linux/mm/page_alloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/compiler.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/suspend.h>
  28#include <linux/pagevec.h>
  29#include <linux/blkdev.h>
  30#include <linux/slab.h>
  31#include <linux/oom.h>
  32#include <linux/notifier.h>
  33#include <linux/topology.h>
  34#include <linux/sysctl.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/nodemask.h>
  39#include <linux/vmalloc.h>
  40#include <linux/mempolicy.h>
  41#include <linux/stop_machine.h>
  42#include <linux/sort.h>
  43#include <linux/pfn.h>
  44#include <linux/backing-dev.h>
  45#include <linux/fault-inject.h>
  46#include <linux/page-isolation.h>
  47#include <linux/page_cgroup.h>
  48#include <linux/debugobjects.h>
  49
  50#include <asm/tlbflush.h>
  51#include <asm/div64.h>
  52#include "internal.h"
  53
  54/*
  55 * Array of node states.
  56 */
  57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  58        [N_POSSIBLE] = NODE_MASK_ALL,
  59        [N_ONLINE] = { { [0] = 1UL } },
  60#ifndef CONFIG_NUMA
  61        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  62#ifdef CONFIG_HIGHMEM
  63        [N_HIGH_MEMORY] = { { [0] = 1UL } },
  64#endif
  65        [N_CPU] = { { [0] = 1UL } },
  66#endif  /* NUMA */
  67};
  68EXPORT_SYMBOL(node_states);
  69
  70unsigned long totalram_pages __read_mostly;
  71unsigned long totalreserve_pages __read_mostly;
  72unsigned long highest_memmap_pfn __read_mostly;
  73int percpu_pagelist_fraction;
  74
  75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  76int pageblock_order __read_mostly;
  77#endif
  78
  79static void __free_pages_ok(struct page *page, unsigned int order);
  80
  81/*
  82 * results with 256, 32 in the lowmem_reserve sysctl:
  83 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  84 *      1G machine -> (16M dma, 784M normal, 224M high)
  85 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  86 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  87 *      HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  88 *
  89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
  90 * don't need any ZONE_NORMAL reservation
  91 */
  92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  93#ifdef CONFIG_ZONE_DMA
  94         256,
  95#endif
  96#ifdef CONFIG_ZONE_DMA32
  97         256,
  98#endif
  99#ifdef CONFIG_HIGHMEM
 100         32,
 101#endif
 102         32,
 103};
 104
 105EXPORT_SYMBOL(totalram_pages);
 106
 107static char * const zone_names[MAX_NR_ZONES] = {
 108#ifdef CONFIG_ZONE_DMA
 109         "DMA",
 110#endif
 111#ifdef CONFIG_ZONE_DMA32
 112         "DMA32",
 113#endif
 114         "Normal",
 115#ifdef CONFIG_HIGHMEM
 116         "HighMem",
 117#endif
 118         "Movable",
 119};
 120
 121int min_free_kbytes = 1024;
 122
 123unsigned long __meminitdata nr_kernel_pages;
 124unsigned long __meminitdata nr_all_pages;
 125static unsigned long __meminitdata dma_reserve;
 126
 127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 128  /*
 129   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
 130   * ranges of memory (RAM) that may be registered with add_active_range().
 131   * Ranges passed to add_active_range() will be merged if possible
 132   * so the number of times add_active_range() can be called is
 133   * related to the number of nodes and the number of holes
 134   */
 135  #ifdef CONFIG_MAX_ACTIVE_REGIONS
 136    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
 137    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
 138  #else
 139    #if MAX_NUMNODES >= 32
 140      /* If there can be many nodes, allow up to 50 holes per node */
 141      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
 142    #else
 143      /* By default, allow up to 256 distinct regions */
 144      #define MAX_ACTIVE_REGIONS 256
 145    #endif
 146  #endif
 147
 148  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
 149  static int __meminitdata nr_nodemap_entries;
 150  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 151  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
 153  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
 154  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
 155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
 156  static unsigned long __initdata required_kernelcore;
 157  static unsigned long __initdata required_movablecore;
 158  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 159
 160  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 161  int movable_zone;
 162  EXPORT_SYMBOL(movable_zone);
 163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 164
 165#if MAX_NUMNODES > 1
 166int nr_node_ids __read_mostly = MAX_NUMNODES;
 167EXPORT_SYMBOL(nr_node_ids);
 168#endif
 169
 170int page_group_by_mobility_disabled __read_mostly;
 171
 172static void set_pageblock_migratetype(struct page *page, int migratetype)
 173{
 174        set_pageblock_flags_group(page, (unsigned long)migratetype,
 175                                        PB_migrate, PB_migrate_end);
 176}
 177
 178#ifdef CONFIG_DEBUG_VM
 179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 180{
 181        int ret = 0;
 182        unsigned seq;
 183        unsigned long pfn = page_to_pfn(page);
 184
 185        do {
 186                seq = zone_span_seqbegin(zone);
 187                if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
 188                        ret = 1;
 189                else if (pfn < zone->zone_start_pfn)
 190                        ret = 1;
 191        } while (zone_span_seqretry(zone, seq));
 192
 193        return ret;
 194}
 195
 196static int page_is_consistent(struct zone *zone, struct page *page)
 197{
 198        if (!pfn_valid_within(page_to_pfn(page)))
 199                return 0;
 200        if (zone != page_zone(page))
 201                return 0;
 202
 203        return 1;
 204}
 205/*
 206 * Temporary debugging check for pages not lying within a given zone.
 207 */
 208static int bad_range(struct zone *zone, struct page *page)
 209{
 210        if (page_outside_zone_boundaries(zone, page))
 211                return 1;
 212        if (!page_is_consistent(zone, page))
 213                return 1;
 214
 215        return 0;
 216}
 217#else
 218static inline int bad_range(struct zone *zone, struct page *page)
 219{
 220        return 0;
 221}
 222#endif
 223
 224static void bad_page(struct page *page)
 225{
 226        static unsigned long resume;
 227        static unsigned long nr_shown;
 228        static unsigned long nr_unshown;
 229
 230        /*
 231         * Allow a burst of 60 reports, then keep quiet for that minute;
 232         * or allow a steady drip of one report per second.
 233         */
 234        if (nr_shown == 60) {
 235                if (time_before(jiffies, resume)) {
 236                        nr_unshown++;
 237                        goto out;
 238                }
 239                if (nr_unshown) {
 240                        printk(KERN_ALERT
 241                              "BUG: Bad page state: %lu messages suppressed\n",
 242                                nr_unshown);
 243                        nr_unshown = 0;
 244                }
 245                nr_shown = 0;
 246        }
 247        if (nr_shown++ == 0)
 248                resume = jiffies + 60 * HZ;
 249
 250        printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 251                current->comm, page_to_pfn(page));
 252        printk(KERN_ALERT
 253                "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
 254                page, (void *)page->flags, page_count(page),
 255                page_mapcount(page), page->mapping, page->index);
 256
 257        dump_stack();
 258out:
 259        /* Leave bad fields for debug, except PageBuddy could make trouble */
 260        __ClearPageBuddy(page);
 261        add_taint(TAINT_BAD_PAGE);
 262}
 263
 264/*
 265 * Higher-order pages are called "compound pages".  They are structured thusly:
 266 *
 267 * The first PAGE_SIZE page is called the "head page".
 268 *
 269 * The remaining PAGE_SIZE pages are called "tail pages".
 270 *
 271 * All pages have PG_compound set.  All pages have their ->private pointing at
 272 * the head page (even the head page has this).
 273 *
 274 * The first tail page's ->lru.next holds the address of the compound page's
 275 * put_page() function.  Its ->lru.prev holds the order of allocation.
 276 * This usage means that zero-order pages may not be compound.
 277 */
 278
 279static void free_compound_page(struct page *page)
 280{
 281        __free_pages_ok(page, compound_order(page));
 282}
 283
 284void prep_compound_page(struct page *page, unsigned long order)
 285{
 286        int i;
 287        int nr_pages = 1 << order;
 288
 289        set_compound_page_dtor(page, free_compound_page);
 290        set_compound_order(page, order);
 291        __SetPageHead(page);
 292        for (i = 1; i < nr_pages; i++) {
 293                struct page *p = page + i;
 294
 295                __SetPageTail(p);
 296                p->first_page = page;
 297        }
 298}
 299
 300#ifdef CONFIG_HUGETLBFS
 301void prep_compound_gigantic_page(struct page *page, unsigned long order)
 302{
 303        int i;
 304        int nr_pages = 1 << order;
 305        struct page *p = page + 1;
 306
 307        set_compound_page_dtor(page, free_compound_page);
 308        set_compound_order(page, order);
 309        __SetPageHead(page);
 310        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 311                __SetPageTail(p);
 312                p->first_page = page;
 313        }
 314}
 315#endif
 316
 317static int destroy_compound_page(struct page *page, unsigned long order)
 318{
 319        int i;
 320        int nr_pages = 1 << order;
 321        int bad = 0;
 322
 323        if (unlikely(compound_order(page) != order) ||
 324            unlikely(!PageHead(page))) {
 325                bad_page(page);
 326                bad++;
 327        }
 328
 329        __ClearPageHead(page);
 330
 331        for (i = 1; i < nr_pages; i++) {
 332                struct page *p = page + i;
 333
 334                if (unlikely(!PageTail(p) || (p->first_page != page))) {
 335                        bad_page(page);
 336                        bad++;
 337                }
 338                __ClearPageTail(p);
 339        }
 340
 341        return bad;
 342}
 343
 344static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 345{
 346        int i;
 347
 348        /*
 349         * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 350         * and __GFP_HIGHMEM from hard or soft interrupt context.
 351         */
 352        VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 353        for (i = 0; i < (1 << order); i++)
 354                clear_highpage(page + i);
 355}
 356
 357static inline void set_page_order(struct page *page, int order)
 358{
 359        set_page_private(page, order);
 360        __SetPageBuddy(page);
 361}
 362
 363static inline void rmv_page_order(struct page *page)
 364{
 365        __ClearPageBuddy(page);
 366        set_page_private(page, 0);
 367}
 368
 369/*
 370 * Locate the struct page for both the matching buddy in our
 371 * pair (buddy1) and the combined O(n+1) page they form (page).
 372 *
 373 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 374 * the following equation:
 375 *     B2 = B1 ^ (1 << O)
 376 * For example, if the starting buddy (buddy2) is #8 its order
 377 * 1 buddy is #10:
 378 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 379 *
 380 * 2) Any buddy B will have an order O+1 parent P which
 381 * satisfies the following equation:
 382 *     P = B & ~(1 << O)
 383 *
 384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 385 */
 386static inline struct page *
 387__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
 388{
 389        unsigned long buddy_idx = page_idx ^ (1 << order);
 390
 391        return page + (buddy_idx - page_idx);
 392}
 393
 394static inline unsigned long
 395__find_combined_index(unsigned long page_idx, unsigned int order)
 396{
 397        return (page_idx & ~(1 << order));
 398}
 399
 400/*
 401 * This function checks whether a page is free && is the buddy
 402 * we can do coalesce a page and its buddy if
 403 * (a) the buddy is not in a hole &&
 404 * (b) the buddy is in the buddy system &&
 405 * (c) a page and its buddy have the same order &&
 406 * (d) a page and its buddy are in the same zone.
 407 *
 408 * For recording whether a page is in the buddy system, we use PG_buddy.
 409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
 410 *
 411 * For recording page's order, we use page_private(page).
 412 */
 413static inline int page_is_buddy(struct page *page, struct page *buddy,
 414                                                                int order)
 415{
 416        if (!pfn_valid_within(page_to_pfn(buddy)))
 417                return 0;
 418
 419        if (page_zone_id(page) != page_zone_id(buddy))
 420                return 0;
 421
 422        if (PageBuddy(buddy) && page_order(buddy) == order) {
 423                BUG_ON(page_count(buddy) != 0);
 424                return 1;
 425        }
 426        return 0;
 427}
 428
 429/*
 430 * Freeing function for a buddy system allocator.
 431 *
 432 * The concept of a buddy system is to maintain direct-mapped table
 433 * (containing bit values) for memory blocks of various "orders".
 434 * The bottom level table contains the map for the smallest allocatable
 435 * units of memory (here, pages), and each level above it describes
 436 * pairs of units from the levels below, hence, "buddies".
 437 * At a high level, all that happens here is marking the table entry
 438 * at the bottom level available, and propagating the changes upward
 439 * as necessary, plus some accounting needed to play nicely with other
 440 * parts of the VM system.
 441 * At each level, we keep a list of pages, which are heads of continuous
 442 * free pages of length of (1 << order) and marked with PG_buddy. Page's
 443 * order is recorded in page_private(page) field.
 444 * So when we are allocating or freeing one, we can derive the state of the
 445 * other.  That is, if we allocate a small block, and both were   
 446 * free, the remainder of the region must be split into blocks.   
 447 * If a block is freed, and its buddy is also free, then this
 448 * triggers coalescing into a block of larger size.            
 449 *
 450 * -- wli
 451 */
 452
 453static inline void __free_one_page(struct page *page,
 454                struct zone *zone, unsigned int order)
 455{
 456        unsigned long page_idx;
 457        int order_size = 1 << order;
 458        int migratetype = get_pageblock_migratetype(page);
 459
 460        if (unlikely(PageCompound(page)))
 461                if (unlikely(destroy_compound_page(page, order)))
 462                        return;
 463
 464        page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 465
 466        VM_BUG_ON(page_idx & (order_size - 1));
 467        VM_BUG_ON(bad_range(zone, page));
 468
 469        __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
 470        while (order < MAX_ORDER-1) {
 471                unsigned long combined_idx;
 472                struct page *buddy;
 473
 474                buddy = __page_find_buddy(page, page_idx, order);
 475                if (!page_is_buddy(page, buddy, order))
 476                        break;
 477
 478                /* Our buddy is free, merge with it and move up one order. */
 479                list_del(&buddy->lru);
 480                zone->free_area[order].nr_free--;
 481                rmv_page_order(buddy);
 482                combined_idx = __find_combined_index(page_idx, order);
 483                page = page + (combined_idx - page_idx);
 484                page_idx = combined_idx;
 485                order++;
 486        }
 487        set_page_order(page, order);
 488        list_add(&page->lru,
 489                &zone->free_area[order].free_list[migratetype]);
 490        zone->free_area[order].nr_free++;
 491}
 492
 493static inline int free_pages_check(struct page *page)
 494{
 495        free_page_mlock(page);
 496        if (unlikely(page_mapcount(page) |
 497                (page->mapping != NULL)  |
 498                (page_count(page) != 0)  |
 499                (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
 500                bad_page(page);
 501                return 1;
 502        }
 503        if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 504                page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 505        return 0;
 506}
 507
 508/*
 509 * Frees a list of pages. 
 510 * Assumes all pages on list are in same zone, and of same order.
 511 * count is the number of pages to free.
 512 *
 513 * If the zone was previously in an "all pages pinned" state then look to
 514 * see if this freeing clears that state.
 515 *
 516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 517 * pinned" detection logic.
 518 */
 519static void free_pages_bulk(struct zone *zone, int count,
 520                                        struct list_head *list, int order)
 521{
 522        spin_lock(&zone->lock);
 523        zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
 524        zone->pages_scanned = 0;
 525        while (count--) {
 526                struct page *page;
 527
 528                VM_BUG_ON(list_empty(list));
 529                page = list_entry(list->prev, struct page, lru);
 530                /* have to delete it as __free_one_page list manipulates */
 531                list_del(&page->lru);
 532                __free_one_page(page, zone, order);
 533        }
 534        spin_unlock(&zone->lock);
 535}
 536
 537static void free_one_page(struct zone *zone, struct page *page, int order)
 538{
 539        spin_lock(&zone->lock);
 540        zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
 541        zone->pages_scanned = 0;
 542        __free_one_page(page, zone, order);
 543        spin_unlock(&zone->lock);
 544}
 545
 546static void __free_pages_ok(struct page *page, unsigned int order)
 547{
 548        unsigned long flags;
 549        int i;
 550        int bad = 0;
 551
 552        for (i = 0 ; i < (1 << order) ; ++i)
 553                bad += free_pages_check(page + i);
 554        if (bad)
 555                return;
 556
 557        if (!PageHighMem(page)) {
 558                debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
 559                debug_check_no_obj_freed(page_address(page),
 560                                           PAGE_SIZE << order);
 561        }
 562        arch_free_page(page, order);
 563        kernel_map_pages(page, 1 << order, 0);
 564
 565        local_irq_save(flags);
 566        __count_vm_events(PGFREE, 1 << order);
 567        free_one_page(page_zone(page), page, order);
 568        local_irq_restore(flags);
 569}
 570
 571/*
 572 * permit the bootmem allocator to evade page validation on high-order frees
 573 */
 574void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
 575{
 576        if (order == 0) {
 577                __ClearPageReserved(page);
 578                set_page_count(page, 0);
 579                set_page_refcounted(page);
 580                __free_page(page);
 581        } else {
 582                int loop;
 583
 584                prefetchw(page);
 585                for (loop = 0; loop < BITS_PER_LONG; loop++) {
 586                        struct page *p = &page[loop];
 587
 588                        if (loop + 1 < BITS_PER_LONG)
 589                                prefetchw(p + 1);
 590                        __ClearPageReserved(p);
 591                        set_page_count(p, 0);
 592                }
 593
 594                set_page_refcounted(page);
 595                __free_pages(page, order);
 596        }
 597}
 598
 599
 600/*
 601 * The order of subdivision here is critical for the IO subsystem.
