linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <asm/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/module.h>
  52#include <linux/mount.h>
  53#include <linux/socket.h>
  54#include <linux/mqueue.h>
  55#include <linux/audit.h>
  56#include <linux/personality.h>
  57#include <linux/time.h>
  58#include <linux/netlink.h>
  59#include <linux/compiler.h>
  60#include <asm/unistd.h>
  61#include <linux/security.h>
  62#include <linux/list.h>
  63#include <linux/tty.h>
  64#include <linux/binfmts.h>
  65#include <linux/highmem.h>
  66#include <linux/syscalls.h>
  67#include <linux/inotify.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70
  71#include "audit.h"
  72
  73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  74 * for saving names from getname(). */
  75#define AUDIT_NAMES    20
  76
  77/* Indicates that audit should log the full pathname. */
  78#define AUDIT_NAME_FULL -1
  79
  80/* no execve audit message should be longer than this (userspace limits) */
  81#define MAX_EXECVE_AUDIT_LEN 7500
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_cap_data {
  90        kernel_cap_t            permitted;
  91        kernel_cap_t            inheritable;
  92        union {
  93                unsigned int    fE;             /* effective bit of a file capability */
  94                kernel_cap_t    effective;      /* effective set of a process */
  95        };
  96};
  97
  98/* When fs/namei.c:getname() is called, we store the pointer in name and
  99 * we don't let putname() free it (instead we free all of the saved
 100 * pointers at syscall exit time).
 101 *
 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 103struct audit_names {
 104        const char      *name;
 105        int             name_len;       /* number of name's characters to log */
 106        unsigned        name_put;       /* call __putname() for this name */
 107        unsigned long   ino;
 108        dev_t           dev;
 109        umode_t         mode;
 110        uid_t           uid;
 111        gid_t           gid;
 112        dev_t           rdev;
 113        u32             osid;
 114        struct audit_cap_data fcap;
 115        unsigned int    fcap_ver;
 116};
 117
 118struct audit_aux_data {
 119        struct audit_aux_data   *next;
 120        int                     type;
 121};
 122
 123#define AUDIT_AUX_IPCPERM       0
 124
 125/* Number of target pids per aux struct. */
 126#define AUDIT_AUX_PIDS  16
 127
 128struct audit_aux_data_execve {
 129        struct audit_aux_data   d;
 130        int argc;
 131        int envc;
 132        struct mm_struct *mm;
 133};
 134
 135struct audit_aux_data_pids {
 136        struct audit_aux_data   d;
 137        pid_t                   target_pid[AUDIT_AUX_PIDS];
 138        uid_t                   target_auid[AUDIT_AUX_PIDS];
 139        uid_t                   target_uid[AUDIT_AUX_PIDS];
 140        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 141        u32                     target_sid[AUDIT_AUX_PIDS];
 142        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 143        int                     pid_count;
 144};
 145
 146struct audit_aux_data_bprm_fcaps {
 147        struct audit_aux_data   d;
 148        struct audit_cap_data   fcap;
 149        unsigned int            fcap_ver;
 150        struct audit_cap_data   old_pcap;
 151        struct audit_cap_data   new_pcap;
 152};
 153
 154struct audit_aux_data_capset {
 155        struct audit_aux_data   d;
 156        pid_t                   pid;
 157        struct audit_cap_data   cap;
 158};
 159
 160struct audit_tree_refs {
 161        struct audit_tree_refs *next;
 162        struct audit_chunk *c[31];
 163};
 164
 165/* The per-task audit context. */
 166struct audit_context {
 167        int                 dummy;      /* must be the first element */
 168        int                 in_syscall; /* 1 if task is in a syscall */
 169        enum audit_state    state, current_state;
 170        unsigned int        serial;     /* serial number for record */
 171        struct timespec     ctime;      /* time of syscall entry */
 172        int                 major;      /* syscall number */
 173        unsigned long       argv[4];    /* syscall arguments */
 174        int                 return_valid; /* return code is valid */
 175        long                return_code;/* syscall return code */
 176        u64                 prio;
 177        int                 name_count;
 178        struct audit_names  names[AUDIT_NAMES];
 179        char *              filterkey;  /* key for rule that triggered record */
 180        struct path         pwd;
 181        struct audit_context *previous; /* For nested syscalls */
 182        struct audit_aux_data *aux;
 183        struct audit_aux_data *aux_pids;
 184        struct sockaddr_storage *sockaddr;
 185        size_t sockaddr_len;
 186                                /* Save things to print about task_struct */
 187        pid_t               pid, ppid;
 188        uid_t               uid, euid, suid, fsuid;
 189        gid_t               gid, egid, sgid, fsgid;
 190        unsigned long       personality;
 191        int                 arch;
 192
 193        pid_t               target_pid;
 194        uid_t               target_auid;
 195        uid_t               target_uid;
 196        unsigned int        target_sessionid;
 197        u32                 target_sid;
 198        char                target_comm[TASK_COMM_LEN];
 199
 200        struct audit_tree_refs *trees, *first_trees;
 201        int tree_count;
 202
 203        int type;
 204        union {
 205                struct {
 206                        int nargs;
 207                        long args[6];
 208                } socketcall;
 209                struct {
 210                        uid_t                   uid;
 211                        gid_t                   gid;
 212                        mode_t                  mode;
 213                        u32                     osid;
 214                        int                     has_perm;
 215                        uid_t                   perm_uid;
 216                        gid_t                   perm_gid;
 217                        mode_t                  perm_mode;
 218                        unsigned long           qbytes;
 219                } ipc;
 220                struct {
 221                        mqd_t                   mqdes;
 222                        struct mq_attr          mqstat;
 223                } mq_getsetattr;
 224                struct {
 225                        mqd_t                   mqdes;
 226                        int                     sigev_signo;
 227                } mq_notify;
 228                struct {
 229                        mqd_t                   mqdes;
 230                        size_t                  msg_len;
 231                        unsigned int            msg_prio;
 232                        struct timespec         abs_timeout;
 233                } mq_sendrecv;
 234                struct {
 235                        int                     oflag;
 236                        mode_t                  mode;
 237                        struct mq_attr          attr;
 238                } mq_open;
 239                struct {
 240                        pid_t                   pid;
 241                        struct audit_cap_data   cap;
 242                } capset;
 243        };
 244        int fds[2];
 245
 246#if AUDIT_DEBUG
 247        int                 put_count;
 248        int                 ino_count;
 249#endif
 250};
 251
 252#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
 253static inline int open_arg(int flags, int mask)
 254{
 255        int n = ACC_MODE(flags);
 256        if (flags & (O_TRUNC | O_CREAT))
 257                n |= AUDIT_PERM_WRITE;
 258        return n & mask;
 259}
 260
 261static int audit_match_perm(struct audit_context *ctx, int mask)
 262{
 263        unsigned n;
 264        if (unlikely(!ctx))
 265                return 0;
 266        n = ctx->major;
 267
 268        switch (audit_classify_syscall(ctx->arch, n)) {
 269        case 0: /* native */
 270                if ((mask & AUDIT_PERM_WRITE) &&
 271                     audit_match_class(AUDIT_CLASS_WRITE, n))
 272                        return 1;
 273                if ((mask & AUDIT_PERM_READ) &&
 274                     audit_match_class(AUDIT_CLASS_READ, n))
 275                        return 1;
 276                if ((mask & AUDIT_PERM_ATTR) &&
 277                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 278                        return 1;
 279                return 0;
 280        case 1: /* 32bit on biarch */
 281                if ((mask & AUDIT_PERM_WRITE) &&
 282                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 283                        return 1;
 284                if ((mask & AUDIT_PERM_READ) &&
 285                     audit_match_class(AUDIT_CLASS_READ_32, n))
 286                        return 1;
 287                if ((mask & AUDIT_PERM_ATTR) &&
 288                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 289                        return 1;
 290                return 0;
 291        case 2: /* open */
 292                return mask & ACC_MODE(ctx->argv[1]);
 293        case 3: /* openat */
 294                return mask & ACC_MODE(ctx->argv[2]);
 295        case 4: /* socketcall */
 296                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 297        case 5: /* execve */
 298                return mask & AUDIT_PERM_EXEC;
 299        default:
 300                return 0;
 301        }
 302}
 303
 304static int audit_match_filetype(struct audit_context *ctx, int which)
 305{
 306        unsigned index = which & ~S_IFMT;
 307        mode_t mode = which & S_IFMT;
 308
 309        if (unlikely(!ctx))
 310                return 0;
 311
 312        if (index >= ctx->name_count)
 313                return 0;
 314        if (ctx->names[index].ino == -1)
 315                return 0;
 316        if ((ctx->names[index].mode ^ mode) & S_IFMT)
 317                return 0;
 318        return 1;
 319}
 320
 321/*
 322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 323 * ->first_trees points to its beginning, ->trees - to the current end of data.
 324 * ->tree_count is the number of free entries in array pointed to by ->trees.
 325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 326 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 327 * it's going to remain 1-element for almost any setup) until we free context itself.
