linux/arch/mips/kernel/cevt-smtc.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2007 MIPS Technologies, Inc.
   7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
   8 * Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
   9 */
  10#include <linux/clockchips.h>
  11#include <linux/interrupt.h>
  12#include <linux/percpu.h>
  13
  14#include <asm/smtc_ipi.h>
  15#include <asm/time.h>
  16#include <asm/cevt-r4k.h>
  17
  18/*
  19 * Variant clock event timer support for SMTC on MIPS 34K, 1004K
  20 * or other MIPS MT cores.
  21 *
  22 * Notes on SMTC Support:
  23 *
  24 * SMTC has multiple microthread TCs pretending to be Linux CPUs.
  25 * But there's only one Count/Compare pair per VPE, and Compare
  26 * interrupts are taken opportunisitically by available TCs
  27 * bound to the VPE with the Count register.  The new timer
  28 * framework provides for global broadcasts, but we really
  29 * want VPE-level multicasts for best behavior. So instead
  30 * of invoking the high-level clock-event broadcast code,
  31 * this version of SMTC support uses the historical SMTC
  32 * multicast mechanisms "under the hood", appearing to the
  33 * generic clock layer as if the interrupts are per-CPU.
  34 *
  35 * The approach taken here is to maintain a set of NR_CPUS
  36 * virtual timers, and track which "CPU" needs to be alerted
  37 * at each event.
  38 *
  39 * It's unlikely that we'll see a MIPS MT core with more than
  40 * 2 VPEs, but we *know* that we won't need to handle more
  41 * VPEs than we have "CPUs".  So NCPUs arrays of NCPUs elements
  42 * is always going to be overkill, but always going to be enough.
  43 */
  44
  45unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
  46static int smtc_nextinvpe[NR_CPUS];
  47
  48/*
  49 * Timestamps stored are absolute values to be programmed
  50 * into Count register.  Valid timestamps will never be zero.
  51 * If a Zero Count value is actually calculated, it is converted
  52 * to be a 1, which will introduce 1 or two CPU cycles of error
  53 * roughly once every four billion events, which at 1000 HZ means
  54 * about once every 50 days.  If that's actually a problem, one
  55 * could alternate squashing 0 to 1 and to -1.
  56 */
  57
  58#define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
  59#define ISVALID(x) ((x) != 0L)
  60
  61/*
  62 * Time comparison is subtle, as it's really truncated
  63 * modular arithmetic.
  64 */
  65
  66#define IS_SOONER(a, b, reference) \
  67    (((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))
  68
  69/*
  70 * CATCHUP_INCREMENT, used when the function falls behind the counter.
  71 * Could be an increasing function instead of a constant;
  72 */
  73
  74#define CATCHUP_INCREMENT 64
  75
  76static int mips_next_event(unsigned long delta,
  77                                struct clock_event_device *evt)
  78{
  79        unsigned long flags;
  80        unsigned int mtflags;
  81        unsigned long timestamp, reference, previous;
  82        unsigned long nextcomp = 0L;
  83        int vpe = current_cpu_data.vpe_id;
  84        int cpu = smp_processor_id();
  85        local_irq_save(flags);
  86        mtflags = dmt();
  87
  88        /*
  89         * Maintain the per-TC virtual timer
  90         * and program the per-VPE shared Count register
  91         * as appropriate here...
  92         */
  93        reference = (unsigned long)read_c0_count();
  94        timestamp = MAKEVALID(reference + delta);
  95        /*
  96         * To really model the clock, we have to catch the case
  97         * where the current next-in-VPE timestamp is the old
  98         * timestamp for the calling CPE, but the new value is
  99         * in fact later.  In that case, we have to do a full
 100         * scan and discover the new next-in-VPE CPU id and
 101         * timestamp.
 102         */
 103        previous = smtc_nexttime[vpe][cpu];
 104        if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
 105            && IS_SOONER(previous, timestamp, reference)) {
 106                int i;
 107                int soonest = cpu;
 108
 109                /*
 110                 * Update timestamp array here, so that new
 111                 * value gets considered along with those of
 112                 * other virtual CPUs on the VPE.
 113                 */
 114                smtc_nexttime[vpe][cpu] = timestamp;
 115                for_each_online_cpu(i) {
 116                        if (ISVALID(smtc_nexttime[vpe][i])
 117                            && IS_SOONER(smtc_nexttime[vpe][i],
 118                                smtc_nexttime[vpe][soonest], reference)) {
 119                                    soonest = i;
 120                        }
 121                }
 122                smtc_nextinvpe[vpe] = soonest;
 123                nextcomp = smtc_nexttime[vpe][soonest];
 124        /*
 125         * Otherwise, we don't have to process the whole array rank,
 126         * we just have to see if the event horizon has gotten closer.
 127         */
 128        } else {
 129                if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
 130                    IS_SOONER(timestamp,
 131                        smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
 132                            smtc_nextinvpe[vpe] = cpu;
 133                            nextcomp = timestamp;
 134                }
 135                /*
 136                 * Since next-in-VPE may me the same as the executing
 137                 * virtual CPU, we update the array *after* checking
 138                 * its value.
 139                 */
 140                smtc_nexttime[vpe][cpu] = timestamp;
 141        }
 142
 143        /*
 144         * It may be that, in fact, we don't need to update Compare,
 145         * but if we do, we want to make sure we didn't fall into
 146         * a crack just behind Count.
 147         */
 148        if (ISVALID(nextcomp)) {
 149                write_c0_compare(nextcomp);
 150                ehb();
 151                /*
 152                 * We never return an error, we just make sure
 153                 * that we trigger the handlers as quickly as
 154                 * we can if we fell behind.
