linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/string.h>
  18#include <linux/log2.h>
  19#include <linux/pci-aspm.h>
  20#include <linux/pm_wakeup.h>
  21#include <linux/interrupt.h>
  22#include <asm/dma.h>    /* isa_dma_bridge_buggy */
  23#include <linux/device.h>
  24#include <asm/setup.h>
  25#include "pci.h"
  26
  27unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
  28
  29#ifdef CONFIG_PCI_DOMAINS
  30int pci_domains_supported = 1;
  31#endif
  32
  33#define DEFAULT_CARDBUS_IO_SIZE         (256)
  34#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  35/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  36unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  37unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  38
  39/**
  40 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
  41 * @bus: pointer to PCI bus structure to search
  42 *
  43 * Given a PCI bus, returns the highest PCI bus number present in the set
  44 * including the given PCI bus and its list of child PCI buses.
  45 */
  46unsigned char pci_bus_max_busnr(struct pci_bus* bus)
  47{
  48        struct list_head *tmp;
  49        unsigned char max, n;
  50
  51        max = bus->subordinate;
  52        list_for_each(tmp, &bus->children) {
  53                n = pci_bus_max_busnr(pci_bus_b(tmp));
  54                if(n > max)
  55                        max = n;
  56        }
  57        return max;
  58}
  59EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
  60
  61#ifdef CONFIG_HAS_IOMEM
  62void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
  63{
  64        /*
  65         * Make sure the BAR is actually a memory resource, not an IO resource
  66         */
  67        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
  68                WARN_ON(1);
  69                return NULL;
  70        }
  71        return ioremap_nocache(pci_resource_start(pdev, bar),
  72                                     pci_resource_len(pdev, bar));
  73}
  74EXPORT_SYMBOL_GPL(pci_ioremap_bar);
  75#endif
  76
  77#if 0
  78/**
  79 * pci_max_busnr - returns maximum PCI bus number
  80 *
  81 * Returns the highest PCI bus number present in the system global list of
  82 * PCI buses.
  83 */
  84unsigned char __devinit
  85pci_max_busnr(void)
  86{
  87        struct pci_bus *bus = NULL;
  88        unsigned char max, n;
  89
  90        max = 0;
  91        while ((bus = pci_find_next_bus(bus)) != NULL) {
  92                n = pci_bus_max_busnr(bus);
  93                if(n > max)
  94                        max = n;
  95        }
  96        return max;
  97}
  98
  99#endif  /*  0  */
 100
 101#define PCI_FIND_CAP_TTL        48
 102
 103static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 104                                   u8 pos, int cap, int *ttl)
 105{
 106        u8 id;
 107
 108        while ((*ttl)--) {
 109                pci_bus_read_config_byte(bus, devfn, pos, &pos);
 110                if (pos < 0x40)
 111                        break;
 112                pos &= ~3;
 113                pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 114                                         &id);
 115                if (id == 0xff)
 116                        break;
 117                if (id == cap)
 118                        return pos;
 119                pos += PCI_CAP_LIST_NEXT;
 120        }
 121        return 0;
 122}
 123
 124static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 125                               u8 pos, int cap)
 126{
 127        int ttl = PCI_FIND_CAP_TTL;
 128
 129        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 130}
 131
 132int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 133{
 134        return __pci_find_next_cap(dev->bus, dev->devfn,
 135                                   pos + PCI_CAP_LIST_NEXT, cap);
 136}
 137EXPORT_SYMBOL_GPL(pci_find_next_capability);
 138
 139static int __pci_bus_find_cap_start(struct pci_bus *bus,
 140                                    unsigned int devfn, u8 hdr_type)
 141{
 142        u16 status;
 143
 144        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 145        if (!(status & PCI_STATUS_CAP_LIST))
 146                return 0;
 147
 148        switch (hdr_type) {
 149        case PCI_HEADER_TYPE_NORMAL:
 150        case PCI_HEADER_TYPE_BRIDGE:
 151                return PCI_CAPABILITY_LIST;
 152        case PCI_HEADER_TYPE_CARDBUS:
 153                return PCI_CB_CAPABILITY_LIST;
 154        default:
 155                return 0;
 156        }
 157
 158        return 0;
 159}
 160
 161/**
 162 * pci_find_capability - query for devices' capabilities 
 163 * @dev: PCI device to query
 164 * @cap: capability code
 165 *
 166 * Tell if a device supports a given PCI capability.
 167 * Returns the address of the requested capability structure within the
 168 * device's PCI configuration space or 0 in case the device does not
 169 * support it.  Possible values for @cap:
 170 *
 171 *  %PCI_CAP_ID_PM           Power Management 
 172 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 173 *  %PCI_CAP_ID_VPD          Vital Product Data 
 174 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 175 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 176 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 177 *  %PCI_CAP_ID_PCIX         PCI-X
 178 *  %PCI_CAP_ID_EXP          PCI Express
 179 */
 180int pci_find_capability(struct pci_dev *dev, int cap)
 181{
 182        int pos;
 183
 184        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 185        if (pos)
 186                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 187
 188        return pos;
 189}
 190
 191/**
 192 * pci_bus_find_capability - query for devices' capabilities 
 193 * @bus:   the PCI bus to query
 194 * @devfn: PCI device to query
 195 * @cap:   capability code
 196 *
 197 * Like pci_find_capability() but works for pci devices that do not have a
 198 * pci_dev structure set up yet. 
 199 *
 200 * Returns the address of the requested capability structure within the
 201 * device's PCI configuration space or 0 in case the device does not
 202 * support it.
 203 */
 204int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 205{
 206        int pos;
 207        u8 hdr_type;
 208
 209        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 210
 211        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 212        if (pos)
 213                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 214
 215        return pos;
 216}
 217
 218/**
 219 * pci_find_ext_capability - Find an extended capability
 220 * @dev: PCI device to query
 221 * @cap: capability code
 222 *
 223 * Returns the address of the requested extended capability structure
 224 * within the device's PCI configuration space or 0 if the device does
 225 * not support it.  Possible values for @cap:
 226 *
 227 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 228 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 229 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 230 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 231 */
 232int pci_find_ext_capability(struct pci_dev *dev, int cap)
 233{
 234        u32 header;
 235        int ttl;
 236        int pos = PCI_CFG_SPACE_SIZE;
 237
 238        /* minimum 8 bytes per capability */
 239        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 240
 241        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 242                return 0;
 243
 244        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 245                return 0;
 246
 247        /*
 248         * If we have no capabilities, this is indicated by cap ID,
 249         * cap version and next pointer all being 0.
 250         */
 251        if (header == 0)
 252                return 0;
 253
 254        while (ttl-- > 0) {
 255                if (PCI_EXT_CAP_ID(header) == cap)
 256                        return pos;
 257
 258                pos = PCI_EXT_CAP_NEXT(header);
 259                if (pos < PCI_CFG_SPACE_SIZE)
 260                        break;
 261
 262                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 263                        break;
 264        }
 265
 266        return 0;
 267}
 268EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 269
 270static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 271{
 272        int rc, ttl = PCI_FIND_CAP_TTL;
 273        u8 cap, mask;
 274
 275        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 276                mask = HT_3BIT_CAP_MASK;
 277        else
 278                mask = HT_5BIT_CAP_MASK;
 279
 280        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 281                                      PCI_CAP_ID_HT, &ttl);
 282        while (pos) {
 283                rc = pci_read_config_byte(dev, pos + 3, &cap);
 284                if (rc != PCIBIOS_SUCCESSFUL)
 285                        return 0;
 286
 287                if ((cap & mask) == ht_cap)
 288                        return pos;
 289
 290                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 291                                              pos + PCI_CAP_LIST_NEXT,
 292                                              PCI_CAP_ID_HT, &ttl);
 293        }
 294
 295        return 0;
 296}
 297/**
 298 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 299 * @dev: PCI device to query
 300 * @pos: Position from which to continue searching
 301 * @ht_cap: Hypertransport capability code
 302 *
 303 * To be used in conjunction with pci_find_ht_capability() to search for
 304 * all capabilities matching @ht_cap. @pos should always be a value returned
 305 * from pci_find_ht_capability().
 306 *
 307 * NB. To be 100% safe against broken PCI devices, the caller should take
 308 * steps to avoid an infinite loop.
 309 */
 310int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 311{
 312        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 313}
 314EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 315
 316/**
 317 * pci_find_ht_capability - query a device's Hypertransport capabilities
 318 * @dev: PCI device to query
 319 * @ht_cap: Hypertransport capability code
 320 *
 321 * Tell if a device supports a given Hypertransport capability.
 322 * Returns an address within the device's PCI configuration space
 323 * or 0 in case the device does not support the request capability.
 324 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 325 * which has a Hypertransport capability matching @ht_cap.
 326 */
 327int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 328{
 329        int pos;
 330
 331        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 332        if (pos)
 333                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 334
 335        return pos;
 336}
 337EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 338
 339/**
 340 * pci_find_parent_resource - return resource region of parent bus of given region
 341 * @dev: PCI device structure contains resources to be searched
 342 * @res: child resource record for which parent is sought
 343 *
 344 *  For given resource region of given device, return the resource
 345 *  region of parent bus the given region is contained in or where
 346 *  it should be allocated from.
