linux/drivers/pci/intel-iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006, Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  15 * Place - Suite 330, Boston, MA 02111-1307 USA.
  16 *
  17 * Copyright (C) 2006-2008 Intel Corporation
  18 * Author: Ashok Raj <ashok.raj@intel.com>
  19 * Author: Shaohua Li <shaohua.li@intel.com>
  20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  21 * Author: Fenghua Yu <fenghua.yu@intel.com>
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/bitmap.h>
  26#include <linux/debugfs.h>
  27#include <linux/slab.h>
  28#include <linux/irq.h>
  29#include <linux/interrupt.h>
  30#include <linux/spinlock.h>
  31#include <linux/pci.h>
  32#include <linux/dmar.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/mempool.h>
  35#include <linux/timer.h>
  36#include <linux/iova.h>
  37#include <linux/iommu.h>
  38#include <linux/intel-iommu.h>
  39#include <linux/sysdev.h>
  40#include <asm/cacheflush.h>
  41#include <asm/iommu.h>
  42#include "pci.h"
  43
  44#define ROOT_SIZE               VTD_PAGE_SIZE
  45#define CONTEXT_SIZE            VTD_PAGE_SIZE
  46
  47#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  48#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  49
  50#define IOAPIC_RANGE_START      (0xfee00000)
  51#define IOAPIC_RANGE_END        (0xfeefffff)
  52#define IOVA_START_ADDR         (0x1000)
  53
  54#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
  55
  56#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
  57
  58#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  59#define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
  60#define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
  61
  62#ifndef PHYSICAL_PAGE_MASK
  63#define PHYSICAL_PAGE_MASK PAGE_MASK
  64#endif
  65
  66/* global iommu list, set NULL for ignored DMAR units */
  67static struct intel_iommu **g_iommus;
  68
  69static int rwbf_quirk;
  70
  71/*
  72 * 0: Present
  73 * 1-11: Reserved
  74 * 12-63: Context Ptr (12 - (haw-1))
  75 * 64-127: Reserved
  76 */
  77struct root_entry {
  78        u64     val;
  79        u64     rsvd1;
  80};
  81#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
  82static inline bool root_present(struct root_entry *root)
  83{
  84        return (root->val & 1);
  85}
  86static inline void set_root_present(struct root_entry *root)
  87{
  88        root->val |= 1;
  89}
  90static inline void set_root_value(struct root_entry *root, unsigned long value)
  91{
  92        root->val |= value & VTD_PAGE_MASK;
  93}
  94
  95static inline struct context_entry *
  96get_context_addr_from_root(struct root_entry *root)
  97{
  98        return (struct context_entry *)
  99                (root_present(root)?phys_to_virt(
 100                root->val & VTD_PAGE_MASK) :
 101                NULL);
 102}
 103
 104/*
 105 * low 64 bits:
 106 * 0: present
 107 * 1: fault processing disable
 108 * 2-3: translation type
 109 * 12-63: address space root
 110 * high 64 bits:
 111 * 0-2: address width
 112 * 3-6: aval
 113 * 8-23: domain id
 114 */
 115struct context_entry {
 116        u64 lo;
 117        u64 hi;
 118};
 119
 120static inline bool context_present(struct context_entry *context)
 121{
 122        return (context->lo & 1);
 123}
 124static inline void context_set_present(struct context_entry *context)
 125{
 126        context->lo |= 1;
 127}
 128
 129static inline void context_set_fault_enable(struct context_entry *context)
 130{
 131        context->lo &= (((u64)-1) << 2) | 1;
 132}
 133
 134#define CONTEXT_TT_MULTI_LEVEL 0
 135
 136static inline void context_set_translation_type(struct context_entry *context,
 137                                                unsigned long value)
 138{
 139        context->lo &= (((u64)-1) << 4) | 3;
 140        context->lo |= (value & 3) << 2;
 141}
 142
 143static inline void context_set_address_root(struct context_entry *context,
 144                                            unsigned long value)
 145{
 146        context->lo |= value & VTD_PAGE_MASK;
 147}
 148
 149static inline void context_set_address_width(struct context_entry *context,
 150                                             unsigned long value)
 151{
 152        context->hi |= value & 7;
 153}
 154
 155static inline void context_set_domain_id(struct context_entry *context,
 156                                         unsigned long value)
 157{
 158        context->hi |= (value & ((1 << 16) - 1)) << 8;
 159}
 160
 161static inline void context_clear_entry(struct context_entry *context)
 162{
 163        context->lo = 0;
 164        context->hi = 0;
 165}
 166
 167/*
 168 * 0: readable
 169 * 1: writable
 170 * 2-6: reserved
 171 * 7: super page
 172 * 8-10: available
 173 * 11: snoop behavior
 174 * 12-63: Host physcial address
 175 */
 176struct dma_pte {
 177        u64 val;
 178};
 179
 180static inline void dma_clear_pte(struct dma_pte *pte)
 181{
 182        pte->val = 0;
 183}
 184
 185static inline void dma_set_pte_readable(struct dma_pte *pte)
 186{
 187        pte->val |= DMA_PTE_READ;
 188}
 189
 190static inline void dma_set_pte_writable(struct dma_pte *pte)
 191{
 192        pte->val |= DMA_PTE_WRITE;
 193}
 194
 195static inline void dma_set_pte_snp(struct dma_pte *pte)
 196{
 197        pte->val |= DMA_PTE_SNP;
 198}
 199
 200static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
 201{
 202        pte->val = (pte->val & ~3) | (prot & 3);
 203}
 204
 205static inline u64 dma_pte_addr(struct dma_pte *pte)
 206{
 207        return (pte->val & VTD_PAGE_MASK);
 208}
 209
 210static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
 211{
 212        pte->val |= (addr & VTD_PAGE_MASK);
 213}
 214
 215static inline bool dma_pte_present(struct dma_pte *pte)
 216{
 217        return (pte->val & 3) != 0;
 218}
 219
 220/* devices under the same p2p bridge are owned in one domain */
 221#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
 222
 223/* domain represents a virtual machine, more than one devices
 224 * across iommus may be owned in one domain, e.g. kvm guest.
 225 */
 226#define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
 227
 228struct dmar_domain {
 229        int     id;                     /* domain id */
 230        unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
 231
 232        struct list_head devices;       /* all devices' list */
 233        struct iova_domain iovad;       /* iova's that belong to this domain */
 234
 235        struct dma_pte  *pgd;           /* virtual address */
 236        spinlock_t      mapping_lock;   /* page table lock */
 237        int             gaw;            /* max guest address width */
 238
 239        /* adjusted guest address width, 0 is level 2 30-bit */
 240        int             agaw;
 241
 242        int             flags;          /* flags to find out type of domain */
 243
 244        int             iommu_coherency;/* indicate coherency of iommu access */
 245        int             iommu_snooping; /* indicate snooping control feature*/
 246        int             iommu_count;    /* reference count of iommu */
 247        spinlock_t      iommu_lock;     /* protect iommu set in domain */
 248        u64             max_addr;       /* maximum mapped address */
 249};
 250
 251/* PCI domain-device relationship */
 252struct device_domain_info {
 253        struct list_head link;  /* link to domain siblings */
 254        struct list_head global; /* link to global list */
 255        int segment;            /* PCI domain */
 256        u8 bus;                 /* PCI bus number */
 257        u8 devfn;               /* PCI devfn number */
 258        struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
 259        struct dmar_domain *domain; /* pointer to domain */
 260};
 261
 262static void flush_unmaps_timeout(unsigned long data);
 263
 264DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
 265
 266#define HIGH_WATER_MARK 250
 267struct deferred_flush_tables {
 268        int next;
 269        struct iova *iova[HIGH_WATER_MARK];
 270        struct dmar_domain *domain[HIGH_WATER_MARK];
 271};
 272
 273static struct deferred_flush_tables *deferred_flush;
 274
 275/* bitmap for indexing intel_iommus */
 276static int g_num_of_iommus;
 277
 278static DEFINE_SPINLOCK(async_umap_flush_lock);
 279static LIST_HEAD(unmaps_to_do);
 280
 281static int timer_on;
 282static long list_size;
 283
 284static void domain_remove_dev_info(struct dmar_domain *domain);
 285
 286#ifdef CONFIG_DMAR_DEFAULT_ON
 287int dmar_disabled = 0;
 288#else
 289int dmar_disabled = 1;
 290#endif /*CONFIG_DMAR_DEFAULT_ON*/
 291
 292static int __initdata dmar_map_gfx = 1;
 293static int dmar_forcedac;
 294static int intel_iommu_strict;
 295
 296#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
 297static DEFINE_SPINLOCK(device_domain_lock);
 298static LIST_HEAD(device_domain_list);
 299
 300static struct iommu_ops intel_iommu_ops;
 301
 302static int __init intel_iommu_setup(char *str)
 303{
 304        if (!str)
 305                return -EINVAL;
 306        while (*str) {
 307                if (!strncmp(str, "on", 2)) {
 308                        dmar_disabled = 0;
 309                        printk(KERN_INFO "Intel-IOMMU: enabled\n");
 310                } else if (!strncmp(str, "off", 3)) {
 311                        dmar_disabled = 1;
 312                        printk(KERN_INFO "Intel-IOMMU: disabled\n");
 313                } else if (!strncmp(str, "igfx_off", 8)) {
 314                        dmar_map_gfx = 0;
 315                        printk(KERN_INFO
 316                                "Intel-IOMMU: disable GFX device mapping\n");
 317                } else if (!strncmp(str, "forcedac", 8)) {
 318                        printk(KERN_INFO
 319                                "Intel-IOMMU: Forcing DAC for PCI devices\n");
 320                        dmar_forcedac = 1;
 321                } else if (!strncmp(str, "strict", 6)) {
 322                        printk(KERN_INFO
 323                                "Intel-IOMMU: disable batched IOTLB flush\n");
 324                        intel_iommu_strict = 1;
 325                }
 326
 327                str += strcspn(str, ",");
 328                while (*str == ',')
 329                        str++;
 330        }
 331        return 0;
 332}
 333__setup("intel_iommu=", intel_iommu_setup);
 334
 335static struct kmem_cache *iommu_domain_cache;
 336static struct kmem_cache *iommu_devinfo_cache;
 337static struct kmem_cache *iommu_iova_cache;
 338
 339static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
 340{
 341        unsigned int flags;
 342        void *vaddr;
 343
 344        /* trying to avoid low memory issues */
 345        flags = current->flags & PF_MEMALLOC;
 346        current->flags |= PF_MEMALLOC;
 347        vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
 348        current->flags &= (~PF_MEMALLOC | flags);
 349        return vaddr;
 350}
 351
 352
 353static inline void *alloc_pgtable_page(void)
 354{
 355        unsigned int flags;
 356        void *vaddr;
 357
 358        /* trying to avoid low memory issues */
 359        flags = current->flags & PF_MEMALLOC;
 360        current->flags |= PF_MEMALLOC;
 361        vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
 362        current->flags &= (~PF_MEMALLOC | flags);
 363        return vaddr;
 364}
 365
 366static inline void free_pgtable_page(void *vaddr)
 367{
 368        free_page((unsigned long)vaddr);
 369}
 370
 371static inline void *alloc_domain_mem(void)
 372{
 373        return iommu_kmem_cache_alloc(iommu_domain_cache);
 374}
 375
 376static void free_domain_mem(void *vaddr)
 377{
 378        kmem_cache_free(iommu_domain_cache, vaddr);
 379}
 380
 381static inline void * alloc_devinfo_mem(void)
 382{
 383        return iommu_kmem_cache_alloc(iommu_devinfo_cache);
 384}
 385
 386static inline void free_devinfo_mem(void *vaddr)
 387{
 388        kmem_cache_free(iommu_devinfo_cache, vaddr);
 389}
 390
 391struct iova *alloc_iova_mem(void)
 392{
 393        return iommu_kmem_cache_alloc(iommu_iova_cache);
 394}
 395
 396void free_iova_mem(struct iova *iova)
 397{
 398        kmem_cache_free(iommu_iova_cache, iova);
 399}
 400
 401
 402static inline int width_to_agaw(int width);
 403
 404/* calculate agaw for each iommu.
 405 * "SAGAW" may be different across iommus, use a default agaw, and
 406 * get a supported less agaw for iommus that don't support the default agaw.
