linux/Documentation/exception.txt
<<
>>
Prefs
   1     Kernel level exception handling in Linux 2.1.8
   2  Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com>
   3
   4When a process runs in kernel mode, it often has to access user 
   5mode memory whose address has been passed by an untrusted program. 
   6To protect itself the kernel has to verify this address.
   7
   8In older versions of Linux this was done with the 
   9int verify_area(int type, const void * addr, unsigned long size) 
  10function (which has since been replaced by access_ok()).
  11
  12This function verified that the memory area starting at address 
  13'addr' and of size 'size' was accessible for the operation specified
  14in type (read or write). To do this, verify_read had to look up the 
  15virtual memory area (vma) that contained the address addr. In the 
  16normal case (correctly working program), this test was successful. 
  17It only failed for a few buggy programs. In some kernel profiling
  18tests, this normally unneeded verification used up a considerable
  19amount of time.
  20
  21To overcome this situation, Linus decided to let the virtual memory 
  22hardware present in every Linux-capable CPU handle this test.
  23
  24How does this work?
  25
  26Whenever the kernel tries to access an address that is currently not 
  27accessible, the CPU generates a page fault exception and calls the 
  28page fault handler 
  29
  30void do_page_fault(struct pt_regs *regs, unsigned long error_code)
  31
  32in arch/i386/mm/fault.c. The parameters on the stack are set up by 
  33the low level assembly glue in arch/i386/kernel/entry.S. The parameter
  34regs is a pointer to the saved registers on the stack, error_code 
  35contains a reason code for the exception.
  36
  37do_page_fault first obtains the unaccessible address from the CPU 
  38control register CR2. If the address is within the virtual address 
  39space of the process, the fault probably occurred, because the page 
  40was not swapped in, write protected or something similar. However, 
  41we are interested in the other case: the address is not valid, there 
  42is no vma that contains this address. In this case, the kernel jumps 
  43to the bad_area label. 
  44
  45There it uses the address of the instruction that caused the exception 
  46(i.e. regs->eip) to find an address where the execution can continue 
  47(fixup). If this search is successful, the fault handler modifies the 
  48return address (again regs->eip) and returns. The execution will 
  49continue at the address in fixup.
  50
  51Where does fixup point to?
  52
  53Since we jump to the contents of fixup, fixup obviously points 
  54to executable code. This code is hidden inside the user access macros. 
  55I have picked the get_user macro defined in include/asm/uaccess.h as an
  56example. The definition is somewhat hard to follow, so let's peek at 
  57the code generated by the preprocessor and the compiler. I selected
  58the get_user call in drivers/char/console.c for a detailed examination.
  59
  60The original code in console.c line 1405:
  61        get_user(c, buf);
  62
  63The preprocessor output (edited to become somewhat readable):
  64
  65(
  66  {        
  67    long __gu_err = - 14 , __gu_val = 0;        
  68    const __typeof__(*( (  buf ) )) *__gu_addr = ((buf));        
  69    if (((((0 + current_set[0])->tss.segment) == 0x18 )  || 
  70       (((sizeof(*(buf))) <= 0xC0000000UL) && 
  71       ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf)))))))        
  72      do {
  73        __gu_err  = 0;        
  74        switch ((sizeof(*(buf)))) {        
  75          case 1: 
  76            __asm__ __volatile__(        
  77              "1:      mov" "b" " %2,%" "b" "1\n"        
  78              "2:\n"        
  79              ".section .fixup,\"ax\"\n"        
  80              "3:      movl %3,%0\n"        
  81              "        xor" "b" " %" "b" "1,%" "b" "1\n"        
  82              "        jmp 2b\n"        
  83              ".section __ex_table,\"a\"\n"        
  84              "        .align 4\n"        
  85              "        .long 1b,3b\n"        
  86              ".text"        : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *)
  87                            (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  )) ; 
  88              break;        
  89          case 2: 
  90            __asm__ __volatile__(
  91              "1:      mov" "w" " %2,%" "w" "1\n"        
  92              "2:\n"        
  93              ".section .fixup,\"ax\"\n"        