 347 */
 348struct resource *
 349pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 350{
 351        const struct pci_bus *bus = dev->bus;
 352        int i;
 353        struct resource *best = NULL;
 354
 355        for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
 356                struct resource *r = bus->resource[i];
 357                if (!r)
 358                        continue;
 359                if (res->start && !(res->start >= r->start && res->end <= r->end))
 360                        continue;       /* Not contained */
 361                if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
 362                        continue;       /* Wrong type */
 363                if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
 364                        return r;       /* Exact match */
 365                if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
 366                        best = r;       /* Approximating prefetchable by non-prefetchable */
 367        }
 368        return best;
 369}
 370
 371/**
 372 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 373 * @dev: PCI device to have its BARs restored
 374 *
 375 * Restore the BAR values for a given device, so as to make it
 376 * accessible by its driver.
 377 */
 378static void
 379pci_restore_bars(struct pci_dev *dev)
 380{
 381        int i;
 382
 383        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 384                pci_update_resource(dev, i);
 385}
 386
 387static struct pci_platform_pm_ops *pci_platform_pm;
 388
 389int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 390{
 391        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 392            || !ops->sleep_wake || !ops->can_wakeup)
 393                return -EINVAL;
 394        pci_platform_pm = ops;
 395        return 0;
 396}
 397
 398static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 399{
 400        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 401}
 402
 403static inline int platform_pci_set_power_state(struct pci_dev *dev,
 404                                                pci_power_t t)
 405{
 406        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 407}
 408
 409static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 410{
 411        return pci_platform_pm ?
 412                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 413}
 414
 415static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
 416{
 417        return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
 418}
 419
 420static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 421{
 422        return pci_platform_pm ?
 423                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 424}
 425
 426/**
 427 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 428 *                           given PCI device
 429 * @dev: PCI device to handle.
 430 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 431 *
 432 * RETURN VALUE:
 433 * -EINVAL if the requested state is invalid.
 434 * -EIO if device does not support PCI PM or its PM capabilities register has a
 435 * wrong version, or device doesn't support the requested state.
 436 * 0 if device already is in the requested state.
 437 * 0 if device's power state has been successfully changed.
 438 */
 439static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 440{
 441        u16 pmcsr;
 442        bool need_restore = false;
 443
 444        /* Check if we're already there */
 445        if (dev->current_state == state)
 446                return 0;
 447
 448        if (!dev->pm_cap)
 449                return -EIO;
 450
 451        if (state < PCI_D0 || state > PCI_D3hot)
 452                return -EINVAL;
 453
 454        /* Validate current state:
 455         * Can enter D0 from any state, but if we can only go deeper 
 456         * to sleep if we're already in a low power state
 457         */
 458        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 459            && dev->current_state > state) {
 460                dev_err(&dev->dev, "invalid power transition "
 461                        "(from state %d to %d)\n", dev->current_state, state);
 462                return -EINVAL;
 463        }
 464
 465        /* check if this device supports the desired state */
 466        if ((state == PCI_D1 && !dev->d1_support)
 467           || (state == PCI_D2 && !dev->d2_support))
 468                return -EIO;
 469
 470        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 471
 472        /* If we're (effectively) in D3, force entire word to 0.
 473         * This doesn't affect PME_Status, disables PME_En, and
 474         * sets PowerState to 0.
 475         */
 476        switch (dev->current_state) {
 477        case PCI_D0:
 478        case PCI_D1:
 479        case PCI_D2:
 480                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 481                pmcsr |= state;
 482                break;
 483        case PCI_D3hot:
 484        case PCI_D3cold:
 485        case PCI_UNKNOWN: /* Boot-up */
 486                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 487                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 488                        need_restore = true;
 489                /* Fall-through: force to D0 */
 490        default:
 491                pmcsr = 0;
 492                break;
 493        }
 494
 495        /* enter specified state */
 496        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 497
 498        /* Mandatory power management transition delays */
 499        /* see PCI PM 1.1 5.6.1 table 18 */
 500        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 501                msleep(pci_pm_d3_delay);
 502        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 503                udelay(PCI_PM_D2_DELAY);
 504
 505        dev->current_state = state;
 506
 507        /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 508         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 509         * from D3hot to D0 _may_ perform an internal reset, thereby
 510         * going to "D0 Uninitialized" rather than "D0 Initialized".
 511         * For example, at least some versions of the 3c905B and the
 512         * 3c556B exhibit this behaviour.
 513         *
 514         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 515         * devices in a D3hot state at boot.  Consequently, we need to
 516         * restore at least the BARs so that the device will be
 517         * accessible to its driver.
 518         */
 519        if (need_restore)
 520                pci_restore_bars(dev);
 521
 522        if (dev->bus->self)
 523                pcie_aspm_pm_state_change(dev->bus->self);
 524
 525        return 0;
 526}
 527
 528/**
 529 * pci_update_current_state - Read PCI power state of given device from its
 530 *                            PCI PM registers and cache it
 531 * @dev: PCI device to handle.
 532 * @state: State to cache in case the device doesn't have the PM capability
 533 */
 534void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 535{
 536        if (dev->pm_cap) {
 537                u16 pmcsr;
 538
 539                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 540                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 541        } else {
 542                dev->current_state = state;
 543        }
 544}
 545
 546/**
 547 * pci_platform_power_transition - Use platform to change device power state
 548 * @dev: PCI device to handle.
 549 * @state: State to put the device into.
 550 */
 551static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 552{
 553        int error;
 554
 555        if (platform_pci_power_manageable(dev)) {
 556                error = platform_pci_set_power_state(dev, state);
 557                if (!error)
 558                        pci_update_current_state(dev, state);
 559        } else {
 560                error = -ENODEV;
 561                /* Fall back to PCI_D0 if native PM is not supported */
 562                if (!dev->pm_cap)
 563                        dev->current_state = PCI_D0;
 564        }
 565
 566        return error;
 567}
 568
 569/**
 570 * __pci_start_power_transition - Start power transition of a PCI device
 571 * @dev: PCI device to handle.
 572 * @state: State to put the device into.
 573 */
 574static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 575{
 576        if (state == PCI_D0)
 577                pci_platform_power_transition(dev, PCI_D0);
 578}
 579
 580/**
 581 * __pci_complete_power_transition - Complete power transition of a PCI device
 582 * @dev: PCI device to handle.
 583 * @state: State to put the device into.
 584 *
 585 * This function should not be called directly by device drivers.
 586 */
 587int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 588{
 589        return state > PCI_D0 ?
 590                        pci_platform_power_transition(dev, state) : -EINVAL;
 591}
 592EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 593
 594/**
 595 * pci_set_power_state - Set the power state of a PCI device
 596 * @dev: PCI device to handle.
 597 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 598 *
 599 * Transition a device to a new power state, using the platform firmware and/or
 600 * the device's PCI PM registers.
 601 *
 602 * RETURN VALUE:
 603 * -EINVAL if the requested state is invalid.
 604 * -EIO if device does not support PCI PM or its PM capabilities register has a
 605 * wrong version, or device doesn't support the requested state.
 606 * 0 if device already is in the requested state.
 607 * 0 if device's power state has been successfully changed.
 608 */
 609int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 610{
 611        int error;
 612
 613        /* bound the state we're entering */
 614        if (state > PCI_D3hot)
 615                state = PCI_D3hot;
 616        else if (state < PCI_D0)
 617                state = PCI_D0;
 618        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 619                /*
 620                 * If the device or the parent bridge do not support PCI PM,
 621                 * ignore the request if we're doing anything other than putting
 622                 * it into D0 (which would only happen on boot).
 623                 */
 624                return 0;
 625
 626        /* Check if we're already there */
 627        if (dev->current_state == state)
 628                return 0;
 629
 630        __pci_start_power_transition(dev, state);
 631
 632        /* This device is quirked not to be put into D3, so
 633           don't put it in D3 */
 634        if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 635                return 0;
 636
 637        error = pci_raw_set_power_state(dev, state);
 638
 639        if (!__pci_complete_power_transition(dev, state))
 640                error = 0;
 641
 642        return error;
 643}
 644
 645/**
 646 * pci_choose_state - Choose the power state of a PCI device
 647 * @dev: PCI device to be suspended
 648 * @state: target sleep state for the whole system. This is the value
 649 *      that is passed to suspend() function.
 650 *
 651 * Returns PCI power state suitable for given device and given system
 652 * message.