 407 */
 408int iommu_calculate_agaw(struct intel_iommu *iommu)
 409{
 410        unsigned long sagaw;
 411        int agaw = -1;
 412
 413        sagaw = cap_sagaw(iommu->cap);
 414        for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
 415             agaw >= 0; agaw--) {
 416                if (test_bit(agaw, &sagaw))
 417                        break;
 418        }
 419
 420        return agaw;
 421}
 422
 423/* in native case, each domain is related to only one iommu */
 424static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
 425{
 426        int iommu_id;
 427
 428        BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
 429
 430        iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
 431        if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
 432                return NULL;
 433
 434        return g_iommus[iommu_id];
 435}
 436
 437static void domain_update_iommu_coherency(struct dmar_domain *domain)
 438{
 439        int i;
 440
 441        domain->iommu_coherency = 1;
 442
 443        i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
 444        for (; i < g_num_of_iommus; ) {
 445                if (!ecap_coherent(g_iommus[i]->ecap)) {
 446                        domain->iommu_coherency = 0;
 447                        break;
 448                }
 449                i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
 450        }
 451}
 452
 453static void domain_update_iommu_snooping(struct dmar_domain *domain)
 454{
 455        int i;
 456
 457        domain->iommu_snooping = 1;
 458
 459        i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
 460        for (; i < g_num_of_iommus; ) {
 461                if (!ecap_sc_support(g_iommus[i]->ecap)) {
 462                        domain->iommu_snooping = 0;
 463                        break;
 464                }
 465                i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
 466        }
 467}
 468
 469/* Some capabilities may be different across iommus */
 470static void domain_update_iommu_cap(struct dmar_domain *domain)
 471{
 472        domain_update_iommu_coherency(domain);
 473        domain_update_iommu_snooping(domain);
 474}
 475
 476static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
 477{
 478        struct dmar_drhd_unit *drhd = NULL;
 479        int i;
 480
 481        for_each_drhd_unit(drhd) {
 482                if (drhd->ignored)
 483                        continue;
 484                if (segment != drhd->segment)
 485                        continue;
 486
 487                for (i = 0; i < drhd->devices_cnt; i++) {
 488                        if (drhd->devices[i] &&
 489                            drhd->devices[i]->bus->number == bus &&
 490                            drhd->devices[i]->devfn == devfn)
 491                                return drhd->iommu;
 492                        if (drhd->devices[i] &&
 493                            drhd->devices[i]->subordinate &&
 494                            drhd->devices[i]->subordinate->number <= bus &&
 495                            drhd->devices[i]->subordinate->subordinate >= bus)
 496                                return drhd->iommu;
 497                }
 498
 499                if (drhd->include_all)
 500                        return drhd->iommu;
 501        }
 502
 503        return NULL;
 504}
 505
 506static void domain_flush_cache(struct dmar_domain *domain,
 507                               void *addr, int size)
 508{
 509        if (!domain->iommu_coherency)
 510                clflush_cache_range(addr, size);
 511}
 512
 513/* Gets context entry for a given bus and devfn */
 514static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
 515                u8 bus, u8 devfn)
 516{
 517        struct root_entry *root;
 518        struct context_entry *context;
 519        unsigned long phy_addr;
 520        unsigned long flags;
 521
 522        spin_lock_irqsave(&iommu->lock, flags);
 523        root = &iommu->root_entry[bus];
 524        context = get_context_addr_from_root(root);
 525        if (!context) {
 526                context = (struct context_entry *)alloc_pgtable_page();
 527                if (!context) {
 528                        spin_unlock_irqrestore(&iommu->lock, flags);
 529                        return NULL;
 530                }
 531                __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
 532                phy_addr = virt_to_phys((void *)context);
 533                set_root_value(root, phy_addr);
 534                set_root_present(root);
 535                __iommu_flush_cache(iommu, root, sizeof(*root));
 536        }
 537        spin_unlock_irqrestore(&iommu->lock, flags);
 538        return &context[devfn];
 539}
 540
 541static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
 542{
 543        struct root_entry *root;
 544        struct context_entry *context;
 545        int ret;
 546        unsigned long flags;
 547
 548        spin_lock_irqsave(&iommu->lock, flags);
 549        root = &iommu->root_entry[bus];
 550        context = get_context_addr_from_root(root);
 551        if (!context) {
 552                ret = 0;
 553                goto out;
 554        }
 555        ret = context_present(&context[devfn]);
 556out:
 557        spin_unlock_irqrestore(&iommu->lock, flags);
 558        return ret;
 559}
 560
 561static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
 562{
 563        struct root_entry *root;
 564        struct context_entry *context;
 565        unsigned long flags;
 566
 567        spin_lock_irqsave(&iommu->lock, flags);
 568        root = &iommu->root_entry[bus];
 569        context = get_context_addr_from_root(root);
 570        if (context) {
 571                context_clear_entry(&context[devfn]);
 572                __iommu_flush_cache(iommu, &context[devfn], \
 573                        sizeof(*context));
 574        }
 575        spin_unlock_irqrestore(&iommu->lock, flags);
 576}
 577
 578static void free_context_table(struct intel_iommu *iommu)
 579{
 580        struct root_entry *root;
 581        int i;
 582        unsigned long flags;
 583        struct context_entry *context;
 584
 585        spin_lock_irqsave(&iommu->lock, flags);
 586        if (!iommu->root_entry) {
 587                goto out;
 588        }
 589        for (i = 0; i < ROOT_ENTRY_NR; i++) {
 590                root = &iommu->root_entry[i];
 591                context = get_context_addr_from_root(root);
 592                if (context)
 593                        free_pgtable_page(context);
 594        }
 595        free_pgtable_page(iommu->root_entry);
 596        iommu->root_entry = NULL;
 597out:
 598        spin_unlock_irqrestore(&iommu->lock, flags);
 599}
 600
 601/* page table handling */
 602#define LEVEL_STRIDE            (9)
 603#define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
 604
 605static inline int agaw_to_level(int agaw)
 606{
 607        return agaw + 2;
 608}
 609
 610static inline int agaw_to_width(int agaw)
 611{
 612        return 30 + agaw * LEVEL_STRIDE;
 613
 614}
 615
 616static inline int width_to_agaw(int width)
 617{
 618        return (width - 30) / LEVEL_STRIDE;
 619}
 620
 621static inline unsigned int level_to_offset_bits(int level)
 622{
 623        return (12 + (level - 1) * LEVEL_STRIDE);
 624}
 625
 626static inline int address_level_offset(u64 addr, int level)
 627{
 628        return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
 629}
 630
 631static inline u64 level_mask(int level)
 632{
 633        return ((u64)-1 << level_to_offset_bits(level));
 634}
 635
 636static inline u64 level_size(int level)
 637{
 638        return ((u64)1 << level_to_offset_bits(level));
 639}
 640
 641static inline u64 align_to_level(u64 addr, int level)
 642{
 643        return ((addr + level_size(level) - 1) & level_mask(level));
 644}
 645
 646static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
 647{
 648        int addr_width = agaw_to_width(domain->agaw);
 649        struct dma_pte *parent, *pte = NULL;
 650        int level = agaw_to_level(domain->agaw);
 651        int offset;
 652        unsigned long flags;
 653
 654        BUG_ON(!domain->pgd);
 655
 656        addr &= (((u64)1) << addr_width) - 1;
 657        parent = domain->pgd;
 658
 659        spin_lock_irqsave(&domain->mapping_lock, flags);
 660        while (level > 0) {
 661                void *tmp_page;
 662
 663                offset = address_level_offset(addr, level);
 664                pte = &parent[offset];
 665                if (level == 1)
 666                        break;
 667
 668                if (!dma_pte_present(pte)) {
 669                        tmp_page = alloc_pgtable_page();
 670
 671                        if (!tmp_page) {
 672                                spin_unlock_irqrestore(&domain->mapping_lock,
 673                                        flags);
 674                                return NULL;
 675                        }
 676                        domain_flush_cache(domain, tmp_page, PAGE_SIZE);
 677                        dma_set_pte_addr(pte, virt_to_phys(tmp_page));
 678                        /*
 679                         * high level table always sets r/w, last level page
 680                         * table control read/write
 681                         */
 682                        dma_set_pte_readable(pte);
 683                        dma_set_pte_writable(pte);
 684                        domain_flush_cache(domain, pte, sizeof(*pte));
 685                }
 686                parent = phys_to_virt(dma_pte_addr(pte));
 687                level--;
 688        }
 689
 690        spin_unlock_irqrestore(&domain->mapping_lock, flags);
 691        return pte;
 692}
 693
 694/* return address's pte at specific level */
 695static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
 696                int level)
 697{
 698        struct dma_pte *parent, *pte = NULL;
 699        int total = agaw_to_level(domain->agaw);
 700        int offset;
 701
 702        parent = domain->pgd;
 703        while (level <= total) {
 704                offset = address_level_offset(addr, total);
 705                pte = &parent[offset];
 706                if (level == total)
 707                        return pte;
 708
 709                if (!dma_pte_present(pte))
 710                        break;
 711                parent = phys_to_virt(dma_pte_addr(pte));
 712                total--;
 713        }
 714        return NULL;
 715}
 716
 717/* clear one page's page table */
 718static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
 719{
 720        struct dma_pte *pte = NULL;
 721
 722        /* get last level pte */
 723        pte = dma_addr_level_pte(domain, addr, 1);
 724
 725        if (pte) {
 726                dma_clear_pte(pte);
 727                domain_flush_cache(domain, pte, sizeof(*pte));
 728        }
 729}
 730
 731/* clear last level pte, a tlb flush should be followed */
 732static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
 733{
 734        int addr_width = agaw_to_width(domain->agaw);
 735        int npages;
 736
 737        start &= (((u64)1) << addr_width) - 1;
 738        end &= (((u64)1) << addr_width) - 1;
 739        /* in case it's partial page */
 740        start &= PAGE_MASK;
 741        end = PAGE_ALIGN(end);
 742        npages = (end - start) / VTD_PAGE_SIZE;
 743
 744        /* we don't need lock here, nobody else touches the iova range */
 745        while (npages--) {
 746                dma_pte_clear_one(domain, start);
 747                start += VTD_PAGE_SIZE;
 748        }
 749}
 750
 751/* free page table pages. last level pte should already be cleared */
 752static void dma_pte_free_pagetable(struct dmar_domain *domain,
 753        u64 start, u64 end)
 754{
 755        int addr_width = agaw_to_width(domain->agaw);
 756        struct dma_pte *pte;
 757        int total = agaw_to_level(domain->agaw);
 758        int level;
 759        u64 tmp;
 760
 761        start &= (((u64)1) << addr_width) - 1;
 762        end &= (((u64)1) << addr_width) - 1;
 763
 764        /* we don't need lock here, nobody else touches the iova range */
 765        level = 2;
 766        while (level <= total) {
 767                tmp = align_to_level(start, level);
 768                if (tmp >= end || (tmp + level_size(level) > end))
 769                        return;
 770
 771                while (tmp < end) {
 772                        pte = dma_addr_level_pte(domain, tmp, level);
 773                        if (pte) {
 774                                free_pgtable_page(
 775                                        phys_to_virt(dma_pte_addr(pte)));
 776                                dma_clear_pte(pte);
 777                                domain_flush_cache(domain, pte, sizeof(*pte));
 778                        }
 779                        tmp += level_size(level);
 780                }
 781                level++;
 782        }
 783        /* free pgd */
 784        if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
 785                free_pgtable_page(domain->pgd);
 786                domain->pgd = NULL;
 787        }
 788}
 789
 790/* iommu handling */
 791static int iommu_alloc_root_entry(struct intel_iommu *iommu)
 792{
 793        struct root_entry *root;
 794        unsigned long flags;
 795
 796        root = (struct root_entry *)alloc_pgtable_page();
 797        if (!root)
 798                return -ENOMEM;
 799
 800        __iommu_flush_cache(iommu, root, ROOT_SIZE);
 801
 802        spin_lock_irqsave(&iommu->lock, flags);
 803        iommu->root_entry = root;
 804        spin_unlock_irqrestore(&iommu->lock, flags);
 805
 806        return 0;
 807}
 808
 809static void iommu_set_root_entry(struct intel_iommu *iommu)
 810{
 811        void *addr;
 812        u32 cmd, sts;
 813        unsigned long flag;
 814
 815        addr = iommu->root_entry;
 816
 817        spin_lock_irqsave(&iommu->register_lock, flag);
 818        dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
 819
 820        cmd = iommu->gcmd | DMA_GCMD_SRTP;
 821        writel(cmd, iommu->reg + DMAR_GCMD_REG);
 822
 823        /* Make sure hardware complete it */
 824        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 825                readl, (sts & DMA_GSTS_RTPS), sts);
 826
 827        spin_unlock_irqrestore(&iommu->register_lock, flag);
 828}
 829
 830static void iommu_flush_write_buffer(struct intel_iommu *iommu)
 831{
 832        u32 val;
 833        unsigned long flag;
 834
 835        if (!rwbf_quirk && !cap_rwbf(iommu->cap))
 836                return;
 837        val = iommu->gcmd | DMA_GCMD_WBF;
 838
 839        spin_lock_irqsave(&iommu->register_lock, flag);
 840        writel(val, iommu->reg + DMAR_GCMD_REG);
 841
 842        /* Make sure hardware complete it */
 843        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 844                        readl, (!(val & DMA_GSTS_WBFS)), val);
 845
 846        spin_unlock_irqrestore(&iommu->register_lock, flag);
 847}
 848
 849/* return value determine if we need a write buffer flush */
 850static int __iommu_flush_context(struct intel_iommu *iommu,
 851        u16 did, u16 source_id, u8 function_mask, u64 type,
 852        int non_present_entry_flush)
 853{
 854        u64 val = 0;
 855        unsigned long flag;
 856
 857        /*
 858         * In the non-present entry flush case, if hardware doesn't cache
 859         * non-present entry we do nothing and if hardware cache non-present
 860         * entry, we flush entries of domain 0 (the domain id is used to cache
 861         * any non-present entries)
 862         */
 863        if (non_present_entry_flush) {
 864                if (!cap_caching_mode(iommu->cap))
 865                        return 1;
 866                else
 867                        did = 0;
 868        }
 869
 870        switch (type) {
 871        case DMA_CCMD_GLOBAL_INVL:
 872                val = DMA_CCMD_GLOBAL_INVL;
 873                break;
 874        case DMA_CCMD_DOMAIN_INVL:
 875                val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
 876                break;
 877        case DMA_CCMD_DEVICE_INVL:
 878                val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
 879                        | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
 880                break;
 881        default:
 882                BUG();
 883        }
 884        val |= DMA_CCMD_ICC;
 885
 886        spin_lock_irqsave(&iommu->register_lock, flag);
 887        dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
 888
 889        /* Make sure hardware complete it */
 890        IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
 891                dmar_readq, (!(val & DMA_CCMD_ICC)), val);
 892
 893        spin_unlock_irqrestore(&iommu->register_lock, flag);
 894
 895        /* flush context entry will implicitly flush write buffer */
 896        return 0;
 897}
 898
 899/* return value determine if we need a write buffer flush */
 900static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
 901        u64 addr, unsigned int size_order, u64 type,
 902        int non_present_entry_flush)
 903{
 904        int tlb_offset = ecap_iotlb_offset(iommu->ecap);
 905        u64 val = 0, val_iva = 0;
 906        unsigned long flag;
 907
 908        /*
 909         * In the non-present entry flush case, if hardware doesn't cache
 910         * non-present entry we do nothing and if hardware cache non-present
 911         * entry, we flush entries of domain 0 (the domain id is used to cache
 912         * any non-present entries)
 913         */
 914        if (non_present_entry_flush) {
 915                if (!cap_caching_mode(iommu->cap))
 916                        return 1;
 917                else
 918                        did = 0;
 919        }
 920
 921        switch (type) {
 922        case DMA_TLB_GLOBAL_FLUSH:
 923                /* global flush doesn't need set IVA_REG */
 924                val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
 925                break;
 926        case DMA_TLB_DSI_FLUSH:
 927                val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
 928                break;
 929        case DMA_TLB_PSI_FLUSH:
 930                val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
 931                /* Note: always flush non-leaf currently */
 932                val_iva = size_order | addr;
 933                break;
 934        default:
 935                BUG();
 936        }
 937        /* Note: set drain read/write */
 938#if 0
 939        /*
 940         * This is probably to be super secure.. Looks like we can
 941         * ignore it without any impact.