 328 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 329 */
 330
 331#ifdef CONFIG_AUDIT_TREE
 332static void audit_set_auditable(struct audit_context *ctx)
 333{
 334        if (!ctx->prio) {
 335                ctx->prio = 1;
 336                ctx->current_state = AUDIT_RECORD_CONTEXT;
 337        }
 338}
 339
 340static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 341{
 342        struct audit_tree_refs *p = ctx->trees;
 343        int left = ctx->tree_count;
 344        if (likely(left)) {
 345                p->c[--left] = chunk;
 346                ctx->tree_count = left;
 347                return 1;
 348        }
 349        if (!p)
 350                return 0;
 351        p = p->next;
 352        if (p) {
 353                p->c[30] = chunk;
 354                ctx->trees = p;
 355                ctx->tree_count = 30;
 356                return 1;
 357        }
 358        return 0;
 359}
 360
 361static int grow_tree_refs(struct audit_context *ctx)
 362{
 363        struct audit_tree_refs *p = ctx->trees;
 364        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 365        if (!ctx->trees) {
 366                ctx->trees = p;
 367                return 0;
 368        }
 369        if (p)
 370                p->next = ctx->trees;
 371        else
 372                ctx->first_trees = ctx->trees;
 373        ctx->tree_count = 31;
 374        return 1;
 375}
 376#endif
 377
 378static void unroll_tree_refs(struct audit_context *ctx,
 379                      struct audit_tree_refs *p, int count)
 380{
 381#ifdef CONFIG_AUDIT_TREE
 382        struct audit_tree_refs *q;
 383        int n;
 384        if (!p) {
 385                /* we started with empty chain */
 386                p = ctx->first_trees;
 387                count = 31;
 388                /* if the very first allocation has failed, nothing to do */
 389                if (!p)
 390                        return;
 391        }
 392        n = count;
 393        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 394                while (n--) {
 395                        audit_put_chunk(q->c[n]);
 396                        q->c[n] = NULL;
 397                }
 398        }
 399        while (n-- > ctx->tree_count) {
 400                audit_put_chunk(q->c[n]);
 401                q->c[n] = NULL;
 402        }
 403        ctx->trees = p;
 404        ctx->tree_count = count;
 405#endif
 406}
 407
 408static void free_tree_refs(struct audit_context *ctx)
 409{
 410        struct audit_tree_refs *p, *q;
 411        for (p = ctx->first_trees; p; p = q) {
 412                q = p->next;
 413                kfree(p);
 414        }
 415}
 416
 417static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 418{
 419#ifdef CONFIG_AUDIT_TREE
 420        struct audit_tree_refs *p;
 421        int n;
 422        if (!tree)
 423                return 0;
 424        /* full ones */
 425        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 426                for (n = 0; n < 31; n++)
 427                        if (audit_tree_match(p->c[n], tree))
 428                                return 1;
 429        }
 430        /* partial */
 431        if (p) {
 432                for (n = ctx->tree_count; n < 31; n++)
 433                        if (audit_tree_match(p->c[n], tree))
 434                                return 1;
 435        }
 436#endif
 437        return 0;
 438}
 439
 440/* Determine if any context name data matches a rule's watch data */
 441/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 442 * otherwise. */
 443static int audit_filter_rules(struct task_struct *tsk,
 444                              struct audit_krule *rule,
 445                              struct audit_context *ctx,
 446                              struct audit_names *name,
 447                              enum audit_state *state)
 448{
 449        const struct cred *cred = get_task_cred(tsk);
 450        int i, j, need_sid = 1;
 451        u32 sid;
 452
 453        for (i = 0; i < rule->field_count; i++) {
 454                struct audit_field *f = &rule->fields[i];
 455                int result = 0;
 456
 457                switch (f->type) {
 458                case AUDIT_PID:
 459                        result = audit_comparator(tsk->pid, f->op, f->val);
 460                        break;
 461                case AUDIT_PPID:
 462                        if (ctx) {
 463                                if (!ctx->ppid)
 464                                        ctx->ppid = sys_getppid();
 465                                result = audit_comparator(ctx->ppid, f->op, f->val);
 466                        }
 467                        break;
 468                case AUDIT_UID:
 469                        result = audit_comparator(cred->uid, f->op, f->val);
 470                        break;
 471                case AUDIT_EUID:
 472                        result = audit_comparator(cred->euid, f->op, f->val);
 473                        break;
 474                case AUDIT_SUID:
 475                        result = audit_comparator(cred->suid, f->op, f->val);
 476                        break;
 477                case AUDIT_FSUID:
 478                        result = audit_comparator(cred->fsuid, f->op, f->val);
 479                        break;
 480                case AUDIT_GID:
 481                        result = audit_comparator(cred->gid, f->op, f->val);
 482                        break;
 483                case AUDIT_EGID:
 484                        result = audit_comparator(cred->egid, f->op, f->val);
 485                        break;
 486                case AUDIT_SGID:
 487                        result = audit_comparator(cred->sgid, f->op, f->val);
 488                        break;
 489                case AUDIT_FSGID:
 490                        result = audit_comparator(cred->fsgid, f->op, f->val);
 491                        break;
 492                case AUDIT_PERS:
 493                        result = audit_comparator(tsk->personality, f->op, f->val);
 494                        break;
 495                case AUDIT_ARCH:
 496                        if (ctx)
 497                                result = audit_comparator(ctx->arch, f->op, f->val);
 498                        break;
 499
 500                case AUDIT_EXIT:
 501                        if (ctx && ctx->return_valid)
 502                                result = audit_comparator(ctx->return_code, f->op, f->val);
 503                        break;
 504                case AUDIT_SUCCESS:
 505                        if (ctx && ctx->return_valid) {
 506                                if (f->val)
 507                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 508                                else
 509                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 510                        }
 511                        break;
 512                case AUDIT_DEVMAJOR:
 513                        if (name)
 514                                result = audit_comparator(MAJOR(name->dev),
 515                                                          f->op, f->val);
 516                        else if (ctx) {
 517                                for (j = 0; j < ctx->name_count; j++) {
 518                                        if (audit_comparator(MAJOR(ctx->names[j].dev),  f->op, f->val)) {
 519                                                ++result;
 520                                                break;
 521                                        }
 522                                }
 523                        }
 524                        break;
 525                case AUDIT_DEVMINOR:
 526                        if (name)
 527                                result = audit_comparator(MINOR(name->dev),
 528                                                          f->op, f->val);
 529                        else if (ctx) {
 530                                for (j = 0; j < ctx->name_count; j++) {
 531                                        if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
 532                                                ++result;
 533                                                break;
 534                                        }
 535                                }
 536                        }
 537                        break;
 538                case AUDIT_INODE:
 539                        if (name)
 540                                result = (name->ino == f->val);
 541                        else if (ctx) {
 542                                for (j = 0; j < ctx->name_count; j++) {
 543                                        if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
 544                                                ++result;
 545                                                break;
 546                                        }
 547                                }
 548                        }
 549                        break;
 550                case AUDIT_WATCH:
 551                        if (name && rule->watch->ino != (unsigned long)-1)
 552                                result = (name->dev == rule->watch->dev &&
 553                                          name->ino == rule->watch->ino);
 554                        break;
 555                case AUDIT_DIR:
 556                        if (ctx)
 557                                result = match_tree_refs(ctx, rule->tree);
 558                        break;
 559                case AUDIT_LOGINUID:
 560                        result = 0;
 561                        if (ctx)
 562                                result = audit_comparator(tsk->loginuid, f->op, f->val);
 563                        break;
 564                case AUDIT_SUBJ_USER:
 565                case AUDIT_SUBJ_ROLE:
 566                case AUDIT_SUBJ_TYPE:
 567                case AUDIT_SUBJ_SEN:
 568                case AUDIT_SUBJ_CLR:
 569                        /* NOTE: this may return negative values indicating
 570                           a temporary error.  We simply treat this as a
 571                           match for now to avoid losing information that
 572                           may be wanted.   An error message will also be
 573                           logged upon error */
 574                        if (f->lsm_rule) {
 575                                if (need_sid) {
 576                                        security_task_getsecid(tsk, &sid);
 577                                        need_sid = 0;
 578                                }
 579                                result = security_audit_rule_match(sid, f->type,
 580                                                                  f->op,
 581                                                                  f->lsm_rule,
 582                                                                  ctx);
 583                        }
 584                        break;
 585                case AUDIT_OBJ_USER:
 586                case AUDIT_OBJ_ROLE:
 587                case AUDIT_OBJ_TYPE:
 588                case AUDIT_OBJ_LEV_LOW:
 589                case AUDIT_OBJ_LEV_HIGH:
 590                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 591                           also applies here */
 592                        if (f->lsm_rule) {
 593                                /* Find files that match */
 594                                if (name) {
 595                                        result = security_audit_rule_match(
 596                                                   name->osid, f->type, f->op,
 597                                                   f->lsm_rule, ctx);
 598                                } else if (ctx) {
 599                                        for (j = 0; j < ctx->name_count; j++) {
 600                                                if (security_audit_rule_match(
 601                                                      ctx->names[j].osid,
 602                                                      f->type, f->op,
 603                                                      f->lsm_rule, ctx)) {
 604                                                        ++result;
 605                                                        break;
 606                                                }
 607                                        }
 608                                }
 609                                /* Find ipc objects that match */
 610                                if (!ctx || ctx->type != AUDIT_IPC)
 611                                        break;
 612                                if (security_audit_rule_match(ctx->ipc.osid,
 613                                                              f->type, f->op,
 614                                                              f->lsm_rule, ctx))
 615                                        ++result;
 616                        }
 617                        break;
 618                case AUDIT_ARG0:
 619                case AUDIT_ARG1:
 620                case AUDIT_ARG2:
 621                case AUDIT_ARG3:
 622                        if (ctx)
 623                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 624                        break;
 625                case AUDIT_FILTERKEY:
 626                        /* ignore this field for filtering */
 627                        result = 1;
 628                        break;
 629                case AUDIT_PERM:
 630                        result = audit_match_perm(ctx, f->val);
 631                        break;
 632                case AUDIT_FILETYPE:
 633                        result = audit_match_filetype(ctx, f->val);
 634                        break;
 635                }
 636
 637                if (!result) {
 638                        put_cred(cred);
 639                        return 0;
 640                }
 641        }
 642
 643        if (ctx) {
 644                if (rule->prio <= ctx->prio)
 645                        return 0;
 646                if (rule->filterkey) {
 647                        kfree(ctx->filterkey);
 648                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 649                }
 650                ctx->prio = rule->prio;
 651        }
 652        switch (rule->action) {
 653        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 654        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 655        }
 656        put_cred(cred);
 657        return 1;
 658}
 659
 660/* At process creation time, we can determine if system-call auditing is
 661 * completely disabled for this task.  Since we only have the task
 662 * structure at this point, we can only check uid and gid.