 653 */
 654
 655pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 656{
 657        pci_power_t ret;
 658
 659        if (!pci_find_capability(dev, PCI_CAP_ID_PM))
 660                return PCI_D0;
 661
 662        ret = platform_pci_choose_state(dev);
 663        if (ret != PCI_POWER_ERROR)
 664                return ret;
 665
 666        switch (state.event) {
 667        case PM_EVENT_ON:
 668                return PCI_D0;
 669        case PM_EVENT_FREEZE:
 670        case PM_EVENT_PRETHAW:
 671                /* REVISIT both freeze and pre-thaw "should" use D0 */
 672        case PM_EVENT_SUSPEND:
 673        case PM_EVENT_HIBERNATE:
 674                return PCI_D3hot;
 675        default:
 676                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 677                         state.event);
 678                BUG();
 679        }
 680        return PCI_D0;
 681}
 682
 683EXPORT_SYMBOL(pci_choose_state);
 684
 685#define PCI_EXP_SAVE_REGS       7
 686
 687#define pcie_cap_has_devctl(type, flags)        1
 688#define pcie_cap_has_lnkctl(type, flags)                \
 689                ((flags & PCI_EXP_FLAGS_VERS) > 1 ||    \
 690                 (type == PCI_EXP_TYPE_ROOT_PORT ||     \
 691                  type == PCI_EXP_TYPE_ENDPOINT ||      \
 692                  type == PCI_EXP_TYPE_LEG_END))
 693#define pcie_cap_has_sltctl(type, flags)                \
 694                ((flags & PCI_EXP_FLAGS_VERS) > 1 ||    \
 695                 ((type == PCI_EXP_TYPE_ROOT_PORT) ||   \
 696                  (type == PCI_EXP_TYPE_DOWNSTREAM &&   \
 697                   (flags & PCI_EXP_FLAGS_SLOT))))
 698#define pcie_cap_has_rtctl(type, flags)                 \
 699                ((flags & PCI_EXP_FLAGS_VERS) > 1 ||    \
 700                 (type == PCI_EXP_TYPE_ROOT_PORT ||     \
 701                  type == PCI_EXP_TYPE_RC_EC))
 702#define pcie_cap_has_devctl2(type, flags)               \
 703                ((flags & PCI_EXP_FLAGS_VERS) > 1)
 704#define pcie_cap_has_lnkctl2(type, flags)               \
 705                ((flags & PCI_EXP_FLAGS_VERS) > 1)
 706#define pcie_cap_has_sltctl2(type, flags)               \
 707                ((flags & PCI_EXP_FLAGS_VERS) > 1)
 708
 709static int pci_save_pcie_state(struct pci_dev *dev)
 710{
 711        int pos, i = 0;
 712        struct pci_cap_saved_state *save_state;
 713        u16 *cap;
 714        u16 flags;
 715
 716        pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 717        if (pos <= 0)
 718                return 0;
 719
 720        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 721        if (!save_state) {
 722                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 723                return -ENOMEM;
 724        }
 725        cap = (u16 *)&save_state->data[0];
 726
 727        pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 728
 729        if (pcie_cap_has_devctl(dev->pcie_type, flags))
 730                pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
 731        if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 732                pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
 733        if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 734                pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
 735        if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 736                pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
 737        if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 738                pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
 739        if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 740                pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
 741        if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 742                pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
 743
 744        return 0;
 745}
 746
 747static void pci_restore_pcie_state(struct pci_dev *dev)
 748{
 749        int i = 0, pos;
 750        struct pci_cap_saved_state *save_state;
 751        u16 *cap;
 752        u16 flags;
 753
 754        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 755        pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 756        if (!save_state || pos <= 0)
 757                return;
 758        cap = (u16 *)&save_state->data[0];
 759
 760        pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 761
 762        if (pcie_cap_has_devctl(dev->pcie_type, flags))
 763                pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
 764        if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 765                pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
 766        if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 767                pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
 768        if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 769                pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
 770        if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 771                pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
 772        if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 773                pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
 774        if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 775                pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
 776}
 777
 778
 779static int pci_save_pcix_state(struct pci_dev *dev)
 780{
 781        int pos;
 782        struct pci_cap_saved_state *save_state;
 783
 784        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 785        if (pos <= 0)
 786                return 0;
 787
 788        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 789        if (!save_state) {
 790                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 791                return -ENOMEM;
 792        }
 793
 794        pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
 795
 796        return 0;
 797}
 798
 799static void pci_restore_pcix_state(struct pci_dev *dev)
 800{
 801        int i = 0, pos;
 802        struct pci_cap_saved_state *save_state;
 803        u16 *cap;
 804
 805        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 806        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 807        if (!save_state || pos <= 0)
 808                return;
 809        cap = (u16 *)&save_state->data[0];
 810
 811        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 812}
 813
 814
 815/**
 816 * pci_save_state - save the PCI configuration space of a device before suspending
 817 * @dev: - PCI device that we're dealing with
 818 */
 819int
 820pci_save_state(struct pci_dev *dev)
 821{
 822        int i;
 823        /* XXX: 100% dword access ok here? */
 824        for (i = 0; i < 16; i++)
 825                pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
 826        dev->state_saved = true;
 827        if ((i = pci_save_pcie_state(dev)) != 0)
 828                return i;
 829        if ((i = pci_save_pcix_state(dev)) != 0)
 830                return i;
 831        return 0;
 832}
 833
 834/** 
 835 * pci_restore_state - Restore the saved state of a PCI device
 836 * @dev: - PCI device that we're dealing with
 837 */
 838int 
 839pci_restore_state(struct pci_dev *dev)
 840{
 841        int i;
 842        u32 val;
 843
 844        /* PCI Express register must be restored first */
 845        pci_restore_pcie_state(dev);
 846
 847        /*
 848         * The Base Address register should be programmed before the command
 849         * register(s)
 850         */
 851        for (i = 15; i >= 0; i--) {
 852                pci_read_config_dword(dev, i * 4, &val);
 853                if (val != dev->saved_config_space[i]) {
 854                        dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
 855                                "space at offset %#x (was %#x, writing %#x)\n",
 856                                i, val, (int)dev->saved_config_space[i]);
 857                        pci_write_config_dword(dev,i * 4,
 858                                dev->saved_config_space[i]);
 859                }
 860        }
 861        pci_restore_pcix_state(dev);
 862        pci_restore_msi_state(dev);
 863        pci_restore_iov_state(dev);
 864
 865        return 0;
 866}
 867
 868static int do_pci_enable_device(struct pci_dev *dev, int bars)
 869{
 870        int err;
 871
 872        err = pci_set_power_state(dev, PCI_D0);
 873        if (err < 0 && err != -EIO)
 874                return err;
 875        err = pcibios_enable_device(dev, bars);
 876        if (err < 0)
 877                return err;
 878        pci_fixup_device(pci_fixup_enable, dev);
 879
 880        return 0;
 881}
 882
 883/**
 884 * pci_reenable_device - Resume abandoned device
 885 * @dev: PCI device to be resumed
 886 *
 887 *  Note this function is a backend of pci_default_resume and is not supposed
 888 *  to be called by normal code, write proper resume handler and use it instead.
 889 */
 890int pci_reenable_device(struct pci_dev *dev)
 891{
 892        if (pci_is_enabled(dev))
 893                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
 894        return 0;
 895}
 896
 897static int __pci_enable_device_flags(struct pci_dev *dev,
 898                                     resource_size_t flags)
 899{
 900        int err;
 901        int i, bars = 0;
 902
 903        if (atomic_add_return(1, &dev->enable_cnt) > 1)
 904                return 0;               /* already enabled */
 905
 906        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
 907                if (dev->resource[i].flags & flags)
 908                        bars |= (1 << i);
 909
 910        err = do_pci_enable_device(dev, bars);
 911        if (err < 0)
 912                atomic_dec(&dev->enable_cnt);
 913        return err;
 914}
 915
 916/**
 917 * pci_enable_device_io - Initialize a device for use with IO space
 918 * @dev: PCI device to be initialized
 919 *
 920 *  Initialize device before it's used by a driver. Ask low-level code
 921 *  to enable I/O resources. Wake up the device if it was suspended.
 922 *  Beware, this function can fail.
 923 */
 924int pci_enable_device_io(struct pci_dev *dev)
 925{
 926        return __pci_enable_device_flags(dev, IORESOURCE_IO);
 927}
 928
 929/**
 930 * pci_enable_device_mem - Initialize a device for use with Memory space
 931 * @dev: PCI device to be initialized
 932 *
 933 *  Initialize device before it's used by a driver. Ask low-level code
 934 *  to enable Memory resources. Wake up the device if it was suspended.
 935 *  Beware, this function can fail.
 936 */
 937int pci_enable_device_mem(struct pci_dev *dev)
 938{
 939        return __pci_enable_device_flags(dev, IORESOURCE_MEM);
 940}
 941
 942/**
 943 * pci_enable_device - Initialize device before it's used by a driver.
 944 * @dev: PCI device to be initialized
 945 *
 946 *  Initialize device before it's used by a driver. Ask low-level code
 947 *  to enable I/O and memory. Wake up the device if it was suspended.
 948 *  Beware, this function can fail.
 949 *
 950 *  Note we don't actually enable the device many times if we call
 951 *  this function repeatedly (we just increment the count).
 952 */
 953int pci_enable_device(struct pci_dev *dev)
 954{
 955        return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
 956}
 957
 958/*
 959 * Managed PCI resources.  This manages device on/off, intx/msi/msix
 960 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
 961 * there's no need to track it separately.  pci_devres is initialized
 962 * when a device is enabled using managed PCI device enable interface.
 963 */
 964struct pci_devres {
 965        unsigned int enabled:1;
 966        unsigned int pinned:1;
 967        unsigned int orig_intx:1;
 968        unsigned int restore_intx:1;
 969        u32 region_mask;
 970};
 971
 972static void pcim_release(struct device *gendev, void *res)
 973{
 974        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
 975        struct pci_devres *this = res;
 976        int i;
 977
 978        if (dev->msi_enabled)
 979                pci_disable_msi(dev);
 980        if (dev->msix_enabled)
 981                pci_disable_msix(dev);
 982
 983        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
 984                if (this->region_mask & (1 << i))
 985                        pci_release_region(dev, i);
 986
 987        if (this->restore_intx)
 988                pci_intx(dev, this->orig_intx);
 989
 990        if (this->enabled && !this->pinned)
 991                pci_disable_device(dev);
 992}
 993
 994static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
 995{
 996        struct pci_devres *dr, *new_dr;
 997
 998        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
 999        if (dr)
1000                return dr;
1001
1002        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1003        if (!new_dr)
1004                return NULL;
1005        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1006}
1007
1008static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1009{
1010        if (pci_is_managed(pdev))
1011                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1012        return NULL;
1013}
1014
1015/**
1016 * pcim_enable_device - Managed pci_enable_device()
1017 * @pdev: PCI device to be initialized
1018 *
1019 * Managed pci_enable_device().
