1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
26#include <linux/debugfs.h>
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
35#include <linux/timer.h>
36#include <linux/iova.h>
37#include <linux/iommu.h>
38#include <linux/intel-iommu.h>
39#include <linux/sysdev.h>
40#include <asm/cacheflush.h>
41#include <asm/iommu.h>
42#include "pci.h"
43
44#define ROOT_SIZE VTD_PAGE_SIZE
45#define CONTEXT_SIZE VTD_PAGE_SIZE
46
47#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50#define IOAPIC_RANGE_START (0xfee00000)
51#define IOAPIC_RANGE_END (0xfeefffff)
52#define IOVA_START_ADDR (0x1000)
53
54#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
57
58#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
59#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
60#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
61
62#ifndef PHYSICAL_PAGE_MASK
63#define PHYSICAL_PAGE_MASK PAGE_MASK
64#endif
65
66
67static struct intel_iommu **g_iommus;
68
69static int rwbf_quirk;
70
71
72
73
74
75
76
77struct root_entry {
78 u64 val;
79 u64 rsvd1;
80};
81#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
82static inline bool root_present(struct root_entry *root)
83{
84 return (root->val & 1);
85}
86static inline void set_root_present(struct root_entry *root)
87{
88 root->val |= 1;
89}
90static inline void set_root_value(struct root_entry *root, unsigned long value)
91{
92 root->val |= value & VTD_PAGE_MASK;
93}
94
95static inline struct context_entry *
96get_context_addr_from_root(struct root_entry *root)
97{
98 return (struct context_entry *)
99 (root_present(root)?phys_to_virt(
100 root->val & VTD_PAGE_MASK) :
101 NULL);
102}
103
104
105
106
107
108
109
110
111
112
113
114
115struct context_entry {
116 u64 lo;
117 u64 hi;
118};
119
120static inline bool context_present(struct context_entry *context)
121{
122 return (context->lo & 1);
123}
124static inline void context_set_present(struct context_entry *context)
125{
126 context->lo |= 1;
127}
128
129static inline void context_set_fault_enable(struct context_entry *context)
130{
131 context->lo &= (((u64)-1) << 2) | 1;
132}
133
134#define CONTEXT_TT_MULTI_LEVEL 0
135
136static inline void context_set_translation_type(struct context_entry *context,
137 unsigned long value)
138{
139 context->lo &= (((u64)-1) << 4) | 3;
140 context->lo |= (value & 3) << 2;
141}
142
143static inline void context_set_address_root(struct context_entry *context,
144 unsigned long value)
145{
146 context->lo |= value & VTD_PAGE_MASK;
147}
148
149static inline void context_set_address_width(struct context_entry *context,
150 unsigned long value)
151{
152 context->hi |= value & 7;
153}
154
155static inline void context_set_domain_id(struct context_entry *context,
156 unsigned long value)
157{
158 context->hi |= (value & ((1 << 16) - 1)) << 8;
159}
160
161static inline void context_clear_entry(struct context_entry *context)
162{
163 context->lo = 0;
164 context->hi = 0;
165}
166
167
168
169
170
171
172
173
174
175
176struct dma_pte {
177 u64 val;
178};
179
180static inline void dma_clear_pte(struct dma_pte *pte)
181{
182 pte->val = 0;
183}
184
185static inline void dma_set_pte_readable(struct dma_pte *pte)
186{
187 pte->val |= DMA_PTE_READ;
188}
189
190static inline void dma_set_pte_writable(struct dma_pte *pte)
191{
192 pte->val |= DMA_PTE_WRITE;
193}
194
195static inline void dma_set_pte_snp(struct dma_pte *pte)
196{
197 pte->val |= DMA_PTE_SNP;
198}
199
200static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
201{
202 pte->val = (pte->val & ~3) | (prot & 3);
203}
204
205static inline u64 dma_pte_addr(struct dma_pte *pte)
206{
207 return (pte->val & VTD_PAGE_MASK);
208}
209
210static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
211{
212 pte->val |= (addr & VTD_PAGE_MASK);
213}
214
215static inline bool dma_pte_present(struct dma_pte *pte)
216{
217 return (pte->val & 3) != 0;
218}
219
220
221#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
222
223
224
225
226#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
227
228struct dmar_domain {
229 int id;
230 unsigned long iommu_bmp;
231
232 struct list_head devices;
233 struct iova_domain iovad;
234
235 struct dma_pte *pgd;
236 spinlock_t mapping_lock;
237 int gaw;
238
239
240 int agaw;
241
242 int flags;
243
244 int iommu_coherency;
245 int iommu_snooping;
246 int iommu_count;
247 spinlock_t iommu_lock;
248 u64 max_addr;
249};
250
251
252struct device_domain_info {
253 struct list_head link;
254 struct list_head global;
255 int segment;
256 u8 bus;
257 u8 devfn;
258 struct pci_dev *dev;
259 struct dmar_domain *domain;
260};
261
262static void flush_unmaps_timeout(unsigned long data);
263
264DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
265
266#define HIGH_WATER_MARK 250
267struct deferred_flush_tables {
268 int next;
269 struct iova *iova[HIGH_WATER_MARK];
270 struct dmar_domain *domain[HIGH_WATER_MARK];
271};
272
273static struct deferred_flush_tables *deferred_flush;
274
275
276static int g_num_of_iommus;
277
278static DEFINE_SPINLOCK(async_umap_flush_lock);
279static LIST_HEAD(unmaps_to_do);
280
281static int timer_on;
282static long list_size;
283
284static void domain_remove_dev_info(struct dmar_domain *domain);
285
286#ifdef CONFIG_DMAR_DEFAULT_ON
287int dmar_disabled = 0;
288#else
289int dmar_disabled = 1;
290#endif
291
292static int __initdata dmar_map_gfx = 1;
293static int dmar_forcedac;
294static int intel_iommu_strict;
295
296#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
297static DEFINE_SPINLOCK(device_domain_lock);
298static LIST_HEAD(device_domain_list);
299
300static struct iommu_ops intel_iommu_ops;
301
302static int __init intel_iommu_setup(char *str)
303{
304 if (!str)
305 return -EINVAL;
306 while (*str) {
307 if (!strncmp(str, "on", 2)) {
308 dmar_disabled = 0;
309 printk(KERN_INFO "Intel-IOMMU: enabled\n");
310 } else if (!strncmp(str, "off", 3)) {
311 dmar_disabled = 1;
312 printk(KERN_INFO "Intel-IOMMU: disabled\n");
313 } else if (!strncmp(str, "igfx_off", 8)) {
314 dmar_map_gfx = 0;
315 printk(KERN_INFO
316 "Intel-IOMMU: disable GFX device mapping\n");
317 } else if (!strncmp(str, "forcedac", 8)) {
318 printk(KERN_INFO
319 "Intel-IOMMU: Forcing DAC for PCI devices\n");
320 dmar_forcedac = 1;
321 } else if (!strncmp(str, "strict", 6)) {
322 printk(KERN_INFO
323 "Intel-IOMMU: disable batched IOTLB flush\n");
324 intel_iommu_strict = 1;
325 }
326
327 str += strcspn(str, ",");
328 while (*str == ',')
329 str++;
330 }
331 return 0;
332}
333__setup("intel_iommu=", intel_iommu_setup);
334
335static struct kmem_cache *iommu_domain_cache;
336static struct kmem_cache *iommu_devinfo_cache;
337static struct kmem_cache *iommu_iova_cache;
338
339static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
340{
341 unsigned int flags;
342 void *vaddr;
343
344
345 flags = current->flags & PF_MEMALLOC;
346 current->flags |= PF_MEMALLOC;
347 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
348 current->flags &= (~PF_MEMALLOC | flags);
349 return vaddr;
350}
351
352
353static inline void *alloc_pgtable_page(void)
354{
355 unsigned int flags;
356 void *vaddr;
357
358
359 flags = current->flags & PF_MEMALLOC;
360 current->flags |= PF_MEMALLOC;
361 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
362 current->flags &= (~PF_MEMALLOC | flags);
363 return vaddr;
364}
365
366static inline void free_pgtable_page(void *vaddr)
367{
368 free_page((unsigned long)vaddr);
369}
370
371static inline void *alloc_domain_mem(void)
372{
373 return iommu_kmem_cache_alloc(iommu_domain_cache);
374}
375
376static void free_domain_mem(void *vaddr)
377{
378 kmem_cache_free(iommu_domain_cache, vaddr);
379}
380
381static inline void * alloc_devinfo_mem(void)
382{
383 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
384}
385
386static inline void free_devinfo_mem(void *vaddr)
387{
388 kmem_cache_free(iommu_devinfo_cache, vaddr);
389}
390
391struct iova *alloc_iova_mem(void)
392{
393 return iommu_kmem_cache_alloc(iommu_iova_cache);
394}
395
396void free_iova_mem(struct iova *iova)
397{
398 kmem_cache_free(iommu_iova_cache, iova);
399}
400
401
402static inline int width_to_agaw(int width);
403
404
405
406
407
408int iommu_calculate_agaw(struct intel_iommu *iommu)
409{
410 unsigned long sagaw;
411 int agaw = -1;
412
413 sagaw = cap_sagaw(iommu->cap);
414 for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
415 agaw >= 0; agaw--) {
416 if (test_bit(agaw, &sagaw))
417 break;
418 }
419
420 return agaw;
421}
422
423
424static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
425{
426 int iommu_id;
427
428 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
429
430 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
431 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
432 return NULL;
433
434 return g_iommus[iommu_id];
435}
436
437static void domain_update_iommu_coherency(struct dmar_domain *domain)
438{
439 int i;
440
441 domain->iommu_coherency = 1;
442
443 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
444 for (; i < g_num_of_iommus; ) {
445 if (!ecap_coherent(g_iommus[i]->ecap)) {
446 domain->iommu_coherency = 0;
447 break;
448 }
449 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
450 }
451}
452
453static void domain_update_iommu_snooping(struct dmar_domain *domain)
454{
455 int i;
456
457 domain->iommu_snooping = 1;
458
459 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
460 for (; i < g_num_of_iommus; ) {
461 if (!ecap_sc_support(g_iommus[i]->ecap)) {
462 domain->iommu_snooping = 0;
463 break;
464 }
465 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
466 }
467}
468
469
470static void domain_update_iommu_cap(struct dmar_domain *domain)
471{
472 domain_update_iommu_coherency(domain);
473 domain_update_iommu_snooping(domain);
474}
475