 663 */
 664static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 665{
 666        struct audit_entry *e;
 667        enum audit_state   state;
 668
 669        rcu_read_lock();
 670        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 671                if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
 672                        if (state == AUDIT_RECORD_CONTEXT)
 673                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 674                        rcu_read_unlock();
 675                        return state;
 676                }
 677        }
 678        rcu_read_unlock();
 679        return AUDIT_BUILD_CONTEXT;
 680}
 681
 682/* At syscall entry and exit time, this filter is called if the
 683 * audit_state is not low enough that auditing cannot take place, but is
 684 * also not high enough that we already know we have to write an audit
 685 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 686 */
 687static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 688                                             struct audit_context *ctx,
 689                                             struct list_head *list)
 690{
 691        struct audit_entry *e;
 692        enum audit_state state;
 693
 694        if (audit_pid && tsk->tgid == audit_pid)
 695                return AUDIT_DISABLED;
 696
 697        rcu_read_lock();
 698        if (!list_empty(list)) {
 699                int word = AUDIT_WORD(ctx->major);
 700                int bit  = AUDIT_BIT(ctx->major);
 701
 702                list_for_each_entry_rcu(e, list, list) {
 703                        if ((e->rule.mask[word] & bit) == bit &&
 704                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 705                                               &state)) {
 706                                rcu_read_unlock();
 707                                ctx->current_state = state;
 708                                return state;
 709                        }
 710                }
 711        }
 712        rcu_read_unlock();
 713        return AUDIT_BUILD_CONTEXT;
 714}
 715
 716/* At syscall exit time, this filter is called if any audit_names[] have been
 717 * collected during syscall processing.  We only check rules in sublists at hash
 718 * buckets applicable to the inode numbers in audit_names[].
 719 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 720 */
 721void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 722{
 723        int i;
 724        struct audit_entry *e;
 725        enum audit_state state;
 726
 727        if (audit_pid && tsk->tgid == audit_pid)
 728                return;
 729
 730        rcu_read_lock();
 731        for (i = 0; i < ctx->name_count; i++) {
 732                int word = AUDIT_WORD(ctx->major);
 733                int bit  = AUDIT_BIT(ctx->major);
 734                struct audit_names *n = &ctx->names[i];
 735                int h = audit_hash_ino((u32)n->ino);
 736                struct list_head *list = &audit_inode_hash[h];
 737
 738                if (list_empty(list))
 739                        continue;
 740
 741                list_for_each_entry_rcu(e, list, list) {
 742                        if ((e->rule.mask[word] & bit) == bit &&
 743                            audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
 744                                rcu_read_unlock();
 745                                ctx->current_state = state;
 746                                return;
 747                        }
 748                }
 749        }
 750        rcu_read_unlock();
 751}
 752
 753static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 754                                                      int return_valid,
 755                                                      long return_code)
 756{
 757        struct audit_context *context = tsk->audit_context;
 758
 759        if (likely(!context))
 760                return NULL;
 761        context->return_valid = return_valid;
 762
 763        /*
 764         * we need to fix up the return code in the audit logs if the actual
 765         * return codes are later going to be fixed up by the arch specific
 766         * signal handlers
 767         *
 768         * This is actually a test for:
 769         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 770         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 771         *
 772         * but is faster than a bunch of ||
 773         */
 774        if (unlikely(return_code <= -ERESTARTSYS) &&
 775            (return_code >= -ERESTART_RESTARTBLOCK) &&
 776            (return_code != -ENOIOCTLCMD))
 777                context->return_code = -EINTR;
 778        else
 779                context->return_code  = return_code;
 780
 781        if (context->in_syscall && !context->dummy) {
 782                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 783                audit_filter_inodes(tsk, context);
 784        }
 785
 786        tsk->audit_context = NULL;
 787        return context;
 788}
 789
 790static inline void audit_free_names(struct audit_context *context)
 791{
 792        int i;
 793
 794#if AUDIT_DEBUG == 2
 795        if (context->put_count + context->ino_count != context->name_count) {
 796                printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 797                       " name_count=%d put_count=%d"
 798                       " ino_count=%d [NOT freeing]\n",
 799                       __FILE__, __LINE__,
 800                       context->serial, context->major, context->in_syscall,
 801                       context->name_count, context->put_count,
 802                       context->ino_count);
 803                for (i = 0; i < context->name_count; i++) {
 804                        printk(KERN_ERR "names[%d] = %p = %s\n", i,
 805                               context->names[i].name,
 806                               context->names[i].name ?: "(null)");
 807                }
 808                dump_stack();
 809                return;
 810        }
 811#endif
 812#if AUDIT_DEBUG
 813        context->put_count  = 0;
 814        context->ino_count  = 0;
 815#endif
 816
 817        for (i = 0; i < context->name_count; i++) {
 818                if (context->names[i].name && context->names[i].name_put)
 819                        __putname(context->names[i].name);
 820        }
 821        context->name_count = 0;
 822        path_put(&context->pwd);
 823        context->pwd.dentry = NULL;
 824        context->pwd.mnt = NULL;
 825}
 826
 827static inline void audit_free_aux(struct audit_context *context)
 828{
 829        struct audit_aux_data *aux;
 830
 831        while ((aux = context->aux)) {
 832                context->aux = aux->next;
 833                kfree(aux);
 834        }
 835        while ((aux = context->aux_pids)) {
 836                context->aux_pids = aux->next;
 837                kfree(aux);
 838        }
 839}
 840
 841static inline void audit_zero_context(struct audit_context *context,
 842                                      enum audit_state state)
 843{
 844        memset(context, 0, sizeof(*context));
 845        context->state      = state;
 846        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 847}
 848
 849static inline struct audit_context *audit_alloc_context(enum audit_state state)
 850{
 851        struct audit_context *context;
 852
 853        if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 854                return NULL;
 855        audit_zero_context(context, state);
 856        return context;
 857}
 858
 859/**
 860 * audit_alloc - allocate an audit context block for a task
 861 * @tsk: task
 862 *
 863 * Filter on the task information and allocate a per-task audit context
 864 * if necessary.  Doing so turns on system call auditing for the
 865 * specified task.  This is called from copy_process, so no lock is
 866 * needed.
 867 */
 868int audit_alloc(struct task_struct *tsk)
 869{
 870        struct audit_context *context;
 871        enum audit_state     state;
 872        char *key = NULL;
 873
 874        if (likely(!audit_ever_enabled))
 875                return 0; /* Return if not auditing. */
 876
 877        state = audit_filter_task(tsk, &key);
 878        if (likely(state == AUDIT_DISABLED))
 879                return 0;
 880
 881        if (!(context = audit_alloc_context(state))) {
 882                kfree(key);
 883                audit_log_lost("out of memory in audit_alloc");
 884                return -ENOMEM;
 885        }
 886        context->filterkey = key;
 887
 888        tsk->audit_context  = context;
 889        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 890        return 0;
 891}
 892
 893static inline void audit_free_context(struct audit_context *context)
 894{
 895        struct audit_context *previous;
 896        int                  count = 0;
 897
 898        do {
 899                previous = context->previous;
 900                if (previous || (count &&  count < 10)) {
 901                        ++count;
 902                        printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 903                               " freeing multiple contexts (%d)\n",
 904                               context->serial, context->major,
 905                               context->name_count, count);
 906                }
 907                audit_free_names(context);
 908                unroll_tree_refs(context, NULL, 0);
 909                free_tree_refs(context);
 910                audit_free_aux(context);
 911                kfree(context->filterkey);
 912                kfree(context->sockaddr);
 913                kfree(context);
 914                context  = previous;
 915        } while (context);
 916        if (count >= 10)
 917                printk(KERN_ERR "audit: freed %d contexts\n", count);
 918}
 919
 920void audit_log_task_context(struct audit_buffer *ab)
 921{
 922        char *ctx = NULL;
 923        unsigned len;
 924        int error;
 925        u32 sid;
 926
 927        security_task_getsecid(current, &sid);
 928        if (!sid)
 929                return;
 930
 931        error = security_secid_to_secctx(sid, &ctx, &len);
 932        if (error) {
 933                if (error != -EINVAL)
 934                        goto error_path;
 935                return;
 936        }
 937
 938        audit_log_format(ab, " subj=%s", ctx);
 939        security_release_secctx(ctx, len);
 940        return;
 941
 942error_path:
 943        audit_panic("error in audit_log_task_context");
 944        return;
 945}
 946
 947EXPORT_SYMBOL(audit_log_task_context);
 948
 949static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 950{
 951        char name[sizeof(tsk->comm)];
 952        struct mm_struct *mm = tsk->mm;
 953        struct vm_area_struct *vma;
 954
 955        /* tsk == current */
 956
 957        get_task_comm(name, tsk);
 958        audit_log_format(ab, " comm=");
 959        audit_log_untrustedstring(ab, name);
 960
 961        if (mm) {
 962                down_read(&mm->mmap_sem);
 963                vma = mm->mmap;
 964                while (vma) {
 965                        if ((vma->vm_flags & VM_EXECUTABLE) &&
 966                            vma->vm_file) {
 967                                audit_log_d_path(ab, "exe=",
 968                                                 &vma->vm_file->f_path);
 969                                break;
 970                        }
 971                        vma = vma->vm_next;
 972                }
 973                up_read(&mm->mmap_sem);
 974        }
 975        audit_log_task_context(ab);
 976}
 977
 978static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 979                                 uid_t auid, uid_t uid, unsigned int sessionid,
 980                                 u32 sid, char *comm)
 981{
 982        struct audit_buffer *ab;
 983        char *ctx = NULL;
 984        u32 len;
 985        int rc = 0;
 986
 987        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 988        if (!ab)
 989                return rc;
 990
 991        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
 992                         uid, sessionid);
 993        if (security_secid_to_secctx(sid, &ctx, &len)) {
 994                audit_log_format(ab, " obj=(none)");
 995                rc = 1;
 996        } else {
 997                audit_log_format(ab, " obj=%s", ctx);
 998                security_release_secctx(ctx, len);
 999        }
1000        audit_log_format(ab, " ocomm=");
1001        audit_log_untrustedstring(ab, comm);
1002        audit_log_end(ab);
1003
1004        return rc;
1005}
1006
1007/*
1008 * to_send and len_sent accounting are very loose estimates.  We aren't
1009 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1010 * within about 500 bytes (next page boundry)
1011 *
1012 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1013 * logging that a[%d]= was going to be 16 characters long we would be wasting
1014 * space in every audit message.  In one 7500 byte message we can log up to
1015 * about 1000 min size arguments.  That comes down to about 50% waste of space
1016 * if we didn't do the snprintf to find out how long arg_num_len was.