 602 * Please do not alter this order without good reasons and regression
 603 * testing. Specifically, as large blocks of memory are subdivided,
 604 * the order in which smaller blocks are delivered depends on the order
 605 * they're subdivided in this function. This is the primary factor
 606 * influencing the order in which pages are delivered to the IO
 607 * subsystem according to empirical testing, and this is also justified
 608 * by considering the behavior of a buddy system containing a single
 609 * large block of memory acted on by a series of small allocations.
 610 * This behavior is a critical factor in sglist merging's success.
 611 *
 612 * -- wli
 613 */
 614static inline void expand(struct zone *zone, struct page *page,
 615        int low, int high, struct free_area *area,
 616        int migratetype)
 617{
 618        unsigned long size = 1 << high;
 619
 620        while (high > low) {
 621                area--;
 622                high--;
 623                size >>= 1;
 624                VM_BUG_ON(bad_range(zone, &page[size]));
 625                list_add(&page[size].lru, &area->free_list[migratetype]);
 626                area->nr_free++;
 627                set_page_order(&page[size], high);
 628        }
 629}
 630
 631/*
 632 * This page is about to be returned from the page allocator
 633 */
 634static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 635{
 636        if (unlikely(page_mapcount(page) |
 637                (page->mapping != NULL)  |
 638                (page_count(page) != 0)  |
 639                (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
 640                bad_page(page);
 641                return 1;
 642        }
 643
 644        set_page_private(page, 0);
 645        set_page_refcounted(page);
 646
 647        arch_alloc_page(page, order);
 648        kernel_map_pages(page, 1 << order, 1);
 649
 650        if (gfp_flags & __GFP_ZERO)
 651                prep_zero_page(page, order, gfp_flags);
 652
 653        if (order && (gfp_flags & __GFP_COMP))
 654                prep_compound_page(page, order);
 655
 656        return 0;
 657}
 658
 659/*
 660 * Go through the free lists for the given migratetype and remove
 661 * the smallest available page from the freelists
 662 */
 663static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 664                                                int migratetype)
 665{
 666        unsigned int current_order;
 667        struct free_area * area;
 668        struct page *page;
 669
 670        /* Find a page of the appropriate size in the preferred list */
 671        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 672                area = &(zone->free_area[current_order]);
 673                if (list_empty(&area->free_list[migratetype]))
 674                        continue;
 675
 676                page = list_entry(area->free_list[migratetype].next,
 677                                                        struct page, lru);
 678                list_del(&page->lru);
 679                rmv_page_order(page);
 680                area->nr_free--;
 681                __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
 682                expand(zone, page, order, current_order, area, migratetype);
 683                return page;
 684        }
 685
 686        return NULL;
 687}
 688
 689
 690/*
 691 * This array describes the order lists are fallen back to when
 692 * the free lists for the desirable migrate type are depleted
 693 */
 694static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
 695        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 696        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 697        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 698        [MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
 699};
 700
 701/*
 702 * Move the free pages in a range to the free lists of the requested type.
 703 * Note that start_page and end_pages are not aligned on a pageblock
 704 * boundary. If alignment is required, use move_freepages_block()
 705 */
 706static int move_freepages(struct zone *zone,
 707                          struct page *start_page, struct page *end_page,
 708                          int migratetype)
 709{
 710        struct page *page;
 711        unsigned long order;
 712        int pages_moved = 0;
 713
 714#ifndef CONFIG_HOLES_IN_ZONE
 715        /*
 716         * page_zone is not safe to call in this context when
 717         * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 718         * anyway as we check zone boundaries in move_freepages_block().
 719         * Remove at a later date when no bug reports exist related to
 720         * grouping pages by mobility
 721         */
 722        BUG_ON(page_zone(start_page) != page_zone(end_page));
 723#endif
 724
 725        for (page = start_page; page <= end_page;) {
 726                /* Make sure we are not inadvertently changing nodes */
 727                VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
 728
 729                if (!pfn_valid_within(page_to_pfn(page))) {
 730                        page++;
 731                        continue;
 732                }
 733
 734                if (!PageBuddy(page)) {
 735                        page++;
 736                        continue;
 737                }
 738
 739                order = page_order(page);
 740                list_del(&page->lru);
 741                list_add(&page->lru,
 742                        &zone->free_area[order].free_list[migratetype]);
 743                page += 1 << order;
 744                pages_moved += 1 << order;
 745        }
 746
 747        return pages_moved;
 748}
 749
 750static int move_freepages_block(struct zone *zone, struct page *page,
 751                                int migratetype)
 752{
 753        unsigned long start_pfn, end_pfn;
 754        struct page *start_page, *end_page;
 755
 756        start_pfn = page_to_pfn(page);
 757        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 758        start_page = pfn_to_page(start_pfn);
 759        end_page = start_page + pageblock_nr_pages - 1;
 760        end_pfn = start_pfn + pageblock_nr_pages - 1;
 761
 762        /* Do not cross zone boundaries */
 763        if (start_pfn < zone->zone_start_pfn)
 764                start_page = page;
 765        if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
 766                return 0;
 767
 768        return move_freepages(zone, start_page, end_page, migratetype);
 769}
 770
 771/* Remove an element from the buddy allocator from the fallback list */
 772static struct page *__rmqueue_fallback(struct zone *zone, int order,
 773                                                int start_migratetype)
 774{
 775        struct free_area * area;
 776        int current_order;
 777        struct page *page;
 778        int migratetype, i;
 779
 780        /* Find the largest possible block of pages in the other list */
 781        for (current_order = MAX_ORDER-1; current_order >= order;
 782                                                --current_order) {
 783                for (i = 0; i < MIGRATE_TYPES - 1; i++) {
 784                        migratetype = fallbacks[start_migratetype][i];
 785
 786                        /* MIGRATE_RESERVE handled later if necessary */
 787                        if (migratetype == MIGRATE_RESERVE)
 788                                continue;
 789
 790                        area = &(zone->free_area[current_order]);
 791                        if (list_empty(&area->free_list[migratetype]))
 792                                continue;
 793
 794                        page = list_entry(area->free_list[migratetype].next,
 795                                        struct page, lru);
 796                        area->nr_free--;
 797
 798                        /*
 799                         * If breaking a large block of pages, move all free
 800                         * pages to the preferred allocation list. If falling
 801                         * back for a reclaimable kernel allocation, be more
 802                         * agressive about taking ownership of free pages
 803                         */
 804                        if (unlikely(current_order >= (pageblock_order >> 1)) ||
 805                                        start_migratetype == MIGRATE_RECLAIMABLE) {
 806                                unsigned long pages;
 807                                pages = move_freepages_block(zone, page,
 808                                                                start_migratetype);
 809
 810                                /* Claim the whole block if over half of it is free */
 811                                if (pages >= (1 << (pageblock_order-1)))
 812                                        set_pageblock_migratetype(page,
 813                                                                start_migratetype);
 814
 815                                migratetype = start_migratetype;
 816                        }
 817
 818                        /* Remove the page from the freelists */
 819                        list_del(&page->lru);
 820                        rmv_page_order(page);
 821                        __mod_zone_page_state(zone, NR_FREE_PAGES,
 822                                                        -(1UL << order));
 823
 824                        if (current_order == pageblock_order)
 825                                set_pageblock_migratetype(page,
 826                                                        start_migratetype);
 827
 828                        expand(zone, page, order, current_order, area, migratetype);
 829                        return page;
 830                }
 831        }
 832
 833        /* Use MIGRATE_RESERVE rather than fail an allocation */
 834        return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
 835}
 836
 837/*
 838 * Do the hard work of removing an element from the buddy allocator.
 839 * Call me with the zone->lock already held.
 840 */
 841static struct page *__rmqueue(struct zone *zone, unsigned int order,
 842                                                int migratetype)
 843{
 844        struct page *page;
 845
 846        page = __rmqueue_smallest(zone, order, migratetype);
 847
 848        if (unlikely(!page))
 849                page = __rmqueue_fallback(zone, order, migratetype);
 850
 851        return page;
 852}
 853
 854/* 
 855 * Obtain a specified number of elements from the buddy allocator, all under
 856 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 857 * Returns the number of new pages which were placed at *list.
 858 */
 859static int rmqueue_bulk(struct zone *zone, unsigned int order, 
 860                        unsigned long count, struct list_head *list,
 861                        int migratetype)
 862{
 863        int i;
 864        
 865        spin_lock(&zone->lock);
 866        for (i = 0; i < count; ++i) {
 867                struct page *page = __rmqueue(zone, order, migratetype);
 868                if (unlikely(page == NULL))
 869                        break;
 870
 871                /*
 872                 * Split buddy pages returned by expand() are received here
 873                 * in physical page order. The page is added to the callers and
 874                 * list and the list head then moves forward. From the callers
 875                 * perspective, the linked list is ordered by page number in
 876                 * some conditions. This is useful for IO devices that can
 877                 * merge IO requests if the physical pages are ordered
 878                 * properly.
 879                 */
 880                list_add(&page->lru, list);
 881                set_page_private(page, migratetype);
 882                list = &page->lru;
 883        }
 884        spin_unlock(&zone->lock);
 885        return i;
 886}
 887
 888#ifdef CONFIG_NUMA
 889/*
 890 * Called from the vmstat counter updater to drain pagesets of this
 891 * currently executing processor on remote nodes after they have
 892 * expired.
 893 *
 894 * Note that this function must be called with the thread pinned to
 895 * a single processor.
 896 */
 897void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
 898{
 899        unsigned long flags;
 900        int to_drain;
 901
 902        local_irq_save(flags);
 903        if (pcp->count >= pcp->batch)
 904                to_drain = pcp->batch;
 905        else
 906                to_drain = pcp->count;
 907        free_pages_bulk(zone, to_drain, &pcp->list, 0);
 908        pcp->count -= to_drain;
 909        local_irq_restore(flags);
 910}
 911#endif
 912
 913/*
 914 * Drain pages of the indicated processor.
 915 *
 916 * The processor must either be the current processor and the
 917 * thread pinned to the current processor or a processor that
 918 * is not online.
 919 */
 920static void drain_pages(unsigned int cpu)
 921{
 922        unsigned long flags;
 923        struct zone *zone;
 924
 925        for_each_populated_zone(zone) {
 926                struct per_cpu_pageset *pset;
 927                struct per_cpu_pages *pcp;
 928
 929                pset = zone_pcp(zone, cpu);
 930
 931                pcp = &pset->pcp;
 932                local_irq_save(flags);
 933                free_pages_bulk(zone, pcp->count, &pcp->list, 0);
 934                pcp->count = 0;
 935                local_irq_restore(flags);
 936        }
 937}
 938
 939/*
 940 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 941 */
 942void drain_local_pages(void *arg)
 943{
 944        drain_pages(smp_processor_id());
 945}
 946
 947/*
 948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
 949 */
 950void drain_all_pages(void)
 951{
 952        on_each_cpu(drain_local_pages, NULL, 1);
 953}
 954
 955#ifdef CONFIG_HIBERNATION
 956
 957void mark_free_pages(struct zone *zone)
 958{
 959        unsigned long pfn, max_zone_pfn;
 960        unsigned long flags;
 961        int order, t;
 962        struct list_head *curr;
 963
 964        if (!zone->spanned_pages)
 965                return;
 966
 967        spin_lock_irqsave(&zone->lock, flags);
 968
 969        max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
 970        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 971                if (pfn_valid(pfn)) {
 972                        struct page *page = pfn_to_page(pfn);
 973
 974                        if (!swsusp_page_is_forbidden(page))
 975                                swsusp_unset_page_free(page);
 976                }
 977
 978        for_each_migratetype_order(order, t) {
 979                list_for_each(curr, &zone->free_area[order].free_list[t]) {
 980                        unsigned long i;
 981
 982                        pfn = page_to_pfn(list_entry(curr, struct page, lru));
 983                        for (i = 0; i < (1UL << order); i++)
 984                                swsusp_set_page_free(pfn_to_page(pfn + i));
 985                }
 986        }
 987        spin_unlock_irqrestore(&zone->lock, flags);
 988}
 989#endif /* CONFIG_PM */
 990
 991/*
 992 * Free a 0-order page
 993 */
 994static void free_hot_cold_page(struct page *page, int cold)
 995{
 996        struct zone *zone = page_zone(page);
 997        struct per_cpu_pages *pcp;
 998        unsigned long flags;
 999
1000        if (PageAnon(page))
1001                page->mapping = NULL;
1002        if (free_pages_check(page))
1003                return;
1004
1005        if (!PageHighMem(page)) {
1006                debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1007                debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1008        }
1009        arch_free_page(page, 0);
1010        kernel_map_pages(page, 1, 0);
1011
1012        pcp = &zone_pcp(zone, get_cpu())->pcp;
1013        local_irq_save(flags);
1014        __count_vm_event(PGFREE);
1015        if (cold)
1016                list_add_tail(&page->lru, &pcp->list);
1017        else
1018                list_add(&page->lru, &pcp->list);
1019        set_page_private(page, get_pageblock_migratetype(page));
1020        pcp->count++;
1021        if (pcp->count >= pcp->high) {
1022                free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1023                pcp->count -= pcp->batch;
1024        }
1025        local_irq_restore(flags);
1026        put_cpu();
1027}
1028
1029void free_hot_page(struct page *page)
1030{
1031        free_hot_cold_page(page, 0);
1032}
1033        
1034void free_cold_page(struct page *page)
1035{
1036        free_hot_cold_page(page, 1);
1037}
1038
1039/*
1040 * split_page takes a non-compound higher-order page, and splits it into
1041 * n (1<<order) sub-pages: page[0..n]
1042 * Each sub-page must be freed individually.
1043 *
1044 * Note: this is probably too low level an operation for use in drivers.
1045 * Please consult with lkml before using this in your driver.
1046 */
1047void split_page(struct page *page, unsigned int order)
1048{
1049        int i;
1050
1051        VM_BUG_ON(PageCompound(page));
1052        VM_BUG_ON(!page_count(page));
1053        for (i = 1; i < (1 << order); i++)
1054                set_page_refcounted(page + i);
1055}
1056
1057/*
1058 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1059 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1060 * or two.