476static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
477{
478 struct dmar_drhd_unit *drhd = NULL;
479 int i;
480
481 for_each_drhd_unit(drhd) {
482 if (drhd->ignored)
483 continue;
484 if (segment != drhd->segment)
485 continue;
486
487 for (i = 0; i < drhd->devices_cnt; i++) {
488 if (drhd->devices[i] &&
489 drhd->devices[i]->bus->number == bus &&
490 drhd->devices[i]->devfn == devfn)
491 return drhd->iommu;
492 if (drhd->devices[i] &&
493 drhd->devices[i]->subordinate &&
494 drhd->devices[i]->subordinate->number <= bus &&
495 drhd->devices[i]->subordinate->subordinate >= bus)
496 return drhd->iommu;
497 }
498
499 if (drhd->include_all)
500 return drhd->iommu;
501 }
502
503 return NULL;
504}
505
506static void domain_flush_cache(struct dmar_domain *domain,
507 void *addr, int size)
508{
509 if (!domain->iommu_coherency)
510 clflush_cache_range(addr, size);
511}
512
513
514static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
515 u8 bus, u8 devfn)
516{
517 struct root_entry *root;
518 struct context_entry *context;
519 unsigned long phy_addr;
520 unsigned long flags;
521
522 spin_lock_irqsave(&iommu->lock, flags);
523 root = &iommu->root_entry[bus];
524 context = get_context_addr_from_root(root);
525 if (!context) {
526 context = (struct context_entry *)alloc_pgtable_page();
527 if (!context) {
528 spin_unlock_irqrestore(&iommu->lock, flags);
529 return NULL;
530 }
531 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
532 phy_addr = virt_to_phys((void *)context);
533 set_root_value(root, phy_addr);
534 set_root_present(root);
535 __iommu_flush_cache(iommu, root, sizeof(*root));
536 }
537 spin_unlock_irqrestore(&iommu->lock, flags);
538 return &context[devfn];
539}
540
541static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
542{
543 struct root_entry *root;
544 struct context_entry *context;
545 int ret;
546 unsigned long flags;
547
548 spin_lock_irqsave(&iommu->lock, flags);
549 root = &iommu->root_entry[bus];
550 context = get_context_addr_from_root(root);
551 if (!context) {
552 ret = 0;
553 goto out;
554 }
555 ret = context_present(&context[devfn]);
556out:
557 spin_unlock_irqrestore(&iommu->lock, flags);
558 return ret;
559}
560
561static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
562{
563 struct root_entry *root;
564 struct context_entry *context;
565 unsigned long flags;
566
567 spin_lock_irqsave(&iommu->lock, flags);
568 root = &iommu->root_entry[bus];
569 context = get_context_addr_from_root(root);
570 if (context) {
571 context_clear_entry(&context[devfn]);
572 __iommu_flush_cache(iommu, &context[devfn], \
573 sizeof(*context));
574 }
575 spin_unlock_irqrestore(&iommu->lock, flags);
576}
577
578static void free_context_table(struct intel_iommu *iommu)
579{
580 struct root_entry *root;
581 int i;
582 unsigned long flags;
583 struct context_entry *context;
584
585 spin_lock_irqsave(&iommu->lock, flags);
586 if (!iommu->root_entry) {
587 goto out;
588 }
589 for (i = 0; i < ROOT_ENTRY_NR; i++) {
590 root = &iommu->root_entry[i];
591 context = get_context_addr_from_root(root);
592 if (context)
593 free_pgtable_page(context);
594 }
595 free_pgtable_page(iommu->root_entry);
596 iommu->root_entry = NULL;
597out:
598 spin_unlock_irqrestore(&iommu->lock, flags);
599}
600
601
602#define LEVEL_STRIDE (9)
603#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
604
605static inline int agaw_to_level(int agaw)
606{
607 return agaw + 2;
608}
609
610static inline int agaw_to_width(int agaw)
611{
612 return 30 + agaw * LEVEL_STRIDE;
613
614}
615
616static inline int width_to_agaw(int width)
617{
618 return (width - 30) / LEVEL_STRIDE;
619}
620
621static inline unsigned int level_to_offset_bits(int level)
622{
623 return (12 + (level - 1) * LEVEL_STRIDE);
624}
625
626static inline int address_level_offset(u64 addr, int level)
627{
628 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
629}
630
631static inline u64 level_mask(int level)
632{
633 return ((u64)-1 << level_to_offset_bits(level));
634}
635
636static inline u64 level_size(int level)
637{
638 return ((u64)1 << level_to_offset_bits(level));
639}
640
641static inline u64 align_to_level(u64 addr, int level)
642{
643 return ((addr + level_size(level) - 1) & level_mask(level));
644}
645
646static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
647{
648 int addr_width = agaw_to_width(domain->agaw);
649 struct dma_pte *parent, *pte = NULL;
650 int level = agaw_to_level(domain->agaw);
651 int offset;
652 unsigned long flags;
653
654 BUG_ON(!domain->pgd);
655
656 addr &= (((u64)1) << addr_width) - 1;
657 parent = domain->pgd;
658
659 spin_lock_irqsave(&domain->mapping_lock, flags);
660 while (level > 0) {
661 void *tmp_page;
662
663 offset = address_level_offset(addr, level);
664 pte = &parent[offset];
665 if (level == 1)
666 break;
667
668 if (!dma_pte_present(pte)) {
669 tmp_page = alloc_pgtable_page();
670
671 if (!tmp_page) {
672 spin_unlock_irqrestore(&domain->mapping_lock,
673 flags);
674 return NULL;
675 }
676 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
677 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
678
679
680
681
682 dma_set_pte_readable(pte);
683 dma_set_pte_writable(pte);
684 domain_flush_cache(domain, pte, sizeof(*pte));
685 }
686 parent = phys_to_virt(dma_pte_addr(pte));
687 level--;
688 }
689
690 spin_unlock_irqrestore(&domain->mapping_lock, flags);
691 return pte;
692}
693
694
695static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
696 int level)
697{
698 struct dma_pte *parent, *pte = NULL;
699 int total = agaw_to_level(domain->agaw);
700 int offset;
701
702 parent = domain->pgd;
703 while (level <= total) {
704 offset = address_level_offset(addr, total);
705 pte = &parent[offset];
706 if (level == total)
707 return pte;
708
709 if (!dma_pte_present(pte))
710 break;
711 parent = phys_to_virt(dma_pte_addr(pte));
712 total--;
713 }
714 return NULL;
715}
716
717
718static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
719{
720 struct dma_pte *pte = NULL;
721
722
723 pte = dma_addr_level_pte(domain, addr, 1);
724
725 if (pte) {
726 dma_clear_pte(pte);
727 domain_flush_cache(domain, pte, sizeof(*pte));
728 }
729}
730
731
732static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
733{
734 int addr_width = agaw_to_width(domain->agaw);
735 int npages;
736
737 start &= (((u64)1) << addr_width) - 1;
738 end &= (((u64)1) << addr_width) - 1;
739
740 start &= PAGE_MASK;
741 end = PAGE_ALIGN(end);
742 npages = (end - start) / VTD_PAGE_SIZE;
743
744
745 while (npages--) {
746 dma_pte_clear_one(domain, start);
747 start += VTD_PAGE_SIZE;
748 }
749}
750
751
752static void dma_pte_free_pagetable(struct dmar_domain *domain,
753 u64 start, u64 end)
754{
755 int addr_width = agaw_to_width(domain->agaw);
756 struct dma_pte *pte;
757 int total = agaw_to_level(domain->agaw);
758 int level;
759 u64 tmp;
760
761 start &= (((u64)1) << addr_width) - 1;
762 end &= (((u64)1) << addr_width) - 1;
763
764
765 level = 2;
766 while (level <= total) {
767 tmp = align_to_level(start, level);
768 if (tmp >= end || (tmp + level_size(level) > end))
769 return;
770
771 while (tmp < end) {
772 pte = dma_addr_level_pte(domain, tmp, level);
773 if (pte) {
774 free_pgtable_page(
775 phys_to_virt(dma_pte_addr(pte)));
776 dma_clear_pte(pte);
777 domain_flush_cache(domain, pte, sizeof(*pte));
778 }
779 tmp += level_size(level);
780 }
781 level++;
782 }
783
784 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
785 free_pgtable_page(domain->pgd);
786 domain->pgd = NULL;
787 }
788}
789
790
791static int iommu_alloc_root_entry(struct intel_iommu *iommu)
792{
793 struct root_entry *root;
794 unsigned long flags;
795
796 root = (struct root_entry *)alloc_pgtable_page();
797 if (!root)
798 return -ENOMEM;
799
800 __iommu_flush_cache(iommu, root, ROOT_SIZE);
801
802 spin_lock_irqsave(&iommu->lock, flags);
803 iommu->root_entry = root;
804 spin_unlock_irqrestore(&iommu->lock, flags);
805
806 return 0;
807}
808
809static void iommu_set_root_entry(struct intel_iommu *iommu)
810{
811 void *addr;
812 u32 cmd, sts;
813 unsigned long flag;
814
815 addr = iommu->root_entry;
816
817 spin_lock_irqsave(&iommu->register_lock, flag);
818 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
819
820 cmd = iommu->gcmd | DMA_GCMD_SRTP;
821 writel(cmd, iommu->reg + DMAR_GCMD_REG);
822
823
824 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
825 readl, (sts & DMA_GSTS_RTPS), sts);
826
827 spin_unlock_irqrestore(&iommu->register_lock, flag);
828}
829
830static void iommu_flush_write_buffer(struct intel_iommu *iommu)
831{
832 u32 val;
833 unsigned long flag;
834
835 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
836 return;
837 val = iommu->gcmd | DMA_GCMD_WBF;
838
839 spin_lock_irqsave(&iommu->register_lock, flag);
840 writel(val, iommu->reg + DMAR_GCMD_REG);
841
842
843 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
844 readl, (!(val & DMA_GSTS_WBFS)), val);
845
846 spin_unlock_irqrestore(&iommu->register_lock, flag);
847}
848
849
850static int __iommu_flush_context(struct intel_iommu *iommu,
851 u16 did, u16 source_id, u8 function_mask, u64 type,
852 int non_present_entry_flush)
853{
854 u64 val = 0;
855 unsigned long flag;
856
857
858
859
860
861
862
863 if (non_present_entry_flush) {
864 if (!cap_caching_mode(iommu->cap))
865 return 1;
866 else
867 did = 0;
868 }
869
870 switch (type) {
871 case DMA_CCMD_GLOBAL_INVL:
872 val = DMA_CCMD_GLOBAL_INVL;
873 break;
874 case DMA_CCMD_DOMAIN_INVL:
875 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
876 break;
877 case DMA_CCMD_DEVICE_INVL:
878 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
879 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
880 break;
881 default:
882 BUG();
883 }
884 val |= DMA_CCMD_ICC;
885
886 spin_lock_irqsave(&iommu->register_lock, flag);