1017 */
1018static int audit_log_single_execve_arg(struct audit_context *context,
1019                                        struct audit_buffer **ab,
1020                                        int arg_num,
1021                                        size_t *len_sent,
1022                                        const char __user *p,
1023                                        char *buf)
1024{
1025        char arg_num_len_buf[12];
1026        const char __user *tmp_p = p;
1027        /* how many digits are in arg_num? 3 is the length of " a=" */
1028        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1029        size_t len, len_left, to_send;
1030        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1031        unsigned int i, has_cntl = 0, too_long = 0;
1032        int ret;
1033
1034        /* strnlen_user includes the null we don't want to send */
1035        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1036
1037        /*
1038         * We just created this mm, if we can't find the strings
1039         * we just copied into it something is _very_ wrong. Similar
1040         * for strings that are too long, we should not have created
1041         * any.
1042         */
1043        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1044                WARN_ON(1);
1045                send_sig(SIGKILL, current, 0);
1046                return -1;
1047        }
1048
1049        /* walk the whole argument looking for non-ascii chars */
1050        do {
1051                if (len_left > MAX_EXECVE_AUDIT_LEN)
1052                        to_send = MAX_EXECVE_AUDIT_LEN;
1053                else
1054                        to_send = len_left;
1055                ret = copy_from_user(buf, tmp_p, to_send);
1056                /*
1057                 * There is no reason for this copy to be short. We just
1058                 * copied them here, and the mm hasn't been exposed to user-
1059                 * space yet.
1060                 */
1061                if (ret) {
1062                        WARN_ON(1);
1063                        send_sig(SIGKILL, current, 0);
1064                        return -1;
1065                }
1066                buf[to_send] = '\0';
1067                has_cntl = audit_string_contains_control(buf, to_send);
1068                if (has_cntl) {
1069                        /*
1070                         * hex messages get logged as 2 bytes, so we can only
1071                         * send half as much in each message
1072                         */
1073                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1074                        break;
1075                }
1076                len_left -= to_send;
1077                tmp_p += to_send;
1078        } while (len_left > 0);
1079
1080        len_left = len;
1081
1082        if (len > max_execve_audit_len)
1083                too_long = 1;
1084
1085        /* rewalk the argument actually logging the message */
1086        for (i = 0; len_left > 0; i++) {
1087                int room_left;
1088
1089                if (len_left > max_execve_audit_len)
1090                        to_send = max_execve_audit_len;
1091                else
1092                        to_send = len_left;
1093
1094                /* do we have space left to send this argument in this ab? */
1095                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1096                if (has_cntl)
1097                        room_left -= (to_send * 2);
1098                else
1099                        room_left -= to_send;
1100                if (room_left < 0) {
1101                        *len_sent = 0;
1102                        audit_log_end(*ab);
1103                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1104                        if (!*ab)
1105                                return 0;
1106                }
1107
1108                /*
1109                 * first record needs to say how long the original string was
1110                 * so we can be sure nothing was lost.
1111                 */
1112                if ((i == 0) && (too_long))
1113                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1114                                         has_cntl ? 2*len : len);
1115
1116                /*
1117                 * normally arguments are small enough to fit and we already
1118                 * filled buf above when we checked for control characters
1119                 * so don't bother with another copy_from_user
1120                 */
1121                if (len >= max_execve_audit_len)
1122                        ret = copy_from_user(buf, p, to_send);
1123                else
1124                        ret = 0;
1125                if (ret) {
1126                        WARN_ON(1);
1127                        send_sig(SIGKILL, current, 0);
1128                        return -1;
1129                }
1130                buf[to_send] = '\0';
1131
1132                /* actually log it */
1133                audit_log_format(*ab, " a%d", arg_num);
1134                if (too_long)
1135                        audit_log_format(*ab, "[%d]", i);
1136                audit_log_format(*ab, "=");
1137                if (has_cntl)
1138                        audit_log_n_hex(*ab, buf, to_send);
1139                else
1140                        audit_log_format(*ab, "\"%s\"", buf);
1141
1142                p += to_send;
1143                len_left -= to_send;
1144                *len_sent += arg_num_len;
1145                if (has_cntl)
1146                        *len_sent += to_send * 2;
1147                else
1148                        *len_sent += to_send;
1149        }
1150        /* include the null we didn't log */
1151        return len + 1;
1152}
1153
1154static void audit_log_execve_info(struct audit_context *context,
1155                                  struct audit_buffer **ab,
1156                                  struct audit_aux_data_execve *axi)
1157{
1158        int i;
1159        size_t len, len_sent = 0;
1160        const char __user *p;
1161        char *buf;
1162
1163        if (axi->mm != current->mm)
1164                return; /* execve failed, no additional info */
1165
1166        p = (const char __user *)axi->mm->arg_start;
1167
1168        audit_log_format(*ab, "argc=%d", axi->argc);
1169
1170        /*
1171         * we need some kernel buffer to hold the userspace args.  Just
1172         * allocate one big one rather than allocating one of the right size
1173         * for every single argument inside audit_log_single_execve_arg()
1174         * should be <8k allocation so should be pretty safe.
1175         */
1176        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1177        if (!buf) {
1178                audit_panic("out of memory for argv string\n");
1179                return;
1180        }
1181
1182        for (i = 0; i < axi->argc; i++) {
1183                len = audit_log_single_execve_arg(context, ab, i,
1184                                                  &len_sent, p, buf);
1185                if (len <= 0)
1186                        break;
1187                p += len;
1188        }
1189        kfree(buf);
1190}
1191
1192static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1193{
1194        int i;
1195
1196        audit_log_format(ab, " %s=", prefix);
1197        CAP_FOR_EACH_U32(i) {
1198                audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1199        }
1200}
1201
1202static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1203{
1204        kernel_cap_t *perm = &name->fcap.permitted;
1205        kernel_cap_t *inh = &name->fcap.inheritable;
1206        int log = 0;
1207
1208        if (!cap_isclear(*perm)) {
1209                audit_log_cap(ab, "cap_fp", perm);
1210                log = 1;
1211        }
1212        if (!cap_isclear(*inh)) {
1213                audit_log_cap(ab, "cap_fi", inh);
1214                log = 1;
1215        }
1216
1217        if (log)
1218                audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1219}
1220
1221static void show_special(struct audit_context *context, int *call_panic)
1222{
1223        struct audit_buffer *ab;
1224        int i;
1225
1226        ab = audit_log_start(context, GFP_KERNEL, context->type);
1227        if (!ab)
1228                return;
1229
1230        switch (context->type) {
1231        case AUDIT_SOCKETCALL: {
1232                int nargs = context->socketcall.nargs;
1233                audit_log_format(ab, "nargs=%d", nargs);
1234                for (i = 0; i < nargs; i++)
1235                        audit_log_format(ab, " a%d=%lx", i,
1236                                context->socketcall.args[i]);
1237                break; }
1238        case AUDIT_IPC: {
1239                u32 osid = context->ipc.osid;
1240
1241                audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1242                         context->ipc.uid, context->ipc.gid, context->ipc.mode);
1243                if (osid) {
1244                        char *ctx = NULL;
1245                        u32 len;
1246                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1247                                audit_log_format(ab, " osid=%u", osid);
1248                                *call_panic = 1;
1249                        } else {
1250                                audit_log_format(ab, " obj=%s", ctx);
1251                                security_release_secctx(ctx, len);
1252                        }
1253                }
1254                if (context->ipc.has_perm) {
1255                        audit_log_end(ab);
1256                        ab = audit_log_start(context, GFP_KERNEL,
1257                                             AUDIT_IPC_SET_PERM);
1258                        audit_log_format(ab,
1259                                "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1260                                context->ipc.qbytes,
1261                                context->ipc.perm_uid,
1262                                context->ipc.perm_gid,
1263                                context->ipc.perm_mode);
1264                        if (!ab)
1265                                return;
1266                }
1267                break; }
1268        case AUDIT_MQ_OPEN: {
1269                audit_log_format(ab,
1270                        "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1271                        "mq_msgsize=%ld mq_curmsgs=%ld",
1272                        context->mq_open.oflag, context->mq_open.mode,
1273                        context->mq_open.attr.mq_flags,
1274                        context->mq_open.attr.mq_maxmsg,
1275                        context->mq_open.attr.mq_msgsize,
1276                        context->mq_open.attr.mq_curmsgs);
1277                break; }
1278        case AUDIT_MQ_SENDRECV: {
1279                audit_log_format(ab,
1280                        "mqdes=%d msg_len=%zd msg_prio=%u "
1281                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1282                        context->mq_sendrecv.mqdes,
1283                        context->mq_sendrecv.msg_len,
1284                        context->mq_sendrecv.msg_prio,
1285                        context->mq_sendrecv.abs_timeout.tv_sec,
1286                        context->mq_sendrecv.abs_timeout.tv_nsec);
1287                break; }
1288        case AUDIT_MQ_NOTIFY: {
1289                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1290                                context->mq_notify.mqdes,
1291                                context->mq_notify.sigev_signo);
1292                break; }
1293        case AUDIT_MQ_GETSETATTR: {
1294                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1295                audit_log_format(ab,
1296                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1297                        "mq_curmsgs=%ld ",
1298                        context->mq_getsetattr.mqdes,
1299                        attr->mq_flags, attr->mq_maxmsg,
1300                        attr->mq_msgsize, attr->mq_curmsgs);
1301                break; }
1302        case AUDIT_CAPSET: {
1303                audit_log_format(ab, "pid=%d", context->capset.pid);
1304                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1305                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1306                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1307                break; }
1308        }