1061 */
1062static struct page *buffered_rmqueue(struct zone *preferred_zone,
1063                        struct zone *zone, int order, gfp_t gfp_flags)
1064{
1065        unsigned long flags;
1066        struct page *page;
1067        int cold = !!(gfp_flags & __GFP_COLD);
1068        int cpu;
1069        int migratetype = allocflags_to_migratetype(gfp_flags);
1070
1071again:
1072        cpu  = get_cpu();
1073        if (likely(order == 0)) {
1074                struct per_cpu_pages *pcp;
1075
1076                pcp = &zone_pcp(zone, cpu)->pcp;
1077                local_irq_save(flags);
1078                if (!pcp->count) {
1079                        pcp->count = rmqueue_bulk(zone, 0,
1080                                        pcp->batch, &pcp->list, migratetype);
1081                        if (unlikely(!pcp->count))
1082                                goto failed;
1083                }
1084
1085                /* Find a page of the appropriate migrate type */
1086                if (cold) {
1087                        list_for_each_entry_reverse(page, &pcp->list, lru)
1088                                if (page_private(page) == migratetype)
1089                                        break;
1090                } else {
1091                        list_for_each_entry(page, &pcp->list, lru)
1092                                if (page_private(page) == migratetype)
1093                                        break;
1094                }
1095
1096                /* Allocate more to the pcp list if necessary */
1097                if (unlikely(&page->lru == &pcp->list)) {
1098                        pcp->count += rmqueue_bulk(zone, 0,
1099                                        pcp->batch, &pcp->list, migratetype);
1100                        page = list_entry(pcp->list.next, struct page, lru);
1101                }
1102
1103                list_del(&page->lru);
1104                pcp->count--;
1105        } else {
1106                spin_lock_irqsave(&zone->lock, flags);
1107                page = __rmqueue(zone, order, migratetype);
1108                spin_unlock(&zone->lock);
1109                if (!page)
1110                        goto failed;
1111        }
1112
1113        __count_zone_vm_events(PGALLOC, zone, 1 << order);
1114        zone_statistics(preferred_zone, zone);
1115        local_irq_restore(flags);
1116        put_cpu();
1117
1118        VM_BUG_ON(bad_range(zone, page));
1119        if (prep_new_page(page, order, gfp_flags))
1120                goto again;
1121        return page;
1122
1123failed:
1124        local_irq_restore(flags);
1125        put_cpu();
1126        return NULL;
1127}
1128
1129#define ALLOC_NO_WATERMARKS     0x01 /* don't check watermarks at all */
1130#define ALLOC_WMARK_MIN         0x02 /* use pages_min watermark */
1131#define ALLOC_WMARK_LOW         0x04 /* use pages_low watermark */
1132#define ALLOC_WMARK_HIGH        0x08 /* use pages_high watermark */
1133#define ALLOC_HARDER            0x10 /* try to alloc harder */
1134#define ALLOC_HIGH              0x20 /* __GFP_HIGH set */
1135#define ALLOC_CPUSET            0x40 /* check for correct cpuset */
1136
1137#ifdef CONFIG_FAIL_PAGE_ALLOC
1138
1139static struct fail_page_alloc_attr {
1140        struct fault_attr attr;
1141
1142        u32 ignore_gfp_highmem;
1143        u32 ignore_gfp_wait;
1144        u32 min_order;
1145
1146#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1147
1148        struct dentry *ignore_gfp_highmem_file;
1149        struct dentry *ignore_gfp_wait_file;
1150        struct dentry *min_order_file;
1151
1152#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1153
1154} fail_page_alloc = {
1155        .attr = FAULT_ATTR_INITIALIZER,
1156        .ignore_gfp_wait = 1,
1157        .ignore_gfp_highmem = 1,
1158        .min_order = 1,
1159};
1160
1161static int __init setup_fail_page_alloc(char *str)
1162{
1163        return setup_fault_attr(&fail_page_alloc.attr, str);
1164}
1165__setup("fail_page_alloc=", setup_fail_page_alloc);
1166
1167static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1168{
1169        if (order < fail_page_alloc.min_order)
1170                return 0;
1171        if (gfp_mask & __GFP_NOFAIL)
1172                return 0;
1173        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1174                return 0;
1175        if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1176                return 0;
1177
1178        return should_fail(&fail_page_alloc.attr, 1 << order);
1179}
1180
1181#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1182
1183static int __init fail_page_alloc_debugfs(void)
1184{
1185        mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1186        struct dentry *dir;
1187        int err;
1188
1189        err = init_fault_attr_dentries(&fail_page_alloc.attr,
1190                                       "fail_page_alloc");
1191        if (err)
1192                return err;
1193        dir = fail_page_alloc.attr.dentries.dir;
1194
1195        fail_page_alloc.ignore_gfp_wait_file =
1196                debugfs_create_bool("ignore-gfp-wait", mode, dir,
1197                                      &fail_page_alloc.ignore_gfp_wait);
1198
1199        fail_page_alloc.ignore_gfp_highmem_file =
1200                debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1201                                      &fail_page_alloc.ignore_gfp_highmem);
1202        fail_page_alloc.min_order_file =
1203                debugfs_create_u32("min-order", mode, dir,
1204                                   &fail_page_alloc.min_order);
1205
1206        if (!fail_page_alloc.ignore_gfp_wait_file ||
1207            !fail_page_alloc.ignore_gfp_highmem_file ||
1208            !fail_page_alloc.min_order_file) {
1209                err = -ENOMEM;
1210                debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1211                debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1212                debugfs_remove(fail_page_alloc.min_order_file);
1213                cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1214        }
1215
1216        return err;
1217}
1218
1219late_initcall(fail_page_alloc_debugfs);
1220
1221#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1222
1223#else /* CONFIG_FAIL_PAGE_ALLOC */
1224
1225static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1226{
1227        return 0;
1228}
1229
1230#endif /* CONFIG_FAIL_PAGE_ALLOC */
1231
1232/*
1233 * Return 1 if free pages are above 'mark'. This takes into account the order
1234 * of the allocation.
1235 */
1236int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1237                      int classzone_idx, int alloc_flags)
1238{
1239        /* free_pages my go negative - that's OK */
1240        long min = mark;
1241        long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1242        int o;
1243
1244        if (alloc_flags & ALLOC_HIGH)
1245                min -= min / 2;
1246        if (alloc_flags & ALLOC_HARDER)
1247                min -= min / 4;
1248
1249        if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1250                return 0;
1251        for (o = 0; o < order; o++) {
1252                /* At the next order, this order's pages become unavailable */
1253                free_pages -= z->free_area[o].nr_free << o;
1254
1255                /* Require fewer higher order pages to be free */
1256                min >>= 1;
1257
1258                if (free_pages <= min)
1259                        return 0;
1260        }
1261        return 1;
1262}
1263
1264#ifdef CONFIG_NUMA
1265/*
1266 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1267 * skip over zones that are not allowed by the cpuset, or that have
1268 * been recently (in last second) found to be nearly full.  See further
1269 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1270 * that have to skip over a lot of full or unallowed zones.
1271 *
1272 * If the zonelist cache is present in the passed in zonelist, then
1273 * returns a pointer to the allowed node mask (either the current
1274 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1275 *
1276 * If the zonelist cache is not available for this zonelist, does
1277 * nothing and returns NULL.
1278 *
1279 * If the fullzones BITMAP in the zonelist cache is stale (more than
1280 * a second since last zap'd) then we zap it out (clear its bits.)
1281 *
1282 * We hold off even calling zlc_setup, until after we've checked the
1283 * first zone in the zonelist, on the theory that most allocations will
1284 * be satisfied from that first zone, so best to examine that zone as
1285 * quickly as we can.
1286 */
1287static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1288{
1289        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1290        nodemask_t *allowednodes;       /* zonelist_cache approximation */
1291
1292        zlc = zonelist->zlcache_ptr;
1293        if (!zlc)
1294                return NULL;
1295
1296        if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1297                bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1298                zlc->last_full_zap = jiffies;
1299        }
1300
1301        allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1302                                        &cpuset_current_mems_allowed :
1303                                        &node_states[N_HIGH_MEMORY];
1304        return allowednodes;
1305}
1306
1307/*
1308 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1309 * if it is worth looking at further for free memory:
1310 *  1) Check that the zone isn't thought to be full (doesn't have its
1311 *     bit set in the zonelist_cache fullzones BITMAP).
1312 *  2) Check that the zones node (obtained from the zonelist_cache
1313 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1314 * Return true (non-zero) if zone is worth looking at further, or
1315 * else return false (zero) if it is not.
1316 *
1317 * This check -ignores- the distinction between various watermarks,
1318 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1319 * found to be full for any variation of these watermarks, it will
1320 * be considered full for up to one second by all requests, unless
1321 * we are so low on memory on all allowed nodes that we are forced
1322 * into the second scan of the zonelist.
1323 *
1324 * In the second scan we ignore this zonelist cache and exactly
1325 * apply the watermarks to all zones, even it is slower to do so.
1326 * We are low on memory in the second scan, and should leave no stone
1327 * unturned looking for a free page.
1328 */
1329static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1330                                                nodemask_t *allowednodes)
1331{
1332        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1333        int i;                          /* index of *z in zonelist zones */
1334        int n;                          /* node that zone *z is on */
1335
1336        zlc = zonelist->zlcache_ptr;
1337        if (!zlc)
1338                return 1;
1339
1340        i = z - zonelist->_zonerefs;
1341        n = zlc->z_to_n[i];
1342
1343        /* This zone is worth trying if it is allowed but not full */
1344        return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345}
1346
1347/*
1348 * Given 'z' scanning a zonelist, set the corresponding bit in
1349 * zlc->fullzones, so that subsequent attempts to allocate a page
1350 * from that zone don't waste time re-examining it.
1351 */
1352static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1353{
1354        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1355        int i;                          /* index of *z in zonelist zones */
1356
1357        zlc = zonelist->zlcache_ptr;
1358        if (!zlc)
1359                return;
1360
1361        i = z - zonelist->_zonerefs;
1362
1363        set_bit(i, zlc->fullzones);
1364}
1365
1366#else   /* CONFIG_NUMA */
1367
1368static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1369{
1370        return NULL;
1371}
1372
1373static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1374                                nodemask_t *allowednodes)
1375{
1376        return 1;
1377}
1378
1379static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1380{
1381}
1382#endif  /* CONFIG_NUMA */
1383
1384/*
1385 * get_page_from_freelist goes through the zonelist trying to allocate
1386 * a page.
1387 */
1388static struct page *
1389get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1390                struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1391{
1392        struct zoneref *z;
1393        struct page *page = NULL;
1394        int classzone_idx;
1395        struct zone *zone, *preferred_zone;
1396        nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1397        int zlc_active = 0;             /* set if using zonelist_cache */
1398        int did_zlc_setup = 0;          /* just call zlc_setup() one time */
1399
1400        (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1401                                                        &preferred_zone);
1402        if (!preferred_zone)
1403                return NULL;
1404
1405        classzone_idx = zone_idx(preferred_zone);
1406
1407zonelist_scan:
1408        /*
1409         * Scan zonelist, looking for a zone with enough free.
1410         * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411         */
1412        for_each_zone_zonelist_nodemask(zone, z, zonelist,
1413                                                high_zoneidx, nodemask) {
1414                if (NUMA_BUILD && zlc_active &&
1415                        !zlc_zone_worth_trying(zonelist, z, allowednodes))
1416                                continue;
1417                if ((alloc_flags & ALLOC_CPUSET) &&
1418                        !cpuset_zone_allowed_softwall(zone, gfp_mask))
1419                                goto try_next_zone;
1420
1421                if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422                        unsigned long mark;
1423                        if (alloc_flags & ALLOC_WMARK_MIN)
1424                                mark = zone->pages_min;
1425                        else if (alloc_flags & ALLOC_WMARK_LOW)
1426                                mark = zone->pages_low;
1427                        else
1428                                mark = zone->pages_high;
1429                        if (!zone_watermark_ok(zone, order, mark,
1430                                    classzone_idx, alloc_flags)) {
1431                                if (!zone_reclaim_mode ||
1432                                    !zone_reclaim(zone, gfp_mask, order))
1433                                        goto this_zone_full;
1434                        }
1435                }
1436
1437                page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1438                if (page)
1439                        break;
1440this_zone_full:
1441                if (NUMA_BUILD)
1442                        zlc_mark_zone_full(zonelist, z);
1443try_next_zone:
1444                if (NUMA_BUILD && !did_zlc_setup) {
1445                        /* we do zlc_setup after the first zone is tried */
1446                        allowednodes = zlc_setup(zonelist, alloc_flags);
1447                        zlc_active = 1;
1448                        did_zlc_setup = 1;
1449                }
1450        }
1451
1452        if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453                /* Disable zlc cache for second zonelist scan */
1454                zlc_active = 0;
1455                goto zonelist_scan;
1456        }
1457        return page;
1458}
1459
1460/*
1461 * This is the 'heart' of the zoned buddy allocator.
1462 */
1463struct page *
1464__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1465                        struct zonelist *zonelist, nodemask_t *nodemask)
1466{
1467        const gfp_t wait = gfp_mask & __GFP_WAIT;
1468        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1469        struct zoneref *z;
1470        struct zone *zone;
1471        struct page *page;
1472        struct reclaim_state reclaim_state;
1473        struct task_struct *p = current;
1474        int do_retry;
1475        int alloc_flags;
1476        unsigned long did_some_progress;
1477        unsigned long pages_reclaimed = 0;
1478
1479        lockdep_trace_alloc(gfp_mask);
1480
1481        might_sleep_if(wait);
1482
1483        if (should_fail_alloc_page(gfp_mask, order))
1484                return NULL;
1485
1486restart:
1487        z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1488
1489        if (unlikely(!z->zone)) {
1490                /*
1491                 * Happens if we have an empty zonelist as a result of
1492                 * GFP_THISNODE being used on a memoryless node
1493                 */
1494                return NULL;
1495        }
1496
1497        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1498                        zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1499        if (page)
1500                goto got_pg;
1501
1502        /*
1503         * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1504         * __GFP_NOWARN set) should not cause reclaim since the subsystem
1505         * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1506         * using a larger set of nodes after it has established that the
1507         * allowed per node queues are empty and that nodes are
1508         * over allocated.
1509         */
1510        if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1511                goto nopage;
1512
1513        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1514                wakeup_kswapd(zone, order);
1515
1516        /*
1517         * OK, we're below the kswapd watermark and have kicked background
1518         * reclaim. Now things get more complex, so set up alloc_flags according
1519         * to how we want to proceed.
1520         *
1521         * The caller may dip into page reserves a bit more if the caller
1522         * cannot run direct reclaim, or if the caller has realtime scheduling
1523         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1524         * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1525         */
1526        alloc_flags = ALLOC_WMARK_MIN;
1527        if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1528                alloc_flags |= ALLOC_HARDER;
1529        if (gfp_mask & __GFP_HIGH)
1530                alloc_flags |= ALLOC_HIGH;
1531        if (wait)
1532                alloc_flags |= ALLOC_CPUSET;
1533
1534        /*
1535         * Go through the zonelist again. Let __GFP_HIGH and allocations
1536         * coming from realtime tasks go deeper into reserves.
1537         *
1538         * This is the last chance, in general, before the goto nopage.
1539         * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1540         * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1541         */
1542        page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1543                                                high_zoneidx, alloc_flags);
1544        if (page)
1545                goto got_pg;
1546
1547        /* This allocation should allow future memory freeing. */
1548
1549rebalance:
1550        if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1551                        && !in_interrupt()) {
1552                if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1553nofail_alloc:
1554                        /* go through the zonelist yet again, ignoring mins */
1555                        page = get_page_from_freelist(gfp_mask, nodemask, order,
1556                                zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1557                        if (page)
1558                                goto got_pg;
1559                        if (gfp_mask & __GFP_NOFAIL) {
1560                                congestion_wait(WRITE, HZ/50);
1561                                goto nofail_alloc;
1562                        }
1563                }
1564                goto nopage;
1565        }
1566
1567        /* Atomic allocations - we can't balance anything */
1568        if (!wait)
1569                goto nopage;
1570
1571        cond_resched();
1572
1573        /* We now go into synchronous reclaim */
1574        cpuset_memory_pressure_bump();
1575        /*
1576         * The task's cpuset might have expanded its set of allowable nodes
1577         */
1578        cpuset_update_task_memory_state();
1579        p->flags |= PF_MEMALLOC;
1580
1581        lockdep_set_current_reclaim_state(gfp_mask);
1582        reclaim_state.reclaimed_slab = 0;
1583        p->reclaim_state = &reclaim_state;
1584
1585        did_some_progress = try_to_free_pages(zonelist, order,
1586                                                gfp_mask, nodemask);
1587
1588        p->reclaim_state = NULL;
1589        lockdep_clear_current_reclaim_state();
1590        p->flags &= ~PF_MEMALLOC;
1591
1592        cond_resched();
1593
1594        if (order != 0)
1595                drain_all_pages();
1596
1597        if (likely(did_some_progress)) {
1598                page = get_page_from_freelist(gfp_mask, nodemask, order,
1599                                        zonelist, high_zoneidx, alloc_flags);
1600                if (page)
1601                        goto got_pg;
1602        } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1603                if (!try_set_zone_oom(zonelist, gfp_mask)) {
1604                        schedule_timeout_uninterruptible(1);
1605                        goto restart;
1606                }
1607
1608                /*
1609                 * Go through the zonelist yet one more time, keep
1610                 * very high watermark here, this is only to catch
1611                 * a parallel oom killing, we must fail if we're still
1612                 * under heavy pressure.