887 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
888
889
890 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
891 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
892
893 spin_unlock_irqrestore(&iommu->register_lock, flag);
894
895
896 return 0;
897}
898
899
900static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
901 u64 addr, unsigned int size_order, u64 type,
902 int non_present_entry_flush)
903{
904 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
905 u64 val = 0, val_iva = 0;
906 unsigned long flag;
907
908
909
910
911
912
913
914 if (non_present_entry_flush) {
915 if (!cap_caching_mode(iommu->cap))
916 return 1;
917 else
918 did = 0;
919 }
920
921 switch (type) {
922 case DMA_TLB_GLOBAL_FLUSH:
923
924 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
925 break;
926 case DMA_TLB_DSI_FLUSH:
927 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
928 break;
929 case DMA_TLB_PSI_FLUSH:
930 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
931
932 val_iva = size_order | addr;
933 break;
934 default:
935 BUG();
936 }
937
938#if 0
939
940
941
942
943 if (cap_read_drain(iommu->cap))
944 val |= DMA_TLB_READ_DRAIN;
945#endif
946 if (cap_write_drain(iommu->cap))
947 val |= DMA_TLB_WRITE_DRAIN;
948
949 spin_lock_irqsave(&iommu->register_lock, flag);
950
951 if (val_iva)
952 dmar_writeq(iommu->reg + tlb_offset, val_iva);
953 dmar_writeq(iommu->reg + tlb_offset + 8, val);
954
955
956 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
957 dmar_readq, (!(val & DMA_TLB_IVT)), val);
958
959 spin_unlock_irqrestore(&iommu->register_lock, flag);
960
961
962 if (DMA_TLB_IAIG(val) == 0)
963 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
964 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
965 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
966 (unsigned long long)DMA_TLB_IIRG(type),
967 (unsigned long long)DMA_TLB_IAIG(val));
968
969 return 0;
970}
971
972static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
973 u64 addr, unsigned int pages, int non_present_entry_flush)
974{
975 unsigned int mask;
976
977 BUG_ON(addr & (~VTD_PAGE_MASK));
978 BUG_ON(pages == 0);
979
980
981 if (!cap_pgsel_inv(iommu->cap))
982 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
983 DMA_TLB_DSI_FLUSH,
984 non_present_entry_flush);
985
986
987
988
989
990 mask = ilog2(__roundup_pow_of_two(pages));
991
992 if (mask > cap_max_amask_val(iommu->cap))
993 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
994 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
995
996 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
997 DMA_TLB_PSI_FLUSH,
998 non_present_entry_flush);
999}
1000
1001static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1002{
1003 u32 pmen;
1004 unsigned long flags;
1005
1006 spin_lock_irqsave(&iommu->register_lock, flags);
1007 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1008 pmen &= ~DMA_PMEN_EPM;
1009 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1010
1011
1012 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1013 readl, !(pmen & DMA_PMEN_PRS), pmen);
1014
1015 spin_unlock_irqrestore(&iommu->register_lock, flags);
1016}
1017
1018static int iommu_enable_translation(struct intel_iommu *iommu)
1019{
1020 u32 sts;
1021 unsigned long flags;
1022
1023 spin_lock_irqsave(&iommu->register_lock, flags);
1024 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
1025
1026
1027 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1028 readl, (sts & DMA_GSTS_TES), sts);
1029
1030 iommu->gcmd |= DMA_GCMD_TE;
1031 spin_unlock_irqrestore(&iommu->register_lock, flags);
1032 return 0;
1033}
1034
1035static int iommu_disable_translation(struct intel_iommu *iommu)
1036{
1037 u32 sts;
1038 unsigned long flag;
1039
1040 spin_lock_irqsave(&iommu->register_lock, flag);
1041 iommu->gcmd &= ~DMA_GCMD_TE;
1042 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1043
1044
1045 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1046 readl, (!(sts & DMA_GSTS_TES)), sts);
1047
1048 spin_unlock_irqrestore(&iommu->register_lock, flag);
1049 return 0;
1050}
1051
1052
1053static int iommu_init_domains(struct intel_iommu *iommu)
1054{
1055 unsigned long ndomains;
1056 unsigned long nlongs;
1057
1058 ndomains = cap_ndoms(iommu->cap);
1059 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1060 nlongs = BITS_TO_LONGS(ndomains);
1061
1062
1063
1064
1065 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1066 if (!iommu->domain_ids) {
1067 printk(KERN_ERR "Allocating domain id array failed\n");
1068 return -ENOMEM;
1069 }
1070 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1071 GFP_KERNEL);
1072 if (!iommu->domains) {
1073 printk(KERN_ERR "Allocating domain array failed\n");
1074 kfree(iommu->domain_ids);
1075 return -ENOMEM;
1076 }
1077
1078 spin_lock_init(&iommu->lock);
1079
1080
1081
1082
1083
1084 if (cap_caching_mode(iommu->cap))
1085 set_bit(0, iommu->domain_ids);
1086 return 0;
1087}
1088
1089
1090static void domain_exit(struct dmar_domain *domain);
1091static void vm_domain_exit(struct dmar_domain *domain);
1092
1093void free_dmar_iommu(struct intel_iommu *iommu)
1094{
1095 struct dmar_domain *domain;
1096 int i;
1097 unsigned long flags;
1098
1099 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1100 for (; i < cap_ndoms(iommu->cap); ) {
1101 domain = iommu->domains[i];
1102 clear_bit(i, iommu->domain_ids);
1103
1104 spin_lock_irqsave(&domain->iommu_lock, flags);
1105 if (--domain->iommu_count == 0) {
1106 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1107 vm_domain_exit(domain);
1108 else
1109 domain_exit(domain);
1110 }
1111 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1112
1113 i = find_next_bit(iommu->domain_ids,
1114 cap_ndoms(iommu->cap), i+1);
1115 }
1116
1117 if (iommu->gcmd & DMA_GCMD_TE)
1118 iommu_disable_translation(iommu);
1119
1120 if (iommu->irq) {
1121 set_irq_data(iommu->irq, NULL);
1122
1123 free_irq(iommu->irq, iommu);
1124 destroy_irq(iommu->irq);
1125 }
1126
1127 kfree(iommu->domains);
1128 kfree(iommu->domain_ids);
1129
1130 g_iommus[iommu->seq_id] = NULL;
1131
1132
1133 for (i = 0; i < g_num_of_iommus; i++) {
1134 if (g_iommus[i])
1135 break;
1136 }
1137
1138 if (i == g_num_of_iommus)
1139 kfree(g_iommus);
1140
1141
1142 free_context_table(iommu);
1143}
1144
1145static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1146{
1147 unsigned long num;
1148 unsigned long ndomains;
1149 struct dmar_domain *domain;
1150 unsigned long flags;
1151
1152 domain = alloc_domain_mem();
1153 if (!domain)
1154 return NULL;
1155
1156 ndomains = cap_ndoms(iommu->cap);
1157
1158 spin_lock_irqsave(&iommu->lock, flags);
1159 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1160 if (num >= ndomains) {
1161 spin_unlock_irqrestore(&iommu->lock, flags);
1162 free_domain_mem(domain);
1163 printk(KERN_ERR "IOMMU: no free domain ids\n");
1164 return NULL;
1165 }
1166
1167 set_bit(num, iommu->domain_ids);
1168 domain->id = num;
1169 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1170 set_bit(iommu->seq_id, &domain->iommu_bmp);
1171 domain->flags = 0;
1172 iommu->domains[num] = domain;
1173 spin_unlock_irqrestore(&iommu->lock, flags);
1174
1175 return domain;
1176}
1177
1178static void iommu_free_domain(struct dmar_domain *domain)
1179{
1180 unsigned long flags;
1181 struct intel_iommu *iommu;
1182
1183 iommu = domain_get_iommu(domain);
1184
1185 spin_lock_irqsave(&iommu->lock, flags);
1186 clear_bit(domain->id, iommu->domain_ids);
1187 spin_unlock_irqrestore(&iommu->lock, flags);
1188}
1189
1190static struct iova_domain reserved_iova_list;
1191static struct lock_class_key reserved_alloc_key;
1192static struct lock_class_key reserved_rbtree_key;
1193
1194static void dmar_init_reserved_ranges(void)
1195{
1196 struct pci_dev *pdev = NULL;
1197 struct iova *iova;
1198 int i;
1199 u64 addr, size;
1200
1201 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1202
1203 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1204 &reserved_alloc_key);
1205 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1206 &reserved_rbtree_key);
1207
1208
1209 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1210 IOVA_PFN(IOAPIC_RANGE_END));
1211 if (!iova)
1212 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1213
1214
1215 for_each_pci_dev(pdev) {
1216 struct resource *r;
1217
1218 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1219 r = &pdev->resource[i];
1220 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1221 continue;
1222 addr = r->start;
1223 addr &= PHYSICAL_PAGE_MASK;
1224 size = r->end - addr;
1225 size = PAGE_ALIGN(size);
1226 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1227 IOVA_PFN(size + addr) - 1);
1228 if (!iova)
1229 printk(KERN_ERR "Reserve iova failed\n");
1230 }
1231 }
1232
1233}
1234
1235static void domain_reserve_special_ranges(struct dmar_domain *domain)
1236{
1237 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1238}
1239
1240static inline int guestwidth_to_adjustwidth(int gaw)
1241{
1242 int agaw;
1243 int r = (gaw - 12) % 9;
1244
1245 if (r == 0)
1246 agaw = gaw;
1247 else
1248 agaw = gaw + 9 - r;
1249 if (agaw > 64)
1250 agaw = 64;
1251 return agaw;
1252}
1253
1254static int domain_init(struct dmar_domain *domain, int guest_width)
1255{
1256 struct intel_iommu *iommu;
1257 int adjust_width, agaw;
1258 unsigned long sagaw;
1259
1260 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1261 spin_lock_init(&domain->mapping_lock);
1262 spin_lock_init(&domain->iommu_lock);
1263
1264 domain_reserve_special_ranges(domain);
1265
1266
1267 iommu = domain_get_iommu(domain);
1268 if (guest_width > cap_mgaw(iommu->cap))
1269 guest_width = cap_mgaw(iommu->cap);
1270 domain->gaw = guest_width;
1271 adjust_width = guestwidth_to_adjustwidth(guest_width);
1272 agaw = width_to_agaw(adjust_width);