1309        audit_log_end(ab);
1310}
1311
1312static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1313{
1314        const struct cred *cred;
1315        int i, call_panic = 0;
1316        struct audit_buffer *ab;
1317        struct audit_aux_data *aux;
1318        const char *tty;
1319
1320        /* tsk == current */
1321        context->pid = tsk->pid;
1322        if (!context->ppid)
1323                context->ppid = sys_getppid();
1324        cred = current_cred();
1325        context->uid   = cred->uid;
1326        context->gid   = cred->gid;
1327        context->euid  = cred->euid;
1328        context->suid  = cred->suid;
1329        context->fsuid = cred->fsuid;
1330        context->egid  = cred->egid;
1331        context->sgid  = cred->sgid;
1332        context->fsgid = cred->fsgid;
1333        context->personality = tsk->personality;
1334
1335        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1336        if (!ab)
1337                return;         /* audit_panic has been called */
1338        audit_log_format(ab, "arch=%x syscall=%d",
1339                         context->arch, context->major);
1340        if (context->personality != PER_LINUX)
1341                audit_log_format(ab, " per=%lx", context->personality);
1342        if (context->return_valid)
1343                audit_log_format(ab, " success=%s exit=%ld",
1344                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1345                                 context->return_code);
1346
1347        spin_lock_irq(&tsk->sighand->siglock);
1348        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1349                tty = tsk->signal->tty->name;
1350        else
1351                tty = "(none)";
1352        spin_unlock_irq(&tsk->sighand->siglock);
1353
1354        audit_log_format(ab,
1355                  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1356                  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1357                  " euid=%u suid=%u fsuid=%u"
1358                  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1359                  context->argv[0],
1360                  context->argv[1],
1361                  context->argv[2],
1362                  context->argv[3],
1363                  context->name_count,
1364                  context->ppid,
1365                  context->pid,
1366                  tsk->loginuid,
1367                  context->uid,
1368                  context->gid,
1369                  context->euid, context->suid, context->fsuid,
1370                  context->egid, context->sgid, context->fsgid, tty,
1371                  tsk->sessionid);
1372
1373
1374        audit_log_task_info(ab, tsk);
1375        if (context->filterkey) {
1376                audit_log_format(ab, " key=");
1377                audit_log_untrustedstring(ab, context->filterkey);
1378        } else
1379                audit_log_format(ab, " key=(null)");
1380        audit_log_end(ab);
1381
1382        for (aux = context->aux; aux; aux = aux->next) {
1383
1384                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1385                if (!ab)
1386                        continue; /* audit_panic has been called */
1387
1388                switch (aux->type) {
1389
1390                case AUDIT_EXECVE: {
1391                        struct audit_aux_data_execve *axi = (void *)aux;
1392                        audit_log_execve_info(context, &ab, axi);
1393                        break; }
1394
1395                case AUDIT_BPRM_FCAPS: {
1396                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1397                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1398                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1399                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1400                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1401                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1402                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1403                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1404                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1405                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1406                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1407                        break; }
1408
1409                }
1410                audit_log_end(ab);
1411        }
1412
1413        if (context->type)
1414                show_special(context, &call_panic);
1415
1416        if (context->fds[0] >= 0) {
1417                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1418                if (ab) {
1419                        audit_log_format(ab, "fd0=%d fd1=%d",
1420                                        context->fds[0], context->fds[1]);
1421                        audit_log_end(ab);
1422                }
1423        }
1424
1425        if (context->sockaddr_len) {
1426                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1427                if (ab) {
1428                        audit_log_format(ab, "saddr=");
1429                        audit_log_n_hex(ab, (void *)context->sockaddr,
1430                                        context->sockaddr_len);
1431                        audit_log_end(ab);
1432                }
1433        }
1434
1435        for (aux = context->aux_pids; aux; aux = aux->next) {
1436                struct audit_aux_data_pids *axs = (void *)aux;
1437
1438                for (i = 0; i < axs->pid_count; i++)
1439                        if (audit_log_pid_context(context, axs->target_pid[i],
1440                                                  axs->target_auid[i],
1441                                                  axs->target_uid[i],
1442                                                  axs->target_sessionid[i],
1443                                                  axs->target_sid[i],
1444                                                  axs->target_comm[i]))
1445                                call_panic = 1;
1446        }
1447
1448        if (context->target_pid &&
1449            audit_log_pid_context(context, context->target_pid,
1450                                  context->target_auid, context->target_uid,
1451                                  context->target_sessionid,
1452                                  context->target_sid, context->target_comm))
1453                        call_panic = 1;
1454
1455        if (context->pwd.dentry && context->pwd.mnt) {
1456                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1457                if (ab) {
1458                        audit_log_d_path(ab, "cwd=", &context->pwd);
1459                        audit_log_end(ab);
1460                }
1461        }
1462        for (i = 0; i < context->name_count; i++) {
1463                struct audit_names *n = &context->names[i];
1464
1465                ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1466                if (!ab)
1467                        continue; /* audit_panic has been called */
1468
1469                audit_log_format(ab, "item=%d", i);
1470
1471                if (n->name) {
1472                        switch(n->name_len) {
1473                        case AUDIT_NAME_FULL:
1474                                /* log the full path */
1475                                audit_log_format(ab, " name=");
1476                                audit_log_untrustedstring(ab, n->name);
1477                                break;
1478                        case 0:
1479                                /* name was specified as a relative path and the
1480                                 * directory component is the cwd */
1481                                audit_log_d_path(ab, "name=", &context->pwd);
1482                                break;
1483                        default:
1484                                /* log the name's directory component */
1485                                audit_log_format(ab, " name=");
1486                                audit_log_n_untrustedstring(ab, n->name,
1487                                                            n->name_len);
1488                        }
1489                } else
1490                        audit_log_format(ab, " name=(null)");
1491
1492                if (n->ino != (unsigned long)-1) {
1493                        audit_log_format(ab, " inode=%lu"
1494                                         " dev=%02x:%02x mode=%#o"
1495                                         " ouid=%u ogid=%u rdev=%02x:%02x",
1496                                         n->ino,
1497                                         MAJOR(n->dev),
1498                                         MINOR(n->dev),
1499                                         n->mode,
1500                                         n->uid,
1501                                         n->gid,
1502                                         MAJOR(n->rdev),
1503                                         MINOR(n->rdev));
1504                }
1505                if (n->osid != 0) {
1506                        char *ctx = NULL;
1507                        u32 len;
1508                        if (security_secid_to_secctx(
1509                                n->osid, &ctx, &len)) {
1510                                audit_log_format(ab, " osid=%u", n->osid);
1511                                call_panic = 2;
1512                        } else {
1513                                audit_log_format(ab, " obj=%s", ctx);
1514                                security_release_secctx(ctx, len);
1515                        }
1516                }
1517
1518                audit_log_fcaps(ab, n);
1519
1520                audit_log_end(ab);
1521        }
1522
1523        /* Send end of event record to help user space know we are finished */
1524        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1525        if (ab)
1526                audit_log_end(ab);
1527        if (call_panic)
1528                audit_panic("error converting sid to string");
1529}
1530
1531/**
1532 * audit_free - free a per-task audit context
1533 * @tsk: task whose audit context block to free
1534 *
1535 * Called from copy_process and do_exit
1536 */
1537void audit_free(struct task_struct *tsk)
1538{
1539        struct audit_context *context;
1540
1541        context = audit_get_context(tsk, 0, 0);
1542        if (likely(!context))
1543                return;
1544
1545        /* Check for system calls that do not go through the exit
1546         * function (e.g., exit_group), then free context block.
1547         * We use GFP_ATOMIC here because we might be doing this
1548         * in the context of the idle thread */
1549        /* that can happen only if we are called from do_exit() */
1550        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1551                audit_log_exit(context, tsk);
1552
1553        audit_free_context(context);
1554}
1555
1556/**
1557 * audit_syscall_entry - fill in an audit record at syscall entry
1558 * @arch: architecture type
1559 * @major: major syscall type (function)
1560 * @a1: additional syscall register 1
1561 * @a2: additional syscall register 2
1562 * @a3: additional syscall register 3
1563 * @a4: additional syscall register 4
1564 *
1565 * Fill in audit context at syscall entry.  This only happens if the
1566 * audit context was created when the task was created and the state or
1567 * filters demand the audit context be built.  If the state from the
1568 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1569 * then the record will be written at syscall exit time (otherwise, it
1570 * will only be written if another part of the kernel requests that it
1571 * be written).
1572 */
1573void audit_syscall_entry(int arch, int major,
1574                         unsigned long a1, unsigned long a2,
1575                         unsigned long a3, unsigned long a4)
1576{
1577        struct task_struct *tsk = current;
1578        struct audit_context *context = tsk->audit_context;
1579        enum audit_state     state;
1580
1581        if (unlikely(!context))
1582                return;
1583
1584        /*
1585         * This happens only on certain architectures that make system
1586         * calls in kernel_thread via the entry.S interface, instead of
1587         * with direct calls.  (If you are porting to a new
1588         * architecture, hitting this condition can indicate that you
1589         * got the _exit/_leave calls backward in entry.S.)