 155                 */
 156                while ((nextcomp - (unsigned long)read_c0_count())
 157                        > (unsigned long)LONG_MAX) {
 158                        nextcomp += CATCHUP_INCREMENT;
 159                        write_c0_compare(nextcomp);
 160                        ehb();
 161                }
 162        }
 163        emt(mtflags);
 164        local_irq_restore(flags);
 165        return 0;
 166}
 167
 168
 169void smtc_distribute_timer(int vpe)
 170{
 171        unsigned long flags;
 172        unsigned int mtflags;
 173        int cpu;
 174        struct clock_event_device *cd;
 175        unsigned long nextstamp = 0L;
 176        unsigned long reference;
 177
 178
 179repeat:
 180        for_each_online_cpu(cpu) {
 181            /*
 182             * Find virtual CPUs within the current VPE who have
 183             * unserviced timer requests whose time is now past.
 184             */
 185            local_irq_save(flags);
 186            mtflags = dmt();
 187            if (cpu_data[cpu].vpe_id == vpe &&
 188                ISVALID(smtc_nexttime[vpe][cpu])) {
 189                reference = (unsigned long)read_c0_count();
 190                if ((smtc_nexttime[vpe][cpu] - reference)
 191                         > (unsigned long)LONG_MAX) {
 192                            smtc_nexttime[vpe][cpu] = 0L;
 193                            emt(mtflags);
 194                            local_irq_restore(flags);
 195                            /*
 196                             * We don't send IPIs to ourself.
 197                             */
 198                            if (cpu != smp_processor_id()) {
 199                                smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
 200                            } else {
 201                                cd = &per_cpu(mips_clockevent_device, cpu);
 202                                cd->event_handler(cd);
 203                            }
 204                } else {
 205                        /* Local to VPE but Valid Time not yet reached. */
 206                        if (!ISVALID(nextstamp) ||
 207                            IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
 208                            reference)) {
 209                                smtc_nextinvpe[vpe] = cpu;
 210                                nextstamp = smtc_nexttime[vpe][cpu];
 211                        }
 212                        emt(mtflags);
 213                        local_irq_restore(flags);
 214                }
 215            } else {
 216                emt(mtflags);
 217                local_irq_restore(flags);
 218
 219            }
 220        }
 221        /* Reprogram for interrupt at next soonest timestamp for VPE */
 222        if (ISVALID(nextstamp)) {
 223                write_c0_compare(nextstamp);
 224                ehb();
 225                if ((nextstamp - (unsigned long)read_c0_count())
 226                        > (unsigned long)LONG_MAX)
 227                                goto repeat;
 228        }
 229}
 230
 231
 232irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
 233{
 234        int cpu = smp_processor_id();
 235
 236        /* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
 237        handle_perf_irq(1);
 238
 239        if (read_c0_cause() & (1 << 30)) {
 240                /* Clear Count/Compare Interrupt */
 241                write_c0_compare(read_c0_compare());
 242                smtc_distribute_timer(cpu_data[cpu].vpe_id);
 243        }
 244        return IRQ_HANDLED;
 245}
 246
 247
 248int __cpuinit smtc_clockevent_init(void)
 249{
 250        uint64_t mips_freq = mips_hpt_frequency;
 251        unsigned int cpu = smp_processor_id();
 252        struct clock_event_device *cd;
 253        unsigned int irq;
 254        int i;
 255        int j;
 256
 257        if (!cpu_has_counter || !mips_hpt_frequency)
 258                return -ENXIO;
 259        if (cpu == 0) {
 260                for (i = 0; i < num_possible_cpus(); i++) {
 261                        smtc_nextinvpe[i] = 0;
 262                        for (j = 0; j < num_possible_cpus(); j++)
 263                                smtc_nexttime[i][j] = 0L;
 264                }
 265                /*
 266                 * SMTC also can't have the usablility test
 267                 * run by secondary TCs once Compare is in use.
 268                 */
 269                if (!c0_compare_int_usable())
 270                        return -ENXIO;
 271        }
 272
 273        /*
 274         * With vectored interrupts things are getting platform specific.
 275         * get_c0_compare_int is a hook to allow a platform to return the
 276         * interrupt number of it's liking.
 277         */
 278        irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
 279        if (get_c0_compare_int)
 280                irq = get_c0_compare_int();
 281
 282        cd = &per_cpu(mips_clockevent_device, cpu);
 283
 284        cd->name                = "MIPS";
 285        cd->features            = CLOCK_EVT_FEAT_ONESHOT;
 286
 287        /* Calculate the min / max delta */
 288        cd->mult        = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
 289        cd->shift               = 32;
 290        cd->max_delta_ns        = clockevent_delta2ns(0x7fffffff, cd);
 291        cd->min_delta_ns        = clockevent_delta2ns(0x300, cd);
 292
 293        cd->rating              = 300;
 294        cd->irq                 = irq;
 295        cd->cpumask             = cpumask_of(cpu);
 296        cd->set_next_event      = mips_next_event;
 297        cd->set_mode            = mips_set_clock_mode;
 298        cd->event_handler       = mips_event_handler;
 299
 300        clockevents_register_device(cd);
 301
 302        /*
 303         * On SMTC we only want to do the data structure
 304         * initialization and IRQ setup once.
 305         */
 306        if (cpu)
 307                return 0;
 308        /*
 309         * And we need the hwmask associated with the c0_compare
 310         * vector to be initialized.
 311         */
 312        irq_hwmask[irq] = (0x100 << cp0_compare_irq);
 313        if (cp0_timer_irq_installed)
 314                return 0;
 315
 316        cp0_timer_irq_installed = 1;
 317
 318        setup_irq(irq, &c0_compare_irqaction);
 319
 320        return 0;
 321}
 322