linux/arch/powerpc/include/asm/pte-hash64-64k.h
<<
>>
Prefs
   1/* To be include by pgtable-hash64.h only */
   2
   3/* Additional PTE bits (don't change without checking asm in hash_low.S) */
   4#define _PAGE_SPECIAL   0x00000400 /* software: special page */
   5#define _PAGE_HPTE_SUB  0x0ffff000 /* combo only: sub pages HPTE bits */
   6#define _PAGE_HPTE_SUB0 0x08000000 /* combo only: first sub page */
   7#define _PAGE_COMBO     0x10000000 /* this is a combo 4k page */
   8#define _PAGE_4K_PFN    0x20000000 /* PFN is for a single 4k page */
   9
  10/* For 64K page, we don't have a separate _PAGE_HASHPTE bit. Instead,
  11 * we set that to be the whole sub-bits mask. The C code will only
  12 * test this, so a multi-bit mask will work. For combo pages, this
  13 * is equivalent as effectively, the old _PAGE_HASHPTE was an OR of
  14 * all the sub bits. For real 64k pages, we now have the assembly set
  15 * _PAGE_HPTE_SUB0 in addition to setting the HIDX bits which overlap
  16 * that mask. This is fine as long as the HIDX bits are never set on
  17 * a PTE that isn't hashed, which is the case today.
  18 *
  19 * A little nit is for the huge page C code, which does the hashing
  20 * in C, we need to provide which bit to use.
  21 */
  22#define _PAGE_HASHPTE   _PAGE_HPTE_SUB
  23
  24/* Note the full page bits must be in the same location as for normal
  25 * 4k pages as the same asssembly will be used to insert 64K pages
  26 * wether the kernel has CONFIG_PPC_64K_PAGES or not
  27 */
  28#define _PAGE_F_SECOND  0x00008000 /* full page: hidx bits */
  29#define _PAGE_F_GIX     0x00007000 /* full page: hidx bits */
  30
  31/* PTE flags to conserve for HPTE identification */
  32#define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_COMBO)
  33
  34/* Shift to put page number into pte.
  35 *
  36 * That gives us a max RPN of 34 bits, which means a max of 50 bits
  37 * of addressable physical space, or 46 bits for the special 4k PFNs.
  38 */
  39#define PTE_RPN_SHIFT   (30)
  40
  41#ifndef __ASSEMBLY__
  42
  43/*
  44 * With 64K pages on hash table, we have a special PTE format that
  45 * uses a second "half" of the page table to encode sub-page information
  46 * in order to deal with 64K made of 4K HW pages. Thus we override the
  47 * generic accessors and iterators here
  48 */
  49#define __real_pte(e,p)         ((real_pte_t) { \
  50        (e), pte_val(*((p) + PTRS_PER_PTE)) })
  51#define __rpte_to_hidx(r,index) ((pte_val((r).pte) & _PAGE_COMBO) ? \
  52        (((r).hidx >> ((index)<<2)) & 0xf) : ((pte_val((r).pte) >> 12) & 0xf))
  53#define __rpte_to_pte(r)        ((r).pte)
  54#define __rpte_sub_valid(rpte, index) \
  55        (pte_val(rpte.pte) & (_PAGE_HPTE_SUB0 >> (index)))
  56
  57/* Trick: we set __end to va + 64k, which happens works for
  58 * a 16M page as well as we want only one iteration
  59 */
  60#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)          \
  61        do {                                                                \
  62                unsigned long __end = va + PAGE_SIZE;                       \
  63                unsigned __split = (psize == MMU_PAGE_4K ||                 \
  64                                    psize == MMU_PAGE_64K_AP);              \
  65                shift = mmu_psize_defs[psize].shift;                        \
  66                for (index = 0; va < __end; index++, va += (1L << shift)) { \
  67                        if (!__split || __rpte_sub_valid(rpte, index)) do { \
  68
  69#define pte_iterate_hashed_end() } while(0); } } while(0)
  70
  71#define pte_pagesize_index(mm, addr, pte)       \
  72        (((pte) & _PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
  73
  74#define remap_4k_pfn(vma, addr, pfn, prot)                              \
  75        remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE,                \
  76                        __pgprot(pgprot_val((prot)) | _PAGE_4K_PFN))
  77
  78
  79#ifdef CONFIG_PPC_SUBPAGE_PROT
  80/*
  81 * For the sub-page protection option, we extend the PGD with one of
  82 * these.  Basically we have a 3-level tree, with the top level being
  83 * the protptrs array.  To optimize speed and memory consumption when
  84 * only addresses < 4GB are being protected, pointers to the first
  85 * four pages of sub-page protection words are stored in the low_prot
  86 * array.
  87 * Each page of sub-page protection words protects 1GB (4 bytes
  88 * protects 64k).  For the 3-level tree, each page of pointers then
  89 * protects 8TB.
  90 */
  91struct subpage_prot_table {
  92        unsigned long maxaddr;  /* only addresses < this are protected */
  93        unsigned int **protptrs[2];
  94        unsigned int *low_prot[4];
  95};
  96
  97#undef PGD_TABLE_SIZE
  98#define PGD_TABLE_SIZE          ((sizeof(pgd_t) << PGD_INDEX_SIZE) + \
  99                                 sizeof(struct subpage_prot_table))
 100
 101#define SBP_L1_BITS             (PAGE_SHIFT - 2)
 102#define SBP_L2_BITS             (PAGE_SHIFT - 3)
 103#define SBP_L1_COUNT            (1 << SBP_L1_BITS)
 104#define SBP_L2_COUNT            (1 << SBP_L2_BITS)
 105#define SBP_L2_SHIFT            (PAGE_SHIFT + SBP_L1_BITS)
 106#define SBP_L3_SHIFT            (SBP_L2_SHIFT + SBP_L2_BITS)
 107
 108extern void subpage_prot_free(pgd_t *pgd);
 109
 110static inline struct subpage_prot_table *pgd_subpage_prot(pgd_t *pgd)
 111{
 112        return (struct subpage_prot_table *)(pgd + PTRS_PER_PGD);
 113}
 114#endif /* CONFIG_PPC_SUBPAGE_PROT */
 115#endif  /* __ASSEMBLY__ */
 116