1273 sagaw = cap_sagaw(iommu->cap);
1274 if (!test_bit(agaw, &sagaw)) {
1275
1276 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1277 agaw = find_next_bit(&sagaw, 5, agaw);
1278 if (agaw >= 5)
1279 return -ENODEV;
1280 }
1281 domain->agaw = agaw;
1282 INIT_LIST_HEAD(&domain->devices);
1283
1284 if (ecap_coherent(iommu->ecap))
1285 domain->iommu_coherency = 1;
1286 else
1287 domain->iommu_coherency = 0;
1288
1289 if (ecap_sc_support(iommu->ecap))
1290 domain->iommu_snooping = 1;
1291 else
1292 domain->iommu_snooping = 0;
1293
1294 domain->iommu_count = 1;
1295
1296
1297 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1298 if (!domain->pgd)
1299 return -ENOMEM;
1300 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1301 return 0;
1302}
1303
1304static void domain_exit(struct dmar_domain *domain)
1305{
1306 u64 end;
1307
1308
1309 if (!domain)
1310 return;
1311
1312 domain_remove_dev_info(domain);
1313
1314 put_iova_domain(&domain->iovad);
1315 end = DOMAIN_MAX_ADDR(domain->gaw);
1316 end = end & (~PAGE_MASK);
1317
1318
1319 dma_pte_clear_range(domain, 0, end);
1320
1321
1322 dma_pte_free_pagetable(domain, 0, end);
1323
1324 iommu_free_domain(domain);
1325 free_domain_mem(domain);
1326}
1327
1328static int domain_context_mapping_one(struct dmar_domain *domain,
1329 int segment, u8 bus, u8 devfn)
1330{
1331 struct context_entry *context;
1332 unsigned long flags;
1333 struct intel_iommu *iommu;
1334 struct dma_pte *pgd;
1335 unsigned long num;
1336 unsigned long ndomains;
1337 int id;
1338 int agaw;
1339
1340 pr_debug("Set context mapping for %02x:%02x.%d\n",
1341 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1342 BUG_ON(!domain->pgd);
1343
1344 iommu = device_to_iommu(segment, bus, devfn);
1345 if (!iommu)
1346 return -ENODEV;
1347
1348 context = device_to_context_entry(iommu, bus, devfn);
1349 if (!context)
1350 return -ENOMEM;
1351 spin_lock_irqsave(&iommu->lock, flags);
1352 if (context_present(context)) {
1353 spin_unlock_irqrestore(&iommu->lock, flags);
1354 return 0;
1355 }
1356
1357 id = domain->id;
1358 pgd = domain->pgd;
1359
1360 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1361 int found = 0;
1362
1363
1364 ndomains = cap_ndoms(iommu->cap);
1365 num = find_first_bit(iommu->domain_ids, ndomains);
1366 for (; num < ndomains; ) {
1367 if (iommu->domains[num] == domain) {
1368 id = num;
1369 found = 1;
1370 break;
1371 }
1372 num = find_next_bit(iommu->domain_ids,
1373 cap_ndoms(iommu->cap), num+1);
1374 }
1375
1376 if (found == 0) {
1377 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1378 if (num >= ndomains) {
1379 spin_unlock_irqrestore(&iommu->lock, flags);
1380 printk(KERN_ERR "IOMMU: no free domain ids\n");
1381 return -EFAULT;
1382 }
1383
1384 set_bit(num, iommu->domain_ids);
1385 iommu->domains[num] = domain;
1386 id = num;
1387 }
1388
1389
1390
1391
1392 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1393 pgd = phys_to_virt(dma_pte_addr(pgd));
1394 if (!dma_pte_present(pgd)) {
1395 spin_unlock_irqrestore(&iommu->lock, flags);
1396 return -ENOMEM;
1397 }
1398 }
1399 }
1400
1401 context_set_domain_id(context, id);
1402 context_set_address_width(context, iommu->agaw);
1403 context_set_address_root(context, virt_to_phys(pgd));
1404 context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1405 context_set_fault_enable(context);
1406 context_set_present(context);
1407 domain_flush_cache(domain, context, sizeof(*context));
1408
1409
1410 if (iommu->flush.flush_context(iommu, domain->id,
1411 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1412 DMA_CCMD_DEVICE_INVL, 1))
1413 iommu_flush_write_buffer(iommu);
1414 else
1415 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1416
1417 spin_unlock_irqrestore(&iommu->lock, flags);
1418
1419 spin_lock_irqsave(&domain->iommu_lock, flags);
1420 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1421 domain->iommu_count++;
1422 domain_update_iommu_cap(domain);
1423 }
1424 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1425 return 0;
1426}
1427
1428static int
1429domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1430{
1431 int ret;
1432 struct pci_dev *tmp, *parent;
1433
1434 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1435 pdev->bus->number, pdev->devfn);
1436 if (ret)
1437 return ret;
1438
1439
1440 tmp = pci_find_upstream_pcie_bridge(pdev);
1441 if (!tmp)
1442 return 0;
1443
1444 parent = pdev->bus->self;
1445 while (parent != tmp) {
1446 ret = domain_context_mapping_one(domain,
1447 pci_domain_nr(parent->bus),
1448 parent->bus->number,
1449 parent->devfn);
1450 if (ret)
1451 return ret;
1452 parent = parent->bus->self;
1453 }
1454 if (tmp->is_pcie)
1455 return domain_context_mapping_one(domain,
1456 pci_domain_nr(tmp->subordinate),
1457 tmp->subordinate->number, 0);
1458 else
1459 return domain_context_mapping_one(domain,
1460 pci_domain_nr(tmp->bus),
1461 tmp->bus->number,
1462 tmp->devfn);
1463}
1464
1465static int domain_context_mapped(struct pci_dev *pdev)
1466{
1467 int ret;
1468 struct pci_dev *tmp, *parent;
1469 struct intel_iommu *iommu;
1470
1471 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1472 pdev->devfn);
1473 if (!iommu)
1474 return -ENODEV;
1475
1476 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1477 if (!ret)
1478 return ret;
1479
1480 tmp = pci_find_upstream_pcie_bridge(pdev);
1481 if (!tmp)
1482 return ret;
1483
1484 parent = pdev->bus->self;
1485 while (parent != tmp) {
1486 ret = device_context_mapped(iommu, parent->bus->number,
1487 parent->devfn);
1488 if (!ret)
1489 return ret;
1490 parent = parent->bus->self;
1491 }
1492 if (tmp->is_pcie)
1493 return device_context_mapped(iommu, tmp->subordinate->number,
1494 0);
1495 else
1496 return device_context_mapped(iommu, tmp->bus->number,
1497 tmp->devfn);
1498}
1499
1500static int
1501domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1502 u64 hpa, size_t size, int prot)
1503{
1504 u64 start_pfn, end_pfn;
1505 struct dma_pte *pte;
1506 int index;
1507 int addr_width = agaw_to_width(domain->agaw);
1508
1509 hpa &= (((u64)1) << addr_width) - 1;
1510
1511 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1512 return -EINVAL;
1513 iova &= PAGE_MASK;
1514 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1515 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1516 index = 0;
1517 while (start_pfn < end_pfn) {
1518 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1519 if (!pte)
1520 return -ENOMEM;
1521
1522
1523
1524 BUG_ON(dma_pte_addr(pte));
1525 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1526 dma_set_pte_prot(pte, prot);
1527 if (prot & DMA_PTE_SNP)
1528 dma_set_pte_snp(pte);
1529 domain_flush_cache(domain, pte, sizeof(*pte));
1530 start_pfn++;
1531 index++;
1532 }
1533 return 0;
1534}
1535
1536static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1537{
1538 if (!iommu)
1539 return;
1540
1541 clear_context_table(iommu, bus, devfn);
1542 iommu->flush.flush_context(iommu, 0, 0, 0,
1543 DMA_CCMD_GLOBAL_INVL, 0);
1544 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1545 DMA_TLB_GLOBAL_FLUSH, 0);
1546}
1547
1548static void domain_remove_dev_info(struct dmar_domain *domain)
1549{
1550 struct device_domain_info *info;
1551 unsigned long flags;
1552 struct intel_iommu *iommu;
1553
1554 spin_lock_irqsave(&device_domain_lock, flags);
1555 while (!list_empty(&domain->devices)) {
1556 info = list_entry(domain->devices.next,
1557 struct device_domain_info, link);
1558 list_del(&info->link);
1559 list_del(&info->global);
1560 if (info->dev)
1561 info->dev->dev.archdata.iommu = NULL;
1562 spin_unlock_irqrestore(&device_domain_lock, flags);
1563
1564 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1565 iommu_detach_dev(iommu, info->bus, info->devfn);
1566 free_devinfo_mem(info);
1567
1568 spin_lock_irqsave(&device_domain_lock, flags);
1569 }
1570 spin_unlock_irqrestore(&device_domain_lock, flags);
1571}
1572
1573
1574
1575
1576
1577static struct dmar_domain *
1578find_domain(struct pci_dev *pdev)
1579{
1580 struct device_domain_info *info;
1581
1582
1583 info = pdev->dev.archdata.iommu;
1584 if (info)
1585 return info->domain;
1586 return NULL;
1587}
1588
1589
1590static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1591{
1592 struct dmar_domain *domain, *found = NULL;
1593 struct intel_iommu *iommu;
1594 struct dmar_drhd_unit *drhd;
1595 struct device_domain_info *info, *tmp;
1596 struct pci_dev *dev_tmp;
1597 unsigned long flags;
1598 int bus = 0, devfn = 0;
1599 int segment;
1600
1601 domain = find_domain(pdev);
1602 if (domain)
1603 return domain;
1604
1605 segment = pci_domain_nr(pdev->bus);
1606
1607 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1608 if (dev_tmp) {
1609 if (dev_tmp->is_pcie) {
1610 bus = dev_tmp->subordinate->number;
1611 devfn = 0;
1612 } else {
1613 bus = dev_tmp->bus->number;
1614 devfn = dev_tmp->devfn;
1615 }
1616 spin_lock_irqsave(&device_domain_lock, flags);
1617 list_for_each_entry(info, &device_domain_list, global) {
1618 if (info->segment == segment &&
1619 info->bus == bus && info->devfn == devfn) {
1620 found = info->domain;
1621 break;
1622 }
1623 }
1624 spin_unlock_irqrestore(&device_domain_lock, flags);
1625
1626 if (found) {
1627 domain = found;
1628 goto found_domain;
1629 }
1630 }
1631
1632
1633 drhd = dmar_find_matched_drhd_unit(pdev);
1634 if (!drhd) {
1635 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1636 pci_name(pdev));
1637 return NULL;
1638 }
1639 iommu = drhd->iommu;
1640
1641 domain = iommu_alloc_domain(iommu);
1642 if (!domain)
1643 goto error;
1644
1645 if (domain_init(domain, gaw)) {
1646 domain_exit(domain);
1647 goto error;
1648 }
1649
1650
1651 if (dev_tmp) {
1652 info = alloc_devinfo_mem();
1653 if (!info) {
1654 domain_exit(domain);
1655 goto error;
1656 }
1657 info->segment = segment;