 942         */
 943        if (cap_read_drain(iommu->cap))
 944                val |= DMA_TLB_READ_DRAIN;
 945#endif
 946        if (cap_write_drain(iommu->cap))
 947                val |= DMA_TLB_WRITE_DRAIN;
 948
 949        spin_lock_irqsave(&iommu->register_lock, flag);
 950        /* Note: Only uses first TLB reg currently */
 951        if (val_iva)
 952                dmar_writeq(iommu->reg + tlb_offset, val_iva);
 953        dmar_writeq(iommu->reg + tlb_offset + 8, val);
 954
 955        /* Make sure hardware complete it */
 956        IOMMU_WAIT_OP(iommu, tlb_offset + 8,
 957                dmar_readq, (!(val & DMA_TLB_IVT)), val);
 958
 959        spin_unlock_irqrestore(&iommu->register_lock, flag);
 960
 961        /* check IOTLB invalidation granularity */
 962        if (DMA_TLB_IAIG(val) == 0)
 963                printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
 964        if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
 965                pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
 966                        (unsigned long long)DMA_TLB_IIRG(type),
 967                        (unsigned long long)DMA_TLB_IAIG(val));
 968        /* flush iotlb entry will implicitly flush write buffer */
 969        return 0;
 970}
 971
 972static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
 973        u64 addr, unsigned int pages, int non_present_entry_flush)
 974{
 975        unsigned int mask;
 976
 977        BUG_ON(addr & (~VTD_PAGE_MASK));
 978        BUG_ON(pages == 0);
 979
 980        /* Fallback to domain selective flush if no PSI support */
 981        if (!cap_pgsel_inv(iommu->cap))
 982                return iommu->flush.flush_iotlb(iommu, did, 0, 0,
 983                                                DMA_TLB_DSI_FLUSH,
 984                                                non_present_entry_flush);
 985
 986        /*
 987         * PSI requires page size to be 2 ^ x, and the base address is naturally
 988         * aligned to the size
 989         */
 990        mask = ilog2(__roundup_pow_of_two(pages));
 991        /* Fallback to domain selective flush if size is too big */
 992        if (mask > cap_max_amask_val(iommu->cap))
 993                return iommu->flush.flush_iotlb(iommu, did, 0, 0,
 994                        DMA_TLB_DSI_FLUSH, non_present_entry_flush);
 995
 996        return iommu->flush.flush_iotlb(iommu, did, addr, mask,
 997                                        DMA_TLB_PSI_FLUSH,
 998                                        non_present_entry_flush);
 999}
1000
1001static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1002{
1003        u32 pmen;
1004        unsigned long flags;
1005
1006        spin_lock_irqsave(&iommu->register_lock, flags);
1007        pmen = readl(iommu->reg + DMAR_PMEN_REG);
1008        pmen &= ~DMA_PMEN_EPM;
1009        writel(pmen, iommu->reg + DMAR_PMEN_REG);
1010
1011        /* wait for the protected region status bit to clear */
1012        IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1013                readl, !(pmen & DMA_PMEN_PRS), pmen);
1014
1015        spin_unlock_irqrestore(&iommu->register_lock, flags);
1016}
1017
1018static int iommu_enable_translation(struct intel_iommu *iommu)
1019{
1020        u32 sts;
1021        unsigned long flags;
1022
1023        spin_lock_irqsave(&iommu->register_lock, flags);
1024        writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
1025
1026        /* Make sure hardware complete it */
1027        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1028                readl, (sts & DMA_GSTS_TES), sts);
1029
1030        iommu->gcmd |= DMA_GCMD_TE;
1031        spin_unlock_irqrestore(&iommu->register_lock, flags);
1032        return 0;
1033}
1034
1035static int iommu_disable_translation(struct intel_iommu *iommu)
1036{
1037        u32 sts;
1038        unsigned long flag;
1039
1040        spin_lock_irqsave(&iommu->register_lock, flag);
1041        iommu->gcmd &= ~DMA_GCMD_TE;
1042        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1043
1044        /* Make sure hardware complete it */
1045        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1046                readl, (!(sts & DMA_GSTS_TES)), sts);
1047
1048        spin_unlock_irqrestore(&iommu->register_lock, flag);
1049        return 0;
1050}
1051
1052
1053static int iommu_init_domains(struct intel_iommu *iommu)
1054{
1055        unsigned long ndomains;
1056        unsigned long nlongs;
1057
1058        ndomains = cap_ndoms(iommu->cap);
1059        pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1060        nlongs = BITS_TO_LONGS(ndomains);
1061
1062        /* TBD: there might be 64K domains,
1063         * consider other allocation for future chip
1064         */
1065        iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1066        if (!iommu->domain_ids) {
1067                printk(KERN_ERR "Allocating domain id array failed\n");
1068                return -ENOMEM;
1069        }
1070        iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1071                        GFP_KERNEL);
1072        if (!iommu->domains) {
1073                printk(KERN_ERR "Allocating domain array failed\n");
1074                kfree(iommu->domain_ids);
1075                return -ENOMEM;
1076        }
1077
1078        spin_lock_init(&iommu->lock);
1079
1080        /*
1081         * if Caching mode is set, then invalid translations are tagged
1082         * with domainid 0. Hence we need to pre-allocate it.
1083         */
1084        if (cap_caching_mode(iommu->cap))
1085                set_bit(0, iommu->domain_ids);
1086        return 0;
1087}
1088
1089
1090static void domain_exit(struct dmar_domain *domain);
1091static void vm_domain_exit(struct dmar_domain *domain);
1092
1093void free_dmar_iommu(struct intel_iommu *iommu)
1094{
1095        struct dmar_domain *domain;
1096        int i;
1097        unsigned long flags;
1098
1099        i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1100        for (; i < cap_ndoms(iommu->cap); ) {
1101                domain = iommu->domains[i];
1102                clear_bit(i, iommu->domain_ids);
1103
1104                spin_lock_irqsave(&domain->iommu_lock, flags);
1105                if (--domain->iommu_count == 0) {
1106                        if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1107                                vm_domain_exit(domain);
1108                        else
1109                                domain_exit(domain);
1110                }
1111                spin_unlock_irqrestore(&domain->iommu_lock, flags);
1112
1113                i = find_next_bit(iommu->domain_ids,
1114                        cap_ndoms(iommu->cap), i+1);
1115        }
1116
1117        if (iommu->gcmd & DMA_GCMD_TE)
1118                iommu_disable_translation(iommu);
1119
1120        if (iommu->irq) {
1121                set_irq_data(iommu->irq, NULL);
1122                /* This will mask the irq */
1123                free_irq(iommu->irq, iommu);
1124                destroy_irq(iommu->irq);
1125        }
1126
1127        kfree(iommu->domains);
1128        kfree(iommu->domain_ids);
1129
1130        g_iommus[iommu->seq_id] = NULL;
1131
1132        /* if all iommus are freed, free g_iommus */
1133        for (i = 0; i < g_num_of_iommus; i++) {
1134                if (g_iommus[i])
1135                        break;
1136        }
1137
1138        if (i == g_num_of_iommus)
1139                kfree(g_iommus);
1140
1141        /* free context mapping */
1142        free_context_table(iommu);
1143}
1144
1145static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1146{
1147        unsigned long num;
1148        unsigned long ndomains;
1149        struct dmar_domain *domain;
1150        unsigned long flags;
1151
1152        domain = alloc_domain_mem();
1153        if (!domain)
1154                return NULL;
1155
1156        ndomains = cap_ndoms(iommu->cap);
1157
1158        spin_lock_irqsave(&iommu->lock, flags);
1159        num = find_first_zero_bit(iommu->domain_ids, ndomains);
1160        if (num >= ndomains) {
1161                spin_unlock_irqrestore(&iommu->lock, flags);
1162                free_domain_mem(domain);
1163                printk(KERN_ERR "IOMMU: no free domain ids\n");
1164                return NULL;
1165        }
1166
1167        set_bit(num, iommu->domain_ids);
1168        domain->id = num;
1169        memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1170        set_bit(iommu->seq_id, &domain->iommu_bmp);
1171        domain->flags = 0;
1172        iommu->domains[num] = domain;
1173        spin_unlock_irqrestore(&iommu->lock, flags);
1174
1175        return domain;
1176}
1177
1178static void iommu_free_domain(struct dmar_domain *domain)
1179{
1180        unsigned long flags;
1181        struct intel_iommu *iommu;
1182
1183        iommu = domain_get_iommu(domain);
1184
1185        spin_lock_irqsave(&iommu->lock, flags);
1186        clear_bit(domain->id, iommu->domain_ids);
1187        spin_unlock_irqrestore(&iommu->lock, flags);
1188}
1189
1190static struct iova_domain reserved_iova_list;
1191static struct lock_class_key reserved_alloc_key;
1192static struct lock_class_key reserved_rbtree_key;
1193
1194static void dmar_init_reserved_ranges(void)
1195{
1196        struct pci_dev *pdev = NULL;
1197        struct iova *iova;
1198        int i;
1199        u64 addr, size;
1200
1201        init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1202
1203        lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1204                &reserved_alloc_key);
1205        lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1206                &reserved_rbtree_key);
1207
1208        /* IOAPIC ranges shouldn't be accessed by DMA */
1209        iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1210                IOVA_PFN(IOAPIC_RANGE_END));
1211        if (!iova)
1212                printk(KERN_ERR "Reserve IOAPIC range failed\n");
1213
1214        /* Reserve all PCI MMIO to avoid peer-to-peer access */
1215        for_each_pci_dev(pdev) {
1216                struct resource *r;
1217
1218                for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1219                        r = &pdev->resource[i];
1220                        if (!r->flags || !(r->flags & IORESOURCE_MEM))
1221                                continue;
1222                        addr = r->start;
1223                        addr &= PHYSICAL_PAGE_MASK;
1224                        size = r->end - addr;
1225                        size = PAGE_ALIGN(size);
1226                        iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1227                                IOVA_PFN(size + addr) - 1);
1228                        if (!iova)
1229                                printk(KERN_ERR "Reserve iova failed\n");
1230                }
1231        }
1232
1233}
1234
1235static void domain_reserve_special_ranges(struct dmar_domain *domain)
1236{
1237        copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1238}
1239
1240static inline int guestwidth_to_adjustwidth(int gaw)
1241{
1242        int agaw;
1243        int r = (gaw - 12) % 9;
1244
1245        if (r == 0)
1246                agaw = gaw;
1247        else
1248                agaw = gaw + 9 - r;
1249        if (agaw > 64)
1250                agaw = 64;
1251        return agaw;
1252}
1253
1254static int domain_init(struct dmar_domain *domain, int guest_width)
1255{
1256        struct intel_iommu *iommu;
1257        int adjust_width, agaw;
1258        unsigned long sagaw;
1259
1260        init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1261        spin_lock_init(&domain->mapping_lock);
1262        spin_lock_init(&domain->iommu_lock);
1263
1264        domain_reserve_special_ranges(domain);
1265
1266        /* calculate AGAW */
1267        iommu = domain_get_iommu(domain);
1268        if (guest_width > cap_mgaw(iommu->cap))
1269                guest_width = cap_mgaw(iommu->cap);
1270        domain->gaw = guest_width;
1271        adjust_width = guestwidth_to_adjustwidth(guest_width);
1272        agaw = width_to_agaw(adjust_width);
1273        sagaw = cap_sagaw(iommu->cap);
1274        if (!test_bit(agaw, &sagaw)) {
1275                /* hardware doesn't support it, choose a bigger one */
1276                pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1277                agaw = find_next_bit(&sagaw, 5, agaw);
1278                if (agaw >= 5)
1279                        return -ENODEV;
1280        }
1281        domain->agaw = agaw;
1282        INIT_LIST_HEAD(&domain->devices);
1283
1284        if (ecap_coherent(iommu->ecap))
1285                domain->iommu_coherency = 1;
1286        else
1287                domain->iommu_coherency = 0;
1288
1289        if (ecap_sc_support(iommu->ecap))
1290                domain->iommu_snooping = 1;
1291        else
1292                domain->iommu_snooping = 0;
1293
1294        domain->iommu_count = 1;
1295
1296        /* always allocate the top pgd */
1297        domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1298        if (!domain->pgd)
1299                return -ENOMEM;
1300        __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1301        return 0;
1302}
1303
1304static void domain_exit(struct dmar_domain *domain)
1305{
1306        u64 end;
1307
1308        /* Domain 0 is reserved, so dont process it */
1309        if (!domain)
1310                return;
1311
1312        domain_remove_dev_info(domain);
1313        /* destroy iovas */
1314        put_iova_domain(&domain->iovad);
1315        end = DOMAIN_MAX_ADDR(domain->gaw);
1316        end = end & (~PAGE_MASK);
1317
1318        /* clear ptes */
1319        dma_pte_clear_range(domain, 0, end);
1320
1321        /* free page tables */
1322        dma_pte_free_pagetable(domain, 0, end);
1323
1324        iommu_free_domain(domain);
1325        free_domain_mem(domain);
1326}
1327
1328static int domain_context_mapping_one(struct dmar_domain *domain,
1329                                      int segment, u8 bus, u8 devfn)
1330{
1331        struct context_entry *context;
1332        unsigned long flags;
1333        struct intel_iommu *iommu;
1334        struct dma_pte *pgd;
1335        unsigned long num;
1336        unsigned long ndomains;
1337        int id;
1338        int agaw;
1339
1340        pr_debug("Set context mapping for %02x:%02x.%d\n",
1341                bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1342        BUG_ON(!domain->pgd);
1343
1344        iommu = device_to_iommu(segment, bus, devfn);
1345        if (!iommu)
1346                return -ENODEV;
1347
1348        context = device_to_context_entry(iommu, bus, devfn);
1349        if (!context)
1350                return -ENOMEM;
1351        spin_lock_irqsave(&iommu->lock, flags);
1352        if (context_present(context)) {
1353                spin_unlock_irqrestore(&iommu->lock, flags);
1354                return 0;
1355        }
1356
1357        id = domain->id;
1358        pgd = domain->pgd;
1359