1613                 */
1614                page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1615                        order, zonelist, high_zoneidx,
1616                        ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1617                if (page) {
1618                        clear_zonelist_oom(zonelist, gfp_mask);
1619                        goto got_pg;
1620                }
1621
1622                /* The OOM killer will not help higher order allocs so fail */
1623                if (order > PAGE_ALLOC_COSTLY_ORDER) {
1624                        clear_zonelist_oom(zonelist, gfp_mask);
1625                        goto nopage;
1626                }
1627
1628                out_of_memory(zonelist, gfp_mask, order);
1629                clear_zonelist_oom(zonelist, gfp_mask);
1630                goto restart;
1631        }
1632
1633        /*
1634         * Don't let big-order allocations loop unless the caller explicitly
1635         * requests that.  Wait for some write requests to complete then retry.
1636         *
1637         * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1638         * means __GFP_NOFAIL, but that may not be true in other
1639         * implementations.
1640         *
1641         * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1642         * specified, then we retry until we no longer reclaim any pages
1643         * (above), or we've reclaimed an order of pages at least as
1644         * large as the allocation's order. In both cases, if the
1645         * allocation still fails, we stop retrying.
1646         */
1647        pages_reclaimed += did_some_progress;
1648        do_retry = 0;
1649        if (!(gfp_mask & __GFP_NORETRY)) {
1650                if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1651                        do_retry = 1;
1652                } else {
1653                        if (gfp_mask & __GFP_REPEAT &&
1654                                pages_reclaimed < (1 << order))
1655                                        do_retry = 1;
1656                }
1657                if (gfp_mask & __GFP_NOFAIL)
1658                        do_retry = 1;
1659        }
1660        if (do_retry) {
1661                congestion_wait(WRITE, HZ/50);
1662                goto rebalance;
1663        }
1664
1665nopage:
1666        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1667                printk(KERN_WARNING "%s: page allocation failure."
1668                        " order:%d, mode:0x%x\n",
1669                        p->comm, order, gfp_mask);
1670                dump_stack();
1671                show_mem();
1672        }
1673got_pg:
1674        return page;
1675}
1676EXPORT_SYMBOL(__alloc_pages_internal);
1677
1678/*
1679 * Common helper functions.
1680 */
1681unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1682{
1683        struct page * page;
1684        page = alloc_pages(gfp_mask, order);
1685        if (!page)
1686                return 0;
1687        return (unsigned long) page_address(page);
1688}
1689
1690EXPORT_SYMBOL(__get_free_pages);
1691
1692unsigned long get_zeroed_page(gfp_t gfp_mask)
1693{
1694        struct page * page;
1695
1696        /*
1697         * get_zeroed_page() returns a 32-bit address, which cannot represent
1698         * a highmem page
1699         */
1700        VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1701
1702        page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1703        if (page)
1704                return (unsigned long) page_address(page);
1705        return 0;
1706}
1707
1708EXPORT_SYMBOL(get_zeroed_page);
1709
1710void __pagevec_free(struct pagevec *pvec)
1711{
1712        int i = pagevec_count(pvec);
1713
1714        while (--i >= 0)
1715                free_hot_cold_page(pvec->pages[i], pvec->cold);
1716}
1717
1718void __free_pages(struct page *page, unsigned int order)
1719{
1720        if (put_page_testzero(page)) {
1721                if (order == 0)
1722                        free_hot_page(page);
1723                else
1724                        __free_pages_ok(page, order);
1725        }
1726}
1727
1728EXPORT_SYMBOL(__free_pages);
1729
1730void free_pages(unsigned long addr, unsigned int order)
1731{
1732        if (addr != 0) {
1733                VM_BUG_ON(!virt_addr_valid((void *)addr));
1734                __free_pages(virt_to_page((void *)addr), order);
1735        }
1736}
1737
1738EXPORT_SYMBOL(free_pages);
1739
1740/**
1741 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1742 * @size: the number of bytes to allocate
1743 * @gfp_mask: GFP flags for the allocation
1744 *
1745 * This function is similar to alloc_pages(), except that it allocates the
1746 * minimum number of pages to satisfy the request.  alloc_pages() can only
1747 * allocate memory in power-of-two pages.
1748 *
1749 * This function is also limited by MAX_ORDER.
1750 *
1751 * Memory allocated by this function must be released by free_pages_exact().
1752 */
1753void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1754{
1755        unsigned int order = get_order(size);
1756        unsigned long addr;
1757
1758        addr = __get_free_pages(gfp_mask, order);
1759        if (addr) {
1760                unsigned long alloc_end = addr + (PAGE_SIZE << order);
1761                unsigned long used = addr + PAGE_ALIGN(size);
1762
1763                split_page(virt_to_page(addr), order);
1764                while (used < alloc_end) {
1765                        free_page(used);
1766                        used += PAGE_SIZE;
1767                }
1768        }
1769
1770        return (void *)addr;
1771}
1772EXPORT_SYMBOL(alloc_pages_exact);
1773
1774/**
1775 * free_pages_exact - release memory allocated via alloc_pages_exact()
1776 * @virt: the value returned by alloc_pages_exact.
1777 * @size: size of allocation, same value as passed to alloc_pages_exact().
1778 *
1779 * Release the memory allocated by a previous call to alloc_pages_exact.
1780 */
1781void free_pages_exact(void *virt, size_t size)
1782{
1783        unsigned long addr = (unsigned long)virt;
1784        unsigned long end = addr + PAGE_ALIGN(size);
1785
1786        while (addr < end) {
1787                free_page(addr);
1788                addr += PAGE_SIZE;
1789        }
1790}
1791EXPORT_SYMBOL(free_pages_exact);
1792
1793static unsigned int nr_free_zone_pages(int offset)
1794{
1795        struct zoneref *z;
1796        struct zone *zone;
1797
1798        /* Just pick one node, since fallback list is circular */
1799        unsigned int sum = 0;
1800
1801        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1802
1803        for_each_zone_zonelist(zone, z, zonelist, offset) {
1804                unsigned long size = zone->present_pages;
1805                unsigned long high = zone->pages_high;
1806                if (size > high)
1807                        sum += size - high;
1808        }
1809
1810        return sum;
1811}
1812
1813/*
1814 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1815 */
1816unsigned int nr_free_buffer_pages(void)
1817{
1818        return nr_free_zone_pages(gfp_zone(GFP_USER));
1819}
1820EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1821
1822/*
1823 * Amount of free RAM allocatable within all zones
1824 */
1825unsigned int nr_free_pagecache_pages(void)
1826{
1827        return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1828}
1829
1830static inline void show_node(struct zone *zone)
1831{
1832        if (NUMA_BUILD)
1833                printk("Node %d ", zone_to_nid(zone));
1834}
1835
1836void si_meminfo(struct sysinfo *val)
1837{
1838        val->totalram = totalram_pages;
1839        val->sharedram = 0;
1840        val->freeram = global_page_state(NR_FREE_PAGES);
1841        val->bufferram = nr_blockdev_pages();
1842        val->totalhigh = totalhigh_pages;
1843        val->freehigh = nr_free_highpages();
1844        val->mem_unit = PAGE_SIZE;
1845}
1846
1847EXPORT_SYMBOL(si_meminfo);
1848
1849#ifdef CONFIG_NUMA
1850void si_meminfo_node(struct sysinfo *val, int nid)
1851{
1852        pg_data_t *pgdat = NODE_DATA(nid);
1853
1854        val->totalram = pgdat->node_present_pages;
1855        val->freeram = node_page_state(nid, NR_FREE_PAGES);
1856#ifdef CONFIG_HIGHMEM
1857        val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1858        val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1859                        NR_FREE_PAGES);
1860#else
1861        val->totalhigh = 0;
1862        val->freehigh = 0;
1863#endif
1864        val->mem_unit = PAGE_SIZE;
1865}
1866#endif
1867
1868#define K(x) ((x) << (PAGE_SHIFT-10))
1869
1870/*
1871 * Show free area list (used inside shift_scroll-lock stuff)
1872 * We also calculate the percentage fragmentation. We do this by counting the
1873 * memory on each free list with the exception of the first item on the list.
1874 */
1875void show_free_areas(void)
1876{
1877        int cpu;
1878        struct zone *zone;
1879
1880        for_each_populated_zone(zone) {
1881                show_node(zone);
1882                printk("%s per-cpu:\n", zone->name);
1883
1884                for_each_online_cpu(cpu) {
1885                        struct per_cpu_pageset *pageset;
1886
1887                        pageset = zone_pcp(zone, cpu);
1888
1889                        printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1890                               cpu, pageset->pcp.high,
1891                               pageset->pcp.batch, pageset->pcp.count);
1892                }
1893        }
1894
1895        printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1896                " inactive_file:%lu"
1897//TODO:  check/adjust line lengths
1898#ifdef CONFIG_UNEVICTABLE_LRU
1899                " unevictable:%lu"
1900#endif
1901                " dirty:%lu writeback:%lu unstable:%lu\n"
1902                " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1903                global_page_state(NR_ACTIVE_ANON),
1904                global_page_state(NR_ACTIVE_FILE),
1905                global_page_state(NR_INACTIVE_ANON),
1906                global_page_state(NR_INACTIVE_FILE),
1907#ifdef CONFIG_UNEVICTABLE_LRU
1908                global_page_state(NR_UNEVICTABLE),
1909#endif
1910                global_page_state(NR_FILE_DIRTY),
1911                global_page_state(NR_WRITEBACK),
1912                global_page_state(NR_UNSTABLE_NFS),
1913                global_page_state(NR_FREE_PAGES),
1914                global_page_state(NR_SLAB_RECLAIMABLE) +
1915                        global_page_state(NR_SLAB_UNRECLAIMABLE),
1916                global_page_state(NR_FILE_MAPPED),
1917                global_page_state(NR_PAGETABLE),
1918                global_page_state(NR_BOUNCE));
1919
1920        for_each_populated_zone(zone) {
1921                int i;
1922
1923                show_node(zone);
1924                printk("%s"
1925                        " free:%lukB"
1926                        " min:%lukB"
1927                        " low:%lukB"
1928                        " high:%lukB"
1929                        " active_anon:%lukB"
1930                        " inactive_anon:%lukB"
1931                        " active_file:%lukB"
1932                        " inactive_file:%lukB"
1933#ifdef CONFIG_UNEVICTABLE_LRU
1934                        " unevictable:%lukB"
1935#endif
1936                        " present:%lukB"
1937                        " pages_scanned:%lu"
1938                        " all_unreclaimable? %s"
1939                        "\n",
1940                        zone->name,
1941                        K(zone_page_state(zone, NR_FREE_PAGES)),
1942                        K(zone->pages_min),
1943                        K(zone->pages_low),
1944                        K(zone->pages_high),
1945                        K(zone_page_state(zone, NR_ACTIVE_ANON)),
1946                        K(zone_page_state(zone, NR_INACTIVE_ANON)),
1947                        K(zone_page_state(zone, NR_ACTIVE_FILE)),
1948                        K(zone_page_state(zone, NR_INACTIVE_FILE)),
1949#ifdef CONFIG_UNEVICTABLE_LRU
1950                        K(zone_page_state(zone, NR_UNEVICTABLE)),
1951#endif
1952                        K(zone->present_pages),
1953                        zone->pages_scanned,
1954                        (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1955                        );
1956                printk("lowmem_reserve[]:");
1957                for (i = 0; i < MAX_NR_ZONES; i++)
1958                        printk(" %lu", zone->lowmem_reserve[i]);
1959                printk("\n");
1960        }
1961
1962        for_each_populated_zone(zone) {
1963                unsigned long nr[MAX_ORDER], flags, order, total = 0;
1964
1965                show_node(zone);
1966                printk("%s: ", zone->name);
1967
1968                spin_lock_irqsave(&zone->lock, flags);
1969                for (order = 0; order < MAX_ORDER; order++) {
1970                        nr[order] = zone->free_area[order].nr_free;
1971                        total += nr[order] << order;
1972                }
1973                spin_unlock_irqrestore(&zone->lock, flags);
1974                for (order = 0; order < MAX_ORDER; order++)
1975                        printk("%lu*%lukB ", nr[order], K(1UL) << order);
1976                printk("= %lukB\n", K(total));
1977        }
1978
1979        printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1980
1981        show_swap_cache_info();
1982}
1983
1984static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1985{
1986        zoneref->zone = zone;
1987        zoneref->zone_idx = zone_idx(zone);
1988}
1989
1990/*
1991 * Builds allocation fallback zone lists.
1992 *
1993 * Add all populated zones of a node to the zonelist.
1994 */
1995static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1996                                int nr_zones, enum zone_type zone_type)
1997{
1998        struct zone *zone;
1999
2000        BUG_ON(zone_type >= MAX_NR_ZONES);
2001        zone_type++;
2002
2003        do {
2004                zone_type--;
2005                zone = pgdat->node_zones + zone_type;
2006                if (populated_zone(zone)) {
2007                        zoneref_set_zone(zone,
2008                                &zonelist->_zonerefs[nr_zones++]);
2009                        check_highest_zone(zone_type);
2010                }
2011
2012        } while (zone_type);
2013        return nr_zones;
2014}
2015
2016
2017/*
2018 *  zonelist_order:
2019 *  0 = automatic detection of better ordering.
2020 *  1 = order by ([node] distance, -zonetype)
2021 *  2 = order by (-zonetype, [node] distance)
2022 *
2023 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2024 *  the same zonelist. So only NUMA can configure this param.
2025 */
2026#define ZONELIST_ORDER_DEFAULT  0
2027#define ZONELIST_ORDER_NODE     1
2028#define ZONELIST_ORDER_ZONE     2
2029
2030/* zonelist order in the kernel.
2031 * set_zonelist_order() will set this to NODE or ZONE.
2032 */
2033static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2034static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2035
2036
2037#ifdef CONFIG_NUMA
2038/* The value user specified ....changed by config */
2039static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2040/* string for sysctl */
2041#define NUMA_ZONELIST_ORDER_LEN 16
2042char numa_zonelist_order[16] = "default";
2043
2044/*
2045 * interface for configure zonelist ordering.
2046 * command line option "numa_zonelist_order"
2047 *      = "[dD]efault   - default, automatic configuration.
2048 *      = "[nN]ode      - order by node locality, then by zone within node
2049 *      = "[zZ]one      - order by zone, then by locality within zone
2050 */
2051
2052static int __parse_numa_zonelist_order(char *s)
2053{
2054        if (*s == 'd' || *s == 'D') {
2055                user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2056        } else if (*s == 'n' || *s == 'N') {
2057                user_zonelist_order = ZONELIST_ORDER_NODE;
2058        } else if (*s == 'z' || *s == 'Z') {
2059                user_zonelist_order = ZONELIST_ORDER_ZONE;
2060        } else {
2061                printk(KERN_WARNING
2062                        "Ignoring invalid numa_zonelist_order value:  "
2063                        "%s\n", s);
2064                return -EINVAL;
2065        }
2066        return 0;
2067}
2068
2069static __init int setup_numa_zonelist_order(char *s)
2070{
2071        if (s)
2072                return __parse_numa_zonelist_order(s);
2073        return 0;
2074}
2075early_param("numa_zonelist_order", setup_numa_zonelist_order);
2076
2077/*
2078 * sysctl handler for numa_zonelist_order
2079 */
2080int numa_zonelist_order_handler(ctl_table *table, int write,
2081                struct file *file, void __user *buffer, size_t *length,
2082                loff_t *ppos)
2083{
2084        char saved_string[NUMA_ZONELIST_ORDER_LEN];
2085        int ret;
2086
2087        if (write)
2088                strncpy(saved_string, (char*)table->data,
2089                        NUMA_ZONELIST_ORDER_LEN);
2090        ret = proc_dostring(table, write, file, buffer, length, ppos);
2091        if (ret)
2092                return ret;
2093        if (write) {
2094                int oldval = user_zonelist_order;
2095                if (__parse_numa_zonelist_order((char*)table->data)) {
2096                        /*
2097                         * bogus value.  restore saved string
2098                         */
2099                        strncpy((char*)table->data, saved_string,
2100                                NUMA_ZONELIST_ORDER_LEN);
2101                        user_zonelist_order = oldval;
2102                } else if (oldval != user_zonelist_order)
2103                        build_all_zonelists();
2104        }
2105        return 0;
2106}
2107
2108
2109#define MAX_NODE_LOAD (num_online_nodes())
2110static int node_load[MAX_NUMNODES];
2111
2112/**
2113 * find_next_best_node - find the next node that should appear in a given node's fallback list
2114 * @node: node whose fallback list we're appending
2115 * @used_node_mask: nodemask_t of already used nodes
2116 *
2117 * We use a number of factors to determine which is the next node that should
2118 * appear on a given node's fallback list.  The node should not have appeared
2119 * already in @node's fallback list, and it should be the next closest node
2120 * according to the distance array (which contains arbitrary distance values
2121 * from each node to each node in the system), and should also prefer nodes
2122 * with no CPUs, since presumably they'll have very little allocation pressure
2123 * on them otherwise.