1590         *
1591         * i386     no
1592         * x86_64   no
1593         * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1594         *
1595         * This also happens with vm86 emulation in a non-nested manner
1596         * (entries without exits), so this case must be caught.
1597         */
1598        if (context->in_syscall) {
1599                struct audit_context *newctx;
1600
1601#if AUDIT_DEBUG
1602                printk(KERN_ERR
1603                       "audit(:%d) pid=%d in syscall=%d;"
1604                       " entering syscall=%d\n",
1605                       context->serial, tsk->pid, context->major, major);
1606#endif
1607                newctx = audit_alloc_context(context->state);
1608                if (newctx) {
1609                        newctx->previous   = context;
1610                        context            = newctx;
1611                        tsk->audit_context = newctx;
1612                } else  {
1613                        /* If we can't alloc a new context, the best we
1614                         * can do is to leak memory (any pending putname
1615                         * will be lost).  The only other alternative is
1616                         * to abandon auditing. */
1617                        audit_zero_context(context, context->state);
1618                }
1619        }
1620        BUG_ON(context->in_syscall || context->name_count);
1621
1622        if (!audit_enabled)
1623                return;
1624
1625        context->arch       = arch;
1626        context->major      = major;
1627        context->argv[0]    = a1;
1628        context->argv[1]    = a2;
1629        context->argv[2]    = a3;
1630        context->argv[3]    = a4;
1631
1632        state = context->state;
1633        context->dummy = !audit_n_rules;
1634        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1635                context->prio = 0;
1636                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1637        }
1638        if (likely(state == AUDIT_DISABLED))
1639                return;
1640
1641        context->serial     = 0;
1642        context->ctime      = CURRENT_TIME;
1643        context->in_syscall = 1;
1644        context->current_state  = state;
1645        context->ppid       = 0;
1646}
1647
1648void audit_finish_fork(struct task_struct *child)
1649{
1650        struct audit_context *ctx = current->audit_context;
1651        struct audit_context *p = child->audit_context;
1652        if (!p || !ctx)
1653                return;
1654        if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1655                return;
1656        p->arch = ctx->arch;
1657        p->major = ctx->major;
1658        memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1659        p->ctime = ctx->ctime;
1660        p->dummy = ctx->dummy;
1661        p->in_syscall = ctx->in_syscall;
1662        p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1663        p->ppid = current->pid;
1664        p->prio = ctx->prio;
1665        p->current_state = ctx->current_state;
1666}
1667
1668/**
1669 * audit_syscall_exit - deallocate audit context after a system call
1670 * @valid: success/failure flag
1671 * @return_code: syscall return value
1672 *
1673 * Tear down after system call.  If the audit context has been marked as
1674 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1675 * filtering, or because some other part of the kernel write an audit
1676 * message), then write out the syscall information.  In call cases,
1677 * free the names stored from getname().
1678 */
1679void audit_syscall_exit(int valid, long return_code)
1680{
1681        struct task_struct *tsk = current;
1682        struct audit_context *context;
1683
1684        context = audit_get_context(tsk, valid, return_code);
1685
1686        if (likely(!context))
1687                return;
1688
1689        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1690                audit_log_exit(context, tsk);
1691
1692        context->in_syscall = 0;
1693        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1694
1695        if (context->previous) {
1696                struct audit_context *new_context = context->previous;
1697                context->previous  = NULL;
1698                audit_free_context(context);
1699                tsk->audit_context = new_context;
1700        } else {
1701                audit_free_names(context);
1702                unroll_tree_refs(context, NULL, 0);
1703                audit_free_aux(context);
1704                context->aux = NULL;
1705                context->aux_pids = NULL;
1706                context->target_pid = 0;
1707                context->target_sid = 0;
1708                context->sockaddr_len = 0;
1709                context->type = 0;
1710                context->fds[0] = -1;
1711                if (context->state != AUDIT_RECORD_CONTEXT) {
1712                        kfree(context->filterkey);
1713                        context->filterkey = NULL;
1714                }
1715                tsk->audit_context = context;
1716        }
1717}
1718
1719static inline void handle_one(const struct inode *inode)
1720{
1721#ifdef CONFIG_AUDIT_TREE
1722        struct audit_context *context;
1723        struct audit_tree_refs *p;
1724        struct audit_chunk *chunk;
1725        int count;
1726        if (likely(list_empty(&inode->inotify_watches)))
1727                return;
1728        context = current->audit_context;
1729        p = context->trees;
1730        count = context->tree_count;
1731        rcu_read_lock();
1732        chunk = audit_tree_lookup(inode);
1733        rcu_read_unlock();
1734        if (!chunk)
1735                return;
1736        if (likely(put_tree_ref(context, chunk)))
1737                return;
1738        if (unlikely(!grow_tree_refs(context))) {
1739                printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1740                audit_set_auditable(context);
1741                audit_put_chunk(chunk);
1742                unroll_tree_refs(context, p, count);
1743                return;
1744        }
1745        put_tree_ref(context, chunk);
1746#endif
1747}
1748
1749static void handle_path(const struct dentry *dentry)
1750{
1751#ifdef CONFIG_AUDIT_TREE
1752        struct audit_context *context;
1753        struct audit_tree_refs *p;
1754        const struct dentry *d, *parent;
1755        struct audit_chunk *drop;
1756        unsigned long seq;
1757        int count;
1758
1759        context = current->audit_context;
1760        p = context->trees;
1761        count = context->tree_count;
1762retry:
1763        drop = NULL;
1764        d = dentry;
1765        rcu_read_lock();
1766        seq = read_seqbegin(&rename_lock);
1767        for(;;) {
1768                struct inode *inode = d->d_inode;
1769                if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1770                        struct audit_chunk *chunk;
1771                        chunk = audit_tree_lookup(inode);
1772                        if (chunk) {
1773                                if (unlikely(!put_tree_ref(context, chunk))) {
1774                                        drop = chunk;
1775                                        break;
1776                                }
1777                        }
1778                }
1779                parent = d->d_parent;
1780                if (parent == d)
1781                        break;
1782                d = parent;
1783        }
1784        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1785                rcu_read_unlock();
1786                if (!drop) {
1787                        /* just a race with rename */
1788                        unroll_tree_refs(context, p, count);
1789                        goto retry;
1790                }
1791                audit_put_chunk(drop);
1792                if (grow_tree_refs(context)) {
1793                        /* OK, got more space */
1794                        unroll_tree_refs(context, p, count);
1795                        goto retry;
1796                }
1797                /* too bad */
1798                printk(KERN_WARNING
1799                        "out of memory, audit has lost a tree reference\n");
1800                unroll_tree_refs(context, p, count);
1801                audit_set_auditable(context);
1802                return;
1803        }
1804        rcu_read_unlock();
1805#endif
1806}
1807
1808/**
1809 * audit_getname - add a name to the list
1810 * @name: name to add
1811 *
1812 * Add a name to the list of audit names for this context.
1813 * Called from fs/namei.c:getname().
1814 */
1815void __audit_getname(const char *name)
1816{
1817        struct audit_context *context = current->audit_context;
1818
1819        if (IS_ERR(name) || !name)
1820                return;
1821
1822        if (!context->in_syscall) {
1823#if AUDIT_DEBUG == 2
1824                printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1825                       __FILE__, __LINE__, context->serial, name);
1826                dump_stack();
1827#endif
1828                return;
1829        }
1830        BUG_ON(context->name_count >= AUDIT_NAMES);
1831        context->names[context->name_count].name = name;
1832        context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1833        context->names[context->name_count].name_put = 1;
1834        context->names[context->name_count].ino  = (unsigned long)-1;
1835        context->names[context->name_count].osid = 0;
1836        ++context->name_count;
1837        if (!context->pwd.dentry) {
1838                read_lock(&current->fs->lock);
1839                context->pwd = current->fs->pwd;
1840                path_get(&current->fs->pwd);
1841                read_unlock(&current->fs->lock);
1842        }
1843
1844}
1845
1846/* audit_putname - intercept a putname request
1847 * @name: name to intercept and delay for putname
1848 *
1849 * If we have stored the name from getname in the audit context,
1850 * then we delay the putname until syscall exit.
1851 * Called from include/linux/fs.h:putname().
1852 */
1853void audit_putname(const char *name)
1854{
1855        struct audit_context *context = current->audit_context;
1856
1857        BUG_ON(!context);
1858        if (!context->in_syscall) {
1859#if AUDIT_DEBUG == 2
1860                printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1861                       __FILE__, __LINE__, context->serial, name);
1862                if (context->name_count) {
1863                        int i;
1864                        for (i = 0; i < context->name_count; i++)
1865                                printk(KERN_ERR "name[%d] = %p = %s\n", i,
1866                                       context->names[i].name,
1867                                       context->names[i].name ?: "(null)");
1868                }
1869#endif
1870                __putname(name);
1871        }
1872#if AUDIT_DEBUG
1873        else {
1874                ++context->put_count;
1875                if (context->put_count > context->name_count) {
1876                        printk(KERN_ERR "%s:%d(:%d): major=%d"
1877                               " in_syscall=%d putname(%p) name_count=%d"
1878                               " put_count=%d\n",
1879                               __FILE__, __LINE__,
1880                               context->serial, context->major,
1881                               context->in_syscall, name, context->name_count,
1882                               context->put_count);
1883                        dump_stack();
1884                }
1885        }
1886#endif
1887}
1888
1889static int audit_inc_name_count(struct audit_context *context,
1890                                const struct inode *inode)
1891{
1892        if (context->name_count >= AUDIT_NAMES) {
1893                if (inode)
1894                        printk(KERN_DEBUG "name_count maxed, losing inode data: "
1895                               "dev=%02x:%02x, inode=%lu\n",
1896                               MAJOR(inode->i_sb->s_dev),
1897                               MINOR(inode->i_sb->s_dev),
1898                               inode->i_ino);
1899
1900                else
1901                        printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1902                return 1;
1903        }
1904        context->name_count++;
1905#if AUDIT_DEBUG
1906        context->ino_count++;
1907#endif
1908        return 0;
1909}
1910
1911
1912static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1913{
1914        struct cpu_vfs_cap_data caps;
1915        int rc;
1916
1917        memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1918        memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1919        name->fcap.fE = 0;
1920        name->fcap_ver = 0;
1921
1922        if (!dentry)
1923                return 0;
1924
1925        rc = get_vfs_caps_from_disk(dentry, &caps);
1926        if (rc)
1927                return rc;
1928
1929        name->fcap.permitted = caps.permitted;
1930        name->fcap.inheritable = caps.inheritable;
1931        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1932        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1933
1934        return 0;
1935}
1936
1937
1938/* Copy inode data into an audit_names. */
1939static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1940                             const struct inode *inode)
1941{
1942        name->ino   = inode->i_ino;
1943        name->dev   = inode->i_sb->s_dev;
1944        name->mode  = inode->i_mode;
1945        name->uid   = inode->i_uid;
1946        name->gid   = inode->i_gid;
1947        name->rdev  = inode->i_rdev;
1948        security_inode_getsecid(inode, &name->osid);
1949        audit_copy_fcaps(name, dentry);
1950}
1951
1952/**
1953 * audit_inode - store the inode and device from a lookup
1954 * @name: name being audited
1955 * @dentry: dentry being audited
1956 *
1957 * Called from fs/namei.c:path_lookup().