1360        if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1361                int found = 0;
1362
1363                /* find an available domain id for this device in iommu */
1364                ndomains = cap_ndoms(iommu->cap);
1365                num = find_first_bit(iommu->domain_ids, ndomains);
1366                for (; num < ndomains; ) {
1367                        if (iommu->domains[num] == domain) {
1368                                id = num;
1369                                found = 1;
1370                                break;
1371                        }
1372                        num = find_next_bit(iommu->domain_ids,
1373                                            cap_ndoms(iommu->cap), num+1);
1374                }
1375
1376                if (found == 0) {
1377                        num = find_first_zero_bit(iommu->domain_ids, ndomains);
1378                        if (num >= ndomains) {
1379                                spin_unlock_irqrestore(&iommu->lock, flags);
1380                                printk(KERN_ERR "IOMMU: no free domain ids\n");
1381                                return -EFAULT;
1382                        }
1383
1384                        set_bit(num, iommu->domain_ids);
1385                        iommu->domains[num] = domain;
1386                        id = num;
1387                }
1388
1389                /* Skip top levels of page tables for
1390                 * iommu which has less agaw than default.
1391                 */
1392                for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1393                        pgd = phys_to_virt(dma_pte_addr(pgd));
1394                        if (!dma_pte_present(pgd)) {
1395                                spin_unlock_irqrestore(&iommu->lock, flags);
1396                                return -ENOMEM;
1397                        }
1398                }
1399        }
1400
1401        context_set_domain_id(context, id);
1402        context_set_address_width(context, iommu->agaw);
1403        context_set_address_root(context, virt_to_phys(pgd));
1404        context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1405        context_set_fault_enable(context);
1406        context_set_present(context);
1407        domain_flush_cache(domain, context, sizeof(*context));
1408
1409        /* it's a non-present to present mapping */
1410        if (iommu->flush.flush_context(iommu, domain->id,
1411                (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1412                DMA_CCMD_DEVICE_INVL, 1))
1413                iommu_flush_write_buffer(iommu);
1414        else
1415                iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1416
1417        spin_unlock_irqrestore(&iommu->lock, flags);
1418
1419        spin_lock_irqsave(&domain->iommu_lock, flags);
1420        if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1421                domain->iommu_count++;
1422                domain_update_iommu_cap(domain);
1423        }
1424        spin_unlock_irqrestore(&domain->iommu_lock, flags);
1425        return 0;
1426}
1427
1428static int
1429domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1430{
1431        int ret;
1432        struct pci_dev *tmp, *parent;
1433
1434        ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1435                                         pdev->bus->number, pdev->devfn);
1436        if (ret)
1437                return ret;
1438
1439        /* dependent device mapping */
1440        tmp = pci_find_upstream_pcie_bridge(pdev);
1441        if (!tmp)
1442                return 0;
1443        /* Secondary interface's bus number and devfn 0 */
1444        parent = pdev->bus->self;
1445        while (parent != tmp) {
1446                ret = domain_context_mapping_one(domain,
1447                                                 pci_domain_nr(parent->bus),
1448                                                 parent->bus->number,
1449                                                 parent->devfn);
1450                if (ret)
1451                        return ret;
1452                parent = parent->bus->self;
1453        }
1454        if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1455                return domain_context_mapping_one(domain,
1456                                        pci_domain_nr(tmp->subordinate),
1457                                        tmp->subordinate->number, 0);
1458        else /* this is a legacy PCI bridge */
1459                return domain_context_mapping_one(domain,
1460                                                  pci_domain_nr(tmp->bus),
1461                                                  tmp->bus->number,
1462                                                  tmp->devfn);
1463}
1464
1465static int domain_context_mapped(struct pci_dev *pdev)
1466{
1467        int ret;
1468        struct pci_dev *tmp, *parent;
1469        struct intel_iommu *iommu;
1470
1471        iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1472                                pdev->devfn);
1473        if (!iommu)
1474                return -ENODEV;
1475
1476        ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1477        if (!ret)
1478                return ret;
1479        /* dependent device mapping */
1480        tmp = pci_find_upstream_pcie_bridge(pdev);
1481        if (!tmp)
1482                return ret;
1483        /* Secondary interface's bus number and devfn 0 */
1484        parent = pdev->bus->self;
1485        while (parent != tmp) {
1486                ret = device_context_mapped(iommu, parent->bus->number,
1487                                            parent->devfn);
1488                if (!ret)
1489                        return ret;
1490                parent = parent->bus->self;
1491        }
1492        if (tmp->is_pcie)
1493                return device_context_mapped(iommu, tmp->subordinate->number,
1494                                             0);
1495        else
1496                return device_context_mapped(iommu, tmp->bus->number,
1497                                             tmp->devfn);
1498}
1499
1500static int
1501domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1502                        u64 hpa, size_t size, int prot)
1503{
1504        u64 start_pfn, end_pfn;
1505        struct dma_pte *pte;
1506        int index;
1507        int addr_width = agaw_to_width(domain->agaw);
1508
1509        hpa &= (((u64)1) << addr_width) - 1;
1510
1511        if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1512                return -EINVAL;
1513        iova &= PAGE_MASK;
1514        start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1515        end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1516        index = 0;
1517        while (start_pfn < end_pfn) {
1518                pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1519                if (!pte)
1520                        return -ENOMEM;
1521                /* We don't need lock here, nobody else
1522                 * touches the iova range
1523                 */
1524                BUG_ON(dma_pte_addr(pte));
1525                dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1526                dma_set_pte_prot(pte, prot);
1527                if (prot & DMA_PTE_SNP)
1528                        dma_set_pte_snp(pte);
1529                domain_flush_cache(domain, pte, sizeof(*pte));
1530                start_pfn++;
1531                index++;
1532        }
1533        return 0;
1534}
1535
1536static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1537{
1538        if (!iommu)
1539                return;
1540
1541        clear_context_table(iommu, bus, devfn);
1542        iommu->flush.flush_context(iommu, 0, 0, 0,
1543                                           DMA_CCMD_GLOBAL_INVL, 0);
1544        iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1545                                         DMA_TLB_GLOBAL_FLUSH, 0);
1546}
1547
1548static void domain_remove_dev_info(struct dmar_domain *domain)
1549{
1550        struct device_domain_info *info;
1551        unsigned long flags;
1552        struct intel_iommu *iommu;
1553
1554        spin_lock_irqsave(&device_domain_lock, flags);
1555        while (!list_empty(&domain->devices)) {
1556                info = list_entry(domain->devices.next,
1557                        struct device_domain_info, link);
1558                list_del(&info->link);
1559                list_del(&info->global);
1560                if (info->dev)
1561                        info->dev->dev.archdata.iommu = NULL;
1562                spin_unlock_irqrestore(&device_domain_lock, flags);
1563
1564                iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1565                iommu_detach_dev(iommu, info->bus, info->devfn);
1566                free_devinfo_mem(info);
1567
1568                spin_lock_irqsave(&device_domain_lock, flags);
1569        }
1570        spin_unlock_irqrestore(&device_domain_lock, flags);
1571}
1572
1573/*
1574 * find_domain
1575 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1576 */
1577static struct dmar_domain *
1578find_domain(struct pci_dev *pdev)
1579{
1580        struct device_domain_info *info;
1581
1582        /* No lock here, assumes no domain exit in normal case */
1583        info = pdev->dev.archdata.iommu;
1584        if (info)
1585                return info->domain;
1586        return NULL;
1587}
1588
1589/* domain is initialized */
1590static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1591{
1592        struct dmar_domain *domain, *found = NULL;
1593        struct intel_iommu *iommu;
1594        struct dmar_drhd_unit *drhd;
1595        struct device_domain_info *info, *tmp;
1596        struct pci_dev *dev_tmp;
1597        unsigned long flags;
1598        int bus = 0, devfn = 0;
1599        int segment;
1600
1601        domain = find_domain(pdev);
1602        if (domain)
1603                return domain;
1604
1605        segment = pci_domain_nr(pdev->bus);
1606
1607        dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1608        if (dev_tmp) {
1609                if (dev_tmp->is_pcie) {
1610                        bus = dev_tmp->subordinate->number;
1611                        devfn = 0;
1612                } else {
1613                        bus = dev_tmp->bus->number;
1614                        devfn = dev_tmp->devfn;
1615                }
1616                spin_lock_irqsave(&device_domain_lock, flags);
1617                list_for_each_entry(info, &device_domain_list, global) {
1618                        if (info->segment == segment &&
1619                            info->bus == bus && info->devfn == devfn) {
1620                                found = info->domain;
1621                                break;
1622                        }
1623                }
1624                spin_unlock_irqrestore(&device_domain_lock, flags);
1625                /* pcie-pci bridge already has a domain, uses it */
1626                if (found) {
1627                        domain = found;
1628                        goto found_domain;
1629                }
1630        }
1631
1632        /* Allocate new domain for the device */
1633        drhd = dmar_find_matched_drhd_unit(pdev);
1634        if (!drhd) {
1635                printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1636                        pci_name(pdev));
1637                return NULL;
1638        }
1639        iommu = drhd->iommu;
1640
1641        domain = iommu_alloc_domain(iommu);
1642        if (!domain)
1643                goto error;
1644
1645        if (domain_init(domain, gaw)) {
1646                domain_exit(domain);
1647                goto error;
1648        }
1649
1650        /* register pcie-to-pci device */
1651        if (dev_tmp) {
1652                info = alloc_devinfo_mem();
1653                if (!info) {
1654                        domain_exit(domain);
1655                        goto error;
1656                }
1657                info->segment = segment;
1658                info->bus = bus;
1659                info->devfn = devfn;
1660                info->dev = NULL;
1661                info->domain = domain;
1662                /* This domain is shared by devices under p2p bridge */
1663                domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1664
1665                /* pcie-to-pci bridge already has a domain, uses it */
1666                found = NULL;
1667                spin_lock_irqsave(&device_domain_lock, flags);
1668                list_for_each_entry(tmp, &device_domain_list, global) {
1669                        if (tmp->segment == segment &&
1670                            tmp->bus == bus && tmp->devfn == devfn) {
1671                                found = tmp->domain;
1672                                break;
1673                        }
1674                }
1675                if (found) {
1676                        free_devinfo_mem(info);
1677                        domain_exit(domain);
1678                        domain = found;
1679                } else {
1680                        list_add(&info->link, &domain->devices);
1681                        list_add(&info->global, &device_domain_list);
1682                }
1683                spin_unlock_irqrestore(&device_domain_lock, flags);
1684        }
1685
1686found_domain:
1687        info = alloc_devinfo_mem();
1688        if (!info)
1689                goto error;
1690        info->segment = segment;
1691        info->bus = pdev->bus->number;
1692        info->devfn = pdev->devfn;
1693        info->dev = pdev;
1694        info->domain = domain;
1695        spin_lock_irqsave(&device_domain_lock, flags);
1696        /* somebody is fast */
1697        found = find_domain(pdev);
1698        if (found != NULL) {
1699                spin_unlock_irqrestore(&device_domain_lock, flags);
1700                if (found != domain) {
1701                        domain_exit(domain);
1702                        domain = found;
1703                }
1704                free_devinfo_mem(info);
1705                return domain;
1706        }
1707        list_add(&info->link, &domain->devices);
1708        list_add(&info->global, &device_domain_list);
1709        pdev->dev.archdata.iommu = info;
1710        spin_unlock_irqrestore(&device_domain_lock, flags);
1711        return domain;
1712error:
1713        /* recheck it here, maybe others set it */
1714        return find_domain(pdev);
1715}
1716
1717static int iommu_prepare_identity_map(struct pci_dev *pdev,
1718                                      unsigned long long start,
1719                                      unsigned long long end)
1720{
1721        struct dmar_domain *domain;
1722        unsigned long size;
1723        unsigned long long base;
1724        int ret;
1725
1726        printk(KERN_INFO
1727                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1728                pci_name(pdev), start, end);
1729        /* page table init */
1730        domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1731        if (!domain)
