linux/drivers/base/transport_class.c
<<
>>
Prefs
   1/*
   2 * transport_class.c - implementation of generic transport classes
   3 *                     using attribute_containers
   4 *
   5 * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
   6 *
   7 * This file is licensed under GPLv2
   8 *
   9 * The basic idea here is to allow any "device controller" (which
  10 * would most often be a Host Bus Adapter to use the services of one
  11 * or more tranport classes for performing transport specific
  12 * services.  Transport specific services are things that the generic
  13 * command layer doesn't want to know about (speed settings, line
  14 * condidtioning, etc), but which the user might be interested in.
  15 * Thus, the HBA's use the routines exported by the transport classes
  16 * to perform these functions.  The transport classes export certain
  17 * values to the user via sysfs using attribute containers.
  18 *
  19 * Note: because not every HBA will care about every transport
  20 * attribute, there's a many to one relationship that goes like this:
  21 *
  22 * transport class<-----attribute container<----class device
  23 *
  24 * Usually the attribute container is per-HBA, but the design doesn't
  25 * mandate that.  Although most of the services will be specific to
  26 * the actual external storage connection used by the HBA, the generic
  27 * transport class is framed entirely in terms of generic devices to
  28 * allow it to be used by any physical HBA in the system.
  29 */
  30#include <linux/attribute_container.h>
  31#include <linux/transport_class.h>
  32
  33/**
  34 * transport_class_register - register an initial transport class
  35 *
  36 * @tclass:     a pointer to the transport class structure to be initialised
  37 *
  38 * The transport class contains an embedded class which is used to
  39 * identify it.  The caller should initialise this structure with
  40 * zeros and then generic class must have been initialised with the
  41 * actual transport class unique name.  There's a macro
  42 * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
  43 * be registered).
  44 *
  45 * Returns 0 on success or error on failure.
  46 */
  47int transport_class_register(struct transport_class *tclass)
  48{
  49        return class_register(&tclass->class);
  50}
  51EXPORT_SYMBOL_GPL(transport_class_register);
  52
  53/**
  54 * transport_class_unregister - unregister a previously registered class
  55 *
  56 * @tclass: The transport class to unregister
  57 *
  58 * Must be called prior to deallocating the memory for the transport
  59 * class.
  60 */
  61void transport_class_unregister(struct transport_class *tclass)
  62{
  63        class_unregister(&tclass->class);
  64}
  65EXPORT_SYMBOL_GPL(transport_class_unregister);
  66
  67static int anon_transport_dummy_function(struct transport_container *tc,
  68                                         struct device *dev,
  69                                         struct device *cdev)
  70{
  71        /* do nothing */
  72        return 0;
  73}
  74
  75/**
  76 * anon_transport_class_register - register an anonymous class
  77 *
  78 * @atc: The anon transport class to register
  79 *
  80 * The anonymous transport class contains both a transport class and a
  81 * container.  The idea of an anonymous class is that it never
  82 * actually has any device attributes associated with it (and thus
  83 * saves on container storage).  So it can only be used for triggering
  84 * events.  Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
  85 * initialise the anon transport class storage.
  86 */
  87int anon_transport_class_register(struct anon_transport_class *atc)
  88{
  89        int error;
  90        atc->container.class = &atc->tclass.class;
  91        attribute_container_set_no_classdevs(&atc->container);
  92        error = attribute_container_register(&atc->container);
  93        if (error)
  94                return error;
  95        atc->tclass.setup = anon_transport_dummy_function;
  96        atc->tclass.remove = anon_transport_dummy_function;
  97        return 0;
  98}
  99EXPORT_SYMBOL_GPL(anon_transport_class_register);
 100
 101/**
 102 * anon_transport_class_unregister - unregister an anon class
 103 *
 104 * @atc: Pointer to the anon transport class to unregister
 105 *
 106 * Must be called prior to deallocating the memory for the anon
 107 * transport class.
 108 */
 109void anon_transport_class_unregister(struct anon_transport_class *atc)
 110{
 111        if (unlikely(attribute_container_unregister(&atc->container)))
 112                BUG();
 113}
 114EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
 115
 116static int transport_setup_classdev(struct attribute_container *cont,
 117                                    struct device *dev,
 118                                    struct device *classdev)
 119{
 120        struct transport_class *tclass = class_to_transport_class(cont->class);
 121        struct transport_container *tcont = attribute_container_to_transport_container(cont);
 122
 123        if (tclass->setup)
 124                tclass->setup(tcont, dev, classdev);
 125
 126        return 0;
 127}
 128
 129/**
 130 * transport_setup_device - declare a new dev for transport class association but don't make it visible yet.
 131 * @dev: the generic device representing the entity being added
 132 *
 133 * Usually, dev represents some component in the HBA system (either
 134 * the HBA itself or a device remote across the HBA bus).  This
 135 * routine is simply a trigger point to see if any set of transport
 136 * classes wishes to associate with the added device.  This allocates
 137 * storage for the class device and initialises it, but does not yet
 138 * add it to the system or add attributes to it (you do this with
 139 * transport_add_device).  If you have no need for a separate setup
 140 * and add operations, use transport_register_device (see
 141 * transport_class.h).