1958 */
1959void __audit_inode(const char *name, const struct dentry *dentry)
1960{
1961        int idx;
1962        struct audit_context *context = current->audit_context;
1963        const struct inode *inode = dentry->d_inode;
1964
1965        if (!context->in_syscall)
1966                return;
1967        if (context->name_count
1968            && context->names[context->name_count-1].name
1969            && context->names[context->name_count-1].name == name)
1970                idx = context->name_count - 1;
1971        else if (context->name_count > 1
1972                 && context->names[context->name_count-2].name
1973                 && context->names[context->name_count-2].name == name)
1974                idx = context->name_count - 2;
1975        else {
1976                /* FIXME: how much do we care about inodes that have no
1977                 * associated name? */
1978                if (audit_inc_name_count(context, inode))
1979                        return;
1980                idx = context->name_count - 1;
1981                context->names[idx].name = NULL;
1982        }
1983        handle_path(dentry);
1984        audit_copy_inode(&context->names[idx], dentry, inode);
1985}
1986
1987/**
1988 * audit_inode_child - collect inode info for created/removed objects
1989 * @dname: inode's dentry name
1990 * @dentry: dentry being audited
1991 * @parent: inode of dentry parent
1992 *
1993 * For syscalls that create or remove filesystem objects, audit_inode
1994 * can only collect information for the filesystem object's parent.
1995 * This call updates the audit context with the child's information.
1996 * Syscalls that create a new filesystem object must be hooked after
1997 * the object is created.  Syscalls that remove a filesystem object
1998 * must be hooked prior, in order to capture the target inode during
1999 * unsuccessful attempts.
2000 */
2001void __audit_inode_child(const char *dname, const struct dentry *dentry,
2002                         const struct inode *parent)
2003{
2004        int idx;
2005        struct audit_context *context = current->audit_context;
2006        const char *found_parent = NULL, *found_child = NULL;
2007        const struct inode *inode = dentry->d_inode;
2008        int dirlen = 0;
2009
2010        if (!context->in_syscall)
2011                return;
2012
2013        if (inode)
2014                handle_one(inode);
2015        /* determine matching parent */
2016        if (!dname)
2017                goto add_names;
2018
2019        /* parent is more likely, look for it first */
2020        for (idx = 0; idx < context->name_count; idx++) {
2021                struct audit_names *n = &context->names[idx];
2022
2023                if (!n->name)
2024                        continue;
2025
2026                if (n->ino == parent->i_ino &&
2027                    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2028                        n->name_len = dirlen; /* update parent data in place */
2029                        found_parent = n->name;
2030                        goto add_names;
2031                }
2032        }
2033
2034        /* no matching parent, look for matching child */
2035        for (idx = 0; idx < context->name_count; idx++) {
2036                struct audit_names *n = &context->names[idx];
2037
2038                if (!n->name)
2039                        continue;
2040
2041                /* strcmp() is the more likely scenario */
2042                if (!strcmp(dname, n->name) ||
2043                     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2044                        if (inode)
2045                                audit_copy_inode(n, NULL, inode);
2046                        else
2047                                n->ino = (unsigned long)-1;
2048                        found_child = n->name;
2049                        goto add_names;
2050                }
2051        }
2052
2053add_names:
2054        if (!found_parent) {
2055                if (audit_inc_name_count(context, parent))
2056                        return;
2057                idx = context->name_count - 1;
2058                context->names[idx].name = NULL;
2059                audit_copy_inode(&context->names[idx], NULL, parent);
2060        }
2061
2062        if (!found_child) {
2063                if (audit_inc_name_count(context, inode))
2064                        return;
2065                idx = context->name_count - 1;
2066
2067                /* Re-use the name belonging to the slot for a matching parent
2068                 * directory. All names for this context are relinquished in
2069                 * audit_free_names() */
2070                if (found_parent) {
2071                        context->names[idx].name = found_parent;
2072                        context->names[idx].name_len = AUDIT_NAME_FULL;
2073                        /* don't call __putname() */
2074                        context->names[idx].name_put = 0;
2075                } else {
2076                        context->names[idx].name = NULL;
2077                }
2078
2079                if (inode)
2080                        audit_copy_inode(&context->names[idx], NULL, inode);
2081                else
2082                        context->names[idx].ino = (unsigned long)-1;
2083        }
2084}
2085EXPORT_SYMBOL_GPL(__audit_inode_child);
2086
2087/**
2088 * auditsc_get_stamp - get local copies of audit_context values
2089 * @ctx: audit_context for the task
2090 * @t: timespec to store time recorded in the audit_context
2091 * @serial: serial value that is recorded in the audit_context
2092 *
2093 * Also sets the context as auditable.
2094 */
2095int auditsc_get_stamp(struct audit_context *ctx,
2096                       struct timespec *t, unsigned int *serial)
2097{
2098        if (!ctx->in_syscall)
2099                return 0;
2100        if (!ctx->serial)
2101                ctx->serial = audit_serial();
2102        t->tv_sec  = ctx->ctime.tv_sec;
2103        t->tv_nsec = ctx->ctime.tv_nsec;
2104        *serial    = ctx->serial;
2105        if (!ctx->prio) {
2106                ctx->prio = 1;
2107                ctx->current_state = AUDIT_RECORD_CONTEXT;
2108        }
2109        return 1;
2110}
2111
2112/* global counter which is incremented every time something logs in */
2113static atomic_t session_id = ATOMIC_INIT(0);
2114
2115/**
2116 * audit_set_loginuid - set a task's audit_context loginuid
2117 * @task: task whose audit context is being modified
2118 * @loginuid: loginuid value
2119 *
2120 * Returns 0.
2121 *
2122 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2123 */
2124int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2125{
2126        unsigned int sessionid = atomic_inc_return(&session_id);
2127        struct audit_context *context = task->audit_context;
2128
2129        if (context && context->in_syscall) {
2130                struct audit_buffer *ab;
2131
2132                ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2133                if (ab) {
2134                        audit_log_format(ab, "login pid=%d uid=%u "
2135                                "old auid=%u new auid=%u"
2136                                " old ses=%u new ses=%u",
2137                                task->pid, task_uid(task),
2138                                task->loginuid, loginuid,
2139                                task->sessionid, sessionid);
2140                        audit_log_end(ab);
2141                }
2142        }
2143        task->sessionid = sessionid;
2144        task->loginuid = loginuid;
2145        return 0;
2146}
2147
2148/**
2149 * __audit_mq_open - record audit data for a POSIX MQ open
2150 * @oflag: open flag
2151 * @mode: mode bits
2152 * @attr: queue attributes
2153 *
2154 */
2155void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2156{
2157        struct audit_context *context = current->audit_context;
2158
2159        if (attr)
2160                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2161        else
2162                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2163
2164        context->mq_open.oflag = oflag;
2165        context->mq_open.mode = mode;
2166
2167        context->type = AUDIT_MQ_OPEN;
2168}
2169
2170/**
2171 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2172 * @mqdes: MQ descriptor
2173 * @msg_len: Message length
2174 * @msg_prio: Message priority
2175 * @abs_timeout: Message timeout in absolute time
2176 *
2177 */
2178void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2179                        const struct timespec *abs_timeout)
2180{
2181        struct audit_context *context = current->audit_context;
2182        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2183
2184        if (abs_timeout)
2185                memcpy(p, abs_timeout, sizeof(struct timespec));
2186        else
2187                memset(p, 0, sizeof(struct timespec));
2188
2189        context->mq_sendrecv.mqdes = mqdes;
2190        context->mq_sendrecv.msg_len = msg_len;
2191        context->mq_sendrecv.msg_prio = msg_prio;
2192
2193        context->type = AUDIT_MQ_SENDRECV;
2194}
2195
2196/**
2197 * __audit_mq_notify - record audit data for a POSIX MQ notify
2198 * @mqdes: MQ descriptor
2199 * @notification: Notification event
2200 *
2201 */
2202
2203void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2204{
2205        struct audit_context *context = current->audit_context;
2206
2207        if (notification)
2208                context->mq_notify.sigev_signo = notification->sigev_signo;
2209        else
2210                context->mq_notify.sigev_signo = 0;
2211
2212        context->mq_notify.mqdes = mqdes;
2213        context->type = AUDIT_MQ_NOTIFY;
2214}
2215
2216/**
2217 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2218 * @mqdes: MQ descriptor
2219 * @mqstat: MQ flags
2220 *
2221 */
2222void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2223{
2224        struct audit_context *context = current->audit_context;
2225        context->mq_getsetattr.mqdes = mqdes;
2226        context->mq_getsetattr.mqstat = *mqstat;
2227        context->type = AUDIT_MQ_GETSETATTR;
2228}
2229
2230/**
2231 * audit_ipc_obj - record audit data for ipc object
2232 * @ipcp: ipc permissions
2233 *
2234 */
2235void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2236{
2237        struct audit_context *context = current->audit_context;
2238        context->ipc.uid = ipcp->uid;
2239        context->ipc.gid = ipcp->gid;
2240        context->ipc.mode = ipcp->mode;
2241        context->ipc.has_perm = 0;
2242        security_ipc_getsecid(ipcp, &context->ipc.osid);
2243        context->type = AUDIT_IPC;
2244}
2245
2246/**
2247 * audit_ipc_set_perm - record audit data for new ipc permissions
2248 * @qbytes: msgq bytes
2249 * @uid: msgq user id
2250 * @gid: msgq group id
2251 * @mode: msgq mode (permissions)
2252 *
2253 * Called only after audit_ipc_obj().