1732                return -ENOMEM;
1733
1734        /* The address might not be aligned */
1735        base = start & PAGE_MASK;
1736        size = end - base;
1737        size = PAGE_ALIGN(size);
1738        if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1739                        IOVA_PFN(base + size) - 1)) {
1740                printk(KERN_ERR "IOMMU: reserve iova failed\n");
1741                ret = -ENOMEM;
1742                goto error;
1743        }
1744
1745        pr_debug("Mapping reserved region %lx@%llx for %s\n",
1746                size, base, pci_name(pdev));
1747        /*
1748         * RMRR range might have overlap with physical memory range,
1749         * clear it first
1750         */
1751        dma_pte_clear_range(domain, base, base + size);
1752
1753        ret = domain_page_mapping(domain, base, base, size,
1754                DMA_PTE_READ|DMA_PTE_WRITE);
1755        if (ret)
1756                goto error;
1757
1758        /* context entry init */
1759        ret = domain_context_mapping(domain, pdev);
1760        if (!ret)
1761                return 0;
1762error:
1763        domain_exit(domain);
1764        return ret;
1765
1766}
1767
1768static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1769        struct pci_dev *pdev)
1770{
1771        if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1772                return 0;
1773        return iommu_prepare_identity_map(pdev, rmrr->base_address,
1774                rmrr->end_address + 1);
1775}
1776
1777#ifdef CONFIG_DMAR_GFX_WA
1778struct iommu_prepare_data {
1779        struct pci_dev *pdev;
1780        int ret;
1781};
1782
1783static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1784                                         unsigned long end_pfn, void *datax)
1785{
1786        struct iommu_prepare_data *data;
1787
1788        data = (struct iommu_prepare_data *)datax;
1789
1790        data->ret = iommu_prepare_identity_map(data->pdev,
1791                                start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1792        return data->ret;
1793
1794}
1795
1796static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1797{
1798        int nid;
1799        struct iommu_prepare_data data;
1800
1801        data.pdev = pdev;
1802        data.ret = 0;
1803
1804        for_each_online_node(nid) {
1805                work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1806                if (data.ret)
1807                        return data.ret;
1808        }
1809        return data.ret;
1810}
1811
1812static void __init iommu_prepare_gfx_mapping(void)
1813{
1814        struct pci_dev *pdev = NULL;
1815        int ret;
1816
1817        for_each_pci_dev(pdev) {
1818                if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1819                                !IS_GFX_DEVICE(pdev))
1820                        continue;
1821                printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1822                        pci_name(pdev));
1823                ret = iommu_prepare_with_active_regions(pdev);
1824                if (ret)
1825                        printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1826        }
1827}
1828#else /* !CONFIG_DMAR_GFX_WA */
1829static inline void iommu_prepare_gfx_mapping(void)
1830{
1831        return;
1832}
1833#endif
1834
1835#ifdef CONFIG_DMAR_FLOPPY_WA
1836static inline void iommu_prepare_isa(void)
1837{
1838        struct pci_dev *pdev;
1839        int ret;
1840
1841        pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1842        if (!pdev)
1843                return;
1844
1845        printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1846        ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1847
1848        if (ret)
1849                printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1850                        "floppy might not work\n");
1851
1852}
1853#else
1854static inline void iommu_prepare_isa(void)
1855{
1856        return;
1857}
1858#endif /* !CONFIG_DMAR_FLPY_WA */
1859
1860static int __init init_dmars(void)
1861{
1862        struct dmar_drhd_unit *drhd;
1863        struct dmar_rmrr_unit *rmrr;
1864        struct pci_dev *pdev;
1865        struct intel_iommu *iommu;
1866        int i, ret;
1867
1868        /*
1869         * for each drhd
1870         *    allocate root
1871         *    initialize and program root entry to not present
1872         * endfor
1873         */
1874        for_each_drhd_unit(drhd) {
1875                g_num_of_iommus++;
1876                /*
1877                 * lock not needed as this is only incremented in the single
1878                 * threaded kernel __init code path all other access are read
1879                 * only
1880                 */
1881        }
1882
1883        g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1884                        GFP_KERNEL);
1885        if (!g_iommus) {
1886                printk(KERN_ERR "Allocating global iommu array failed\n");
1887                ret = -ENOMEM;
1888                goto error;
1889        }
1890
1891        deferred_flush = kzalloc(g_num_of_iommus *
1892                sizeof(struct deferred_flush_tables), GFP_KERNEL);
1893        if (!deferred_flush) {
1894                kfree(g_iommus);
1895                ret = -ENOMEM;
1896                goto error;
1897        }
1898
1899        for_each_drhd_unit(drhd) {
1900                if (drhd->ignored)
1901                        continue;
1902
1903                iommu = drhd->iommu;
1904                g_iommus[iommu->seq_id] = iommu;
1905
1906                ret = iommu_init_domains(iommu);
1907                if (ret)
1908                        goto error;
1909
1910                /*
1911                 * TBD:
1912                 * we could share the same root & context tables
1913                 * amoung all IOMMU's. Need to Split it later.
1914                 */
1915                ret = iommu_alloc_root_entry(iommu);
1916                if (ret) {
1917                        printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1918                        goto error;
1919                }
1920        }
1921
1922        /*
1923         * Start from the sane iommu hardware state.
1924         */
1925        for_each_drhd_unit(drhd) {
1926                if (drhd->ignored)
1927                        continue;
1928
1929                iommu = drhd->iommu;
1930
1931                /*
1932                 * If the queued invalidation is already initialized by us
1933                 * (for example, while enabling interrupt-remapping) then
1934                 * we got the things already rolling from a sane state.
1935                 */
1936                if (iommu->qi)
1937                        continue;
1938
1939                /*
1940                 * Clear any previous faults.
1941                 */
1942                dmar_fault(-1, iommu);
1943                /*
1944                 * Disable queued invalidation if supported and already enabled
1945                 * before OS handover.
1946                 */
1947                dmar_disable_qi(iommu);
1948        }
1949
1950        for_each_drhd_unit(drhd) {
1951                if (drhd->ignored)
1952                        continue;
1953
1954                iommu = drhd->iommu;
1955
1956                if (dmar_enable_qi(iommu)) {
1957                        /*
1958                         * Queued Invalidate not enabled, use Register Based
1959                         * Invalidate
1960                         */
1961                        iommu->flush.flush_context = __iommu_flush_context;
1962                        iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1963                        printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1964                               "invalidation\n",
1965                               (unsigned long long)drhd->reg_base_addr);
1966                } else {
1967                        iommu->flush.flush_context = qi_flush_context;
1968                        iommu->flush.flush_iotlb = qi_flush_iotlb;
1969                        printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1970                               "invalidation\n",
1971                               (unsigned long long)drhd->reg_base_addr);
1972                }
1973        }
1974
1975#ifdef CONFIG_INTR_REMAP
1976        if (!intr_remapping_enabled) {
1977                ret = enable_intr_remapping(0);
1978                if (ret)
1979                        printk(KERN_ERR
1980                               "IOMMU: enable interrupt remapping failed\n");
1981        }
1982#endif
1983
1984        /*
1985         * For each rmrr
1986         *   for each dev attached to rmrr
1987         *   do
1988         *     locate drhd for dev, alloc domain for dev
1989         *     allocate free domain
1990         *     allocate page table entries for rmrr
1991         *     if context not allocated for bus
1992         *           allocate and init context
1993         *           set present in root table for this bus
1994         *     init context with domain, translation etc
1995         *    endfor
1996         * endfor
1997         */
1998        for_each_rmrr_units(rmrr) {
1999                for (i = 0; i < rmrr->devices_cnt; i++) {
2000                        pdev = rmrr->devices[i];
2001                        /* some BIOS lists non-exist devices in DMAR table */
2002                        if (!pdev)
2003                                continue;
2004                        ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2005                        if (ret)
2006                                printk(KERN_ERR
2007                                 "IOMMU: mapping reserved region failed\n");
2008                }
2009        }
2010
2011        iommu_prepare_gfx_mapping();
2012
2013        iommu_prepare_isa();
2014
2015        /*
2016         * for each drhd
2017         *   enable fault log
2018         *   global invalidate context cache
2019         *   global invalidate iotlb
2020         *   enable translation
2021         */
2022        for_each_drhd_unit(drhd) {
2023                if (drhd->ignored)
2024                        continue;
2025                iommu = drhd->iommu;
2026
2027                iommu_flush_write_buffer(iommu);
2028
2029                ret = dmar_set_interrupt(iommu);
2030                if (ret)
2031                        goto error;
2032
2033                iommu_set_root_entry(iommu);
2034
2035                iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
2036                                           0);
2037                iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
2038                                         0);
2039                iommu_disable_protect_mem_regions(iommu);
2040
2041                ret = iommu_enable_translation(iommu);
2042                if (ret)
2043                        goto error;
2044        }
2045
2046        return 0;
2047error:
2048        for_each_drhd_unit(drhd) {
2049                if (drhd->ignored)
2050                        continue;
2051                iommu = drhd->iommu;
2052                free_iommu(iommu);
2053        }
2054        kfree(g_iommus);
2055        return ret;
2056}
2057
2058static inline u64 aligned_size(u64 host_addr, size_t size)
2059{
2060        u64 addr;
2061        addr = (host_addr & (~PAGE_MASK)) + size;
2062        return PAGE_ALIGN(addr);
2063}
2064
2065struct iova *
2066iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2067{
2068        struct iova *piova;
2069
2070        /* Make sure it's in range */
2071        end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2072        if (!size || (IOVA_START_ADDR + size > end))
2073                return NULL;
2074
2075        piova = alloc_iova(&domain->iovad,
2076                        size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2077        return piova;
2078}
2079
2080static struct iova *
2081__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2082                   size_t size, u64 dma_mask)
2083{
2084        struct pci_dev *pdev = to_pci_dev(dev);
2085        struct iova *iova = NULL;
2086
2087        if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2088                iova = iommu_alloc_iova(domain, size, dma_mask);
2089        else {
2090                /*
2091                 * First try to allocate an io virtual address in
2092                 * DMA_BIT_MASK(32) and if that fails then try allocating
2093                 * from higher range
2094                 */
2095                iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2096                if (!iova)
2097                        iova = iommu_alloc_iova(domain, size, dma_mask);
2098        }
2099
2100        if (!iova) {
2101                printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2102                return NULL;
2103        }
2104
2105        return iova;
2106}
2107
2108static struct dmar_domain *
2109get_valid_domain_for_dev(struct pci_dev *pdev)
2110{
2111        struct dmar_domain *domain;
2112        int ret;
2113
2114        domain = get_domain_for_dev(pdev,
2115                        DEFAULT_DOMAIN_ADDRESS_WIDTH);
2116        if (!domain) {
2117                printk(KERN_ERR
2118                        "Allocating domain for %s failed", pci_name(pdev));
2119                return NULL;
2120        }
2121
2122        /* make sure context mapping is ok */
2123        if (unlikely(!domain_context_mapped(pdev))) {
2124                ret = domain_context_mapping(domain, pdev);
2125                if (ret) {
2126                        printk(KERN_ERR
2127                                "Domain context map for %s failed",
2128                                pci_name(pdev));
2129                        return NULL;
2130                }
2131        }
2132
2133        return domain;
2134}
2135
2136static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2137                                     size_t size, int dir, u64 dma_mask)
2138{
2139        struct pci_dev *pdev = to_pci_dev(hwdev);
2140        struct dmar_domain *domain;
2141        phys_addr_t start_paddr;
2142        struct iova *iova;
2143        int prot = 0;
2144        int ret;
2145        struct intel_iommu *iommu;
2146
2147        BUG_ON(dir == DMA_NONE);
2148        if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2149                return paddr;
2150
2151        domain = get_valid_domain_for_dev(pdev);
2152        if (!domain)
2153                return 0;
2154
2155        iommu = domain_get_iommu(domain);
2156        size = aligned_size((u64)paddr, size);
2157
2158        iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2159        if (!iova)
2160                goto error;
2161
2162        start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2163
2164        /*
2165         * Check if DMAR supports zero-length reads on write only
2166         * mappings..