2124 * It returns -1 if no node is found.
2125 */
2126static int find_next_best_node(int node, nodemask_t *used_node_mask)
2127{
2128        int n, val;
2129        int min_val = INT_MAX;
2130        int best_node = -1;
2131        const struct cpumask *tmp = cpumask_of_node(0);
2132
2133        /* Use the local node if we haven't already */
2134        if (!node_isset(node, *used_node_mask)) {
2135                node_set(node, *used_node_mask);
2136                return node;
2137        }
2138
2139        for_each_node_state(n, N_HIGH_MEMORY) {
2140
2141                /* Don't want a node to appear more than once */
2142                if (node_isset(n, *used_node_mask))
2143                        continue;
2144
2145                /* Use the distance array to find the distance */
2146                val = node_distance(node, n);
2147
2148                /* Penalize nodes under us ("prefer the next node") */
2149                val += (n < node);
2150
2151                /* Give preference to headless and unused nodes */
2152                tmp = cpumask_of_node(n);
2153                if (!cpumask_empty(tmp))
2154                        val += PENALTY_FOR_NODE_WITH_CPUS;
2155
2156                /* Slight preference for less loaded node */
2157                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2158                val += node_load[n];
2159
2160                if (val < min_val) {
2161                        min_val = val;
2162                        best_node = n;
2163                }
2164        }
2165
2166        if (best_node >= 0)
2167                node_set(best_node, *used_node_mask);
2168
2169        return best_node;
2170}
2171
2172
2173/*
2174 * Build zonelists ordered by node and zones within node.
2175 * This results in maximum locality--normal zone overflows into local
2176 * DMA zone, if any--but risks exhausting DMA zone.
2177 */
2178static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2179{
2180        int j;
2181        struct zonelist *zonelist;
2182
2183        zonelist = &pgdat->node_zonelists[0];
2184        for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2185                ;
2186        j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2187                                                        MAX_NR_ZONES - 1);
2188        zonelist->_zonerefs[j].zone = NULL;
2189        zonelist->_zonerefs[j].zone_idx = 0;
2190}
2191
2192/*
2193 * Build gfp_thisnode zonelists
2194 */
2195static void build_thisnode_zonelists(pg_data_t *pgdat)
2196{
2197        int j;
2198        struct zonelist *zonelist;
2199
2200        zonelist = &pgdat->node_zonelists[1];
2201        j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2202        zonelist->_zonerefs[j].zone = NULL;
2203        zonelist->_zonerefs[j].zone_idx = 0;
2204}
2205
2206/*
2207 * Build zonelists ordered by zone and nodes within zones.
2208 * This results in conserving DMA zone[s] until all Normal memory is
2209 * exhausted, but results in overflowing to remote node while memory
2210 * may still exist in local DMA zone.
2211 */
2212static int node_order[MAX_NUMNODES];
2213
2214static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2215{
2216        int pos, j, node;
2217        int zone_type;          /* needs to be signed */
2218        struct zone *z;
2219        struct zonelist *zonelist;
2220
2221        zonelist = &pgdat->node_zonelists[0];
2222        pos = 0;
2223        for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2224                for (j = 0; j < nr_nodes; j++) {
2225                        node = node_order[j];
2226                        z = &NODE_DATA(node)->node_zones[zone_type];
2227                        if (populated_zone(z)) {
2228                                zoneref_set_zone(z,
2229                                        &zonelist->_zonerefs[pos++]);
2230                                check_highest_zone(zone_type);
2231                        }
2232                }
2233        }
2234        zonelist->_zonerefs[pos].zone = NULL;
2235        zonelist->_zonerefs[pos].zone_idx = 0;
2236}
2237
2238static int default_zonelist_order(void)
2239{
2240        int nid, zone_type;
2241        unsigned long low_kmem_size,total_size;
2242        struct zone *z;
2243        int average_size;
2244        /*
2245         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2246         * If they are really small and used heavily, the system can fall
2247         * into OOM very easily.
2248         * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2249         */
2250        /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2251        low_kmem_size = 0;
2252        total_size = 0;
2253        for_each_online_node(nid) {
2254                for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2255                        z = &NODE_DATA(nid)->node_zones[zone_type];
2256                        if (populated_zone(z)) {
2257                                if (zone_type < ZONE_NORMAL)
2258                                        low_kmem_size += z->present_pages;
2259                                total_size += z->present_pages;
2260                        }
2261                }
2262        }
2263        if (!low_kmem_size ||  /* there are no DMA area. */
2264            low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2265                return ZONELIST_ORDER_NODE;
2266        /*
2267         * look into each node's config.
2268         * If there is a node whose DMA/DMA32 memory is very big area on
2269         * local memory, NODE_ORDER may be suitable.
2270         */
2271        average_size = total_size /
2272                                (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2273        for_each_online_node(nid) {
2274                low_kmem_size = 0;
2275                total_size = 0;
2276                for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2277                        z = &NODE_DATA(nid)->node_zones[zone_type];
2278                        if (populated_zone(z)) {
2279                                if (zone_type < ZONE_NORMAL)
2280                                        low_kmem_size += z->present_pages;
2281                                total_size += z->present_pages;
2282                        }
2283                }
2284                if (low_kmem_size &&
2285                    total_size > average_size && /* ignore small node */
2286                    low_kmem_size > total_size * 70/100)
2287                        return ZONELIST_ORDER_NODE;
2288        }
2289        return ZONELIST_ORDER_ZONE;
2290}
2291
2292static void set_zonelist_order(void)
2293{
2294        if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2295                current_zonelist_order = default_zonelist_order();
2296        else
2297                current_zonelist_order = user_zonelist_order;
2298}
2299
2300static void build_zonelists(pg_data_t *pgdat)
2301{
2302        int j, node, load;
2303        enum zone_type i;
2304        nodemask_t used_mask;
2305        int local_node, prev_node;
2306        struct zonelist *zonelist;
2307        int order = current_zonelist_order;
2308
2309        /* initialize zonelists */
2310        for (i = 0; i < MAX_ZONELISTS; i++) {
2311                zonelist = pgdat->node_zonelists + i;
2312                zonelist->_zonerefs[0].zone = NULL;
2313                zonelist->_zonerefs[0].zone_idx = 0;
2314        }
2315
2316        /* NUMA-aware ordering of nodes */
2317        local_node = pgdat->node_id;
2318        load = num_online_nodes();
2319        prev_node = local_node;
2320        nodes_clear(used_mask);
2321
2322        memset(node_load, 0, sizeof(node_load));
2323        memset(node_order, 0, sizeof(node_order));
2324        j = 0;
2325
2326        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2327                int distance = node_distance(local_node, node);
2328
2329                /*
2330                 * If another node is sufficiently far away then it is better
2331                 * to reclaim pages in a zone before going off node.
2332                 */
2333                if (distance > RECLAIM_DISTANCE)
2334                        zone_reclaim_mode = 1;
2335
2336                /*
2337                 * We don't want to pressure a particular node.
2338                 * So adding penalty to the first node in same
2339                 * distance group to make it round-robin.
2340                 */
2341                if (distance != node_distance(local_node, prev_node))
2342                        node_load[node] = load;
2343
2344                prev_node = node;
2345                load--;
2346                if (order == ZONELIST_ORDER_NODE)
2347                        build_zonelists_in_node_order(pgdat, node);
2348                else
2349                        node_order[j++] = node; /* remember order */
2350        }
2351
2352        if (order == ZONELIST_ORDER_ZONE) {
2353                /* calculate node order -- i.e., DMA last! */
2354                build_zonelists_in_zone_order(pgdat, j);
2355        }
2356
2357        build_thisnode_zonelists(pgdat);
2358}
2359
2360/* Construct the zonelist performance cache - see further mmzone.h */
2361static void build_zonelist_cache(pg_data_t *pgdat)
2362{
2363        struct zonelist *zonelist;
2364        struct zonelist_cache *zlc;
2365        struct zoneref *z;
2366
2367        zonelist = &pgdat->node_zonelists[0];
2368        zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2369        bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2370        for (z = zonelist->_zonerefs; z->zone; z++)
2371                zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2372}
2373
2374
2375#else   /* CONFIG_NUMA */
2376
2377static void set_zonelist_order(void)
2378{
2379        current_zonelist_order = ZONELIST_ORDER_ZONE;
2380}
2381
2382static void build_zonelists(pg_data_t *pgdat)
2383{
2384        int node, local_node;
2385        enum zone_type j;
2386        struct zonelist *zonelist;
2387
2388        local_node = pgdat->node_id;
2389
2390        zonelist = &pgdat->node_zonelists[0];
2391        j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2392
2393        /*
2394         * Now we build the zonelist so that it contains the zones
2395         * of all the other nodes.
2396         * We don't want to pressure a particular node, so when
2397         * building the zones for node N, we make sure that the
2398         * zones coming right after the local ones are those from
2399         * node N+1 (modulo N)
2400         */
2401        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2402                if (!node_online(node))
2403                        continue;
2404                j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2405                                                        MAX_NR_ZONES - 1);
2406        }
2407        for (node = 0; node < local_node; node++) {
2408                if (!node_online(node))
2409                        continue;
2410                j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2411                                                        MAX_NR_ZONES - 1);
2412        }
2413
2414        zonelist->_zonerefs[j].zone = NULL;
2415        zonelist->_zonerefs[j].zone_idx = 0;
2416}
2417
2418/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2419static void build_zonelist_cache(pg_data_t *pgdat)
2420{
2421        pgdat->node_zonelists[0].zlcache_ptr = NULL;
2422}
2423
2424#endif  /* CONFIG_NUMA */
2425
2426/* return values int ....just for stop_machine() */
2427static int __build_all_zonelists(void *dummy)
2428{
2429        int nid;
2430
2431        for_each_online_node(nid) {
2432                pg_data_t *pgdat = NODE_DATA(nid);
2433
2434                build_zonelists(pgdat);
2435                build_zonelist_cache(pgdat);
2436        }
2437        return 0;
2438}
2439
2440void build_all_zonelists(void)
2441{
2442        set_zonelist_order();
2443
2444        if (system_state == SYSTEM_BOOTING) {
2445                __build_all_zonelists(NULL);
2446                mminit_verify_zonelist();
2447                cpuset_init_current_mems_allowed();
2448        } else {
2449                /* we have to stop all cpus to guarantee there is no user
2450                   of zonelist */
2451                stop_machine(__build_all_zonelists, NULL, NULL);
2452                /* cpuset refresh routine should be here */
2453        }
2454        vm_total_pages = nr_free_pagecache_pages();
2455        /*
2456         * Disable grouping by mobility if the number of pages in the
2457         * system is too low to allow the mechanism to work. It would be
2458         * more accurate, but expensive to check per-zone. This check is
2459         * made on memory-hotadd so a system can start with mobility
2460         * disabled and enable it later
2461         */
2462        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2463                page_group_by_mobility_disabled = 1;
2464        else
2465                page_group_by_mobility_disabled = 0;
2466
2467        printk("Built %i zonelists in %s order, mobility grouping %s.  "
2468                "Total pages: %ld\n",
2469                        num_online_nodes(),
2470                        zonelist_order_name[current_zonelist_order],
2471                        page_group_by_mobility_disabled ? "off" : "on",
2472                        vm_total_pages);
2473#ifdef CONFIG_NUMA
2474        printk("Policy zone: %s\n", zone_names[policy_zone]);
2475#endif
2476}
2477
2478/*
2479 * Helper functions to size the waitqueue hash table.
2480 * Essentially these want to choose hash table sizes sufficiently
2481 * large so that collisions trying to wait on pages are rare.
2482 * But in fact, the number of active page waitqueues on typical
2483 * systems is ridiculously low, less than 200. So this is even
2484 * conservative, even though it seems large.
2485 *
2486 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2487 * waitqueues, i.e. the size of the waitq table given the number of pages.
2488 */
2489#define PAGES_PER_WAITQUEUE     256
2490
2491#ifndef CONFIG_MEMORY_HOTPLUG
2492static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2493{
2494        unsigned long size = 1;
2495
2496        pages /= PAGES_PER_WAITQUEUE;
2497
2498        while (size < pages)
2499                size <<= 1;
2500
2501        /*
2502         * Once we have dozens or even hundreds of threads sleeping
2503         * on IO we've got bigger problems than wait queue collision.
2504         * Limit the size of the wait table to a reasonable size.
2505         */
2506        size = min(size, 4096UL);
2507
2508        return max(size, 4UL);
2509}
2510#else
2511/*
2512 * A zone's size might be changed by hot-add, so it is not possible to determine
2513 * a suitable size for its wait_table.  So we use the maximum size now.
2514 *
2515 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2516 *
2517 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2518 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2519 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2520 *
2521 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2522 * or more by the traditional way. (See above).  It equals:
2523 *
2524 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2525 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2526 *    powerpc (64K page size)             : =  (32G +16M)byte.
2527 */
2528static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2529{
2530        return 4096UL;
2531}
2532#endif
2533
2534/*
2535 * This is an integer logarithm so that shifts can be used later
2536 * to extract the more random high bits from the multiplicative
2537 * hash function before the remainder is taken.
2538 */
2539static inline unsigned long wait_table_bits(unsigned long size)
2540{
2541        return ffz(~size);
2542}
2543
2544#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2545
2546/*
2547 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2548 * of blocks reserved is based on zone->pages_min. The memory within the
2549 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2550 * higher will lead to a bigger reserve which will get freed as contiguous
2551 * blocks as reclaim kicks in
2552 */
2553static void setup_zone_migrate_reserve(struct zone *zone)
2554{
2555        unsigned long start_pfn, pfn, end_pfn;
2556        struct page *page;
2557        unsigned long reserve, block_migratetype;
2558
2559        /* Get the start pfn, end pfn and the number of blocks to reserve */
2560        start_pfn = zone->zone_start_pfn;
2561        end_pfn = start_pfn + zone->spanned_pages;
2562        reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2563                                                        pageblock_order;
2564
2565        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2566                if (!pfn_valid(pfn))
2567                        continue;
2568                page = pfn_to_page(pfn);
2569
2570                /* Watch out for overlapping nodes */
2571                if (page_to_nid(page) != zone_to_nid(zone))
2572                        continue;
2573
2574                /* Blocks with reserved pages will never free, skip them. */
2575                if (PageReserved(page))
2576                        continue;
2577
2578                block_migratetype = get_pageblock_migratetype(page);
2579
2580                /* If this block is reserved, account for it */
2581                if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2582                        reserve--;
2583                        continue;
2584                }
2585
2586                /* Suitable for reserving if this block is movable */
2587                if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2588                        set_pageblock_migratetype(page, MIGRATE_RESERVE);
2589                        move_freepages_block(zone, page, MIGRATE_RESERVE);
2590                        reserve--;
2591                        continue;
2592                }
2593
2594                /*
2595                 * If the reserve is met and this is a previous reserved block,
2596                 * take it back
2597                 */
2598                if (block_migratetype == MIGRATE_RESERVE) {
2599                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2600                        move_freepages_block(zone, page, MIGRATE_MOVABLE);
2601                }
2602        }
2603}
2604
2605/*
2606 * Initially all pages are reserved - free ones are freed
2607 * up by free_all_bootmem() once the early boot process is
2608 * done. Non-atomic initialization, single-pass.