 142 */
 143
 144void transport_setup_device(struct device *dev)
 145{
 146        attribute_container_add_device(dev, transport_setup_classdev);
 147}
 148EXPORT_SYMBOL_GPL(transport_setup_device);
 149
 150static int transport_add_class_device(struct attribute_container *cont,
 151                                      struct device *dev,
 152                                      struct device *classdev)
 153{
 154        int error = attribute_container_add_class_device(classdev);
 155        struct transport_container *tcont = 
 156                attribute_container_to_transport_container(cont);
 157
 158        if (!error && tcont->statistics)
 159                error = sysfs_create_group(&classdev->kobj, tcont->statistics);
 160
 161        return error;
 162}
 163
 164
 165/**
 166 * transport_add_device - declare a new dev for transport class association
 167 *
 168 * @dev: the generic device representing the entity being added
 169 *
 170 * Usually, dev represents some component in the HBA system (either
 171 * the HBA itself or a device remote across the HBA bus).  This
 172 * routine is simply a trigger point used to add the device to the
 173 * system and register attributes for it.
 174 */
 175
 176void transport_add_device(struct device *dev)
 177{
 178        attribute_container_device_trigger(dev, transport_add_class_device);
 179}
 180EXPORT_SYMBOL_GPL(transport_add_device);
 181
 182static int transport_configure(struct attribute_container *cont,
 183                               struct device *dev,
 184                               struct device *cdev)
 185{
 186        struct transport_class *tclass = class_to_transport_class(cont->class);
 187        struct transport_container *tcont = attribute_container_to_transport_container(cont);
 188
 189        if (tclass->configure)
 190                tclass->configure(tcont, dev, cdev);
 191
 192        return 0;
 193}
 194
 195/**
 196 * transport_configure_device - configure an already set up device
 197 *
 198 * @dev: generic device representing device to be configured
 199 *
 200 * The idea of configure is simply to provide a point within the setup
 201 * process to allow the transport class to extract information from a
 202 * device after it has been setup.  This is used in SCSI because we
 203 * have to have a setup device to begin using the HBA, but after we
 204 * send the initial inquiry, we use configure to extract the device
 205 * parameters.  The device need not have been added to be configured.
 206 */
 207void transport_configure_device(struct device *dev)
 208{
 209        attribute_container_device_trigger(dev, transport_configure);
 210}
 211EXPORT_SYMBOL_GPL(transport_configure_device);
 212
 213static int transport_remove_classdev(struct attribute_container *cont,
 214                                     struct device *dev,
 215                                     struct device *classdev)
 216{
 217        struct transport_container *tcont = 
 218                attribute_container_to_transport_container(cont);
 219        struct transport_class *tclass = class_to_transport_class(cont->class);
 220
 221        if (tclass->remove)
 222                tclass->remove(tcont, dev, classdev);
 223
 224        if (tclass->remove != anon_transport_dummy_function) {
 225                if (tcont->statistics)
 226                        sysfs_remove_group(&classdev->kobj, tcont->statistics);
 227                attribute_container_class_device_del(classdev);
 228        }
 229
 230        return 0;
 231}
 232
 233
 234/**
 235 * transport_remove_device - remove the visibility of a device
 236 *
 237 * @dev: generic device to remove
 238 *
 239 * This call removes the visibility of the device (to the user from
 240 * sysfs), but does not destroy it.  To eliminate a device entirely
 241 * you must also call transport_destroy_device.  If you don't need to
 242 * do remove and destroy as separate operations, use
 243 * transport_unregister_device() (see transport_class.h) which will
 244 * perform both calls for you.
 245 */
 246void transport_remove_device(struct device *dev)
 247{
 248        attribute_container_device_trigger(dev, transport_remove_classdev);
 249}
 250EXPORT_SYMBOL_GPL(transport_remove_device);
 251
 252static void transport_destroy_classdev(struct attribute_container *cont,
 253                                      struct device *dev,
 254                                      struct device *classdev)
 255{
 256        struct transport_class *tclass = class_to_transport_class(cont->class);
 257
 258        if (tclass->remove != anon_transport_dummy_function)
 259                put_device(classdev);
 260}
 261
 262
 263/**
 264 * transport_destroy_device - destroy a removed device
 265 *
 266 * @dev: device to eliminate from the transport class.
 267 *
 268 * This call triggers the elimination of storage associated with the
 269 * transport classdev.  Note: all it really does is relinquish a
 270 * reference to the classdev.  The memory will not be freed until the
 271 * last reference goes to zero.  Note also that the classdev retains a
 272 * reference count on dev, so dev too will remain for as long as the
 273 * transport class device remains around.
 274 */
 275void transport_destroy_device(struct device *dev)
 276{
 277        attribute_container_remove_device(dev, transport_destroy_classdev);
 278}
 279EXPORT_SYMBOL_GPL(transport_destroy_device);
 280