2167         */
2168        if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2169                        !cap_zlr(iommu->cap))
2170                prot |= DMA_PTE_READ;
2171        if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2172                prot |= DMA_PTE_WRITE;
2173        /*
2174         * paddr - (paddr + size) might be partial page, we should map the whole
2175         * page.  Note: if two part of one page are separately mapped, we
2176         * might have two guest_addr mapping to the same host paddr, but this
2177         * is not a big problem
2178         */
2179        ret = domain_page_mapping(domain, start_paddr,
2180                                  ((u64)paddr) & PHYSICAL_PAGE_MASK,
2181                                  size, prot);
2182        if (ret)
2183                goto error;
2184
2185        /* it's a non-present to present mapping */
2186        ret = iommu_flush_iotlb_psi(iommu, domain->id,
2187                        start_paddr, size >> VTD_PAGE_SHIFT, 1);
2188        if (ret)
2189                iommu_flush_write_buffer(iommu);
2190
2191        return start_paddr + ((u64)paddr & (~PAGE_MASK));
2192
2193error:
2194        if (iova)
2195                __free_iova(&domain->iovad, iova);
2196        printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2197                pci_name(pdev), size, (unsigned long long)paddr, dir);
2198        return 0;
2199}
2200
2201static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2202                                 unsigned long offset, size_t size,
2203                                 enum dma_data_direction dir,
2204                                 struct dma_attrs *attrs)
2205{
2206        return __intel_map_single(dev, page_to_phys(page) + offset, size,
2207                                  dir, to_pci_dev(dev)->dma_mask);
2208}
2209
2210static void flush_unmaps(void)
2211{
2212        int i, j;
2213
2214        timer_on = 0;
2215
2216        /* just flush them all */
2217        for (i = 0; i < g_num_of_iommus; i++) {
2218                struct intel_iommu *iommu = g_iommus[i];
2219                if (!iommu)
2220                        continue;
2221
2222                if (deferred_flush[i].next) {
2223                        iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2224                                                 DMA_TLB_GLOBAL_FLUSH, 0);
2225                        for (j = 0; j < deferred_flush[i].next; j++) {
2226                                __free_iova(&deferred_flush[i].domain[j]->iovad,
2227                                                deferred_flush[i].iova[j]);
2228                        }
2229                        deferred_flush[i].next = 0;
2230                }
2231        }
2232
2233        list_size = 0;
2234}
2235
2236static void flush_unmaps_timeout(unsigned long data)
2237{
2238        unsigned long flags;
2239
2240        spin_lock_irqsave(&async_umap_flush_lock, flags);
2241        flush_unmaps();
2242        spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2243}
2244
2245static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2246{
2247        unsigned long flags;
2248        int next, iommu_id;
2249        struct intel_iommu *iommu;
2250
2251        spin_lock_irqsave(&async_umap_flush_lock, flags);
2252        if (list_size == HIGH_WATER_MARK)
2253                flush_unmaps();
2254
2255        iommu = domain_get_iommu(dom);
2256        iommu_id = iommu->seq_id;
2257
2258        next = deferred_flush[iommu_id].next;
2259        deferred_flush[iommu_id].domain[next] = dom;
2260        deferred_flush[iommu_id].iova[next] = iova;
2261        deferred_flush[iommu_id].next++;
2262
2263        if (!timer_on) {
2264                mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2265                timer_on = 1;
2266        }
2267        list_size++;
2268        spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2269}
2270
2271static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2272                             size_t size, enum dma_data_direction dir,
2273                             struct dma_attrs *attrs)
2274{
2275        struct pci_dev *pdev = to_pci_dev(dev);
2276        struct dmar_domain *domain;
2277        unsigned long start_addr;
2278        struct iova *iova;
2279        struct intel_iommu *iommu;
2280
2281        if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2282                return;
2283        domain = find_domain(pdev);
2284        BUG_ON(!domain);
2285
2286        iommu = domain_get_iommu(domain);
2287
2288        iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2289        if (!iova)
2290                return;
2291
2292        start_addr = iova->pfn_lo << PAGE_SHIFT;
2293        size = aligned_size((u64)dev_addr, size);
2294
2295        pr_debug("Device %s unmapping: %zx@%llx\n",
2296                pci_name(pdev), size, (unsigned long long)start_addr);
2297
2298        /*  clear the whole page */
2299        dma_pte_clear_range(domain, start_addr, start_addr + size);
2300        /* free page tables */
2301        dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2302        if (intel_iommu_strict) {
2303                if (iommu_flush_iotlb_psi(iommu,
2304                        domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2305                        iommu_flush_write_buffer(iommu);
2306                /* free iova */
2307                __free_iova(&domain->iovad, iova);
2308        } else {
2309                add_unmap(domain, iova);
2310                /*
2311                 * queue up the release of the unmap to save the 1/6th of the
2312                 * cpu used up by the iotlb flush operation...
2313                 */
2314        }
2315}
2316
2317static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2318                               int dir)
2319{
2320        intel_unmap_page(dev, dev_addr, size, dir, NULL);
2321}
2322
2323static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2324                                  dma_addr_t *dma_handle, gfp_t flags)
2325{
2326        void *vaddr;
2327        int order;
2328
2329        size = PAGE_ALIGN(size);
2330        order = get_order(size);
2331        flags &= ~(GFP_DMA | GFP_DMA32);
2332
2333        vaddr = (void *)__get_free_pages(flags, order);
2334        if (!vaddr)
2335                return NULL;
2336        memset(vaddr, 0, size);
2337
2338        *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2339                                         DMA_BIDIRECTIONAL,
2340                                         hwdev->coherent_dma_mask);
2341        if (*dma_handle)
2342                return vaddr;
2343        free_pages((unsigned long)vaddr, order);
2344        return NULL;
2345}
2346
2347static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2348                                dma_addr_t dma_handle)
2349{
2350        int order;
2351
2352        size = PAGE_ALIGN(size);
2353        order = get_order(size);
2354
2355        intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2356        free_pages((unsigned long)vaddr, order);
2357}
2358
2359static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2360                           int nelems, enum dma_data_direction dir,
2361                           struct dma_attrs *attrs)
2362{
2363        int i;
2364        struct pci_dev *pdev = to_pci_dev(hwdev);
2365        struct dmar_domain *domain;
2366        unsigned long start_addr;
2367        struct iova *iova;
2368        size_t size = 0;
2369        phys_addr_t addr;
2370        struct scatterlist *sg;
2371        struct intel_iommu *iommu;
2372
2373        if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2374                return;
2375
2376        domain = find_domain(pdev);
2377        BUG_ON(!domain);
2378
2379        iommu = domain_get_iommu(domain);
2380
2381        iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2382        if (!iova)
2383                return;
2384        for_each_sg(sglist, sg, nelems, i) {
2385                addr = page_to_phys(sg_page(sg)) + sg->offset;
2386                size += aligned_size((u64)addr, sg->length);
2387        }
2388
2389        start_addr = iova->pfn_lo << PAGE_SHIFT;
2390
2391        /*  clear the whole page */
2392        dma_pte_clear_range(domain, start_addr, start_addr + size);
2393        /* free page tables */
2394        dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2395
2396        if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2397                        size >> VTD_PAGE_SHIFT, 0))
2398                iommu_flush_write_buffer(iommu);
2399
2400        /* free iova */
2401        __free_iova(&domain->iovad, iova);
2402}
2403
2404static int intel_nontranslate_map_sg(struct device *hddev,
2405        struct scatterlist *sglist, int nelems, int dir)
2406{
2407        int i;
2408        struct scatterlist *sg;
2409
2410        for_each_sg(sglist, sg, nelems, i) {
2411                BUG_ON(!sg_page(sg));
2412                sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2413                sg->dma_length = sg->length;
2414        }
2415        return nelems;
2416}
2417
2418static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2419                        enum dma_data_direction dir, struct dma_attrs *attrs)
2420{
2421        phys_addr_t addr;
2422        int i;
2423        struct pci_dev *pdev = to_pci_dev(hwdev);
2424        struct dmar_domain *domain;
2425        size_t size = 0;
2426        int prot = 0;
2427        size_t offset = 0;
2428        struct iova *iova = NULL;
2429        int ret;
2430        struct scatterlist *sg;
2431        unsigned long start_addr;
2432        struct intel_iommu *iommu;
2433
2434        BUG_ON(dir == DMA_NONE);
2435        if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2436                return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2437
2438        domain = get_valid_domain_for_dev(pdev);
2439        if (!domain)
2440                return 0;
2441
2442        iommu = domain_get_iommu(domain);
2443
2444        for_each_sg(sglist, sg, nelems, i) {
2445                addr = page_to_phys(sg_page(sg)) + sg->offset;
2446                size += aligned_size((u64)addr, sg->length);
2447        }
2448
2449        iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2450        if (!iova) {
2451                sglist->dma_length = 0;
2452                return 0;
2453        }
2454
2455        /*
2456         * Check if DMAR supports zero-length reads on write only
2457         * mappings..