  94              "3:      movl %3,%0\n"        
  95              "        xor" "w" " %" "w" "1,%" "w" "1\n"        
  96              "        jmp 2b\n"        
  97              ".section __ex_table,\"a\"\n"        
  98              "        .align 4\n"        
  99              "        .long 1b,3b\n"        
 100              ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
 101                            (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  )); 
 102              break;        
 103          case 4: 
 104            __asm__ __volatile__(        
 105              "1:      mov" "l" " %2,%" "" "1\n"        
 106              "2:\n"        
 107              ".section .fixup,\"ax\"\n"        
 108              "3:      movl %3,%0\n"        
 109              "        xor" "l" " %" "" "1,%" "" "1\n"        
 110              "        jmp 2b\n"        
 111              ".section __ex_table,\"a\"\n"        
 112              "        .align 4\n"        "        .long 1b,3b\n"        
 113              ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
 114                            (   __gu_addr   )) ), "i"(- 14 ), "0"(__gu_err)); 
 115              break;        
 116          default: 
 117            (__gu_val) = __get_user_bad();        
 118        }        
 119      } while (0) ;        
 120    ((c)) = (__typeof__(*((buf))))__gu_val;        
 121    __gu_err;
 122  }
 123);
 124
 125WOW! Black GCC/assembly magic. This is impossible to follow, so let's
 126see what code gcc generates:
 127
 128 >         xorl %edx,%edx
 129 >         movl current_set,%eax
 130 >         cmpl $24,788(%eax)        
 131 >         je .L1424        
 132 >         cmpl $-1073741825,64(%esp)
 133 >         ja .L1423                
 134 > .L1424:
 135 >         movl %edx,%eax                        
 136 >         movl 64(%esp),%ebx
 137 > #APP
 138 > 1:      movb (%ebx),%dl                /* this is the actual user access */
 139 > 2:
 140 > .section .fixup,"ax"
 141 > 3:      movl $-14,%eax
 142 >         xorb %dl,%dl
 143 >         jmp 2b
 144 > .section __ex_table,"a"
 145 >         .align 4
 146 >         .long 1b,3b
 147 > .text
 148 > #NO_APP
 149 > .L1423:
 150 >         movzbl %dl,%esi
 151
 152The optimizer does a good job and gives us something we can actually 
 153understand. Can we? The actual user access is quite obvious. Thanks 
 154to the unified address space we can just access the address in user 
 155memory. But what does the .section stuff do?????
 156
 157To understand this we have to look at the final kernel:
 158
 159 > objdump --section-headers vmlinux
 160 > 
 161 > vmlinux:     file format elf32-i386
 162 > 
 163 > Sections:
 164 > Idx Name          Size      VMA       LMA       File off  Algn
 165 >   0 .text         00098f40  c0100000  c0100000  00001000  2**4
 166 >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
 167 >   1 .fixup        000016bc  c0198f40  c0198f40  00099f40  2**0
 168 >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
 169 >   2 .rodata       0000f127  c019a5fc  c019a5fc  0009b5fc  2**2
 170 >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
 171 >   3 __ex_table    000015c0  c01a9724  c01a9724  000aa724  2**2
 172 >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
 173 >   4 .data         0000ea58  c01abcf0  c01abcf0  000abcf0  2**4
 174 >                   CONTENTS, ALLOC, LOAD, DATA
 175 >   5 .bss          00018e21  c01ba748  c01ba748  000ba748  2**2
 176 >                   ALLOC
 177 >   6 .comment      00000ec4  00000000  00000000  000ba748  2**0
 178 >                   CONTENTS, READONLY
 179 >   7 .note         00001068  00000ec4  00000ec4  000bb60c  2**0
 180 >                   CONTENTS, READONLY
 181
 182There are obviously 2 non standard ELF sections in the generated object
 183file. But first we want to find out what happened to our code in the
 184final kernel executable:
 185
 186 > objdump --disassemble --section=.text vmlinux
 187 >
 188 > c017e785 <do_con_write+c1> xorl   %edx,%edx
 189 > c017e787 <do_con_write+c3> movl   0xc01c7bec,%eax
 190 > c017e78c <do_con_write+c8> cmpl   $0x18,0x314(%eax)
 191 > c017e793 <do_con_write+cf> je     c017e79f <do_con_write+db>
 192 > c017e795 <do_con_write+d1> cmpl   $0xbfffffff,0x40(%esp,1)
 193 > c017e79d <do_con_write+d9> ja     c017e7a7 <do_con_write+e3>
 194 > c017e79f <do_con_write+db> movl   %edx,%eax
 195 > c017e7a1 <do_con_write+dd> movl   0x40(%esp,1),%ebx
 196 > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
 197 > c017e7a7 <do_con_write+e3> movzbl %dl,%esi
 198
 199The whole user memory access is reduced to 10 x86 machine instructions.