2254 */
2255void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2256{
2257        struct audit_context *context = current->audit_context;
2258
2259        context->ipc.qbytes = qbytes;
2260        context->ipc.perm_uid = uid;
2261        context->ipc.perm_gid = gid;
2262        context->ipc.perm_mode = mode;
2263        context->ipc.has_perm = 1;
2264}
2265
2266int audit_bprm(struct linux_binprm *bprm)
2267{
2268        struct audit_aux_data_execve *ax;
2269        struct audit_context *context = current->audit_context;
2270
2271        if (likely(!audit_enabled || !context || context->dummy))
2272                return 0;
2273
2274        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2275        if (!ax)
2276                return -ENOMEM;
2277
2278        ax->argc = bprm->argc;
2279        ax->envc = bprm->envc;
2280        ax->mm = bprm->mm;
2281        ax->d.type = AUDIT_EXECVE;
2282        ax->d.next = context->aux;
2283        context->aux = (void *)ax;
2284        return 0;
2285}
2286
2287
2288/**
2289 * audit_socketcall - record audit data for sys_socketcall
2290 * @nargs: number of args
2291 * @args: args array
2292 *
2293 */
2294void audit_socketcall(int nargs, unsigned long *args)
2295{
2296        struct audit_context *context = current->audit_context;
2297
2298        if (likely(!context || context->dummy))
2299                return;
2300
2301        context->type = AUDIT_SOCKETCALL;
2302        context->socketcall.nargs = nargs;
2303        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2304}
2305
2306/**
2307 * __audit_fd_pair - record audit data for pipe and socketpair
2308 * @fd1: the first file descriptor
2309 * @fd2: the second file descriptor
2310 *
2311 */
2312void __audit_fd_pair(int fd1, int fd2)
2313{
2314        struct audit_context *context = current->audit_context;
2315        context->fds[0] = fd1;
2316        context->fds[1] = fd2;
2317}
2318
2319/**
2320 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2321 * @len: data length in user space
2322 * @a: data address in kernel space
2323 *
2324 * Returns 0 for success or NULL context or < 0 on error.
2325 */
2326int audit_sockaddr(int len, void *a)
2327{
2328        struct audit_context *context = current->audit_context;
2329
2330        if (likely(!context || context->dummy))
2331                return 0;
2332
2333        if (!context->sockaddr) {
2334                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2335                if (!p)
2336                        return -ENOMEM;
2337                context->sockaddr = p;
2338        }
2339
2340        context->sockaddr_len = len;
2341        memcpy(context->sockaddr, a, len);
2342        return 0;
2343}
2344
2345void __audit_ptrace(struct task_struct *t)
2346{
2347        struct audit_context *context = current->audit_context;
2348
2349        context->target_pid = t->pid;
2350        context->target_auid = audit_get_loginuid(t);
2351        context->target_uid = task_uid(t);
2352        context->target_sessionid = audit_get_sessionid(t);
2353        security_task_getsecid(t, &context->target_sid);
2354        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2355}
2356
2357/**
2358 * audit_signal_info - record signal info for shutting down audit subsystem
2359 * @sig: signal value
2360 * @t: task being signaled
2361 *
2362 * If the audit subsystem is being terminated, record the task (pid)
2363 * and uid that is doing that.
2364 */
2365int __audit_signal_info(int sig, struct task_struct *t)
2366{
2367        struct audit_aux_data_pids *axp;
2368        struct task_struct *tsk = current;
2369        struct audit_context *ctx = tsk->audit_context;
2370        uid_t uid = current_uid(), t_uid = task_uid(t);
2371
2372        if (audit_pid && t->tgid == audit_pid) {
2373                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2374                        audit_sig_pid = tsk->pid;
2375                        if (tsk->loginuid != -1)
2376                                audit_sig_uid = tsk->loginuid;
2377                        else
2378                                audit_sig_uid = uid;
2379                        security_task_getsecid(tsk, &audit_sig_sid);
2380                }
2381                if (!audit_signals || audit_dummy_context())
2382                        return 0;
2383        }
2384
2385        /* optimize the common case by putting first signal recipient directly
2386         * in audit_context */
2387        if (!ctx->target_pid) {
2388                ctx->target_pid = t->tgid;
2389                ctx->target_auid = audit_get_loginuid(t);
2390                ctx->target_uid = t_uid;
2391                ctx->target_sessionid = audit_get_sessionid(t);
2392                security_task_getsecid(t, &ctx->target_sid);
2393                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2394                return 0;
2395        }
2396
2397        axp = (void *)ctx->aux_pids;
2398        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2399                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2400                if (!axp)
2401                        return -ENOMEM;
2402
2403                axp->d.type = AUDIT_OBJ_PID;
2404                axp->d.next = ctx->aux_pids;
2405                ctx->aux_pids = (void *)axp;
2406        }
2407        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2408
2409        axp->target_pid[axp->pid_count] = t->tgid;
2410        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2411        axp->target_uid[axp->pid_count] = t_uid;
2412        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2413        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2414        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2415        axp->pid_count++;
2416
2417        return 0;
2418}
2419
2420/**
2421 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2422 * @bprm: pointer to the bprm being processed
2423 * @new: the proposed new credentials
2424 * @old: the old credentials
2425 *
2426 * Simply check if the proc already has the caps given by the file and if not
2427 * store the priv escalation info for later auditing at the end of the syscall
2428 *
2429 * -Eric
2430 */
2431int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2432                           const struct cred *new, const struct cred *old)
2433{
2434        struct audit_aux_data_bprm_fcaps *ax;
2435        struct audit_context *context = current->audit_context;
2436        struct cpu_vfs_cap_data vcaps;
2437        struct dentry *dentry;
2438
2439        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2440        if (!ax)
2441                return -ENOMEM;
2442
2443        ax->d.type = AUDIT_BPRM_FCAPS;
2444        ax->d.next = context->aux;
2445        context->aux = (void *)ax;
2446
2447        dentry = dget(bprm->file->f_dentry);
2448        get_vfs_caps_from_disk(dentry, &vcaps);
2449        dput(dentry);
2450
2451        ax->fcap.permitted = vcaps.permitted;
2452        ax->fcap.inheritable = vcaps.inheritable;
2453        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2454        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2455
2456        ax->old_pcap.permitted   = old->cap_permitted;
2457        ax->old_pcap.inheritable = old->cap_inheritable;
2458        ax->old_pcap.effective   = old->cap_effective;
2459
2460        ax->new_pcap.permitted   = new->cap_permitted;
2461        ax->new_pcap.inheritable = new->cap_inheritable;
2462        ax->new_pcap.effective   = new->cap_effective;
2463        return 0;
2464}
2465
2466/**
2467 * __audit_log_capset - store information about the arguments to the capset syscall
2468 * @pid: target pid of the capset call
2469 * @new: the new credentials
2470 * @old: the old (current) credentials
2471 *
2472 * Record the aguments userspace sent to sys_capset for later printing by the
2473 * audit system if applicable
2474 */
2475void __audit_log_capset(pid_t pid,
2476                       const struct cred *new, const struct cred *old)
2477{
2478        struct audit_context *context = current->audit_context;
2479        context->capset.pid = pid;
2480        context->capset.cap.effective   = new->cap_effective;
2481        context->capset.cap.inheritable = new->cap_effective;
2482        context->capset.cap.permitted   = new->cap_permitted;
2483        context->type = AUDIT_CAPSET;
2484}
2485
2486/**
2487 * audit_core_dumps - record information about processes that end abnormally
2488 * @signr: signal value
2489 *
2490 * If a process ends with a core dump, something fishy is going on and we
2491 * should record the event for investigation.
2492 */
2493void audit_core_dumps(long signr)
2494{
2495        struct audit_buffer *ab;
2496        u32 sid;
2497        uid_t auid = audit_get_loginuid(current), uid;
2498        gid_t gid;
2499        unsigned int sessionid = audit_get_sessionid(current);
2500
2501        if (!audit_enabled)
2502                return;
2503
2504        if (signr == SIGQUIT)   /* don't care for those */
2505                return;
2506
2507        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2508        current_uid_gid(&uid, &gid);
2509        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2510                         auid, uid, gid, sessionid);
2511        security_task_getsecid(current, &sid);
2512        if (sid) {
2513                char *ctx = NULL;
2514                u32 len;
2515
2516                if (security_secid_to_secctx(sid, &ctx, &len))
2517                        audit_log_format(ab, " ssid=%u", sid);
2518                else {
2519                        audit_log_format(ab, " subj=%s", ctx);
2520                        security_release_secctx(ctx, len);
2521                }
2522        }
2523        audit_log_format(ab, " pid=%d comm=", current->pid);
2524        audit_log_untrustedstring(ab, current->comm);
2525        audit_log_format(ab, " sig=%ld", signr);
2526        audit_log_end(ab);
2527}
2528