2609 */
2610void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2611                unsigned long start_pfn, enum memmap_context context)
2612{
2613        struct page *page;
2614        unsigned long end_pfn = start_pfn + size;
2615        unsigned long pfn;
2616        struct zone *z;
2617
2618        if (highest_memmap_pfn < end_pfn - 1)
2619                highest_memmap_pfn = end_pfn - 1;
2620
2621        z = &NODE_DATA(nid)->node_zones[zone];
2622        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2623                /*
2624                 * There can be holes in boot-time mem_map[]s
2625                 * handed to this function.  They do not
2626                 * exist on hotplugged memory.
2627                 */
2628                if (context == MEMMAP_EARLY) {
2629                        if (!early_pfn_valid(pfn))
2630                                continue;
2631                        if (!early_pfn_in_nid(pfn, nid))
2632                                continue;
2633                }
2634                page = pfn_to_page(pfn);
2635                set_page_links(page, zone, nid, pfn);
2636                mminit_verify_page_links(page, zone, nid, pfn);
2637                init_page_count(page);
2638                reset_page_mapcount(page);
2639                SetPageReserved(page);
2640                /*
2641                 * Mark the block movable so that blocks are reserved for
2642                 * movable at startup. This will force kernel allocations
2643                 * to reserve their blocks rather than leaking throughout
2644                 * the address space during boot when many long-lived
2645                 * kernel allocations are made. Later some blocks near
2646                 * the start are marked MIGRATE_RESERVE by
2647                 * setup_zone_migrate_reserve()
2648                 *
2649                 * bitmap is created for zone's valid pfn range. but memmap
2650                 * can be created for invalid pages (for alignment)
2651                 * check here not to call set_pageblock_migratetype() against
2652                 * pfn out of zone.
2653                 */
2654                if ((z->zone_start_pfn <= pfn)
2655                    && (pfn < z->zone_start_pfn + z->spanned_pages)
2656                    && !(pfn & (pageblock_nr_pages - 1)))
2657                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2658
2659                INIT_LIST_HEAD(&page->lru);
2660#ifdef WANT_PAGE_VIRTUAL
2661                /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2662                if (!is_highmem_idx(zone))
2663                        set_page_address(page, __va(pfn << PAGE_SHIFT));
2664#endif
2665        }
2666}
2667
2668static void __meminit zone_init_free_lists(struct zone *zone)
2669{
2670        int order, t;
2671        for_each_migratetype_order(order, t) {
2672                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2673                zone->free_area[order].nr_free = 0;
2674        }
2675}
2676
2677#ifndef __HAVE_ARCH_MEMMAP_INIT
2678#define memmap_init(size, nid, zone, start_pfn) \
2679        memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2680#endif
2681
2682static int zone_batchsize(struct zone *zone)
2683{
2684#ifdef CONFIG_MMU
2685        int batch;
2686
2687        /*
2688         * The per-cpu-pages pools are set to around 1000th of the
2689         * size of the zone.  But no more than 1/2 of a meg.
2690         *
2691         * OK, so we don't know how big the cache is.  So guess.
2692         */
2693        batch = zone->present_pages / 1024;
2694        if (batch * PAGE_SIZE > 512 * 1024)
2695                batch = (512 * 1024) / PAGE_SIZE;
2696        batch /= 4;             /* We effectively *= 4 below */
2697        if (batch < 1)
2698                batch = 1;
2699
2700        /*
2701         * Clamp the batch to a 2^n - 1 value. Having a power
2702         * of 2 value was found to be more likely to have
2703         * suboptimal cache aliasing properties in some cases.
2704         *
2705         * For example if 2 tasks are alternately allocating
2706         * batches of pages, one task can end up with a lot
2707         * of pages of one half of the possible page colors
2708         * and the other with pages of the other colors.
2709         */
2710        batch = rounddown_pow_of_two(batch + batch/2) - 1;
2711
2712        return batch;
2713
2714#else
2715        /* The deferral and batching of frees should be suppressed under NOMMU
2716         * conditions.
2717         *
2718         * The problem is that NOMMU needs to be able to allocate large chunks
2719         * of contiguous memory as there's no hardware page translation to
2720         * assemble apparent contiguous memory from discontiguous pages.
2721         *
2722         * Queueing large contiguous runs of pages for batching, however,
2723         * causes the pages to actually be freed in smaller chunks.  As there
2724         * can be a significant delay between the individual batches being
2725         * recycled, this leads to the once large chunks of space being
2726         * fragmented and becoming unavailable for high-order allocations.
2727         */
2728        return 0;
2729#endif
2730}
2731
2732static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2733{
2734        struct per_cpu_pages *pcp;
2735
2736        memset(p, 0, sizeof(*p));
2737
2738        pcp = &p->pcp;
2739        pcp->count = 0;
2740        pcp->high = 6 * batch;
2741        pcp->batch = max(1UL, 1 * batch);
2742        INIT_LIST_HEAD(&pcp->list);
2743}
2744
2745/*
2746 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2747 * to the value high for the pageset p.
2748 */
2749
2750static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2751                                unsigned long high)
2752{
2753        struct per_cpu_pages *pcp;
2754
2755        pcp = &p->pcp;
2756        pcp->high = high;
2757        pcp->batch = max(1UL, high/4);
2758        if ((high/4) > (PAGE_SHIFT * 8))
2759                pcp->batch = PAGE_SHIFT * 8;
2760}
2761
2762
2763#ifdef CONFIG_NUMA
2764/*
2765 * Boot pageset table. One per cpu which is going to be used for all
2766 * zones and all nodes. The parameters will be set in such a way
2767 * that an item put on a list will immediately be handed over to
2768 * the buddy list. This is safe since pageset manipulation is done
2769 * with interrupts disabled.
2770 *
2771 * Some NUMA counter updates may also be caught by the boot pagesets.
2772 *
2773 * The boot_pagesets must be kept even after bootup is complete for
2774 * unused processors and/or zones. They do play a role for bootstrapping
2775 * hotplugged processors.
2776 *
2777 * zoneinfo_show() and maybe other functions do
2778 * not check if the processor is online before following the pageset pointer.
2779 * Other parts of the kernel may not check if the zone is available.
2780 */
2781static struct per_cpu_pageset boot_pageset[NR_CPUS];
2782
2783/*
2784 * Dynamically allocate memory for the
2785 * per cpu pageset array in struct zone.
2786 */
2787static int __cpuinit process_zones(int cpu)
2788{
2789        struct zone *zone, *dzone;
2790        int node = cpu_to_node(cpu);
2791
2792        node_set_state(node, N_CPU);    /* this node has a cpu */
2793
2794        for_each_populated_zone(zone) {
2795                zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2796                                         GFP_KERNEL, node);
2797                if (!zone_pcp(zone, cpu))
2798                        goto bad;
2799
2800                setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2801
2802                if (percpu_pagelist_fraction)
2803                        setup_pagelist_highmark(zone_pcp(zone, cpu),
2804                                (zone->present_pages / percpu_pagelist_fraction));
2805        }
2806
2807        return 0;
2808bad:
2809        for_each_zone(dzone) {
2810                if (!populated_zone(dzone))
2811                        continue;
2812                if (dzone == zone)
2813                        break;
2814                kfree(zone_pcp(dzone, cpu));
2815                zone_pcp(dzone, cpu) = &boot_pageset[cpu];
2816        }
2817        return -ENOMEM;
2818}
2819
2820static inline void free_zone_pagesets(int cpu)
2821{
2822        struct zone *zone;
2823
2824        for_each_zone(zone) {
2825                struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2826
2827                /* Free per_cpu_pageset if it is slab allocated */
2828                if (pset != &boot_pageset[cpu])
2829                        kfree(pset);
2830                zone_pcp(zone, cpu) = &boot_pageset[cpu];
2831        }
2832}
2833
2834static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2835                unsigned long action,
2836                void *hcpu)
2837{
2838        int cpu = (long)hcpu;
2839        int ret = NOTIFY_OK;
2840
2841        switch (action) {
2842        case CPU_UP_PREPARE:
2843        case CPU_UP_PREPARE_FROZEN:
2844                if (process_zones(cpu))
2845                        ret = NOTIFY_BAD;
2846                break;
2847        case CPU_UP_CANCELED:
2848        case CPU_UP_CANCELED_FROZEN:
2849        case CPU_DEAD:
2850        case CPU_DEAD_FROZEN:
2851                free_zone_pagesets(cpu);
2852                break;
2853        default:
2854                break;
2855        }
2856        return ret;
2857}
2858
2859static struct notifier_block __cpuinitdata pageset_notifier =
2860        { &pageset_cpuup_callback, NULL, 0 };
2861
2862void __init setup_per_cpu_pageset(void)
2863{
2864        int err;
2865
2866        /* Initialize per_cpu_pageset for cpu 0.
2867         * A cpuup callback will do this for every cpu
2868         * as it comes online
2869         */
2870        err = process_zones(smp_processor_id());
2871        BUG_ON(err);
2872        register_cpu_notifier(&pageset_notifier);
2873}
2874
2875#endif
2876
2877static noinline __init_refok
2878int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2879{
2880        int i;
2881        struct pglist_data *pgdat = zone->zone_pgdat;
2882        size_t alloc_size;
2883
2884        /*
2885         * The per-page waitqueue mechanism uses hashed waitqueues
2886         * per zone.
2887         */
2888        zone->wait_table_hash_nr_entries =
2889                 wait_table_hash_nr_entries(zone_size_pages);
2890        zone->wait_table_bits =
2891                wait_table_bits(zone->wait_table_hash_nr_entries);
2892        alloc_size = zone->wait_table_hash_nr_entries
2893                                        * sizeof(wait_queue_head_t);
2894
2895        if (!slab_is_available()) {
2896                zone->wait_table = (wait_queue_head_t *)
2897                        alloc_bootmem_node(pgdat, alloc_size);
2898        } else {
2899                /*
2900                 * This case means that a zone whose size was 0 gets new memory
2901                 * via memory hot-add.
2902                 * But it may be the case that a new node was hot-added.  In
2903                 * this case vmalloc() will not be able to use this new node's
2904                 * memory - this wait_table must be initialized to use this new
2905                 * node itself as well.
2906                 * To use this new node's memory, further consideration will be
2907                 * necessary.
2908                 */
2909                zone->wait_table = vmalloc(alloc_size);
2910        }
2911        if (!zone->wait_table)
2912                return -ENOMEM;
2913
2914        for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2915                init_waitqueue_head(zone->wait_table + i);
2916
2917        return 0;
2918}
2919
2920static __meminit void zone_pcp_init(struct zone *zone)
2921{
2922        int cpu;
2923        unsigned long batch = zone_batchsize(zone);
2924
2925        for (cpu = 0; cpu < NR_CPUS; cpu++) {
2926#ifdef CONFIG_NUMA
2927                /* Early boot. Slab allocator not functional yet */
2928                zone_pcp(zone, cpu) = &boot_pageset[cpu];
2929                setup_pageset(&boot_pageset[cpu],0);
2930#else
2931                setup_pageset(zone_pcp(zone,cpu), batch);
2932#endif
2933        }
2934        if (zone->present_pages)
2935                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2936                        zone->name, zone->present_pages, batch);
2937}
2938
2939__meminit int init_currently_empty_zone(struct zone *zone,
2940                                        unsigned long zone_start_pfn,
2941                                        unsigned long size,
2942                                        enum memmap_context context)
2943{
2944        struct pglist_data *pgdat = zone->zone_pgdat;
2945        int ret;
2946        ret = zone_wait_table_init(zone, size);
2947        if (ret)
2948                return ret;
2949        pgdat->nr_zones = zone_idx(zone) + 1;
2950
2951        zone->zone_start_pfn = zone_start_pfn;
2952
2953        mminit_dprintk(MMINIT_TRACE, "memmap_init",
2954                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2955                        pgdat->node_id,
2956                        (unsigned long)zone_idx(zone),
2957                        zone_start_pfn, (zone_start_pfn + size));
2958
2959        zone_init_free_lists(zone);
2960
2961        return 0;
2962}
2963
2964#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2965/*
2966 * Basic iterator support. Return the first range of PFNs for a node
2967 * Note: nid == MAX_NUMNODES returns first region regardless of node
2968 */
2969static int __meminit first_active_region_index_in_nid(int nid)
2970{
2971        int i;
2972
2973        for (i = 0; i < nr_nodemap_entries; i++)
2974                if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2975                        return i;
2976
2977        return -1;
2978}
2979
2980/*
2981 * Basic iterator support. Return the next active range of PFNs for a node
2982 * Note: nid == MAX_NUMNODES returns next region regardless of node
2983 */
2984static int __meminit next_active_region_index_in_nid(int index, int nid)
2985{
2986        for (index = index + 1; index < nr_nodemap_entries; index++)
2987                if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2988                        return index;
2989
2990        return -1;
2991}
2992
2993#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2994/*
2995 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2996 * Architectures may implement their own version but if add_active_range()
2997 * was used and there are no special requirements, this is a convenient
2998 * alternative
2999 */
3000int __meminit __early_pfn_to_nid(unsigned long pfn)
3001{
3002        int i;
3003
3004        for (i = 0; i < nr_nodemap_entries; i++) {
3005                unsigned long start_pfn = early_node_map[i].start_pfn;
3006                unsigned long end_pfn = early_node_map[i].end_pfn;
3007
3008                if (start_pfn <= pfn && pfn < end_pfn)
3009                        return early_node_map[i].nid;
3010        }
3011        /* This is a memory hole */
3012        return -1;
3013}
3014#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3015
3016int __meminit early_pfn_to_nid(unsigned long pfn)
3017{
3018        int nid;
3019
3020        nid = __early_pfn_to_nid(pfn);
3021        if (nid >= 0)
3022                return nid;
3023        /* just returns 0 */
3024        return 0;
3025}
3026
3027#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3028bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3029{
3030        int nid;
3031
3032        nid = __early_pfn_to_nid(pfn);
3033        if (nid >= 0 && nid != node)
3034                return false;
3035        return true;
3036}
3037#endif
3038
3039/* Basic iterator support to walk early_node_map[] */
3040#define for_each_active_range_index_in_nid(i, nid) \
3041        for (i = first_active_region_index_in_nid(nid); i != -1; \
3042                                i = next_active_region_index_in_nid(i, nid))
3043
3044/**
3045 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3046 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3047 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3048 *
3049 * If an architecture guarantees that all ranges registered with
3050 * add_active_ranges() contain no holes and may be freed, this
3051 * this function may be used instead of calling free_bootmem() manually.
3052 */
3053void __init free_bootmem_with_active_regions(int nid,
3054                                                unsigned long max_low_pfn)
3055{
3056        int i;
3057
3058        for_each_active_range_index_in_nid(i, nid) {
3059                unsigned long size_pages = 0;
3060                unsigned long end_pfn = early_node_map[i].end_pfn;
3061
3062                if (early_node_map[i].start_pfn >= max_low_pfn)
3063                        continue;
3064
3065                if (end_pfn > max_low_pfn)
3066                        end_pfn = max_low_pfn;
3067
3068                size_pages = end_pfn - early_node_map[i].start_pfn;
3069                free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3070                                PFN_PHYS(early_node_map[i].start_pfn),
3071                                size_pages << PAGE_SHIFT);
3072        }
3073}
3074
3075void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3076{
3077        int i;
3078        int ret;
3079
3080        for_each_active_range_index_in_nid(i, nid) {
3081                ret = work_fn(early_node_map[i].start_pfn,
3082                              early_node_map[i].end_pfn, data);
3083                if (ret)
3084                        break;
3085        }
3086}
3087/**
3088 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3089 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3090 *
3091 * If an architecture guarantees that all ranges registered with
3092 * add_active_ranges() contain no holes and may be freed, this
3093 * function may be used instead of calling memory_present() manually.
3094 */
3095void __init sparse_memory_present_with_active_regions(int nid)
3096{
3097        int i;
3098
3099        for_each_active_range_index_in_nid(i, nid)
3100                memory_present(early_node_map[i].nid,
3101                                early_node_map[i].start_pfn,
3102                                early_node_map[i].end_pfn);
3103}
3104
3105/**
3106 * push_node_boundaries - Push node boundaries to at least the requested boundary
3107 * @nid: The nid of the node to push the boundary for
3108 * @start_pfn: The start pfn of the node
3109 * @end_pfn: The end pfn of the node
3110 *
3111 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3112 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3113 * be hotplugged even though no physical memory exists. This function allows
3114 * an arch to push out the node boundaries so mem_map is allocated that can
3115 * be used later.