2458         */
2459        if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2460                        !cap_zlr(iommu->cap))
2461                prot |= DMA_PTE_READ;
2462        if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2463                prot |= DMA_PTE_WRITE;
2464
2465        start_addr = iova->pfn_lo << PAGE_SHIFT;
2466        offset = 0;
2467        for_each_sg(sglist, sg, nelems, i) {
2468                addr = page_to_phys(sg_page(sg)) + sg->offset;
2469                size = aligned_size((u64)addr, sg->length);
2470                ret = domain_page_mapping(domain, start_addr + offset,
2471                                          ((u64)addr) & PHYSICAL_PAGE_MASK,
2472                                          size, prot);
2473                if (ret) {
2474                        /*  clear the page */
2475                        dma_pte_clear_range(domain, start_addr,
2476                                  start_addr + offset);
2477                        /* free page tables */
2478                        dma_pte_free_pagetable(domain, start_addr,
2479                                  start_addr + offset);
2480                        /* free iova */
2481                        __free_iova(&domain->iovad, iova);
2482                        return 0;
2483                }
2484                sg->dma_address = start_addr + offset +
2485                                ((u64)addr & (~PAGE_MASK));
2486                sg->dma_length = sg->length;
2487                offset += size;
2488        }
2489
2490        /* it's a non-present to present mapping */
2491        if (iommu_flush_iotlb_psi(iommu, domain->id,
2492                        start_addr, offset >> VTD_PAGE_SHIFT, 1))
2493                iommu_flush_write_buffer(iommu);
2494        return nelems;
2495}
2496
2497static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2498{
2499        return !dma_addr;
2500}
2501
2502struct dma_map_ops intel_dma_ops = {
2503        .alloc_coherent = intel_alloc_coherent,
2504        .free_coherent = intel_free_coherent,
2505        .map_sg = intel_map_sg,
2506        .unmap_sg = intel_unmap_sg,
2507        .map_page = intel_map_page,
2508        .unmap_page = intel_unmap_page,
2509        .mapping_error = intel_mapping_error,
2510};
2511
2512static inline int iommu_domain_cache_init(void)
2513{
2514        int ret = 0;
2515
2516        iommu_domain_cache = kmem_cache_create("iommu_domain",
2517                                         sizeof(struct dmar_domain),
2518                                         0,
2519                                         SLAB_HWCACHE_ALIGN,
2520
2521                                         NULL);
2522        if (!iommu_domain_cache) {
2523                printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2524                ret = -ENOMEM;
2525        }
2526
2527        return ret;
2528}
2529
2530static inline int iommu_devinfo_cache_init(void)
2531{
2532        int ret = 0;
2533
2534        iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2535                                         sizeof(struct device_domain_info),
2536                                         0,
2537                                         SLAB_HWCACHE_ALIGN,
2538                                         NULL);
2539        if (!iommu_devinfo_cache) {
2540                printk(KERN_ERR "Couldn't create devinfo cache\n");
2541                ret = -ENOMEM;
2542        }
2543
2544        return ret;
2545}
2546
2547static inline int iommu_iova_cache_init(void)
2548{
2549        int ret = 0;
2550
2551        iommu_iova_cache = kmem_cache_create("iommu_iova",
2552                                         sizeof(struct iova),
2553                                         0,
2554                                         SLAB_HWCACHE_ALIGN,
2555                                         NULL);
2556        if (!iommu_iova_cache) {
2557                printk(KERN_ERR "Couldn't create iova cache\n");
2558                ret = -ENOMEM;
2559        }
2560
2561        return ret;
2562}
2563
2564static int __init iommu_init_mempool(void)
2565{
2566        int ret;
2567        ret = iommu_iova_cache_init();
2568        if (ret)
2569                return ret;
2570
2571        ret = iommu_domain_cache_init();
2572        if (ret)
2573                goto domain_error;
2574
2575        ret = iommu_devinfo_cache_init();
2576        if (!ret)
2577                return ret;
2578
2579        kmem_cache_destroy(iommu_domain_cache);
2580domain_error:
2581        kmem_cache_destroy(iommu_iova_cache);
2582
2583        return -ENOMEM;
2584}
2585
2586static void __init iommu_exit_mempool(void)
2587{
2588        kmem_cache_destroy(iommu_devinfo_cache);
2589        kmem_cache_destroy(iommu_domain_cache);
2590        kmem_cache_destroy(iommu_iova_cache);
2591
2592}
2593
2594static void __init init_no_remapping_devices(void)
2595{
2596        struct dmar_drhd_unit *drhd;
2597
2598        for_each_drhd_unit(drhd) {
2599                if (!drhd->include_all) {
2600                        int i;
2601                        for (i = 0; i < drhd->devices_cnt; i++)
2602                                if (drhd->devices[i] != NULL)
2603                                        break;
2604                        /* ignore DMAR unit if no pci devices exist */
2605                        if (i == drhd->devices_cnt)
2606                                drhd->ignored = 1;
2607                }
2608        }
2609
2610        if (dmar_map_gfx)
2611                return;
2612
2613        for_each_drhd_unit(drhd) {
2614                int i;
2615                if (drhd->ignored || drhd->include_all)
2616                        continue;
2617
2618                for (i = 0; i < drhd->devices_cnt; i++)
2619                        if (drhd->devices[i] &&
2620                                !IS_GFX_DEVICE(drhd->devices[i]))
2621                                break;
2622
2623                if (i < drhd->devices_cnt)
2624                        continue;
2625
2626                /* bypass IOMMU if it is just for gfx devices */
2627                drhd->ignored = 1;
2628                for (i = 0; i < drhd->devices_cnt; i++) {
2629                        if (!drhd->devices[i])
2630                                continue;
2631                        drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2632                }
2633        }
2634}
2635
2636#ifdef CONFIG_SUSPEND
2637static int init_iommu_hw(void)
2638{
2639        struct dmar_drhd_unit *drhd;
2640        struct intel_iommu *iommu = NULL;
2641
2642        for_each_active_iommu(iommu, drhd)
2643                if (iommu->qi)
2644                        dmar_reenable_qi(iommu);
2645
2646        for_each_active_iommu(iommu, drhd) {
2647                iommu_flush_write_buffer(iommu);
2648
2649                iommu_set_root_entry(iommu);
2650
2651                iommu->flush.flush_context(iommu, 0, 0, 0,
2652                                                DMA_CCMD_GLOBAL_INVL, 0);
2653                iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2654                                                DMA_TLB_GLOBAL_FLUSH, 0);
2655                iommu_disable_protect_mem_regions(iommu);
2656                iommu_enable_translation(iommu);
2657        }
2658
2659        return 0;
2660}
2661
2662static void iommu_flush_all(void)
2663{
2664        struct dmar_drhd_unit *drhd;
2665        struct intel_iommu *iommu;
2666
2667        for_each_active_iommu(iommu, drhd) {
2668                iommu->flush.flush_context(iommu, 0, 0, 0,
2669                                                DMA_CCMD_GLOBAL_INVL, 0);
2670                iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2671                                                DMA_TLB_GLOBAL_FLUSH, 0);
2672        }
2673}
2674
2675static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2676{
2677        struct dmar_drhd_unit *drhd;
2678        struct intel_iommu *iommu = NULL;
2679        unsigned long flag;
2680
2681        for_each_active_iommu(iommu, drhd) {
2682                iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2683                                                 GFP_ATOMIC);
2684                if (!iommu->iommu_state)
2685                        goto nomem;
2686        }
2687
2688        iommu_flush_all();
2689
2690        for_each_active_iommu(iommu, drhd) {
2691                iommu_disable_translation(iommu);
2692
2693                spin_lock_irqsave(&iommu->register_lock, flag);
2694
2695                iommu->iommu_state[SR_DMAR_FECTL_REG] =
2696                        readl(iommu->reg + DMAR_FECTL_REG);
2697                iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2698                        readl(iommu->reg + DMAR_FEDATA_REG);
2699                iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2700                        readl(iommu->reg + DMAR_FEADDR_REG);
2701                iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2702                        readl(iommu->reg + DMAR_FEUADDR_REG);
2703
2704                spin_unlock_irqrestore(&iommu->register_lock, flag);
2705        }
2706        return 0;
2707
2708nomem:
2709        for_each_active_iommu(iommu, drhd)
2710                kfree(iommu->iommu_state);
2711
2712        return -ENOMEM;
2713}
2714
2715static int iommu_resume(struct sys_device *dev)
2716{
2717        struct dmar_drhd_unit *drhd;
2718        struct intel_iommu *iommu = NULL;
2719        unsigned long flag;
2720
2721        if (init_iommu_hw()) {
2722                WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2723                return -EIO;
2724        }
2725
2726        for_each_active_iommu(iommu, drhd) {
2727
2728                spin_lock_irqsave(&iommu->register_lock, flag);
2729
2730                writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2731                        iommu->reg + DMAR_FECTL_REG);
2732                writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2733                        iommu->reg + DMAR_FEDATA_REG);
2734                writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2735                        iommu->reg + DMAR_FEADDR_REG);
2736                writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2737                        iommu->reg + DMAR_FEUADDR_REG);
2738
2739                spin_unlock_irqrestore(&iommu->register_lock, flag);
2740        }
2741
2742        for_each_active_iommu(iommu, drhd)
2743                kfree(iommu->iommu_state);
2744
2745        return 0;
2746}
2747
2748static struct sysdev_class iommu_sysclass = {
2749        .name           = "iommu",
2750        .resume         = iommu_resume,
2751        .suspend        = iommu_suspend,
2752};
2753
2754static struct sys_device device_iommu = {
2755        .cls    = &iommu_sysclass,
2756};
2757
2758static int __init init_iommu_sysfs(void)
2759{
2760        int error;
2761
2762        error = sysdev_class_register(&iommu_sysclass);
2763        if (error)
2764                return error;
2765
2766        error = sysdev_register(&device_iommu);
2767        if (error)
2768                sysdev_class_unregister(&iommu_sysclass);
2769
2770        return error;
2771}
2772
2773#else
2774static int __init init_iommu_sysfs(void)
2775{
2776        return 0;
2777}
2778#endif  /* CONFIG_PM */
2779
2780int __init intel_iommu_init(void)
2781{
2782        int ret = 0;
2783
2784        if (dmar_table_init())
2785                return  -ENODEV;
2786
2787        if (dmar_dev_scope_init())
2788                return  -ENODEV;
2789
2790        /*
2791         * Check the need for DMA-remapping initialization now.
2792         * Above initialization will also be used by Interrupt-remapping.