1020 */
1021int pcim_enable_device(struct pci_dev *pdev)
1022{
1023        struct pci_devres *dr;
1024        int rc;
1025
1026        dr = get_pci_dr(pdev);
1027        if (unlikely(!dr))
1028                return -ENOMEM;
1029        if (dr->enabled)
1030                return 0;
1031
1032        rc = pci_enable_device(pdev);
1033        if (!rc) {
1034                pdev->is_managed = 1;
1035                dr->enabled = 1;
1036        }
1037        return rc;
1038}
1039
1040/**
1041 * pcim_pin_device - Pin managed PCI device
1042 * @pdev: PCI device to pin
1043 *
1044 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1045 * driver detach.  @pdev must have been enabled with
1046 * pcim_enable_device().
1047 */
1048void pcim_pin_device(struct pci_dev *pdev)
1049{
1050        struct pci_devres *dr;
1051
1052        dr = find_pci_dr(pdev);
1053        WARN_ON(!dr || !dr->enabled);
1054        if (dr)
1055                dr->pinned = 1;
1056}
1057
1058/**
1059 * pcibios_disable_device - disable arch specific PCI resources for device dev
1060 * @dev: the PCI device to disable
1061 *
1062 * Disables architecture specific PCI resources for the device. This
1063 * is the default implementation. Architecture implementations can
1064 * override this.
1065 */
1066void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1067
1068static void do_pci_disable_device(struct pci_dev *dev)
1069{
1070        u16 pci_command;
1071
1072        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1073        if (pci_command & PCI_COMMAND_MASTER) {
1074                pci_command &= ~PCI_COMMAND_MASTER;
1075                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1076        }
1077
1078        pcibios_disable_device(dev);
1079}
1080
1081/**
1082 * pci_disable_enabled_device - Disable device without updating enable_cnt
1083 * @dev: PCI device to disable
1084 *
1085 * NOTE: This function is a backend of PCI power management routines and is
1086 * not supposed to be called drivers.
1087 */
1088void pci_disable_enabled_device(struct pci_dev *dev)
1089{
1090        if (pci_is_enabled(dev))
1091                do_pci_disable_device(dev);
1092}
1093
1094/**
1095 * pci_disable_device - Disable PCI device after use
1096 * @dev: PCI device to be disabled
1097 *
1098 * Signal to the system that the PCI device is not in use by the system
1099 * anymore.  This only involves disabling PCI bus-mastering, if active.
1100 *
1101 * Note we don't actually disable the device until all callers of
1102 * pci_device_enable() have called pci_device_disable().
1103 */
1104void
1105pci_disable_device(struct pci_dev *dev)
1106{
1107        struct pci_devres *dr;
1108
1109        dr = find_pci_dr(dev);
1110        if (dr)
1111                dr->enabled = 0;
1112
1113        if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1114                return;
1115
1116        do_pci_disable_device(dev);
1117
1118        dev->is_busmaster = 0;
1119}
1120
1121/**
1122 * pcibios_set_pcie_reset_state - set reset state for device dev
1123 * @dev: the PCI-E device reset
1124 * @state: Reset state to enter into
1125 *
1126 *
1127 * Sets the PCI-E reset state for the device. This is the default
1128 * implementation. Architecture implementations can override this.
1129 */
1130int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1131                                                        enum pcie_reset_state state)
1132{
1133        return -EINVAL;
1134}
1135
1136/**
1137 * pci_set_pcie_reset_state - set reset state for device dev
1138 * @dev: the PCI-E device reset
1139 * @state: Reset state to enter into
1140 *
1141 *
1142 * Sets the PCI reset state for the device.
1143 */
1144int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1145{
1146        return pcibios_set_pcie_reset_state(dev, state);
1147}
1148
1149/**
1150 * pci_pme_capable - check the capability of PCI device to generate PME#
1151 * @dev: PCI device to handle.
1152 * @state: PCI state from which device will issue PME#.
1153 */
1154bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1155{
1156        if (!dev->pm_cap)
1157                return false;
1158
1159        return !!(dev->pme_support & (1 << state));
1160}
1161
1162/**
1163 * pci_pme_active - enable or disable PCI device's PME# function
1164 * @dev: PCI device to handle.
1165 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1166 *
1167 * The caller must verify that the device is capable of generating PME# before
1168 * calling this function with @enable equal to 'true'.
1169 */
1170void pci_pme_active(struct pci_dev *dev, bool enable)
1171{
1172        u16 pmcsr;
1173
1174        if (!dev->pm_cap)
1175                return;
1176
1177        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1178        /* Clear PME_Status by writing 1 to it and enable PME# */
1179        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1180        if (!enable)
1181                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1182
1183        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1184
1185        dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1186                        enable ? "enabled" : "disabled");
1187}
1188
1189/**
1190 * pci_enable_wake - enable PCI device as wakeup event source
1191 * @dev: PCI device affected
1192 * @state: PCI state from which device will issue wakeup events
1193 * @enable: True to enable event generation; false to disable
1194 *
1195 * This enables the device as a wakeup event source, or disables it.
1196 * When such events involves platform-specific hooks, those hooks are
1197 * called automatically by this routine.
1198 *
1199 * Devices with legacy power management (no standard PCI PM capabilities)
1200 * always require such platform hooks.
1201 *
1202 * RETURN VALUE:
1203 * 0 is returned on success
1204 * -EINVAL is returned if device is not supposed to wake up the system
1205 * Error code depending on the platform is returned if both the platform and
1206 * the native mechanism fail to enable the generation of wake-up events
1207 */
1208int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1209{
1210        int error = 0;
1211        bool pme_done = false;
1212
1213        if (enable && !device_may_wakeup(&dev->dev))
1214                return -EINVAL;
1215
1216        /*
1217         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1218         * Anderson we should be doing PME# wake enable followed by ACPI wake
1219         * enable.  To disable wake-up we call the platform first, for symmetry.
1220         */
1221
1222        if (!enable && platform_pci_can_wakeup(dev))
1223                error = platform_pci_sleep_wake(dev, false);
1224
1225        if (!enable || pci_pme_capable(dev, state)) {
1226                pci_pme_active(dev, enable);
1227                pme_done = true;
1228        }
1229
1230        if (enable && platform_pci_can_wakeup(dev))
1231                error = platform_pci_sleep_wake(dev, true);
1232
1233        return pme_done ? 0 : error;
1234}
1235
1236/**
1237 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1238 * @dev: PCI device to prepare
1239 * @enable: True to enable wake-up event generation; false to disable
1240 *
1241 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1242 * and this function allows them to set that up cleanly - pci_enable_wake()
1243 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1244 * ordering constraints.
1245 *
1246 * This function only returns error code if the device is not capable of
1247 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1248 * enable wake-up power for it.
1249 */
1250int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1251{
1252        return pci_pme_capable(dev, PCI_D3cold) ?
1253                        pci_enable_wake(dev, PCI_D3cold, enable) :
1254                        pci_enable_wake(dev, PCI_D3hot, enable);
1255}
1256
1257/**
1258 * pci_target_state - find an appropriate low power state for a given PCI dev
1259 * @dev: PCI device
1260 *
1261 * Use underlying platform code to find a supported low power state for @dev.
1262 * If the platform can't manage @dev, return the deepest state from which it
1263 * can generate wake events, based on any available PME info.
1264 */
1265pci_power_t pci_target_state(struct pci_dev *dev)
1266{
1267        pci_power_t target_state = PCI_D3hot;
1268
1269        if (platform_pci_power_manageable(dev)) {
1270                /*
1271                 * Call the platform to choose the target state of the device
1272                 * and enable wake-up from this state if supported.
1273                 */
1274                pci_power_t state = platform_pci_choose_state(dev);
1275
1276                switch (state) {
1277                case PCI_POWER_ERROR:
1278                case PCI_UNKNOWN:
1279                        break;
1280                case PCI_D1:
1281                case PCI_D2:
1282                        if (pci_no_d1d2(dev))
1283                                break;
1284                default:
1285                        target_state = state;
1286                }
1287        } else if (!dev->pm_cap) {
1288                target_state = PCI_D0;
1289        } else if (device_may_wakeup(&dev->dev)) {
1290                /*
1291                 * Find the deepest state from which the device can generate
1292                 * wake-up events, make it the target state and enable device
1293                 * to generate PME#.
1294                 */
1295                if (dev->pme_support) {
1296                        while (target_state
1297                              && !(dev->pme_support & (1 << target_state)))
1298                                target_state--;
1299                }
1300        }
1301
1302        return target_state;
1303}
1304
1305/**
1306 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1307 * @dev: Device to handle.
1308 *
1309 * Choose the power state appropriate for the device depending on whether
1310 * it can wake up the system and/or is power manageable by the platform
1311 * (PCI_D3hot is the default) and put the device into that state.
1312 */
1313int pci_prepare_to_sleep(struct pci_dev *dev)
1314{
1315        pci_power_t target_state = pci_target_state(dev);
1316        int error;
1317
1318        if (target_state == PCI_POWER_ERROR)
1319                return -EIO;
1320
1321        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1322
1323        error = pci_set_power_state(dev, target_state);
1324
1325        if (error)
1326                pci_enable_wake(dev, target_state, false);
1327
1328        return error;
1329}
1330
1331/**
1332 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1333 * @dev: Device to handle.
1334 *
1335 * Disable device's sytem wake-up capability and put it into D0.