3116 */
3117#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3118void __init push_node_boundaries(unsigned int nid,
3119                unsigned long start_pfn, unsigned long end_pfn)
3120{
3121        mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3122                        "Entering push_node_boundaries(%u, %lu, %lu)\n",
3123                        nid, start_pfn, end_pfn);
3124
3125        /* Initialise the boundary for this node if necessary */
3126        if (node_boundary_end_pfn[nid] == 0)
3127                node_boundary_start_pfn[nid] = -1UL;
3128
3129        /* Update the boundaries */
3130        if (node_boundary_start_pfn[nid] > start_pfn)
3131                node_boundary_start_pfn[nid] = start_pfn;
3132        if (node_boundary_end_pfn[nid] < end_pfn)
3133                node_boundary_end_pfn[nid] = end_pfn;
3134}
3135
3136/* If necessary, push the node boundary out for reserve hotadd */
3137static void __meminit account_node_boundary(unsigned int nid,
3138                unsigned long *start_pfn, unsigned long *end_pfn)
3139{
3140        mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3141                        "Entering account_node_boundary(%u, %lu, %lu)\n",
3142                        nid, *start_pfn, *end_pfn);
3143
3144        /* Return if boundary information has not been provided */
3145        if (node_boundary_end_pfn[nid] == 0)
3146                return;
3147
3148        /* Check the boundaries and update if necessary */
3149        if (node_boundary_start_pfn[nid] < *start_pfn)
3150                *start_pfn = node_boundary_start_pfn[nid];
3151        if (node_boundary_end_pfn[nid] > *end_pfn)
3152                *end_pfn = node_boundary_end_pfn[nid];
3153}
3154#else
3155void __init push_node_boundaries(unsigned int nid,
3156                unsigned long start_pfn, unsigned long end_pfn) {}
3157
3158static void __meminit account_node_boundary(unsigned int nid,
3159                unsigned long *start_pfn, unsigned long *end_pfn) {}
3160#endif
3161
3162
3163/**
3164 * get_pfn_range_for_nid - Return the start and end page frames for a node
3165 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3166 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3167 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3168 *
3169 * It returns the start and end page frame of a node based on information
3170 * provided by an arch calling add_active_range(). If called for a node
3171 * with no available memory, a warning is printed and the start and end
3172 * PFNs will be 0.
3173 */
3174void __meminit get_pfn_range_for_nid(unsigned int nid,
3175                        unsigned long *start_pfn, unsigned long *end_pfn)
3176{
3177        int i;
3178        *start_pfn = -1UL;
3179        *end_pfn = 0;
3180
3181        for_each_active_range_index_in_nid(i, nid) {
3182                *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3183                *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3184        }
3185
3186        if (*start_pfn == -1UL)
3187                *start_pfn = 0;
3188
3189        /* Push the node boundaries out if requested */
3190        account_node_boundary(nid, start_pfn, end_pfn);
3191}
3192
3193/*
3194 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3195 * assumption is made that zones within a node are ordered in monotonic
3196 * increasing memory addresses so that the "highest" populated zone is used
3197 */
3198static void __init find_usable_zone_for_movable(void)
3199{
3200        int zone_index;
3201        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3202                if (zone_index == ZONE_MOVABLE)
3203                        continue;
3204
3205                if (arch_zone_highest_possible_pfn[zone_index] >
3206                                arch_zone_lowest_possible_pfn[zone_index])
3207                        break;
3208        }
3209
3210        VM_BUG_ON(zone_index == -1);
3211        movable_zone = zone_index;
3212}
3213
3214/*
3215 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3216 * because it is sized independant of architecture. Unlike the other zones,
3217 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3218 * in each node depending on the size of each node and how evenly kernelcore
3219 * is distributed. This helper function adjusts the zone ranges
3220 * provided by the architecture for a given node by using the end of the
3221 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3222 * zones within a node are in order of monotonic increases memory addresses
3223 */
3224static void __meminit adjust_zone_range_for_zone_movable(int nid,
3225                                        unsigned long zone_type,
3226                                        unsigned long node_start_pfn,
3227                                        unsigned long node_end_pfn,
3228                                        unsigned long *zone_start_pfn,
3229                                        unsigned long *zone_end_pfn)
3230{
3231        /* Only adjust if ZONE_MOVABLE is on this node */
3232        if (zone_movable_pfn[nid]) {
3233                /* Size ZONE_MOVABLE */
3234                if (zone_type == ZONE_MOVABLE) {
3235                        *zone_start_pfn = zone_movable_pfn[nid];
3236                        *zone_end_pfn = min(node_end_pfn,
3237                                arch_zone_highest_possible_pfn[movable_zone]);
3238
3239                /* Adjust for ZONE_MOVABLE starting within this range */
3240                } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3241                                *zone_end_pfn > zone_movable_pfn[nid]) {
3242                        *zone_end_pfn = zone_movable_pfn[nid];
3243
3244                /* Check if this whole range is within ZONE_MOVABLE */
3245                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3246                        *zone_start_pfn = *zone_end_pfn;
3247        }
3248}
3249
3250/*
3251 * Return the number of pages a zone spans in a node, including holes
3252 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3253 */
3254static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3255                                        unsigned long zone_type,
3256                                        unsigned long *ignored)
3257{
3258        unsigned long node_start_pfn, node_end_pfn;
3259        unsigned long zone_start_pfn, zone_end_pfn;
3260
3261        /* Get the start and end of the node and zone */
3262        get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3263        zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3264        zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3265        adjust_zone_range_for_zone_movable(nid, zone_type,
3266                                node_start_pfn, node_end_pfn,
3267                                &zone_start_pfn, &zone_end_pfn);
3268
3269        /* Check that this node has pages within the zone's required range */
3270        if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3271                return 0;
3272
3273        /* Move the zone boundaries inside the node if necessary */
3274        zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3275        zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3276
3277        /* Return the spanned pages */
3278        return zone_end_pfn - zone_start_pfn;
3279}
3280
3281/*
3282 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3283 * then all holes in the requested range will be accounted for.
3284 */
3285static unsigned long __meminit __absent_pages_in_range(int nid,
3286                                unsigned long range_start_pfn,
3287                                unsigned long range_end_pfn)
3288{
3289        int i = 0;
3290        unsigned long prev_end_pfn = 0, hole_pages = 0;
3291        unsigned long start_pfn;
3292
3293        /* Find the end_pfn of the first active range of pfns in the node */
3294        i = first_active_region_index_in_nid(nid);
3295        if (i == -1)
3296                return 0;
3297
3298        prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3299
3300        /* Account for ranges before physical memory on this node */
3301        if (early_node_map[i].start_pfn > range_start_pfn)
3302                hole_pages = prev_end_pfn - range_start_pfn;
3303
3304        /* Find all holes for the zone within the node */
3305        for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3306
3307                /* No need to continue if prev_end_pfn is outside the zone */
3308                if (prev_end_pfn >= range_end_pfn)
3309                        break;
3310
3311                /* Make sure the end of the zone is not within the hole */
3312                start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3313                prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3314
3315                /* Update the hole size cound and move on */
3316                if (start_pfn > range_start_pfn) {
3317                        BUG_ON(prev_end_pfn > start_pfn);
3318                        hole_pages += start_pfn - prev_end_pfn;
3319                }
3320                prev_end_pfn = early_node_map[i].end_pfn;
3321        }
3322
3323        /* Account for ranges past physical memory on this node */
3324        if (range_end_pfn > prev_end_pfn)
3325                hole_pages += range_end_pfn -
3326                                max(range_start_pfn, prev_end_pfn);
3327
3328        return hole_pages;
3329}
3330
3331/**
3332 * absent_pages_in_range - Return number of page frames in holes within a range
3333 * @start_pfn: The start PFN to start searching for holes
3334 * @end_pfn: The end PFN to stop searching for holes
3335 *
3336 * It returns the number of pages frames in memory holes within a range.
3337 */
3338unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3339                                                        unsigned long end_pfn)
3340{
3341        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3342}
3343
3344/* Return the number of page frames in holes in a zone on a node */
3345static unsigned long __meminit zone_absent_pages_in_node(int nid,
3346                                        unsigned long zone_type,
3347                                        unsigned long *ignored)
3348{
3349        unsigned long node_start_pfn, node_end_pfn;
3350        unsigned long zone_start_pfn, zone_end_pfn;
3351
3352        get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3353        zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3354                                                        node_start_pfn);
3355        zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3356                                                        node_end_pfn);
3357
3358        adjust_zone_range_for_zone_movable(nid, zone_type,
3359                        node_start_pfn, node_end_pfn,
3360                        &zone_start_pfn, &zone_end_pfn);
3361        return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3362}
3363
3364#else
3365static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3366                                        unsigned long zone_type,
3367                                        unsigned long *zones_size)
3368{
3369        return zones_size[zone_type];
3370}
3371
3372static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3373                                                unsigned long zone_type,
3374                                                unsigned long *zholes_size)
3375{
3376        if (!zholes_size)
3377                return 0;
3378
3379        return zholes_size[zone_type];
3380}
3381
3382#endif
3383
3384static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3385                unsigned long *zones_size, unsigned long *zholes_size)
3386{
3387        unsigned long realtotalpages, totalpages = 0;
3388        enum zone_type i;
3389
3390        for (i = 0; i < MAX_NR_ZONES; i++)
3391                totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3392                                                                zones_size);
3393        pgdat->node_spanned_pages = totalpages;
3394
3395        realtotalpages = totalpages;
3396        for (i = 0; i < MAX_NR_ZONES; i++)
3397                realtotalpages -=
3398                        zone_absent_pages_in_node(pgdat->node_id, i,
3399                                                                zholes_size);
3400        pgdat->node_present_pages = realtotalpages;
3401        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3402                                                        realtotalpages);
3403}
3404
3405#ifndef CONFIG_SPARSEMEM
3406/*
3407 * Calculate the size of the zone->blockflags rounded to an unsigned long
3408 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3409 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3410 * round what is now in bits to nearest long in bits, then return it in
3411 * bytes.
3412 */
3413static unsigned long __init usemap_size(unsigned long zonesize)
3414{
3415        unsigned long usemapsize;
3416
3417        usemapsize = roundup(zonesize, pageblock_nr_pages);
3418        usemapsize = usemapsize >> pageblock_order;
3419        usemapsize *= NR_PAGEBLOCK_BITS;
3420        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3421
3422        return usemapsize / 8;
3423}
3424
3425static void __init setup_usemap(struct pglist_data *pgdat,
3426                                struct zone *zone, unsigned long zonesize)
3427{
3428        unsigned long usemapsize = usemap_size(zonesize);
3429        zone->pageblock_flags = NULL;
3430        if (usemapsize)
3431                zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3432}
3433#else
3434static void inline setup_usemap(struct pglist_data *pgdat,
3435                                struct zone *zone, unsigned long zonesize) {}
3436#endif /* CONFIG_SPARSEMEM */
3437
3438#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3439
3440/* Return a sensible default order for the pageblock size. */
3441static inline int pageblock_default_order(void)
3442{
3443        if (HPAGE_SHIFT > PAGE_SHIFT)
3444                return HUGETLB_PAGE_ORDER;
3445
3446        return MAX_ORDER-1;
3447}
3448
3449/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3450static inline void __init set_pageblock_order(unsigned int order)
3451{
3452        /* Check that pageblock_nr_pages has not already been setup */
3453        if (pageblock_order)
3454                return;
3455
3456        /*
3457         * Assume the largest contiguous order of interest is a huge page.
3458         * This value may be variable depending on boot parameters on IA64
3459         */
3460        pageblock_order = order;
3461}
3462#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3463
3464/*
3465 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3466 * and pageblock_default_order() are unused as pageblock_order is set
3467 * at compile-time. See include/linux/pageblock-flags.h for the values of
3468 * pageblock_order based on the kernel config
3469 */
3470static inline int pageblock_default_order(unsigned int order)
3471{
3472        return MAX_ORDER-1;
3473}
3474#define set_pageblock_order(x)  do {} while (0)
3475
3476#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3477
3478/*
3479 * Set up the zone data structures:
3480 *   - mark all pages reserved
3481 *   - mark all memory queues empty
3482 *   - clear the memory bitmaps
3483 */
3484static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3485                unsigned long *zones_size, unsigned long *zholes_size)
3486{
3487        enum zone_type j;
3488        int nid = pgdat->node_id;
3489        unsigned long zone_start_pfn = pgdat->node_start_pfn;
3490        int ret;
3491
3492        pgdat_resize_init(pgdat);
3493        pgdat->nr_zones = 0;
3494        init_waitqueue_head(&pgdat->kswapd_wait);
3495        pgdat->kswapd_max_order = 0;
3496        pgdat_page_cgroup_init(pgdat);
3497        
3498        for (j = 0; j < MAX_NR_ZONES; j++) {
3499                struct zone *zone = pgdat->node_zones + j;
3500                unsigned long size, realsize, memmap_pages;
3501                enum lru_list l;
3502
3503                size = zone_spanned_pages_in_node(nid, j, zones_size);
3504                realsize = size - zone_absent_pages_in_node(nid, j,
3505                                                                zholes_size);
3506
3507                /*
3508                 * Adjust realsize so that it accounts for how much memory
3509                 * is used by this zone for memmap. This affects the watermark
3510                 * and per-cpu initialisations
3511                 */
3512                memmap_pages =
3513                        PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3514                if (realsize >= memmap_pages) {
3515                        realsize -= memmap_pages;
3516                        if (memmap_pages)
3517                                printk(KERN_DEBUG
3518                                       "  %s zone: %lu pages used for memmap\n",
3519                                       zone_names[j], memmap_pages);
3520                } else
3521                        printk(KERN_WARNING
3522                                "  %s zone: %lu pages exceeds realsize %lu\n",
3523                                zone_names[j], memmap_pages, realsize);
3524
3525                /* Account for reserved pages */
3526                if (j == 0 && realsize > dma_reserve) {
3527                        realsize -= dma_reserve;
3528                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3529                                        zone_names[0], dma_reserve);
3530                }
3531
3532                if (!is_highmem_idx(j))
3533                        nr_kernel_pages += realsize;
3534                nr_all_pages += realsize;
3535
3536                zone->spanned_pages = size;
3537                zone->present_pages = realsize;
3538#ifdef CONFIG_NUMA
3539                zone->node = nid;
3540                zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3541                                                / 100;
3542                zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3543#endif
3544                zone->name = zone_names[j];
3545                spin_lock_init(&zone->lock);
3546                spin_lock_init(&zone->lru_lock);
3547                zone_seqlock_init(zone);
3548                zone->zone_pgdat = pgdat;
3549
3550                zone->prev_priority = DEF_PRIORITY;
3551
3552                zone_pcp_init(zone);
3553                for_each_lru(l) {
3554                        INIT_LIST_HEAD(&zone->lru[l].list);
3555                        zone->lru[l].nr_scan = 0;
3556                }
3557                zone->reclaim_stat.recent_rotated[0] = 0;
3558                zone->reclaim_stat.recent_rotated[1] = 0;
3559                zone->reclaim_stat.recent_scanned[0] = 0;
3560                zone->reclaim_stat.recent_scanned[1] = 0;
3561                zap_zone_vm_stats(zone);
3562                zone->flags = 0;
3563                if (!size)
3564                        continue;
3565
3566                set_pageblock_order(pageblock_default_order());
3567                setup_usemap(pgdat, zone, size);
3568                ret = init_currently_empty_zone(zone, zone_start_pfn,
3569                                                size, MEMMAP_EARLY);
3570                BUG_ON(ret);
3571                memmap_init(size, nid, j, zone_start_pfn);
3572                zone_start_pfn += size;
3573        }
3574}
3575
3576static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3577{
3578        /* Skip empty nodes */
3579        if (!pgdat->node_spanned_pages)
3580                return;
3581
3582#ifdef CONFIG_FLAT_NODE_MEM_MAP
3583        /* ia64 gets its own node_mem_map, before this, without bootmem */
3584        if (!pgdat->node_mem_map) {
3585                unsigned long size, start, end;
3586                struct page *map;
3587
3588                /*
3589                 * The zone's endpoints aren't required to be MAX_ORDER
3590                 * aligned but the node_mem_map endpoints must be in order
3591                 * for the buddy allocator to function correctly.