 200The instructions bracketed in the .section directives are no longer
 201in the normal execution path. They are located in a different section 
 202of the executable file:
 203
 204 > objdump --disassemble --section=.fixup vmlinux
 205 > 
 206 > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
 207 > c0199ffa <.fixup+10ba> xorb   %dl,%dl
 208 > c0199ffc <.fixup+10bc> jmp    c017e7a7 <do_con_write+e3>
 209
 210And finally:
 211 > objdump --full-contents --section=__ex_table vmlinux
 212 > 
 213 >  c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0  ................
 214 >  c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0  ................
 215 >  c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0  ................
 216
 217or in human readable byte order:
 218
 219 >  c01aa7c4 c017c093 c0199fe0 c017c097 c017c099  ................
 220 >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
 221                               ^^^^^^^^^^^^^^^^^
 222                               this is the interesting part!
 223 >  c01aa7e4 c0180a08 c019a001 c0180a0a c019a004  ................
 224
 225What happened? The assembly directives
 226
 227.section .fixup,"ax"
 228.section __ex_table,"a"
 229
 230told the assembler to move the following code to the specified
 231sections in the ELF object file. So the instructions
 2323:      movl $-14,%eax
 233        xorb %dl,%dl
 234        jmp 2b
 235ended up in the .fixup section of the object file and the addresses
 236        .long 1b,3b
 237ended up in the __ex_table section of the object file. 1b and 3b
 238are local labels. The local label 1b (1b stands for next label 1 
 239backward) is the address of the instruction that might fault, i.e. 
 240in our case the address of the label 1 is c017e7a5:
 241the original assembly code: > 1:      movb (%ebx),%dl
 242and linked in vmlinux     : > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
 243
 244The local label 3 (backwards again) is the address of the code to handle
 245the fault, in our case the actual value is c0199ff5:
 246the original assembly code: > 3:      movl $-14,%eax
 247and linked in vmlinux     : > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
 248
 249The assembly code
 250 > .section __ex_table,"a"
 251 >         .align 4
 252 >         .long 1b,3b
 253
 254becomes the value pair
 255 >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
 256                               ^this is ^this is
 257                               1b       3b 
 258c017e7a5,c0199ff5 in the exception table of the kernel.
 259
 260So, what actually happens if a fault from kernel mode with no suitable
 261vma occurs?
 262
 2631.) access to invalid address:
 264 > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
 2652.) MMU generates exception
 2663.) CPU calls do_page_fault
 2674.) do page fault calls search_exception_table (regs->eip == c017e7a5);
 2685.) search_exception_table looks up the address c017e7a5 in the
 269    exception table (i.e. the contents of the ELF section __ex_table) 
 270    and returns the address of the associated fault handle code c0199ff5.
 2716.) do_page_fault modifies its own return address to point to the fault 
 272    handle code and returns.
 2737.) execution continues in the fault handling code.
 2748.) 8a) EAX becomes -EFAULT (== -14)
 275    8b) DL  becomes zero (the value we "read" from user space)
 276    8c) execution continues at local label 2 (address of the
 277        instruction immediately after the faulting user access).
 278
 279The steps 8a to 8c in a certain way emulate the faulting instruction.
 280
 281That's it, mostly. If you look at our example, you might ask why
 282we set EAX to -EFAULT in the exception handler code. Well, the
 283get_user macro actually returns a value: 0, if the user access was
 284successful, -EFAULT on failure. Our original code did not test this
 285return value, however the inline assembly code in get_user tries to
 286return -EFAULT. GCC selected EAX to return this value.
 287
 288NOTE:
 289Due to the way that the exception table is built and needs to be ordered,
 290only use exceptions for code in the .text section.  Any other section
 291will cause the exception table to not be sorted correctly, and the
 292exceptions will fail.
 293