1336 */
1337int pci_back_from_sleep(struct pci_dev *dev)
1338{
1339        pci_enable_wake(dev, PCI_D0, false);
1340        return pci_set_power_state(dev, PCI_D0);
1341}
1342
1343/**
1344 * pci_pm_init - Initialize PM functions of given PCI device
1345 * @dev: PCI device to handle.
1346 */
1347void pci_pm_init(struct pci_dev *dev)
1348{
1349        int pm;
1350        u16 pmc;
1351
1352        dev->pm_cap = 0;
1353
1354        /* find PCI PM capability in list */
1355        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1356        if (!pm)
1357                return;
1358        /* Check device's ability to generate PME# */
1359        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1360
1361        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1362                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1363                        pmc & PCI_PM_CAP_VER_MASK);
1364                return;
1365        }
1366
1367        dev->pm_cap = pm;
1368
1369        dev->d1_support = false;
1370        dev->d2_support = false;
1371        if (!pci_no_d1d2(dev)) {
1372                if (pmc & PCI_PM_CAP_D1)
1373                        dev->d1_support = true;
1374                if (pmc & PCI_PM_CAP_D2)
1375                        dev->d2_support = true;
1376
1377                if (dev->d1_support || dev->d2_support)
1378                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1379                                   dev->d1_support ? " D1" : "",
1380                                   dev->d2_support ? " D2" : "");
1381        }
1382
1383        pmc &= PCI_PM_CAP_PME_MASK;
1384        if (pmc) {
1385                dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1386                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1387                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1388                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1389                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1390                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1391                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1392                /*
1393                 * Make device's PM flags reflect the wake-up capability, but
1394                 * let the user space enable it to wake up the system as needed.
1395                 */
1396                device_set_wakeup_capable(&dev->dev, true);
1397                device_set_wakeup_enable(&dev->dev, false);
1398                /* Disable the PME# generation functionality */
1399                pci_pme_active(dev, false);
1400        } else {
1401                dev->pme_support = 0;
1402        }
1403}
1404
1405/**
1406 * platform_pci_wakeup_init - init platform wakeup if present
1407 * @dev: PCI device
1408 *
1409 * Some devices don't have PCI PM caps but can still generate wakeup
1410 * events through platform methods (like ACPI events).  If @dev supports
1411 * platform wakeup events, set the device flag to indicate as much.  This
1412 * may be redundant if the device also supports PCI PM caps, but double
1413 * initialization should be safe in that case.
1414 */
1415void platform_pci_wakeup_init(struct pci_dev *dev)
1416{
1417        if (!platform_pci_can_wakeup(dev))
1418                return;
1419
1420        device_set_wakeup_capable(&dev->dev, true);
1421        device_set_wakeup_enable(&dev->dev, false);
1422        platform_pci_sleep_wake(dev, false);
1423}
1424
1425/**
1426 * pci_add_save_buffer - allocate buffer for saving given capability registers
1427 * @dev: the PCI device
1428 * @cap: the capability to allocate the buffer for
1429 * @size: requested size of the buffer
1430 */
1431static int pci_add_cap_save_buffer(
1432        struct pci_dev *dev, char cap, unsigned int size)
1433{
1434        int pos;
1435        struct pci_cap_saved_state *save_state;
1436
1437        pos = pci_find_capability(dev, cap);
1438        if (pos <= 0)
1439                return 0;
1440
1441        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1442        if (!save_state)
1443                return -ENOMEM;
1444
1445        save_state->cap_nr = cap;
1446        pci_add_saved_cap(dev, save_state);
1447
1448        return 0;
1449}
1450
1451/**
1452 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1453 * @dev: the PCI device
1454 */
1455void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1456{
1457        int error;
1458
1459        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1460                                        PCI_EXP_SAVE_REGS * sizeof(u16));
1461        if (error)
1462                dev_err(&dev->dev,
1463                        "unable to preallocate PCI Express save buffer\n");
1464
1465        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1466        if (error)
1467                dev_err(&dev->dev,
1468                        "unable to preallocate PCI-X save buffer\n");
1469}
1470
1471/**
1472 * pci_enable_ari - enable ARI forwarding if hardware support it
1473 * @dev: the PCI device
1474 */
1475void pci_enable_ari(struct pci_dev *dev)
1476{
1477        int pos;
1478        u32 cap;
1479        u16 ctrl;
1480        struct pci_dev *bridge;
1481
1482        if (!dev->is_pcie || dev->devfn)
1483                return;
1484
1485        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1486        if (!pos)
1487                return;
1488
1489        bridge = dev->bus->self;
1490        if (!bridge || !bridge->is_pcie)
1491                return;
1492
1493        pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1494        if (!pos)
1495                return;
1496
1497        pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1498        if (!(cap & PCI_EXP_DEVCAP2_ARI))
1499                return;
1500
1501        pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1502        ctrl |= PCI_EXP_DEVCTL2_ARI;
1503        pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1504
1505        bridge->ari_enabled = 1;
1506}
1507
1508/**
1509 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1510 * @dev: the PCI device
1511 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1512 *
1513 * Perform INTx swizzling for a device behind one level of bridge.  This is
1514 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1515 * behind bridges on add-in cards.
1516 */
1517u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1518{
1519        return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1520}
1521
1522int
1523pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1524{
1525        u8 pin;
1526
1527        pin = dev->pin;
1528        if (!pin)
1529                return -1;
1530
1531        while (dev->bus->parent) {
1532                pin = pci_swizzle_interrupt_pin(dev, pin);
1533                dev = dev->bus->self;
1534        }
1535        *bridge = dev;
1536        return pin;
1537}
1538
1539/**
1540 * pci_common_swizzle - swizzle INTx all the way to root bridge
1541 * @dev: the PCI device
1542 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1543 *
1544 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1545 * bridges all the way up to a PCI root bus.
1546 */
1547u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1548{
1549        u8 pin = *pinp;
1550
1551        while (dev->bus->parent) {
1552                pin = pci_swizzle_interrupt_pin(dev, pin);
1553                dev = dev->bus->self;
1554        }
1555        *pinp = pin;
1556        return PCI_SLOT(dev->devfn);
1557}
1558
1559/**
1560 *      pci_release_region - Release a PCI bar
1561 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
1562 *      @bar: BAR to release
1563 *
1564 *      Releases the PCI I/O and memory resources previously reserved by a
1565 *      successful call to pci_request_region.  Call this function only
1566 *      after all use of the PCI regions has ceased.
1567 */
1568void pci_release_region(struct pci_dev *pdev, int bar)
1569{
1570        struct pci_devres *dr;
1571
1572        if (pci_resource_len(pdev, bar) == 0)
1573                return;
1574        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1575                release_region(pci_resource_start(pdev, bar),
1576                                pci_resource_len(pdev, bar));
1577        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1578                release_mem_region(pci_resource_start(pdev, bar),
1579                                pci_resource_len(pdev, bar));
1580
1581        dr = find_pci_dr(pdev);
1582        if (dr)
1583                dr->region_mask &= ~(1 << bar);
1584}
1585
1586/**
1587 *      __pci_request_region - Reserved PCI I/O and memory resource
1588 *      @pdev: PCI device whose resources are to be reserved
1589 *      @bar: BAR to be reserved
1590 *      @res_name: Name to be associated with resource.
1591 *      @exclusive: whether the region access is exclusive or not
1592 *
1593 *      Mark the PCI region associated with PCI device @pdev BR @bar as
1594 *      being reserved by owner @res_name.  Do not access any
1595 *      address inside the PCI regions unless this call returns
1596 *      successfully.
1597 *
1598 *      If @exclusive is set, then the region is marked so that userspace
1599 *      is explicitly not allowed to map the resource via /dev/mem or
1600 *      sysfs MMIO access.
1601 *
1602 *      Returns 0 on success, or %EBUSY on error.  A warning
1603 *      message is also printed on failure.
1604 */
1605static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1606                                                                        int exclusive)
1607{
1608        struct pci_devres *dr;
1609
1610        if (pci_resource_len(pdev, bar) == 0)
1611                return 0;
1612                
1613        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1614                if (!request_region(pci_resource_start(pdev, bar),
1615                            pci_resource_len(pdev, bar), res_name))
1616                        goto err_out;
1617        }
1618        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1619                if (!__request_mem_region(pci_resource_start(pdev, bar),
1620                                        pci_resource_len(pdev, bar), res_name,
1621                                        exclusive))
1622                        goto err_out;
1623        }
1624
1625        dr = find_pci_dr(pdev);
1626        if (dr)
1627                dr->region_mask |= 1 << bar;
1628
1629        return 0;
1630
1631err_out:
1632        dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1633                 bar,
1634                 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1635                 &pdev->resource[bar]);
1636        return -EBUSY;
1637}
1638
1639/**
1640 *      pci_request_region - Reserve PCI I/O and memory resource
1641 *      @pdev: PCI device whose resources are to be reserved
1642 *      @bar: BAR to be reserved
1643 *      @res_name: Name to be associated with resource
1644 *
1645 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
1646 *      being reserved by owner @res_name.  Do not access any
1647 *      address inside the PCI regions unless this call returns
1648 *      successfully.
1649 *
1650 *      Returns 0 on success, or %EBUSY on error.  A warning
1651 *      message is also printed on failure.
1652 */
1653int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1654{
1655        return __pci_request_region(pdev, bar, res_name, 0);
1656}
1657
1658/**
1659 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
1660 *      @pdev: PCI device whose resources are to be reserved
1661 *      @bar: BAR to be reserved
1662 *      @res_name: Name to be associated with resource.