1658 info->bus = bus;
1659 info->devfn = devfn;
1660 info->dev = NULL;
1661 info->domain = domain;
1662
1663 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1664
1665
1666 found = NULL;
1667 spin_lock_irqsave(&device_domain_lock, flags);
1668 list_for_each_entry(tmp, &device_domain_list, global) {
1669 if (tmp->segment == segment &&
1670 tmp->bus == bus && tmp->devfn == devfn) {
1671 found = tmp->domain;
1672 break;
1673 }
1674 }
1675 if (found) {
1676 free_devinfo_mem(info);
1677 domain_exit(domain);
1678 domain = found;
1679 } else {
1680 list_add(&info->link, &domain->devices);
1681 list_add(&info->global, &device_domain_list);
1682 }
1683 spin_unlock_irqrestore(&device_domain_lock, flags);
1684 }
1685
1686found_domain:
1687 info = alloc_devinfo_mem();
1688 if (!info)
1689 goto error;
1690 info->segment = segment;
1691 info->bus = pdev->bus->number;
1692 info->devfn = pdev->devfn;
1693 info->dev = pdev;
1694 info->domain = domain;
1695 spin_lock_irqsave(&device_domain_lock, flags);
1696
1697 found = find_domain(pdev);
1698 if (found != NULL) {
1699 spin_unlock_irqrestore(&device_domain_lock, flags);
1700 if (found != domain) {
1701 domain_exit(domain);
1702 domain = found;
1703 }
1704 free_devinfo_mem(info);
1705 return domain;
1706 }
1707 list_add(&info->link, &domain->devices);
1708 list_add(&info->global, &device_domain_list);
1709 pdev->dev.archdata.iommu = info;
1710 spin_unlock_irqrestore(&device_domain_lock, flags);
1711 return domain;
1712error:
1713
1714 return find_domain(pdev);
1715}
1716
1717static int iommu_prepare_identity_map(struct pci_dev *pdev,
1718 unsigned long long start,
1719 unsigned long long end)
1720{
1721 struct dmar_domain *domain;
1722 unsigned long size;
1723 unsigned long long base;
1724 int ret;
1725
1726 printk(KERN_INFO
1727 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1728 pci_name(pdev), start, end);
1729
1730 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1731 if (!domain)
1732 return -ENOMEM;
1733
1734
1735 base = start & PAGE_MASK;
1736 size = end - base;
1737 size = PAGE_ALIGN(size);
1738 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1739 IOVA_PFN(base + size) - 1)) {
1740 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1741 ret = -ENOMEM;
1742 goto error;
1743 }
1744
1745 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1746 size, base, pci_name(pdev));
1747
1748
1749
1750
1751 dma_pte_clear_range(domain, base, base + size);
1752
1753 ret = domain_page_mapping(domain, base, base, size,
1754 DMA_PTE_READ|DMA_PTE_WRITE);
1755 if (ret)
1756 goto error;
1757
1758
1759 ret = domain_context_mapping(domain, pdev);
1760 if (!ret)
1761 return 0;
1762error:
1763 domain_exit(domain);
1764 return ret;
1765
1766}
1767
1768static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1769 struct pci_dev *pdev)
1770{
1771 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1772 return 0;
1773 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1774 rmrr->end_address + 1);
1775}
1776
1777#ifdef CONFIG_DMAR_GFX_WA
1778struct iommu_prepare_data {
1779 struct pci_dev *pdev;
1780 int ret;
1781};
1782
1783static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1784 unsigned long end_pfn, void *datax)
1785{
1786 struct iommu_prepare_data *data;
1787
1788 data = (struct iommu_prepare_data *)datax;
1789
1790 data->ret = iommu_prepare_identity_map(data->pdev,
1791 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1792 return data->ret;
1793
1794}
1795
1796static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1797{
1798 int nid;
1799 struct iommu_prepare_data data;
1800
1801 data.pdev = pdev;
1802 data.ret = 0;
1803
1804 for_each_online_node(nid) {
1805 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1806 if (data.ret)
1807 return data.ret;
1808 }
1809 return data.ret;
1810}
1811
1812static void __init iommu_prepare_gfx_mapping(void)
1813{
1814 struct pci_dev *pdev = NULL;
1815 int ret;
1816
1817 for_each_pci_dev(pdev) {
1818 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1819 !IS_GFX_DEVICE(pdev))
1820 continue;
1821 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1822 pci_name(pdev));
1823 ret = iommu_prepare_with_active_regions(pdev);
1824 if (ret)
1825 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1826 }
1827}
1828#else
1829static inline void iommu_prepare_gfx_mapping(void)
1830{
1831 return;
1832}
1833#endif
1834
1835#ifdef CONFIG_DMAR_FLOPPY_WA
1836static inline void iommu_prepare_isa(void)
1837{
1838 struct pci_dev *pdev;
1839 int ret;
1840
1841 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1842 if (!pdev)
1843 return;
1844
1845 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1846 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1847
1848 if (ret)
1849 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1850 "floppy might not work\n");
1851
1852}
1853#else
1854static inline void iommu_prepare_isa(void)
1855{
1856 return;
1857}
1858#endif
1859
1860static int __init init_dmars(void)
1861{
1862 struct dmar_drhd_unit *drhd;
1863 struct dmar_rmrr_unit *rmrr;
1864 struct pci_dev *pdev;
1865 struct intel_iommu *iommu;
1866 int i, ret;
1867
1868
1869
1870
1871
1872
1873
1874 for_each_drhd_unit(drhd) {
1875 g_num_of_iommus++;
1876
1877
1878
1879
1880
1881 }
1882
1883 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1884 GFP_KERNEL);
1885 if (!g_iommus) {
1886 printk(KERN_ERR "Allocating global iommu array failed\n");
1887 ret = -ENOMEM;
1888 goto error;
1889 }
1890
1891 deferred_flush = kzalloc(g_num_of_iommus *
1892 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1893 if (!deferred_flush) {
1894 kfree(g_iommus);
1895 ret = -ENOMEM;
1896 goto error;
1897 }
1898
1899 for_each_drhd_unit(drhd) {
1900 if (drhd->ignored)
1901 continue;
1902
1903 iommu = drhd->iommu;
1904 g_iommus[iommu->seq_id] = iommu;
1905
1906 ret = iommu_init_domains(iommu);
1907 if (ret)
1908 goto error;
1909
1910
1911
1912
1913
1914
1915 ret = iommu_alloc_root_entry(iommu);
1916 if (ret) {
1917 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1918 goto error;
1919 }
1920 }
1921
1922
1923
1924
1925 for_each_drhd_unit(drhd) {
1926 if (drhd->ignored)
1927 continue;
1928
1929 iommu = drhd->iommu;
1930
1931
1932
1933
1934
1935
1936 if (iommu->qi)
1937 continue;
1938
1939
1940
1941
1942 dmar_fault(-1, iommu);
1943
1944
1945
1946
1947 dmar_disable_qi(iommu);
1948 }
1949
1950 for_each_drhd_unit(drhd) {
1951 if (drhd->ignored)
1952 continue;
1953
1954 iommu = drhd->iommu;
1955
1956 if (dmar_enable_qi(iommu)) {
1957
1958
1959
1960
1961 iommu->flush.flush_context = __iommu_flush_context;
1962 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1963 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1964 "invalidation\n",
1965 (unsigned long long)drhd->reg_base_addr);
1966 } else {
1967 iommu->flush.flush_context = qi_flush_context;
1968 iommu->flush.flush_iotlb = qi_flush_iotlb;
1969 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1970 "invalidation\n",
1971 (unsigned long long)drhd->reg_base_addr);
1972 }
1973 }
1974
1975#ifdef CONFIG_INTR_REMAP
1976 if (!intr_remapping_enabled) {
1977 ret = enable_intr_remapping(0);
1978 if (ret)
1979 printk(KERN_ERR
1980 "IOMMU: enable interrupt remapping failed\n");
1981 }
1982#endif
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998 for_each_rmrr_units(rmrr) {
1999 for (i = 0; i < rmrr->devices_cnt; i++) {
2000 pdev = rmrr->devices[i];
2001
2002 if (!pdev)
2003 continue;
2004 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2005 if (ret)
2006 printk(KERN_ERR
2007 "IOMMU: mapping reserved region failed\n");
2008 }
2009 }
2010
2011 iommu_prepare_gfx_mapping();
2012
2013 iommu_prepare_isa();
2014
2015
2016
2017
2018
2019
2020
2021
2022 for_each_drhd_unit(drhd) {
2023 if (drhd->ignored)
2024 continue;
2025 iommu = drhd->iommu;
2026
2027 iommu_flush_write_buffer(iommu);
2028
2029 ret = dmar_set_interrupt(iommu);
2030 if (ret)
2031 goto error;
2032
2033 iommu_set_root_entry(iommu);
2034
2035 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
2036 0);
2037 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
2038 0);
2039 iommu_disable_protect_mem_regions(iommu);
2040
2041 ret = iommu_enable_translation(iommu);
2042 if (ret)
2043 goto error;
2044 }
2045
2046 return 0;
2047error:
2048 for_each_drhd_unit(drhd) {
2049 if (drhd->ignored)
2050 continue;
2051 iommu = drhd->iommu;
2052 free_iommu(iommu);
2053 }
2054 kfree(g_iommus);
2055 return ret;
2056}
2057
2058static inline u64 aligned_size(u64 host_addr, size_t size)
2059{
2060 u64 addr;
2061 addr = (host_addr & (~PAGE_MASK)) + size;
2062 return PAGE_ALIGN(addr);
2063}
2064
2065struct iova *
2066iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2067{
2068 struct iova *piova;
2069
2070
2071 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2072 if (!size || (IOVA_START_ADDR + size > end))
2073 return NULL;
2074
2075 piova = alloc_iova(&domain->iovad,
2076 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2077 return piova;
2078}
2079
2080static struct iova *
2081__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2082 size_t size, u64 dma_mask)
2083{
2084 struct pci_dev *pdev = to_pci_dev(dev);
2085 struct iova *iova = NULL;
2086
2087 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2088 iova = iommu_alloc_iova(domain, size, dma_mask);
2089 else {
2090
2091
2092
2093
2094
2095 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2096 if (!iova)
2097 iova = iommu_alloc_iova(domain, size, dma_mask);
2098 }
2099
2100 if (!iova) {
2101 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2102 return NULL;
2103 }
2104
2105 return iova;
2106}
2107
2108static struct dmar_domain *
2109get_valid_domain_for_dev(struct pci_dev *pdev)
2110{
2111 struct dmar_domain *domain;
2112 int ret;
2113
2114 domain = get_domain_for_dev(pdev,