2793         */
2794        if (no_iommu || swiotlb || dmar_disabled)
2795                return -ENODEV;
2796
2797        iommu_init_mempool();
2798        dmar_init_reserved_ranges();
2799
2800        init_no_remapping_devices();
2801
2802        ret = init_dmars();
2803        if (ret) {
2804                printk(KERN_ERR "IOMMU: dmar init failed\n");
2805                put_iova_domain(&reserved_iova_list);
2806                iommu_exit_mempool();
2807                return ret;
2808        }
2809        printk(KERN_INFO
2810        "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2811
2812        init_timer(&unmap_timer);
2813        force_iommu = 1;
2814        dma_ops = &intel_dma_ops;
2815        init_iommu_sysfs();
2816
2817        register_iommu(&intel_iommu_ops);
2818
2819        return 0;
2820}
2821
2822static int vm_domain_add_dev_info(struct dmar_domain *domain,
2823                                  struct pci_dev *pdev)
2824{
2825        struct device_domain_info *info;
2826        unsigned long flags;
2827
2828        info = alloc_devinfo_mem();
2829        if (!info)
2830                return -ENOMEM;
2831
2832        info->segment = pci_domain_nr(pdev->bus);
2833        info->bus = pdev->bus->number;
2834        info->devfn = pdev->devfn;
2835        info->dev = pdev;
2836        info->domain = domain;
2837
2838        spin_lock_irqsave(&device_domain_lock, flags);
2839        list_add(&info->link, &domain->devices);
2840        list_add(&info->global, &device_domain_list);
2841        pdev->dev.archdata.iommu = info;
2842        spin_unlock_irqrestore(&device_domain_lock, flags);
2843
2844        return 0;
2845}
2846
2847static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
2848                                           struct pci_dev *pdev)
2849{
2850        struct pci_dev *tmp, *parent;
2851
2852        if (!iommu || !pdev)
2853                return;
2854
2855        /* dependent device detach */
2856        tmp = pci_find_upstream_pcie_bridge(pdev);
2857        /* Secondary interface's bus number and devfn 0 */
2858        if (tmp) {
2859                parent = pdev->bus->self;
2860                while (parent != tmp) {
2861                        iommu_detach_dev(iommu, parent->bus->number,
2862                                         parent->devfn);
2863                        parent = parent->bus->self;
2864                }
2865                if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
2866                        iommu_detach_dev(iommu,
2867                                tmp->subordinate->number, 0);
2868                else /* this is a legacy PCI bridge */
2869                        iommu_detach_dev(iommu, tmp->bus->number,
2870                                         tmp->devfn);
2871        }
2872}
2873
2874static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2875                                          struct pci_dev *pdev)
2876{
2877        struct device_domain_info *info;
2878        struct intel_iommu *iommu;
2879        unsigned long flags;
2880        int found = 0;
2881        struct list_head *entry, *tmp;
2882
2883        iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
2884                                pdev->devfn);
2885        if (!iommu)
2886                return;
2887
2888        spin_lock_irqsave(&device_domain_lock, flags);
2889        list_for_each_safe(entry, tmp, &domain->devices) {
2890                info = list_entry(entry, struct device_domain_info, link);
2891                /* No need to compare PCI domain; it has to be the same */
2892                if (info->bus == pdev->bus->number &&
2893                    info->devfn == pdev->devfn) {
2894                        list_del(&info->link);
2895                        list_del(&info->global);
2896                        if (info->dev)
2897                                info->dev->dev.archdata.iommu = NULL;
2898                        spin_unlock_irqrestore(&device_domain_lock, flags);
2899
2900                        iommu_detach_dev(iommu, info->bus, info->devfn);
2901                        iommu_detach_dependent_devices(iommu, pdev);
2902                        free_devinfo_mem(info);
2903
2904                        spin_lock_irqsave(&device_domain_lock, flags);
2905
2906                        if (found)
2907                                break;
2908                        else
2909                                continue;
2910                }
2911
2912                /* if there is no other devices under the same iommu
2913                 * owned by this domain, clear this iommu in iommu_bmp
2914                 * update iommu count and coherency
2915                 */
2916                if (iommu == device_to_iommu(info->segment, info->bus,
2917                                            info->devfn))
2918                        found = 1;
2919        }
2920
2921        if (found == 0) {
2922                unsigned long tmp_flags;
2923                spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2924                clear_bit(iommu->seq_id, &domain->iommu_bmp);
2925                domain->iommu_count--;
2926                domain_update_iommu_cap(domain);
2927                spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2928        }
2929
2930        spin_unlock_irqrestore(&device_domain_lock, flags);
2931}
2932
2933static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2934{
2935        struct device_domain_info *info;
2936        struct intel_iommu *iommu;
2937        unsigned long flags1, flags2;
2938
2939        spin_lock_irqsave(&device_domain_lock, flags1);
2940        while (!list_empty(&domain->devices)) {
2941                info = list_entry(domain->devices.next,
2942                        struct device_domain_info, link);
2943                list_del(&info->link);
2944                list_del(&info->global);
2945                if (info->dev)
2946                        info->dev->dev.archdata.iommu = NULL;
2947
2948                spin_unlock_irqrestore(&device_domain_lock, flags1);
2949
2950                iommu = device_to_iommu(info->segment, info->bus, info->devfn);
2951                iommu_detach_dev(iommu, info->bus, info->devfn);
2952                iommu_detach_dependent_devices(iommu, info->dev);
2953
2954                /* clear this iommu in iommu_bmp, update iommu count
2955                 * and capabilities
2956                 */
2957                spin_lock_irqsave(&domain->iommu_lock, flags2);
2958                if (test_and_clear_bit(iommu->seq_id,
2959                                       &domain->iommu_bmp)) {
2960                        domain->iommu_count--;
2961                        domain_update_iommu_cap(domain);
2962                }
2963                spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2964
2965                free_devinfo_mem(info);
2966                spin_lock_irqsave(&device_domain_lock, flags1);
2967        }
2968        spin_unlock_irqrestore(&device_domain_lock, flags1);
2969}
2970
2971/* domain id for virtual machine, it won't be set in context */
2972static unsigned long vm_domid;
2973
2974static int vm_domain_min_agaw(struct dmar_domain *domain)
2975{
2976        int i;
2977        int min_agaw = domain->agaw;
2978
2979        i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2980        for (; i < g_num_of_iommus; ) {
2981                if (min_agaw > g_iommus[i]->agaw)
2982                        min_agaw = g_iommus[i]->agaw;
2983
2984                i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2985        }
2986
2987        return min_agaw;
2988}
2989
2990static struct dmar_domain *iommu_alloc_vm_domain(void)
2991{
2992        struct dmar_domain *domain;
2993
2994        domain = alloc_domain_mem();
2995        if (!domain)
2996                return NULL;
2997
2998        domain->id = vm_domid++;
2999        memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3000        domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3001
3002        return domain;
3003}
3004
3005static int vm_domain_init(struct dmar_domain *domain, int guest_width)
3006{
3007        int adjust_width;
3008
3009        init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3010        spin_lock_init(&domain->mapping_lock);
3011        spin_lock_init(&domain->iommu_lock);
3012
3013        domain_reserve_special_ranges(domain);
3014
3015        /* calculate AGAW */
3016        domain->gaw = guest_width;
3017        adjust_width = guestwidth_to_adjustwidth(guest_width);
3018        domain->agaw = width_to_agaw(adjust_width);
3019
3020        INIT_LIST_HEAD(&domain->devices);
3021
3022        domain->iommu_count = 0;
3023        domain->iommu_coherency = 0;
3024        domain->max_addr = 0;
3025
3026        /* always allocate the top pgd */
3027        domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3028        if (!domain->pgd)
3029                return -ENOMEM;
3030        domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3031        return 0;
3032}
3033
3034static void iommu_free_vm_domain(struct dmar_domain *domain)
3035{
3036        unsigned long flags;
3037        struct dmar_drhd_unit *drhd;
3038        struct intel_iommu *iommu;
3039        unsigned long i;
3040        unsigned long ndomains;
3041
3042        for_each_drhd_unit(drhd) {
3043                if (drhd->ignored)
3044                        continue;
3045                iommu = drhd->iommu;
3046
3047                ndomains = cap_ndoms(iommu->cap);
3048                i = find_first_bit(iommu->domain_ids, ndomains);
3049                for (; i < ndomains; ) {
3050                        if (iommu->domains[i] == domain) {
3051                                spin_lock_irqsave(&iommu->lock, flags);
3052                                clear_bit(i, iommu->domain_ids);
3053                                iommu->domains[i] = NULL;
3054                                spin_unlock_irqrestore(&iommu->lock, flags);
3055                                break;
3056                        }
3057                        i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3058                }
3059        }
3060}
3061
3062static void vm_domain_exit(struct dmar_domain *domain)
3063{
3064        u64 end;
3065
3066        /* Domain 0 is reserved, so dont process it */
3067        if (!domain)
3068                return;
3069
3070        vm_domain_remove_all_dev_info(domain);
3071        /* destroy iovas */
3072        put_iova_domain(&domain->iovad);
3073        end = DOMAIN_MAX_ADDR(domain->gaw);
3074        end = end & (~VTD_PAGE_MASK);
3075
3076        /* clear ptes */
3077        dma_pte_clear_range(domain, 0, end);
3078
3079        /* free page tables */
3080        dma_pte_free_pagetable(domain, 0, end);
3081
3082        iommu_free_vm_domain(domain);
3083        free_domain_mem(domain);
3084}
3085
3086static int intel_iommu_domain_init(struct iommu_domain *domain)
3087{
3088        struct dmar_domain *dmar_domain;
3089
3090        dmar_domain = iommu_alloc_vm_domain();
3091        if (!dmar_domain) {
3092                printk(KERN_ERR
3093                        "intel_iommu_domain_init: dmar_domain == NULL\n");
3094                return -ENOMEM;
3095        }
3096        if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3097                printk(KERN_ERR
3098                        "intel_iommu_domain_init() failed\n");
3099                vm_domain_exit(dmar_domain);
3100                return -ENOMEM;
3101        }
3102        domain->priv = dmar_domain;
3103
3104        return 0;
3105}
3106
3107static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3108{
3109        struct dmar_domain *dmar_domain = domain->priv;
3110
3111        domain->priv = NULL;
3112        vm_domain_exit(dmar_domain);
3113}
3114
3115static int intel_iommu_attach_device(struct iommu_domain *domain,
3116                                     struct device *dev)
3117{
3118        struct dmar_domain *dmar_domain = domain->priv;
3119        struct pci_dev *pdev = to_pci_dev(dev);
3120        struct intel_iommu *iommu;
3121        int addr_width;
3122        u64 end;
3123        int ret;
3124
3125        /* normally pdev is not mapped */
3126        if (unlikely(domain_context_mapped(pdev))) {
3127                struct dmar_domain *old_domain;
3128
3129                old_domain = find_domain(pdev);
3130                if (old_domain) {
3131                        if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
3132                                vm_domain_remove_one_dev_info(old_domain, pdev);
3133                        else
3134                                domain_remove_dev_info(old_domain);
3135                }
3136        }
3137
3138        iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3139                                pdev->devfn);
3140        if (!iommu)
3141                return -ENODEV;
3142
3143        /* check if this iommu agaw is sufficient for max mapped address */
3144        addr_width = agaw_to_width(iommu->agaw);
3145        end = DOMAIN_MAX_ADDR(addr_width);
3146        end = end & VTD_PAGE_MASK;
3147        if (end < dmar_domain->max_addr) {
3148                printk(KERN_ERR "%s: iommu agaw (%d) is not "
3149                       "sufficient for the mapped address (%llx)\n",
3150                       __func__, iommu->agaw, dmar_domain->max_addr);
3151                return -EFAULT;
3152        }
3153
3154        ret = domain_context_mapping(dmar_domain, pdev);
3155        if (ret)
3156                return ret;
3157
3158        ret = vm_domain_add_dev_info(dmar_domain, pdev);
3159        return ret;
3160}
3161
3162static void intel_iommu_detach_device(struct iommu_domain *domain,
3163                                      struct device *dev)
3164{
3165        struct dmar_domain *dmar_domain = domain->priv;
3166        struct pci_dev *pdev = to_pci_dev(dev);
3167
3168        vm_domain_remove_one_dev_info(dmar_domain, pdev);
3169}
3170
3171static int intel_iommu_map_range(struct iommu_domain *domain,
3172                                 unsigned long iova, phys_addr_t hpa,
3173                                 size_t size, int iommu_prot)
3174{
3175        struct dmar_domain *dmar_domain = domain->priv;
3176        u64 max_addr;
3177        int addr_width;
3178        int prot = 0;
3179        int ret;
3180
3181        if (iommu_prot & IOMMU_READ)
3182                prot |= DMA_PTE_READ;
3183        if (iommu_prot & IOMMU_WRITE)
3184                prot |= DMA_PTE_WRITE;
3185        if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3186                prot |= DMA_PTE_SNP;
3187
3188        max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3189        if (dmar_domain->max_addr < max_addr) {
3190                int min_agaw;
3191                u64 end;
3192
3193                /* check if minimum agaw is sufficient for mapped address */
3194                min_agaw = vm_domain_min_agaw(dmar_domain);
3195                addr_width = agaw_to_width(min_agaw);
3196                end = DOMAIN_MAX_ADDR(addr_width);
3197                end = end & VTD_PAGE_MASK;
3198                if (end < max_addr) {
3199                        printk(KERN_ERR "%s: iommu agaw (%d) is not "
3200                               "sufficient for the mapped address (%llx)\n",
3201                               __func__, min_agaw, max_addr);
3202                        return -EFAULT;
3203                }
3204                dmar_domain->max_addr = max_addr;
3205        }
3206
3207        ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3208        return ret;
3209}
3210
3211static void intel_iommu_unmap_range(struct iommu_domain *domain,
3212                                    unsigned long iova, size_t size)
3213{
3214        struct dmar_domain *dmar_domain = domain->priv;
3215        dma_addr_t base;
3216
3217        /* The address might not be aligned */
3218        base = iova & VTD_PAGE_MASK;
3219        size = VTD_PAGE_ALIGN(size);
3220        dma_pte_clear_range(dmar_domain, base, base + size);
3221
3222        if (dmar_domain->max_addr == base + size)
3223                dmar_domain->max_addr = base;
3224}
3225
3226static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3227                                            unsigned long iova)
3228{
3229        struct dmar_domain *dmar_domain = domain->priv;
3230        struct dma_pte *pte;
3231        u64 phys = 0;
3232
3233        pte = addr_to_dma_pte(dmar_domain, iova);
3234        if (pte)
3235                phys = dma_pte_addr(pte);
3236
3237        return phys;
3238}
3239
3240static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3241                                      unsigned long cap)
3242{
3243        struct dmar_domain *dmar_domain = domain->priv;
3244
3245        if (cap == IOMMU_CAP_CACHE_COHERENCY)
3246                return dmar_domain->iommu_snooping;
3247
3248        return 0;
3249}
3250
3251static struct iommu_ops intel_iommu_ops = {
3252        .domain_init    = intel_iommu_domain_init,
3253        .domain_destroy = intel_iommu_domain_destroy,
3254        .attach_dev     = intel_iommu_attach_device,
3255        .detach_dev     = intel_iommu_detach_device,
3256        .map            = intel_iommu_map_range,
3257        .unmap          = intel_iommu_unmap_range,
3258        .iova_to_phys   = intel_iommu_iova_to_phys,
3259        .domain_has_cap = intel_iommu_domain_has_cap,
3260};
3261
3262static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3263{
3264        /*
3265         * Mobile 4 Series Chipset neglects to set RWBF capability,
3266         * but needs it:
3267         */
3268        printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3269        rwbf_quirk = 1;
3270}
3271
3272DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
3273