1663 *
1664 *      Mark the PCI region associated with PCI device @pdev BR @bar as
1665 *      being reserved by owner @res_name.  Do not access any
1666 *      address inside the PCI regions unless this call returns
1667 *      successfully.
1668 *
1669 *      Returns 0 on success, or %EBUSY on error.  A warning
1670 *      message is also printed on failure.
1671 *
1672 *      The key difference that _exclusive makes it that userspace is
1673 *      explicitly not allowed to map the resource via /dev/mem or
1674 *      sysfs.
1675 */
1676int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1677{
1678        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1679}
1680/**
1681 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1682 * @pdev: PCI device whose resources were previously reserved
1683 * @bars: Bitmask of BARs to be released
1684 *
1685 * Release selected PCI I/O and memory resources previously reserved.
1686 * Call this function only after all use of the PCI regions has ceased.
1687 */
1688void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1689{
1690        int i;
1691
1692        for (i = 0; i < 6; i++)
1693                if (bars & (1 << i))
1694                        pci_release_region(pdev, i);
1695}
1696
1697int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1698                                 const char *res_name, int excl)
1699{
1700        int i;
1701
1702        for (i = 0; i < 6; i++)
1703                if (bars & (1 << i))
1704                        if (__pci_request_region(pdev, i, res_name, excl))
1705                                goto err_out;
1706        return 0;
1707
1708err_out:
1709        while(--i >= 0)
1710                if (bars & (1 << i))
1711                        pci_release_region(pdev, i);
1712
1713        return -EBUSY;
1714}
1715
1716
1717/**
1718 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1719 * @pdev: PCI device whose resources are to be reserved
1720 * @bars: Bitmask of BARs to be requested
1721 * @res_name: Name to be associated with resource
1722 */
1723int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1724                                 const char *res_name)
1725{
1726        return __pci_request_selected_regions(pdev, bars, res_name, 0);
1727}
1728
1729int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1730                                 int bars, const char *res_name)
1731{
1732        return __pci_request_selected_regions(pdev, bars, res_name,
1733                        IORESOURCE_EXCLUSIVE);
1734}
1735
1736/**
1737 *      pci_release_regions - Release reserved PCI I/O and memory resources
1738 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
1739 *
1740 *      Releases all PCI I/O and memory resources previously reserved by a
1741 *      successful call to pci_request_regions.  Call this function only
1742 *      after all use of the PCI regions has ceased.
1743 */
1744
1745void pci_release_regions(struct pci_dev *pdev)
1746{
1747        pci_release_selected_regions(pdev, (1 << 6) - 1);
1748}
1749
1750/**
1751 *      pci_request_regions - Reserved PCI I/O and memory resources
1752 *      @pdev: PCI device whose resources are to be reserved
1753 *      @res_name: Name to be associated with resource.
1754 *
1755 *      Mark all PCI regions associated with PCI device @pdev as
1756 *      being reserved by owner @res_name.  Do not access any
1757 *      address inside the PCI regions unless this call returns
1758 *      successfully.
1759 *
1760 *      Returns 0 on success, or %EBUSY on error.  A warning
1761 *      message is also printed on failure.
1762 */
1763int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1764{
1765        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1766}
1767
1768/**
1769 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1770 *      @pdev: PCI device whose resources are to be reserved
1771 *      @res_name: Name to be associated with resource.
1772 *
1773 *      Mark all PCI regions associated with PCI device @pdev as
1774 *      being reserved by owner @res_name.  Do not access any
1775 *      address inside the PCI regions unless this call returns
1776 *      successfully.
1777 *
1778 *      pci_request_regions_exclusive() will mark the region so that
1779 *      /dev/mem and the sysfs MMIO access will not be allowed.
1780 *
1781 *      Returns 0 on success, or %EBUSY on error.  A warning
1782 *      message is also printed on failure.
1783 */
1784int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1785{
1786        return pci_request_selected_regions_exclusive(pdev,
1787                                        ((1 << 6) - 1), res_name);
1788}
1789
1790static void __pci_set_master(struct pci_dev *dev, bool enable)
1791{
1792        u16 old_cmd, cmd;
1793
1794        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1795        if (enable)
1796                cmd = old_cmd | PCI_COMMAND_MASTER;
1797        else
1798                cmd = old_cmd & ~PCI_COMMAND_MASTER;
1799        if (cmd != old_cmd) {
1800                dev_dbg(&dev->dev, "%s bus mastering\n",
1801                        enable ? "enabling" : "disabling");
1802                pci_write_config_word(dev, PCI_COMMAND, cmd);
1803        }
1804        dev->is_busmaster = enable;
1805}
1806
1807/**
1808 * pci_set_master - enables bus-mastering for device dev
1809 * @dev: the PCI device to enable
1810 *
1811 * Enables bus-mastering on the device and calls pcibios_set_master()
1812 * to do the needed arch specific settings.
1813 */
1814void pci_set_master(struct pci_dev *dev)
1815{
1816        __pci_set_master(dev, true);
1817        pcibios_set_master(dev);
1818}
1819
1820/**
1821 * pci_clear_master - disables bus-mastering for device dev
1822 * @dev: the PCI device to disable
1823 */
1824void pci_clear_master(struct pci_dev *dev)
1825{
1826        __pci_set_master(dev, false);
1827}
1828
1829#ifdef PCI_DISABLE_MWI
1830int pci_set_mwi(struct pci_dev *dev)
1831{
1832        return 0;
1833}
1834
1835int pci_try_set_mwi(struct pci_dev *dev)
1836{
1837        return 0;
1838}
1839
1840void pci_clear_mwi(struct pci_dev *dev)
1841{
1842}
1843
1844#else
1845
1846#ifndef PCI_CACHE_LINE_BYTES
1847#define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1848#endif
1849
1850/* This can be overridden by arch code. */
1851/* Don't forget this is measured in 32-bit words, not bytes */
1852u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1853
1854/**
1855 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1856 * @dev: the PCI device for which MWI is to be enabled
1857 *
1858 * Helper function for pci_set_mwi.
1859 * Originally copied from drivers/net/acenic.c.
1860 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1861 *
1862 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1863 */
1864static int
1865pci_set_cacheline_size(struct pci_dev *dev)
1866{
1867        u8 cacheline_size;
1868
1869        if (!pci_cache_line_size)
1870                return -EINVAL;         /* The system doesn't support MWI. */
1871
1872        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1873           equal to or multiple of the right value. */
1874        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1875        if (cacheline_size >= pci_cache_line_size &&
1876            (cacheline_size % pci_cache_line_size) == 0)
1877                return 0;
1878
1879        /* Write the correct value. */
1880        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1881        /* Read it back. */
1882        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1883        if (cacheline_size == pci_cache_line_size)
1884                return 0;
1885
1886        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1887                   "supported\n", pci_cache_line_size << 2);
1888
1889        return -EINVAL;
1890}
1891
1892/**
1893 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1894 * @dev: the PCI device for which MWI is enabled
1895 *
1896 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1897 *
1898 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1899 */
1900int
1901pci_set_mwi(struct pci_dev *dev)
1902{
1903        int rc;
1904        u16 cmd;
1905
1906        rc = pci_set_cacheline_size(dev);
1907        if (rc)
1908                return rc;
1909
1910        pci_read_config_word(dev, PCI_COMMAND, &cmd);
1911        if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1912                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1913                cmd |= PCI_COMMAND_INVALIDATE;
1914                pci_write_config_word(dev, PCI_COMMAND, cmd);
1915        }
1916        
1917        return 0;
1918}
1919
1920/**
1921 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1922 * @dev: the PCI device for which MWI is enabled
1923 *
1924 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1925 * Callers are not required to check the return value.
1926 *
1927 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1928 */
1929int pci_try_set_mwi(struct pci_dev *dev)
1930{
1931        int rc = pci_set_mwi(dev);
1932        return rc;
1933}
1934
1935/**
1936 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1937 * @dev: the PCI device to disable
1938 *
1939 * Disables PCI Memory-Write-Invalidate transaction on the device
1940 */
1941void
1942pci_clear_mwi(struct pci_dev *dev)
1943{
1944        u16 cmd;
1945
1946        pci_read_config_word(dev, PCI_COMMAND, &cmd);
1947        if (cmd & PCI_COMMAND_INVALIDATE) {
1948                cmd &= ~PCI_COMMAND_INVALIDATE;
1949                pci_write_config_word(dev, PCI_COMMAND, cmd);
1950        }
1951}
1952#endif /* ! PCI_DISABLE_MWI */
1953
1954/**
1955 * pci_intx - enables/disables PCI INTx for device dev
1956 * @pdev: the PCI device to operate on
1957 * @enable: boolean: whether to enable or disable PCI INTx
1958 *
1959 * Enables/disables PCI INTx for device dev
1960 */
1961void
1962pci_intx(struct pci_dev *pdev, int enable)
1963{
1964        u16 pci_command, new;
1965
1966        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1967
1968        if (enable) {
1969                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1970        } else {
1971                new = pci_command | PCI_COMMAND_INTX_DISABLE;
1972        }
1973
1974        if (new != pci_command) {
1975                struct pci_devres *dr;
1976
1977                pci_write_config_word(pdev, PCI_COMMAND, new);
1978
1979                dr = find_pci_dr(pdev);
1980                if (dr && !dr->restore_intx) {
1981                        dr->restore_intx = 1;
1982                        dr->orig_intx = !enable;
1983                }
1984        }
1985}
1986
1987/**
1988 * pci_msi_off - disables any msi or msix capabilities
1989 * @dev: the PCI device to operate on
1990 *
1991 * If you want to use msi see pci_enable_msi and friends.