2115 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2116 if (!domain) {
2117 printk(KERN_ERR
2118 "Allocating domain for %s failed", pci_name(pdev));
2119 return NULL;
2120 }
2121
2122
2123 if (unlikely(!domain_context_mapped(pdev))) {
2124 ret = domain_context_mapping(domain, pdev);
2125 if (ret) {
2126 printk(KERN_ERR
2127 "Domain context map for %s failed",
2128 pci_name(pdev));
2129 return NULL;
2130 }
2131 }
2132
2133 return domain;
2134}
2135
2136static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2137 size_t size, int dir, u64 dma_mask)
2138{
2139 struct pci_dev *pdev = to_pci_dev(hwdev);
2140 struct dmar_domain *domain;
2141 phys_addr_t start_paddr;
2142 struct iova *iova;
2143 int prot = 0;
2144 int ret;
2145 struct intel_iommu *iommu;
2146
2147 BUG_ON(dir == DMA_NONE);
2148 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2149 return paddr;
2150
2151 domain = get_valid_domain_for_dev(pdev);
2152 if (!domain)
2153 return 0;
2154
2155 iommu = domain_get_iommu(domain);
2156 size = aligned_size((u64)paddr, size);
2157
2158 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2159 if (!iova)
2160 goto error;
2161
2162 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2163
2164
2165
2166
2167
2168 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2169 !cap_zlr(iommu->cap))
2170 prot |= DMA_PTE_READ;
2171 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2172 prot |= DMA_PTE_WRITE;
2173
2174
2175
2176
2177
2178
2179 ret = domain_page_mapping(domain, start_paddr,
2180 ((u64)paddr) & PHYSICAL_PAGE_MASK,
2181 size, prot);
2182 if (ret)
2183 goto error;
2184
2185
2186 ret = iommu_flush_iotlb_psi(iommu, domain->id,
2187 start_paddr, size >> VTD_PAGE_SHIFT, 1);
2188 if (ret)
2189 iommu_flush_write_buffer(iommu);
2190
2191 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2192
2193error:
2194 if (iova)
2195 __free_iova(&domain->iovad, iova);
2196 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2197 pci_name(pdev), size, (unsigned long long)paddr, dir);
2198 return 0;
2199}
2200
2201static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2202 unsigned long offset, size_t size,
2203 enum dma_data_direction dir,
2204 struct dma_attrs *attrs)
2205{
2206 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2207 dir, to_pci_dev(dev)->dma_mask);
2208}
2209
2210static void flush_unmaps(void)
2211{
2212 int i, j;
2213
2214 timer_on = 0;
2215
2216
2217 for (i = 0; i < g_num_of_iommus; i++) {
2218 struct intel_iommu *iommu = g_iommus[i];
2219 if (!iommu)
2220 continue;
2221
2222 if (deferred_flush[i].next) {
2223 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2224 DMA_TLB_GLOBAL_FLUSH, 0);
2225 for (j = 0; j < deferred_flush[i].next; j++) {
2226 __free_iova(&deferred_flush[i].domain[j]->iovad,
2227 deferred_flush[i].iova[j]);
2228 }
2229 deferred_flush[i].next = 0;
2230 }
2231 }
2232
2233 list_size = 0;
2234}
2235
2236static void flush_unmaps_timeout(unsigned long data)
2237{
2238 unsigned long flags;
2239
2240 spin_lock_irqsave(&async_umap_flush_lock, flags);
2241 flush_unmaps();
2242 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2243}
2244
2245static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2246{
2247 unsigned long flags;
2248 int next, iommu_id;
2249 struct intel_iommu *iommu;
2250
2251 spin_lock_irqsave(&async_umap_flush_lock, flags);
2252 if (list_size == HIGH_WATER_MARK)
2253 flush_unmaps();
2254
2255 iommu = domain_get_iommu(dom);
2256 iommu_id = iommu->seq_id;
2257
2258 next = deferred_flush[iommu_id].next;
2259 deferred_flush[iommu_id].domain[next] = dom;
2260 deferred_flush[iommu_id].iova[next] = iova;
2261 deferred_flush[iommu_id].next++;
2262
2263 if (!timer_on) {
2264 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2265 timer_on = 1;
2266 }
2267 list_size++;
2268 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2269}
2270
2271static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2272 size_t size, enum dma_data_direction dir,
2273 struct dma_attrs *attrs)
2274{
2275 struct pci_dev *pdev = to_pci_dev(dev);
2276 struct dmar_domain *domain;
2277 unsigned long start_addr;
2278 struct iova *iova;
2279 struct intel_iommu *iommu;
2280
2281 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2282 return;
2283 domain = find_domain(pdev);
2284 BUG_ON(!domain);
2285
2286 iommu = domain_get_iommu(domain);
2287
2288 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2289 if (!iova)
2290 return;
2291
2292 start_addr = iova->pfn_lo << PAGE_SHIFT;
2293 size = aligned_size((u64)dev_addr, size);
2294
2295 pr_debug("Device %s unmapping: %zx@%llx\n",
2296 pci_name(pdev), size, (unsigned long long)start_addr);
2297
2298
2299 dma_pte_clear_range(domain, start_addr, start_addr + size);
2300
2301 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2302 if (intel_iommu_strict) {
2303 if (iommu_flush_iotlb_psi(iommu,
2304 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2305 iommu_flush_write_buffer(iommu);
2306
2307 __free_iova(&domain->iovad, iova);
2308 } else {
2309 add_unmap(domain, iova);
2310
2311
2312
2313
2314 }
2315}
2316
2317static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2318 int dir)
2319{
2320 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2321}
2322
2323static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2324 dma_addr_t *dma_handle, gfp_t flags)
2325{
2326 void *vaddr;
2327 int order;
2328
2329 size = PAGE_ALIGN(size);
2330 order = get_order(size);
2331 flags &= ~(GFP_DMA | GFP_DMA32);
2332
2333 vaddr = (void *)__get_free_pages(flags, order);
2334 if (!vaddr)
2335 return NULL;
2336 memset(vaddr, 0, size);
2337
2338 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2339 DMA_BIDIRECTIONAL,
2340 hwdev->coherent_dma_mask);
2341 if (*dma_handle)
2342 return vaddr;
2343 free_pages((unsigned long)vaddr, order);
2344 return NULL;
2345}
2346
2347static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2348 dma_addr_t dma_handle)
2349{
2350 int order;
2351
2352 size = PAGE_ALIGN(size);
2353 order = get_order(size);
2354
2355 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2356 free_pages((unsigned long)vaddr, order);
2357}
2358
2359static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2360 int nelems, enum dma_data_direction dir,
2361 struct dma_attrs *attrs)
2362{
2363 int i;
2364 struct pci_dev *pdev = to_pci_dev(hwdev);
2365 struct dmar_domain *domain;
2366 unsigned long start_addr;
2367 struct iova *iova;
2368 size_t size = 0;
2369 phys_addr_t addr;
2370 struct scatterlist *sg;
2371 struct intel_iommu *iommu;
2372
2373 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2374 return;
2375
2376 domain = find_domain(pdev);
2377 BUG_ON(!domain);
2378
2379 iommu = domain_get_iommu(domain);
2380
2381 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2382 if (!iova)
2383 return;
2384 for_each_sg(sglist, sg, nelems, i) {
2385 addr = page_to_phys(sg_page(sg)) + sg->offset;
2386 size += aligned_size((u64)addr, sg->length);
2387 }
2388
2389 start_addr = iova->pfn_lo << PAGE_SHIFT;
2390
2391
2392 dma_pte_clear_range(domain, start_addr, start_addr + size);
2393
2394 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2395
2396 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2397 size >> VTD_PAGE_SHIFT, 0))
2398 iommu_flush_write_buffer(iommu);
2399
2400
2401 __free_iova(&domain->iovad, iova);
2402}
2403
2404static int intel_nontranslate_map_sg(struct device *hddev,
2405 struct scatterlist *sglist, int nelems, int dir)
2406{
2407 int i;
2408 struct scatterlist *sg;
2409
2410 for_each_sg(sglist, sg, nelems, i) {
2411 BUG_ON(!sg_page(sg));
2412 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2413 sg->dma_length = sg->length;
2414 }
2415 return nelems;
2416}
2417
2418static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2419 enum dma_data_direction dir, struct dma_attrs *attrs)
2420{
2421 phys_addr_t addr;
2422 int i;
2423 struct pci_dev *pdev = to_pci_dev(hwdev);
2424 struct dmar_domain *domain;
2425 size_t size = 0;
2426 int prot = 0;
2427 size_t offset = 0;
2428 struct iova *iova = NULL;
2429 int ret;
2430 struct scatterlist *sg;
2431 unsigned long start_addr;
2432 struct intel_iommu *iommu;
2433
2434 BUG_ON(dir == DMA_NONE);
2435 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2436 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2437
2438 domain = get_valid_domain_for_dev(pdev);
2439 if (!domain)
2440 return 0;
2441
2442 iommu = domain_get_iommu(domain);
2443
2444 for_each_sg(sglist, sg, nelems, i) {
2445 addr = page_to_phys(sg_page(sg)) + sg->offset;
2446 size += aligned_size((u64)addr, sg->length);
2447 }
2448
2449 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2450 if (!iova) {
2451 sglist->dma_length = 0;
2452 return 0;
2453 }
2454
2455
2456
2457
2458
2459 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2460 !cap_zlr(iommu->cap))
2461 prot |= DMA_PTE_READ;
2462 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2463 prot |= DMA_PTE_WRITE;
2464
2465 start_addr = iova->pfn_lo << PAGE_SHIFT;
2466 offset = 0;
2467 for_each_sg(sglist, sg, nelems, i) {
2468 addr = page_to_phys(sg_page(sg)) + sg->offset;
2469 size = aligned_size((u64)addr, sg->length);
2470 ret = domain_page_mapping(domain, start_addr + offset,
2471 ((u64)addr) & PHYSICAL_PAGE_MASK,
2472 size, prot);
2473 if (ret) {
2474
2475 dma_pte_clear_range(domain, start_addr,
2476 start_addr + offset);
2477
2478 dma_pte_free_pagetable(domain, start_addr,
2479 start_addr + offset);
2480
2481 __free_iova(&domain->iovad, iova);
2482 return 0;
2483 }
2484 sg->dma_address = start_addr + offset +
2485 ((u64)addr & (~PAGE_MASK));
2486 sg->dma_length = sg->length;
2487 offset += size;
2488 }
2489
2490
2491 if (iommu_flush_iotlb_psi(iommu, domain->id,
2492 start_addr, offset >> VTD_PAGE_SHIFT, 1))
