        print_memory_map();
 478
 479        strlcpy(command_line, arcs_cmdline, sizeof(command_line));
 480        strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
 481
 482        *cmdline_p = command_line;
 483
 484        parse_early_param();
 485
 486        if (usermem) {
 487                pr_info("User-defined physical RAM map:\n");
 488                print_memory_map();
 489        }
 490
 491        bootmem_init();
 492        sparse_init();
 493        paging_init();
 494}
 495
 496static void __init resource_init(void)
 497{
 498        int i;
 499
 500        if (UNCAC_BASE != IO_BASE)
 501                return;
 502
 503        code_resource.start = __pa_symbol(&_text);
 504        code_resource.end = __pa_symbol(&_etext) - 1;
 505        data_resource.start = __pa_symbol(&_etext);
 506        data_resource.end = __pa_symbol(&_edata) - 1;
 507
 508        /*
 509         * Request address space for all standard RAM.
 510         */
 511        for (i = 0; i < boot_mem_map.nr_map; i++) {
 512                struct resource *res;
 513                unsigned long start, end;
 514
 515                start = boot_mem_map.map[i].addr;
 516                end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
 517                if (start >= HIGHMEM_START)
 518                        continue;
 519                if (end >= HIGHMEM_START)
 520                        end = HIGHMEM_START - 1;
 521
 522                res = alloc_bootmem(sizeof(struct resource));
 523                switch (boot_mem_map.map[i].type) {
 524                case BOOT_MEM_RAM:
 525                case BOOT_MEM_ROM_DATA:
 526                        res->name = "System RAM";
 527                        break;
 528                case BOOT_MEM_RESERVED:
 529                default:
 530                        res->name = "reserved";
 531                }
 532
 533                res->start = start;
 534                res->end = end;
 535
 536                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 537                request_resource(&iomem_resource, res);
 538
 539                /*
 540                 *  We don't know which RAM region contains kernel data,
 541                 *  so we try it repeatedly and let the resource manager
 542                 *  test it.
 543                 */
 544                request_resource(res, &code_resource);
 545                request_resource(res, &data_resource);
 546        }
 547}
 548
 549void __init setup_arch(char **cmdline_p)
 550{
 551        cpu_probe();
 552        prom_init();
 553
 554#ifdef CONFIG_EARLY_PRINTK
 555        setup_early_printk();
 556#endif
 557        cpu_report();
 558        check_bugs_early();
 559
 560#if defined(CONFIG_VT)
 561#if defined(CONFIG_VGA_CONSOLE)
 562        conswitchp = &vga_con;
 563#elif defined(CONFIG_DUMMY_CONSOLE)
 564        conswitchp = &dummy_con;
 565#endif
 566#endif
 567
 568        arch_mem_init(cmdline_p);
 569
 570        resource_init();
 571        plat_smp_setup();
 572}
 573
 574static int __init fpu_disable(char *s)
 575{
 576        int i;
 577
 578        for (i = 0; i < NR_CPUS; i++)
 579                cpu_data[i].options &= ~MIPS_CPU_FPU;
 580
 581        return 1;
 582}
 583
 584__setup("nofpu", fpu_disable);
 585
 586static int __init dsp_disable(char *s)
 587{
 588        cpu_data[0].ases &= ~MIPS_ASE_DSP;
 589
 590        return 1;
 591}
 592
 593__setup("nodsp", dsp_disable);
 594
 595unsigned long kernelsp[NR_CPUS];
 596unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
 597
 598#ifdef CONFIG_DEBUG_FS
 599struct dentry *mips_debugfs_dir;
 600static int __init debugfs_mips(void)
 601{
 602        struct dentry *d;
 603
 604        d = debugfs_create_dir("mips", NULL);
 605        if (!d)
 606                return -ENOMEM;
 607        mips_debugfs_dir = d;
 608        return 0;
 609}
 610arch_initcall(debugfs_mips);
 611#endif
 612