1992 * This is a lower level primitive that allows us to disable
1993 * msi operation at the device level.
1994 */
1995void pci_msi_off(struct pci_dev *dev)
1996{
1997        int pos;
1998        u16 control;
1999
2000        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2001        if (pos) {
2002                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2003                control &= ~PCI_MSI_FLAGS_ENABLE;
2004                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2005        }
2006        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2007        if (pos) {
2008                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2009                control &= ~PCI_MSIX_FLAGS_ENABLE;
2010                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2011        }
2012}
2013
2014#ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2015/*
2016 * These can be overridden by arch-specific implementations
2017 */
2018int
2019pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2020{
2021        if (!pci_dma_supported(dev, mask))
2022                return -EIO;
2023
2024        dev->dma_mask = mask;
2025
2026        return 0;
2027}
2028    
2029int
2030pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2031{
2032        if (!pci_dma_supported(dev, mask))
2033                return -EIO;
2034
2035        dev->dev.coherent_dma_mask = mask;
2036
2037        return 0;
2038}
2039#endif
2040
2041#ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2042int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2043{
2044        return dma_set_max_seg_size(&dev->dev, size);
2045}
2046EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2047#endif
2048
2049#ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2050int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2051{
2052        return dma_set_seg_boundary(&dev->dev, mask);
2053}
2054EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2055#endif
2056
2057static int __pcie_flr(struct pci_dev *dev, int probe)
2058{
2059        u16 status;
2060        u32 cap;
2061        int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2062
2063        if (!exppos)
2064                return -ENOTTY;
2065        pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2066        if (!(cap & PCI_EXP_DEVCAP_FLR))
2067                return -ENOTTY;
2068
2069        if (probe)
2070                return 0;
2071
2072        pci_block_user_cfg_access(dev);
2073
2074        /* Wait for Transaction Pending bit clean */
2075        pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2076        if (!(status & PCI_EXP_DEVSTA_TRPND))
2077                goto transaction_done;
2078
2079        msleep(100);
2080        pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2081        if (!(status & PCI_EXP_DEVSTA_TRPND))
2082                goto transaction_done;
2083
2084        dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2085                        "sleeping for 1 second\n");
2086        ssleep(1);
2087        pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2088        if (status & PCI_EXP_DEVSTA_TRPND)
2089                dev_info(&dev->dev, "Still busy after 1s; "
2090                                "proceeding with reset anyway\n");
2091
2092transaction_done:
2093        pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2094                                PCI_EXP_DEVCTL_BCR_FLR);
2095        mdelay(100);
2096
2097        pci_unblock_user_cfg_access(dev);
2098        return 0;
2099}
2100
2101static int __pci_af_flr(struct pci_dev *dev, int probe)
2102{
2103        int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2104        u8 status;
2105        u8 cap;
2106
2107        if (!cappos)
2108                return -ENOTTY;
2109        pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2110        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2111                return -ENOTTY;
2112
2113        if (probe)
2114                return 0;
2115
2116        pci_block_user_cfg_access(dev);
2117
2118        /* Wait for Transaction Pending bit clean */
2119        pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2120        if (!(status & PCI_AF_STATUS_TP))
2121                goto transaction_done;
2122
2123        msleep(100);
2124        pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2125        if (!(status & PCI_AF_STATUS_TP))
2126                goto transaction_done;
2127
2128        dev_info(&dev->dev, "Busy after 100ms while trying to"
2129                        " reset; sleeping for 1 second\n");
2130        ssleep(1);
2131        pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2132        if (status & PCI_AF_STATUS_TP)
2133                dev_info(&dev->dev, "Still busy after 1s; "
2134                                "proceeding with reset anyway\n");
2135
2136transaction_done:
2137        pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2138        mdelay(100);
2139
2140        pci_unblock_user_cfg_access(dev);
2141        return 0;
2142}
2143
2144static int __pci_reset_function(struct pci_dev *pdev, int probe)
2145{
2146        int res;
2147
2148        res = __pcie_flr(pdev, probe);
2149        if (res != -ENOTTY)
2150                return res;
2151
2152        res = __pci_af_flr(pdev, probe);
2153        if (res != -ENOTTY)
2154                return res;
2155
2156        return res;
2157}
2158
2159/**
2160 * pci_execute_reset_function() - Reset a PCI device function
2161 * @dev: Device function to reset
2162 *
2163 * Some devices allow an individual function to be reset without affecting
2164 * other functions in the same device.  The PCI device must be responsive
2165 * to PCI config space in order to use this function.
2166 *
2167 * The device function is presumed to be unused when this function is called.
2168 * Resetting the device will make the contents of PCI configuration space
2169 * random, so any caller of this must be prepared to reinitialise the
2170 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2171 * etc.
2172 *
2173 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2174 * device doesn't support resetting a single function.
2175 */
2176int pci_execute_reset_function(struct pci_dev *dev)
2177{
2178        return __pci_reset_function(dev, 0);
2179}
2180EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2181
2182/**
2183 * pci_reset_function() - quiesce and reset a PCI device function
2184 * @dev: Device function to reset
2185 *
2186 * Some devices allow an individual function to be reset without affecting
2187 * other functions in the same device.  The PCI device must be responsive
2188 * to PCI config space in order to use this function.
2189 *
2190 * This function does not just reset the PCI portion of a device, but
2191 * clears all the state associated with the device.  This function differs
2192 * from pci_execute_reset_function in that it saves and restores device state
2193 * over the reset.
2194 *
2195 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2196 * device doesn't support resetting a single function.
2197 */
2198int pci_reset_function(struct pci_dev *dev)
2199{
2200        int r = __pci_reset_function(dev, 1);
2201
2202        if (r < 0)
2203                return r;
2204
2205        if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2206                disable_irq(dev->irq);
2207        pci_save_state(dev);
2208
2209        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2210
2211        r = pci_execute_reset_function(dev);
2212
2213        pci_restore_state(dev);
2214        if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2215                enable_irq(dev->irq);
2216
2217        return r;
2218}
2219EXPORT_SYMBOL_GPL(pci_reset_function);
2220
2221/**
2222 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2223 * @dev: PCI device to query
2224 *
2225 * Returns mmrbc: maximum designed memory read count in bytes
2226 *    or appropriate error value.
2227 */
2228int pcix_get_max_mmrbc(struct pci_dev *dev)
2229{
2230        int err, cap;
2231        u32 stat;
2232
2233        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2234        if (!cap)
2235                return -EINVAL;
2236
2237        err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2238        if (err)
2239                return -EINVAL;
2240
2241        return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2242}
2243EXPORT_SYMBOL(pcix_get_max_mmrbc);
2244
2245/**
2246 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2247 * @dev: PCI device to query
2248 *
2249 * Returns mmrbc: maximum memory read count in bytes
2250 *    or appropriate error value.
2251 */
2252int pcix_get_mmrbc(struct pci_dev *dev)
2253{
2254        int ret, cap;
2255        u32 cmd;
2256
2257        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2258        if (!cap)
2259                return -EINVAL;
2260
2261        ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2262        if (!ret)
2263                ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2264
2265        return ret;
2266}
2267EXPORT_SYMBOL(pcix_get_mmrbc);
2268
2269/**
2270 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2271 * @dev: PCI device to query
2272 * @mmrbc: maximum memory read count in bytes
2273 *    valid values are 512, 1024, 2048, 4096
2274 *
2275 * If possible sets maximum memory read byte count, some bridges have erratas
2276 * that prevent this.
2277 */
2278int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2279{
2280        int cap, err = -EINVAL;
2281        u32 stat, cmd, v, o;
2282
2283        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2284                goto out;
2285
2286        v = ffs(mmrbc) - 10;
2287
2288        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2289        if (!cap)
2290                goto out;
2291
2292        err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2293        if (err)
2294                goto out;
2295
2296        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2297                return -E2BIG;
2298
2299        err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2300        if (err)
2301                goto out;
2302
2303        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2304        if (o != v) {
2305                if (v > o && dev->bus &&
2306                   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2307                        return -EIO;
2308
2309                cmd &= ~PCI_X_CMD_MAX_READ;
2310                cmd |= v << 2;
2311                err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2312        }
2313out:
2314        return err;
2315}
2316EXPORT_SYMBOL(pcix_set_mmrbc);
2317
2318/**
2319 * pcie_get_readrq - get PCI Express read request size
2320 * @dev: PCI device to query
2321 *
2322 * Returns maximum memory read request in bytes
2323 *    or appropriate error value.
2324 */
2325int pcie_get_readrq(struct pci_dev *dev)
2326{
2327        int ret, cap;
2328        u16 ctl;
2329
2330        cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2331        if (!cap)
2332                return -EINVAL;
2333
2334        ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2335        if (!ret)
2336        ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2337
2338        return ret;
2339}
2340EXPORT_SYMBOL(pcie_get_readrq);
2341
2342/**
2343 * pcie_set_readrq - set PCI Express maximum memory read request
2344 * @dev: PCI device to query
2345 * @rq: maximum memory read count in bytes
2346 *    valid values are 128, 256, 512, 1024, 2048, 4096
2347 *
2348 * If possible sets maximum read byte count
2349 */
2350int pcie_set_readrq(struct pci_dev *dev, int rq)
2351{
2352        int cap, err = -EINVAL;
2353        u16 ctl, v;
2354
2355        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2356                goto out;
2357
2358        v = (ffs(rq) - 8) << 12;
2359
2360        cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2361        if (!cap)
2362                goto out;
2363
2364        err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2365        if (err)
2366                goto out;
2367
2368        if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2369                ctl &= ~PCI_EXP_DEVCTL_READRQ;
2370                ctl |= v;
2371                err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2372        }
2373
2374out:
2375        return err;
2376}
2377EXPORT_SYMBOL(pcie_set_readrq);
2378
2379/**
2380 * pci_select_bars - Make BAR mask from the type of resource
2381 * @dev: the PCI device for which BAR mask is made
2382 * @flags: resource type mask to be selected
2383 *
2384 * This helper routine makes bar mask from the type of resource.