2493 iommu_flush_write_buffer(iommu);
2494 return nelems;
2495}
2496
2497static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2498{
2499 return !dma_addr;
2500}
2501
2502struct dma_map_ops intel_dma_ops = {
2503 .alloc_coherent = intel_alloc_coherent,
2504 .free_coherent = intel_free_coherent,
2505 .map_sg = intel_map_sg,
2506 .unmap_sg = intel_unmap_sg,
2507 .map_page = intel_map_page,
2508 .unmap_page = intel_unmap_page,
2509 .mapping_error = intel_mapping_error,
2510};
2511
2512static inline int iommu_domain_cache_init(void)
2513{
2514 int ret = 0;
2515
2516 iommu_domain_cache = kmem_cache_create("iommu_domain",
2517 sizeof(struct dmar_domain),
2518 0,
2519 SLAB_HWCACHE_ALIGN,
2520
2521 NULL);
2522 if (!iommu_domain_cache) {
2523 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2524 ret = -ENOMEM;
2525 }
2526
2527 return ret;
2528}
2529
2530static inline int iommu_devinfo_cache_init(void)
2531{
2532 int ret = 0;
2533
2534 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2535 sizeof(struct device_domain_info),
2536 0,
2537 SLAB_HWCACHE_ALIGN,
2538 NULL);
2539 if (!iommu_devinfo_cache) {
2540 printk(KERN_ERR "Couldn't create devinfo cache\n");
2541 ret = -ENOMEM;
2542 }
2543
2544 return ret;
2545}
2546
2547static inline int iommu_iova_cache_init(void)
2548{
2549 int ret = 0;
2550
2551 iommu_iova_cache = kmem_cache_create("iommu_iova",
2552 sizeof(struct iova),
2553 0,
2554 SLAB_HWCACHE_ALIGN,
2555 NULL);
2556 if (!iommu_iova_cache) {
2557 printk(KERN_ERR "Couldn't create iova cache\n");
2558 ret = -ENOMEM;
2559 }
2560
2561 return ret;
2562}
2563
2564static int __init iommu_init_mempool(void)
2565{
2566 int ret;
2567 ret = iommu_iova_cache_init();
2568 if (ret)
2569 return ret;
2570
2571 ret = iommu_domain_cache_init();
2572 if (ret)
2573 goto domain_error;
2574
2575 ret = iommu_devinfo_cache_init();
2576 if (!ret)
2577 return ret;
2578
2579 kmem_cache_destroy(iommu_domain_cache);
2580domain_error:
2581 kmem_cache_destroy(iommu_iova_cache);
2582
2583 return -ENOMEM;
2584}
2585
2586static void __init iommu_exit_mempool(void)
2587{
2588 kmem_cache_destroy(iommu_devinfo_cache);
2589 kmem_cache_destroy(iommu_domain_cache);
2590 kmem_cache_destroy(iommu_iova_cache);
2591
2592}
2593
2594static void __init init_no_remapping_devices(void)
2595{
2596 struct dmar_drhd_unit *drhd;
2597
2598 for_each_drhd_unit(drhd) {
2599 if (!drhd->include_all) {
2600 int i;
2601 for (i = 0; i < drhd->devices_cnt; i++)
2602 if (drhd->devices[i] != NULL)
2603 break;
2604
2605 if (i == drhd->devices_cnt)
2606 drhd->ignored = 1;
2607 }
2608 }
2609
2610 if (dmar_map_gfx)
2611 return;
2612
2613 for_each_drhd_unit(drhd) {
2614 int i;
2615 if (drhd->ignored || drhd->include_all)
2616 continue;
2617
2618 for (i = 0; i < drhd->devices_cnt; i++)
2619 if (drhd->devices[i] &&
2620 !IS_GFX_DEVICE(drhd->devices[i]))
2621 break;
2622
2623 if (i < drhd->devices_cnt)
2624 continue;
2625
2626
2627 drhd->ignored = 1;
2628 for (i = 0; i < drhd->devices_cnt; i++) {
2629 if (!drhd->devices[i])
2630 continue;
2631 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2632 }
2633 }
2634}
2635
2636#ifdef CONFIG_SUSPEND
2637static int init_iommu_hw(void)
2638{
2639 struct dmar_drhd_unit *drhd;
2640 struct intel_iommu *iommu = NULL;
2641
2642 for_each_active_iommu(iommu, drhd)
2643 if (iommu->qi)
2644 dmar_reenable_qi(iommu);
2645
2646 for_each_active_iommu(iommu, drhd) {
2647 iommu_flush_write_buffer(iommu);
2648
2649 iommu_set_root_entry(iommu);
2650
2651 iommu->flush.flush_context(iommu, 0, 0, 0,
2652 DMA_CCMD_GLOBAL_INVL, 0);
2653 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2654 DMA_TLB_GLOBAL_FLUSH, 0);
2655 iommu_disable_protect_mem_regions(iommu);
2656 iommu_enable_translation(iommu);
2657 }
2658
2659 return 0;
2660}
2661
2662static void iommu_flush_all(void)
2663{
2664 struct dmar_drhd_unit *drhd;
2665 struct intel_iommu *iommu;
2666
2667 for_each_active_iommu(iommu, drhd) {
2668 iommu->flush.flush_context(iommu, 0, 0, 0,
2669 DMA_CCMD_GLOBAL_INVL, 0);
2670 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2671 DMA_TLB_GLOBAL_FLUSH, 0);
2672 }
2673}
2674
2675static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2676{
2677 struct dmar_drhd_unit *drhd;
2678 struct intel_iommu *iommu = NULL;
2679 unsigned long flag;
2680
2681 for_each_active_iommu(iommu, drhd) {
2682 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2683 GFP_ATOMIC);
2684 if (!iommu->iommu_state)
2685 goto nomem;
2686 }
2687
2688 iommu_flush_all();
2689
2690 for_each_active_iommu(iommu, drhd) {
2691 iommu_disable_translation(iommu);
2692
2693 spin_lock_irqsave(&iommu->register_lock, flag);
2694
2695 iommu->iommu_state[SR_DMAR_FECTL_REG] =
2696 readl(iommu->reg + DMAR_FECTL_REG);
2697 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2698 readl(iommu->reg + DMAR_FEDATA_REG);
2699 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2700 readl(iommu->reg + DMAR_FEADDR_REG);
2701 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2702 readl(iommu->reg + DMAR_FEUADDR_REG);
2703
2704 spin_unlock_irqrestore(&iommu->register_lock, flag);
2705 }
2706 return 0;
2707
2708nomem:
2709 for_each_active_iommu(iommu, drhd)
2710 kfree(iommu->iommu_state);
2711
2712 return -ENOMEM;
2713}
2714
2715static int iommu_resume(struct sys_device *dev)
2716{
2717 struct dmar_drhd_unit *drhd;
2718 struct intel_iommu *iommu = NULL;
2719 unsigned long flag;
2720
2721 if (init_iommu_hw()) {
2722 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2723 return -EIO;
2724 }
2725
2726 for_each_active_iommu(iommu, drhd) {
2727
2728 spin_lock_irqsave(&iommu->register_lock, flag);
2729
2730 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2731 iommu->reg + DMAR_FECTL_REG);
2732 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2733 iommu->reg + DMAR_FEDATA_REG);
2734 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2735 iommu->reg + DMAR_FEADDR_REG);
2736 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2737 iommu->reg + DMAR_FEUADDR_REG);
2738
2739 spin_unlock_irqrestore(&iommu->register_lock, flag);
2740 }
2741
2742 for_each_active_iommu(iommu, drhd)
2743 kfree(iommu->iommu_state);
2744
2745 return 0;
2746}
2747
2748static struct sysdev_class iommu_sysclass = {
2749 .name = "iommu",
2750 .resume = iommu_resume,
2751 .suspend = iommu_suspend,
2752};
2753
2754static struct sys_device device_iommu = {
2755 .cls = &iommu_sysclass,
2756};
2757
2758static int __init init_iommu_sysfs(void)
2759{
2760 int error;
2761
2762 error = sysdev_class_register(&iommu_sysclass);
2763 if (error)
2764 return error;
2765
2766 error = sysdev_register(&device_iommu);
2767 if (error)
2768 sysdev_class_unregister(&iommu_sysclass);
2769
2770 return error;
2771}
2772
2773#else
2774static int __init init_iommu_sysfs(void)
2775{
2776 return 0;
2777}
2778#endif
2779
2780int __init intel_iommu_init(void)
2781{
2782 int ret = 0;
2783
2784 if (dmar_table_init())
2785 return -ENODEV;
2786
2787 if (dmar_dev_scope_init())
2788 return -ENODEV;
2789
2790
2791
2792
2793
2794 if (no_iommu || swiotlb || dmar_disabled)
2795 return -ENODEV;
2796
2797 iommu_init_mempool();
2798 dmar_init_reserved_ranges();
2799
2800 init_no_remapping_devices();
2801
2802 ret = init_dmars();
2803 if (ret) {
2804 printk(KERN_ERR "IOMMU: dmar init failed\n");
2805 put_iova_domain(&reserved_iova_list);
2806 iommu_exit_mempool();
2807 return ret;
2808 }
2809 printk(KERN_INFO
2810 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2811
2812 init_timer(&unmap_timer);
2813 force_iommu = 1;
2814 dma_ops = &intel_dma_ops;
2815 init_iommu_sysfs();
2816
2817 register_iommu(&intel_iommu_ops);
2818
2819 return 0;
2820}
2821
2822static int vm_domain_add_dev_info(struct dmar_domain *domain,
2823 struct pci_dev *pdev)
2824{
2825 struct device_domain_info *info;
2826 unsigned long flags;
2827
2828 info = alloc_devinfo_mem();
2829 if (!info)
2830 return -ENOMEM;
2831
2832 info->segment = pci_domain_nr(pdev->bus);
2833 info->bus = pdev->bus->number;
2834 info->devfn = pdev->devfn;
2835 info->dev = pdev;
2836 info->domain = domain;
2837
2838 spin_lock_irqsave(&device_domain_lock, flags);
2839 list_add(&info->link, &domain->devices);
2840 list_add(&info->global, &device_domain_list);
2841 pdev->dev.archdata.iommu = info;
2842 spin_unlock_irqrestore(&device_domain_lock, flags);
2843
2844 return 0;
2845}
2846
2847static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
2848 struct pci_dev *pdev)
2849{
2850 struct pci_dev *tmp, *parent;
2851
2852 if (!iommu || !pdev)
2853 return;
2854
2855
2856 tmp = pci_find_upstream_pcie_bridge(pdev);
2857
2858 if (tmp) {
2859 parent = pdev->bus->self;
2860 while (parent != tmp) {
2861 iommu_detach_dev(iommu, parent->bus->number,
2862 parent->devfn);
2863 parent = parent->bus->self;
2864 }
2865 if (tmp->is_pcie)
2866 iommu_detach_dev(iommu,
2867 tmp->subordinate->number, 0);
2868 else
2869 iommu_detach_dev(iommu, tmp->bus->number,
2870 tmp->devfn);
2871 }
2872}
2873
2874static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2875 struct pci_dev *pdev)
2876{
2877 struct device_domain_info *info;
2878 struct intel_iommu *iommu;
2879 unsigned long flags;
2880 int found = 0;
2881 struct list_head *entry, *tmp;
2882
2883 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
2884 pdev->devfn);
2885 if (!iommu)
2886 return;
2887
2888 spin_lock_irqsave(&device_domain_lock, flags);
2889 list_for_each_safe(entry, tmp, &domain->devices) {
2890 info = list_entry(entry, struct device_domain_info, link);
2891
2892 if (info->bus == pdev->bus->number &&
2893 info->devfn == pdev->devfn) {
2894 list_del(&info->link);
2895 list_del(&info->global);
2896 if (info->dev)
2897 info->dev->dev.archdata.iommu = NULL;
2898 spin_unlock_irqrestore(&device_domain_lock, flags);
2899
2900 iommu_detach_dev(iommu, info->bus, info->devfn);