2385 */
2386int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2387{
2388        int i, bars = 0;
2389        for (i = 0; i < PCI_NUM_RESOURCES; i++)
2390                if (pci_resource_flags(dev, i) & flags)
2391                        bars |= (1 << i);
2392        return bars;
2393}
2394
2395/**
2396 * pci_resource_bar - get position of the BAR associated with a resource
2397 * @dev: the PCI device
2398 * @resno: the resource number
2399 * @type: the BAR type to be filled in
2400 *
2401 * Returns BAR position in config space, or 0 if the BAR is invalid.
2402 */
2403int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2404{
2405        int reg;
2406
2407        if (resno < PCI_ROM_RESOURCE) {
2408                *type = pci_bar_unknown;
2409                return PCI_BASE_ADDRESS_0 + 4 * resno;
2410        } else if (resno == PCI_ROM_RESOURCE) {
2411                *type = pci_bar_mem32;
2412                return dev->rom_base_reg;
2413        } else if (resno < PCI_BRIDGE_RESOURCES) {
2414                /* device specific resource */
2415                reg = pci_iov_resource_bar(dev, resno, type);
2416                if (reg)
2417                        return reg;
2418        }
2419
2420        dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2421        return 0;
2422}
2423
2424#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2425static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2426spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2427
2428/**
2429 * pci_specified_resource_alignment - get resource alignment specified by user.
2430 * @dev: the PCI device to get
2431 *
2432 * RETURNS: Resource alignment if it is specified.
2433 *          Zero if it is not specified.
2434 */
2435resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2436{
2437        int seg, bus, slot, func, align_order, count;
2438        resource_size_t align = 0;
2439        char *p;
2440
2441        spin_lock(&resource_alignment_lock);
2442        p = resource_alignment_param;
2443        while (*p) {
2444                count = 0;
2445                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2446                                                        p[count] == '@') {
2447                        p += count + 1;
2448                } else {
2449                        align_order = -1;
2450                }
2451                if (sscanf(p, "%x:%x:%x.%x%n",
2452                        &seg, &bus, &slot, &func, &count) != 4) {
2453                        seg = 0;
2454                        if (sscanf(p, "%x:%x.%x%n",
2455                                        &bus, &slot, &func, &count) != 3) {
2456                                /* Invalid format */
2457                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2458                                        p);
2459                                break;
2460                        }
2461                }
2462                p += count;
2463                if (seg == pci_domain_nr(dev->bus) &&
2464                        bus == dev->bus->number &&
2465                        slot == PCI_SLOT(dev->devfn) &&
2466                        func == PCI_FUNC(dev->devfn)) {
2467                        if (align_order == -1) {
2468                                align = PAGE_SIZE;
2469                        } else {
2470                                align = 1 << align_order;
2471                        }
2472                        /* Found */
2473                        break;
2474                }
2475                if (*p != ';' && *p != ',') {
2476                        /* End of param or invalid format */
2477                        break;
2478                }
2479                p++;
2480        }
2481        spin_unlock(&resource_alignment_lock);
2482        return align;
2483}
2484
2485/**
2486 * pci_is_reassigndev - check if specified PCI is target device to reassign
2487 * @dev: the PCI device to check
2488 *
2489 * RETURNS: non-zero for PCI device is a target device to reassign,
2490 *          or zero is not.
2491 */
2492int pci_is_reassigndev(struct pci_dev *dev)
2493{
2494        return (pci_specified_resource_alignment(dev) != 0);
2495}
2496
2497ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2498{
2499        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2500                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2501        spin_lock(&resource_alignment_lock);
2502        strncpy(resource_alignment_param, buf, count);
2503        resource_alignment_param[count] = '\0';
2504        spin_unlock(&resource_alignment_lock);
2505        return count;
2506}
2507
2508ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2509{
2510        size_t count;
2511        spin_lock(&resource_alignment_lock);
2512        count = snprintf(buf, size, "%s", resource_alignment_param);
2513        spin_unlock(&resource_alignment_lock);
2514        return count;
2515}
2516
2517static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2518{
2519        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2520}
2521
2522static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2523                                        const char *buf, size_t count)
2524{
2525        return pci_set_resource_alignment_param(buf, count);
2526}
2527
2528BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2529                                        pci_resource_alignment_store);
2530
2531static int __init pci_resource_alignment_sysfs_init(void)
2532{
2533        return bus_create_file(&pci_bus_type,
2534                                        &bus_attr_resource_alignment);
2535}
2536
2537late_initcall(pci_resource_alignment_sysfs_init);
2538
2539static void __devinit pci_no_domains(void)
2540{
2541#ifdef CONFIG_PCI_DOMAINS
2542        pci_domains_supported = 0;
2543#endif
2544}
2545
2546/**
2547 * pci_ext_cfg_enabled - can we access extended PCI config space?
2548 * @dev: The PCI device of the root bridge.
2549 *
2550 * Returns 1 if we can access PCI extended config space (offsets
2551 * greater than 0xff). This is the default implementation. Architecture
2552 * implementations can override this.
2553 */
2554int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2555{
2556        return 1;
2557}
2558
2559static int __devinit pci_init(void)
2560{
2561        struct pci_dev *dev = NULL;
2562
2563        while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2564                pci_fixup_device(pci_fixup_final, dev);
2565        }
2566
2567        return 0;
2568}
2569
2570static int __init pci_setup(char *str)
2571{
2572        while (str) {
2573                char *k = strchr(str, ',');
2574                if (k)
2575                        *k++ = 0;
2576                if (*str && (str = pcibios_setup(str)) && *str) {
2577                        if (!strcmp(str, "nomsi")) {
2578                                pci_no_msi();
2579                        } else if (!strcmp(str, "noaer")) {
2580                                pci_no_aer();
2581                        } else if (!strcmp(str, "nodomains")) {
2582                                pci_no_domains();
2583                        } else if (!strncmp(str, "cbiosize=", 9)) {
2584                                pci_cardbus_io_size = memparse(str + 9, &str);
2585                        } else if (!strncmp(str, "cbmemsize=", 10)) {
2586                                pci_cardbus_mem_size = memparse(str + 10, &str);
2587                        } else if (!strncmp(str, "resource_alignment=", 19)) {
2588                                pci_set_resource_alignment_param(str + 19,
2589                                                        strlen(str + 19));
2590                        } else {
2591                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
2592                                                str);
2593                        }
2594                }
2595                str = k;
2596        }
2597        return 0;
2598}
2599early_param("pci", pci_setup);
2600
2601device_initcall(pci_init);
2602
2603EXPORT_SYMBOL(pci_reenable_device);
2604EXPORT_SYMBOL(pci_enable_device_io);
2605EXPORT_SYMBOL(pci_enable_device_mem);
2606EXPORT_SYMBOL(pci_enable_device);
2607EXPORT_SYMBOL(pcim_enable_device);
2608EXPORT_SYMBOL(pcim_pin_device);
2609EXPORT_SYMBOL(pci_disable_device);
2610EXPORT_SYMBOL(pci_find_capability);
2611EXPORT_SYMBOL(pci_bus_find_capability);
2612EXPORT_SYMBOL(pci_release_regions);
2613EXPORT_SYMBOL(pci_request_regions);
2614EXPORT_SYMBOL(pci_request_regions_exclusive);
2615EXPORT_SYMBOL(pci_release_region);
2616EXPORT_SYMBOL(pci_request_region);
2617EXPORT_SYMBOL(pci_request_region_exclusive);
2618EXPORT_SYMBOL(pci_release_selected_regions);
2619EXPORT_SYMBOL(pci_request_selected_regions);
2620EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2621EXPORT_SYMBOL(pci_set_master);
2622EXPORT_SYMBOL(pci_clear_master);
2623EXPORT_SYMBOL(pci_set_mwi);
2624EXPORT_SYMBOL(pci_try_set_mwi);
2625EXPORT_SYMBOL(pci_clear_mwi);
2626EXPORT_SYMBOL_GPL(pci_intx);
2627EXPORT_SYMBOL(pci_set_dma_mask);
2628EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2629EXPORT_SYMBOL(pci_assign_resource);
2630EXPORT_SYMBOL(pci_find_parent_resource);
2631EXPORT_SYMBOL(pci_select_bars);
2632
2633EXPORT_SYMBOL(pci_set_power_state);
2634EXPORT_SYMBOL(pci_save_state);
2635EXPORT_SYMBOL(pci_restore_state);
2636EXPORT_SYMBOL(pci_pme_capable);
2637EXPORT_SYMBOL(pci_pme_active);
2638EXPORT_SYMBOL(pci_enable_wake);
2639EXPORT_SYMBOL(pci_wake_from_d3);
2640EXPORT_SYMBOL(pci_target_state);
2641EXPORT_SYMBOL(pci_prepare_to_sleep);
2642EXPORT_SYMBOL(pci_back_from_sleep);
2643EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2644
2645