2901 iommu_detach_dependent_devices(iommu, pdev);
2902 free_devinfo_mem(info);
2903
2904 spin_lock_irqsave(&device_domain_lock, flags);
2905
2906 if (found)
2907 break;
2908 else
2909 continue;
2910 }
2911
2912
2913
2914
2915
2916 if (iommu == device_to_iommu(info->segment, info->bus,
2917 info->devfn))
2918 found = 1;
2919 }
2920
2921 if (found == 0) {
2922 unsigned long tmp_flags;
2923 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2924 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2925 domain->iommu_count--;
2926 domain_update_iommu_cap(domain);
2927 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2928 }
2929
2930 spin_unlock_irqrestore(&device_domain_lock, flags);
2931}
2932
2933static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2934{
2935 struct device_domain_info *info;
2936 struct intel_iommu *iommu;
2937 unsigned long flags1, flags2;
2938
2939 spin_lock_irqsave(&device_domain_lock, flags1);
2940 while (!list_empty(&domain->devices)) {
2941 info = list_entry(domain->devices.next,
2942 struct device_domain_info, link);
2943 list_del(&info->link);
2944 list_del(&info->global);
2945 if (info->dev)
2946 info->dev->dev.archdata.iommu = NULL;
2947
2948 spin_unlock_irqrestore(&device_domain_lock, flags1);
2949
2950 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
2951 iommu_detach_dev(iommu, info->bus, info->devfn);
2952 iommu_detach_dependent_devices(iommu, info->dev);
2953
2954
2955
2956
2957 spin_lock_irqsave(&domain->iommu_lock, flags2);
2958 if (test_and_clear_bit(iommu->seq_id,
2959 &domain->iommu_bmp)) {
2960 domain->iommu_count--;
2961 domain_update_iommu_cap(domain);
2962 }
2963 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2964
2965 free_devinfo_mem(info);
2966 spin_lock_irqsave(&device_domain_lock, flags1);
2967 }
2968 spin_unlock_irqrestore(&device_domain_lock, flags1);
2969}
2970
2971
2972static unsigned long vm_domid;
2973
2974static int vm_domain_min_agaw(struct dmar_domain *domain)
2975{
2976 int i;
2977 int min_agaw = domain->agaw;
2978
2979 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2980 for (; i < g_num_of_iommus; ) {
2981 if (min_agaw > g_iommus[i]->agaw)
2982 min_agaw = g_iommus[i]->agaw;
2983
2984 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2985 }
2986
2987 return min_agaw;
2988}
2989
2990static struct dmar_domain *iommu_alloc_vm_domain(void)
2991{
2992 struct dmar_domain *domain;
2993
2994 domain = alloc_domain_mem();
2995 if (!domain)
2996 return NULL;
2997
2998 domain->id = vm_domid++;
2999 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3000 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3001
3002 return domain;
3003}
3004
3005static int vm_domain_init(struct dmar_domain *domain, int guest_width)
3006{
3007 int adjust_width;
3008
3009 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3010 spin_lock_init(&domain->mapping_lock);
3011 spin_lock_init(&domain->iommu_lock);
3012
3013 domain_reserve_special_ranges(domain);
3014
3015
3016 domain->gaw = guest_width;
3017 adjust_width = guestwidth_to_adjustwidth(guest_width);
3018 domain->agaw = width_to_agaw(adjust_width);
3019
3020 INIT_LIST_HEAD(&domain->devices);
3021
3022 domain->iommu_count = 0;
3023 domain->iommu_coherency = 0;
3024 domain->max_addr = 0;
3025
3026
3027 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3028 if (!domain->pgd)
3029 return -ENOMEM;
3030 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3031 return 0;
3032}
3033
3034static void iommu_free_vm_domain(struct dmar_domain *domain)
3035{
3036 unsigned long flags;
3037 struct dmar_drhd_unit *drhd;
3038 struct intel_iommu *iommu;
3039 unsigned long i;
3040 unsigned long ndomains;
3041
3042 for_each_drhd_unit(drhd) {
3043 if (drhd->ignored)
3044 continue;
3045 iommu = drhd->iommu;
3046
3047 ndomains = cap_ndoms(iommu->cap);
3048 i = find_first_bit(iommu->domain_ids, ndomains);
3049 for (; i < ndomains; ) {
3050 if (iommu->domains[i] == domain) {
3051 spin_lock_irqsave(&iommu->lock, flags);
3052 clear_bit(i, iommu->domain_ids);
3053 iommu->domains[i] = NULL;
3054 spin_unlock_irqrestore(&iommu->lock, flags);
3055 break;
3056 }
3057 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3058 }
3059 }
3060}
3061
3062static void vm_domain_exit(struct dmar_domain *domain)
3063{
3064 u64 end;
3065
3066
3067 if (!domain)
3068 return;
3069
3070 vm_domain_remove_all_dev_info(domain);
3071
3072 put_iova_domain(&domain->iovad);
3073 end = DOMAIN_MAX_ADDR(domain->gaw);
3074 end = end & (~VTD_PAGE_MASK);
3075
3076
3077 dma_pte_clear_range(domain, 0, end);
3078
3079
3080 dma_pte_free_pagetable(domain, 0, end);
3081
3082 iommu_free_vm_domain(domain);
3083 free_domain_mem(domain);
3084}
3085
3086static int intel_iommu_domain_init(struct iommu_domain *domain)
3087{
3088 struct dmar_domain *dmar_domain;
3089
3090 dmar_domain = iommu_alloc_vm_domain();
3091 if (!dmar_domain) {
3092 printk(KERN_ERR
3093 "intel_iommu_domain_init: dmar_domain == NULL\n");
3094 return -ENOMEM;
3095 }
3096 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3097 printk(KERN_ERR
3098 "intel_iommu_domain_init() failed\n");
3099 vm_domain_exit(dmar_domain);
3100 return -ENOMEM;
3101 }
3102 domain->priv = dmar_domain;
3103
3104 return 0;
3105}
3106
3107static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3108{
3109 struct dmar_domain *dmar_domain = domain->priv;
3110
3111 domain->priv = NULL;
3112 vm_domain_exit(dmar_domain);
3113}
3114
3115static int intel_iommu_attach_device(struct iommu_domain *domain,
3116 struct device *dev)
3117{
3118 struct dmar_domain *dmar_domain = domain->priv;
3119 struct pci_dev *pdev = to_pci_dev(dev);
3120 struct intel_iommu *iommu;
3121 int addr_width;
3122 u64 end;
3123 int ret;
3124
3125
3126 if (unlikely(domain_context_mapped(pdev))) {
3127 struct dmar_domain *old_domain;
3128
3129 old_domain = find_domain(pdev);
3130 if (old_domain) {
3131 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
3132 vm_domain_remove_one_dev_info(old_domain, pdev);
3133 else
3134 domain_remove_dev_info(old_domain);
3135 }
3136 }
3137
3138 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3139 pdev->devfn);
3140 if (!iommu)
3141 return -ENODEV;
3142
3143
3144 addr_width = agaw_to_width(iommu->agaw);
3145 end = DOMAIN_MAX_ADDR(addr_width);
3146 end = end & VTD_PAGE_MASK;
3147 if (end < dmar_domain->max_addr) {
3148 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3149 "sufficient for the mapped address (%llx)\n",
3150 __func__, iommu->agaw, dmar_domain->max_addr);
3151 return -EFAULT;
3152 }
3153
3154 ret = domain_context_mapping(dmar_domain, pdev);
3155 if (ret)
3156 return ret;
3157
3158 ret = vm_domain_add_dev_info(dmar_domain, pdev);
3159 return ret;
3160}
3161
3162static void intel_iommu_detach_device(struct iommu_domain *domain,
3163 struct device *dev)
3164{
3165 struct dmar_domain *dmar_domain = domain->priv;
3166 struct pci_dev *pdev = to_pci_dev(dev);
3167
3168 vm_domain_remove_one_dev_info(dmar_domain, pdev);
3169}
3170
3171static int intel_iommu_map_range(struct iommu_domain *domain,
3172 unsigned long iova, phys_addr_t hpa,
3173 size_t size, int iommu_prot)
3174{
3175 struct dmar_domain *dmar_domain = domain->priv;
3176 u64 max_addr;
3177 int addr_width;
3178 int prot = 0;
3179 int ret;
3180
3181 if (iommu_prot & IOMMU_READ)
3182 prot |= DMA_PTE_READ;
3183 if (iommu_prot & IOMMU_WRITE)
3184 prot |= DMA_PTE_WRITE;
3185 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3186 prot |= DMA_PTE_SNP;
3187
3188 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3189 if (dmar_domain->max_addr < max_addr) {
3190 int min_agaw;
3191 u64 end;
3192
3193
3194 min_agaw = vm_domain_min_agaw(dmar_domain);
3195 addr_width = agaw_to_width(min_agaw);
3196 end = DOMAIN_MAX_ADDR(addr_width);
3197 end = end & VTD_PAGE_MASK;
3198 if (end < max_addr) {
3199 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3200 "sufficient for the mapped address (%llx)\n",
3201 __func__, min_agaw, max_addr);
3202 return -EFAULT;
3203 }
3204 dmar_domain->max_addr = max_addr;
3205 }
3206
3207 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3208 return ret;
3209}
3210
3211static void intel_iommu_unmap_range(struct iommu_domain *domain,
3212 unsigned long iova, size_t size)
3213{
3214 struct dmar_domain *dmar_domain = domain->priv;
3215 dma_addr_t base;
3216
3217
3218 base = iova & VTD_PAGE_MASK;
3219 size = VTD_PAGE_ALIGN(size);
3220 dma_pte_clear_range(dmar_domain, base, base + size);
3221
3222 if (dmar_domain->max_addr == base + size)
3223 dmar_domain->max_addr = base;
3224}
3225
3226static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3227 unsigned long iova)
3228{
3229 struct dmar_domain *dmar_domain = domain->priv;
3230 struct dma_pte *pte;
3231 u64 phys = 0;
3232
3233 pte = addr_to_dma_pte(dmar_domain, iova);
3234 if (pte)
3235 phys = dma_pte_addr(pte);
3236
3237 return phys;
3238}
3239
3240static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3241 unsigned long cap)
3242{
3243 struct dmar_domain *dmar_domain = domain->priv;
3244
3245 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3246 return dmar_domain->iommu_snooping;
3247
3248 return 0;
3249}
3250
3251static struct iommu_ops intel_iommu_ops = {
3252 .domain_init = intel_iommu_domain_init,
3253 .domain_destroy = intel_iommu_domain_destroy,
3254 .attach_dev = intel_iommu_attach_device,
3255 .detach_dev = intel_iommu_detach_device,
3256 .map = intel_iommu_map_range,
3257 .unmap = intel_iommu_unmap_range,
3258 .iova_to_phys = intel_iommu_iova_to_phys,
3259 .domain_has_cap = intel_iommu_domain_has_cap,
3260};
3261
3262static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3263{
3264
3265
3266
3267
3268 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3269 rwbf_quirk = 1;
3270}
3271
3272DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
3273