3592                 */
3593                start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3594                end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3595                end = ALIGN(end, MAX_ORDER_NR_PAGES);
3596                size =  (end - start) * sizeof(struct page);
3597                map = alloc_remap(pgdat->node_id, size);
3598                if (!map)
3599                        map = alloc_bootmem_node(pgdat, size);
3600                pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3601        }
3602#ifndef CONFIG_NEED_MULTIPLE_NODES
3603        /*
3604         * With no DISCONTIG, the global mem_map is just set as node 0's
3605         */
3606        if (pgdat == NODE_DATA(0)) {
3607                mem_map = NODE_DATA(0)->node_mem_map;
3608#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3609                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3610                        mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3611#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3612        }
3613#endif
3614#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3615}
3616
3617void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3618                unsigned long node_start_pfn, unsigned long *zholes_size)
3619{
3620        pg_data_t *pgdat = NODE_DATA(nid);
3621
3622        pgdat->node_id = nid;
3623        pgdat->node_start_pfn = node_start_pfn;
3624        calculate_node_totalpages(pgdat, zones_size, zholes_size);
3625
3626        alloc_node_mem_map(pgdat);
3627#ifdef CONFIG_FLAT_NODE_MEM_MAP
3628        printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3629                nid, (unsigned long)pgdat,
3630                (unsigned long)pgdat->node_mem_map);
3631#endif
3632
3633        free_area_init_core(pgdat, zones_size, zholes_size);
3634}
3635
3636#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3637
3638#if MAX_NUMNODES > 1
3639/*
3640 * Figure out the number of possible node ids.
3641 */
3642static void __init setup_nr_node_ids(void)
3643{
3644        unsigned int node;
3645        unsigned int highest = 0;
3646
3647        for_each_node_mask(node, node_possible_map)
3648                highest = node;
3649        nr_node_ids = highest + 1;
3650}
3651#else
3652static inline void setup_nr_node_ids(void)
3653{
3654}
3655#endif
3656
3657/**
3658 * add_active_range - Register a range of PFNs backed by physical memory
3659 * @nid: The node ID the range resides on
3660 * @start_pfn: The start PFN of the available physical memory
3661 * @end_pfn: The end PFN of the available physical memory
3662 *
3663 * These ranges are stored in an early_node_map[] and later used by
3664 * free_area_init_nodes() to calculate zone sizes and holes. If the
3665 * range spans a memory hole, it is up to the architecture to ensure
3666 * the memory is not freed by the bootmem allocator. If possible
3667 * the range being registered will be merged with existing ranges.
3668 */
3669void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3670                                                unsigned long end_pfn)
3671{
3672        int i;
3673
3674        mminit_dprintk(MMINIT_TRACE, "memory_register",
3675                        "Entering add_active_range(%d, %#lx, %#lx) "
3676                        "%d entries of %d used\n",
3677                        nid, start_pfn, end_pfn,
3678                        nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3679
3680        mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3681
3682        /* Merge with existing active regions if possible */
3683        for (i = 0; i < nr_nodemap_entries; i++) {
3684                if (early_node_map[i].nid != nid)
3685                        continue;
3686
3687                /* Skip if an existing region covers this new one */
3688                if (start_pfn >= early_node_map[i].start_pfn &&
3689                                end_pfn <= early_node_map[i].end_pfn)
3690                        return;
3691
3692                /* Merge forward if suitable */
3693                if (start_pfn <= early_node_map[i].end_pfn &&
3694                                end_pfn > early_node_map[i].end_pfn) {
3695                        early_node_map[i].end_pfn = end_pfn;
3696                        return;
3697                }
3698
3699                /* Merge backward if suitable */
3700                if (start_pfn < early_node_map[i].end_pfn &&
3701                                end_pfn >= early_node_map[i].start_pfn) {
3702                        early_node_map[i].start_pfn = start_pfn;
3703                        return;
3704                }
3705        }
3706
3707        /* Check that early_node_map is large enough */
3708        if (i >= MAX_ACTIVE_REGIONS) {
3709                printk(KERN_CRIT "More than %d memory regions, truncating\n",
3710                                                        MAX_ACTIVE_REGIONS);
3711                return;
3712        }
3713
3714        early_node_map[i].nid = nid;
3715        early_node_map[i].start_pfn = start_pfn;
3716        early_node_map[i].end_pfn = end_pfn;
3717        nr_nodemap_entries = i + 1;
3718}
3719
3720/**
3721 * remove_active_range - Shrink an existing registered range of PFNs
3722 * @nid: The node id the range is on that should be shrunk
3723 * @start_pfn: The new PFN of the range
3724 * @end_pfn: The new PFN of the range
3725 *
3726 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3727 * The map is kept near the end physical page range that has already been
3728 * registered. This function allows an arch to shrink an existing registered
3729 * range.
3730 */
3731void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3732                                unsigned long end_pfn)
3733{
3734        int i, j;
3735        int removed = 0;
3736
3737        printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3738                          nid, start_pfn, end_pfn);
3739
3740        /* Find the old active region end and shrink */
3741        for_each_active_range_index_in_nid(i, nid) {
3742                if (early_node_map[i].start_pfn >= start_pfn &&
3743                    early_node_map[i].end_pfn <= end_pfn) {
3744                        /* clear it */
3745                        early_node_map[i].start_pfn = 0;
3746                        early_node_map[i].end_pfn = 0;
3747                        removed = 1;
3748                        continue;
3749                }
3750                if (early_node_map[i].start_pfn < start_pfn &&
3751                    early_node_map[i].end_pfn > start_pfn) {
3752                        unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3753                        early_node_map[i].end_pfn = start_pfn;
3754                        if (temp_end_pfn > end_pfn)
3755                                add_active_range(nid, end_pfn, temp_end_pfn);
3756                        continue;
3757                }
3758                if (early_node_map[i].start_pfn >= start_pfn &&
3759                    early_node_map[i].end_pfn > end_pfn &&
3760                    early_node_map[i].start_pfn < end_pfn) {
3761                        early_node_map[i].start_pfn = end_pfn;
3762                        continue;
3763                }
3764        }
3765
3766        if (!removed)
3767                return;
3768
3769        /* remove the blank ones */
3770        for (i = nr_nodemap_entries - 1; i > 0; i--) {
3771                if (early_node_map[i].nid != nid)
3772                        continue;
3773                if (early_node_map[i].end_pfn)
3774                        continue;
3775                /* we found it, get rid of it */
3776                for (j = i; j < nr_nodemap_entries - 1; j++)
3777                        memcpy(&early_node_map[j], &early_node_map[j+1],
3778                                sizeof(early_node_map[j]));
3779                j = nr_nodemap_entries - 1;
3780                memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3781                nr_nodemap_entries--;
3782        }
3783}
3784
3785/**
3786 * remove_all_active_ranges - Remove all currently registered regions
3787 *
3788 * During discovery, it may be found that a table like SRAT is invalid
3789 * and an alternative discovery method must be used. This function removes
3790 * all currently registered regions.
3791 */
3792void __init remove_all_active_ranges(void)
3793{
3794        memset(early_node_map, 0, sizeof(early_node_map));
3795        nr_nodemap_entries = 0;
3796#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3797        memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3798        memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3799#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3800}
3801
3802/* Compare two active node_active_regions */
3803static int __init cmp_node_active_region(const void *a, const void *b)
3804{
3805        struct node_active_region *arange = (struct node_active_region *)a;
3806        struct node_active_region *brange = (struct node_active_region *)b;
3807
3808        /* Done this way to avoid overflows */
3809        if (arange->start_pfn > brange->start_pfn)
3810                return 1;
3811        if (arange->start_pfn < brange->start_pfn)
3812                return -1;
3813
3814        return 0;
3815}
3816
3817/* sort the node_map by start_pfn */
3818static void __init sort_node_map(void)
3819{
3820        sort(early_node_map, (size_t)nr_nodemap_entries,
3821                        sizeof(struct node_active_region),
3822                        cmp_node_active_region, NULL);
3823}
3824
3825/* Find the lowest pfn for a node */
3826static unsigned long __init find_min_pfn_for_node(int nid)
3827{
3828        int i;
3829        unsigned long min_pfn = ULONG_MAX;
3830
3831        /* Assuming a sorted map, the first range found has the starting pfn */
3832        for_each_active_range_index_in_nid(i, nid)
3833                min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3834
3835        if (min_pfn == ULONG_MAX) {
3836                printk(KERN_WARNING
3837                        "Could not find start_pfn for node %d\n", nid);
3838                return 0;
3839        }
3840
3841        return min_pfn;
3842}
3843
3844/**
3845 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3846 *
3847 * It returns the minimum PFN based on information provided via
3848 * add_active_range().
3849 */
3850unsigned long __init find_min_pfn_with_active_regions(void)
3851{
3852        return find_min_pfn_for_node(MAX_NUMNODES);
3853}
3854
3855/*
3856 * early_calculate_totalpages()
3857 * Sum pages in active regions for movable zone.
3858 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3859 */
3860static unsigned long __init early_calculate_totalpages(void)
3861{
3862        int i;
3863        unsigned long totalpages = 0;
3864
3865        for (i = 0; i < nr_nodemap_entries; i++) {
3866                unsigned long pages = early_node_map[i].end_pfn -
3867                                                early_node_map[i].start_pfn;
3868                totalpages += pages;
3869                if (pages)
3870                        node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3871        }
3872        return totalpages;
3873}
3874
3875/*
3876 * Find the PFN the Movable zone begins in each node. Kernel memory
3877 * is spread evenly between nodes as long as the nodes have enough
3878 * memory. When they don't, some nodes will have more kernelcore than
3879 * others
3880 */
3881static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3882{
3883        int i, nid;
3884        unsigned long usable_startpfn;
3885        unsigned long kernelcore_node, kernelcore_remaining;
3886        unsigned long totalpages = early_calculate_totalpages();
3887        int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3888
3889        /*
3890         * If movablecore was specified, calculate what size of
3891         * kernelcore that corresponds so that memory usable for
3892         * any allocation type is evenly spread. If both kernelcore
3893         * and movablecore are specified, then the value of kernelcore
3894         * will be used for required_kernelcore if it's greater than
3895         * what movablecore would have allowed.
3896         */
3897        if (required_movablecore) {
3898                unsigned long corepages;
3899
3900                /*
3901                 * Round-up so that ZONE_MOVABLE is at least as large as what
3902                 * was requested by the user
3903                 */
3904                required_movablecore =
3905                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3906                corepages = totalpages - required_movablecore;
3907
3908                required_kernelcore = max(required_kernelcore, corepages);
3909        }
3910
3911        /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3912        if (!required_kernelcore)
3913                return;
3914
3915        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3916        find_usable_zone_for_movable();
3917        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3918
3919restart:
3920        /* Spread kernelcore memory as evenly as possible throughout nodes */
3921        kernelcore_node = required_kernelcore / usable_nodes;
3922        for_each_node_state(nid, N_HIGH_MEMORY) {
3923                /*
3924                 * Recalculate kernelcore_node if the division per node
3925                 * now exceeds what is necessary to satisfy the requested
3926                 * amount of memory for the kernel
3927                 */
3928                if (required_kernelcore < kernelcore_node)
3929                        kernelcore_node = required_kernelcore / usable_nodes;
3930
3931                /*
3932                 * As the map is walked, we track how much memory is usable
3933                 * by the kernel using kernelcore_remaining. When it is
3934                 * 0, the rest of the node is usable by ZONE_MOVABLE
3935                 */
3936                kernelcore_remaining = kernelcore_node;
3937
3938                /* Go through each range of PFNs within this node */
3939                for_each_active_range_index_in_nid(i, nid) {
3940                        unsigned long start_pfn, end_pfn;
3941                        unsigned long size_pages;
3942
3943                        start_pfn = max(early_node_map[i].start_pfn,
3944                                                zone_movable_pfn[nid]);
3945                        end_pfn = early_node_map[i].end_pfn;
3946                        if (start_pfn >= end_pfn)
3947                                continue;
3948
3949                        /* Account for what is only usable for kernelcore */
3950                        if (start_pfn < usable_startpfn) {
3951                                unsigned long kernel_pages;
3952                                kernel_pages = min(end_pfn, usable_startpfn)
3953                                                                - start_pfn;
3954
3955                                kernelcore_remaining -= min(kernel_pages,
3956                                                        kernelcore_remaining);
3957                                required_kernelcore -= min(kernel_pages,
3958                                                        required_kernelcore);
3959
3960                                /* Continue if range is now fully accounted */
3961                                if (end_pfn <= usable_startpfn) {
3962
3963                                        /*
3964                                         * Push zone_movable_pfn to the end so
3965                                         * that if we have to rebalance
3966                                         * kernelcore across nodes, we will
3967                                         * not double account here
3968                                         */
3969                                        zone_movable_pfn[nid] = end_pfn;
3970                                        continue;
3971                                }
3972                                start_pfn = usable_startpfn;
3973                        }
3974
3975                        /*
3976                         * The usable PFN range for ZONE_MOVABLE is from
3977                         * start_pfn->end_pfn. Calculate size_pages as the
3978                         * number of pages used as kernelcore
3979                         */
3980                        size_pages = end_pfn - start_pfn;
3981                        if (size_pages > kernelcore_remaining)
3982                                size_pages = kernelcore_remaining;
3983                        zone_movable_pfn[nid] = start_pfn + size_pages;
3984
3985                        /*
3986                         * Some kernelcore has been met, update counts and
3987                         * break if the kernelcore for this node has been
3988                         * satisified
3989                         */
3990                        required_kernelcore -= min(required_kernelcore,
3991                                                                size_pages);
3992                        kernelcore_remaining -= size_pages;
3993                        if (!kernelcore_remaining)
3994                                break;
3995                }
3996        }
3997
3998        /*
3999         * If there is still required_kernelcore, we do another pass with one
4000         * less node in the count. This will push zone_movable_pfn[nid] further
4001         * along on the nodes that still have memory until kernelcore is
4002         * satisified
4003         */
4004        usable_nodes--;
4005        if (usable_nodes && required_kernelcore > usable_nodes)
4006                goto restart;
4007
4008        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4009        for (nid = 0; nid < MAX_NUMNODES; nid++)
4010                zone_movable_pfn[nid] =
4011                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4012}
4013
4014/* Any regular memory on that node ? */
4015static void check_for_regular_memory(pg_data_t *pgdat)
4016{
4017#ifdef CONFIG_HIGHMEM
4018        enum zone_type zone_type;
4019
4020        for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4021                struct zone *zone = &pgdat->node_zones[zone_type];
4022                if (zone->present_pages)
4023                        node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4024        }
4025#endif
4026}
4027
4028/**
4029 * free_area_init_nodes - Initialise all pg_data_t and zone data
4030 * @max_zone_pfn: an array of max PFNs for each zone
4031 *
4032 * This will call free_area_init_node() for each active node in the system.
4033 * Using the page ranges provided by add_active_range(), the size of each
4034 * zone in each node and their holes is calculated. If the maximum PFN
4035 * between two adjacent zones match, it is assumed that the zone is empty.
4036 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4037 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4038 * starts where the previous one ended. For example, ZONE_DMA32 starts
4039 * at arch_max_dma_pfn.
4040 */
4041void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4042{
4043        unsigned long nid;
4044        int i;
4045
4046        /* Sort early_node_map as initialisation assumes it is sorted */
4047        sort_node_map();
4048
4049        /* Record where the zone boundaries are */
4050        memset(arch_zone_lowest_possible_pfn, 0,
4051                                sizeof(arch_zone_lowest_possible_pfn));
4052        memset(arch_zone_highest_possible_pfn, 0,
4053                                sizeof(arch_zone_highest_possible_pfn));
4054        arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4055        arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4056        for (i = 1; i < MAX_NR_ZONES; i++) {
4057                if (i == ZONE_MOVABLE)
4058                        continue;
4059                arch_zone_lowest_possible_pfn[i] =
4060                        arch_zone_highest_possible_pfn[i-1];
4061                arch_zone_highest_possible_pfn[i] =
4062                        max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4063        }
4064        arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4065        arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4066
4067        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4068        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4069        find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4070
4071        /* Print out the zone ranges */
4072        printk("Zone PFN ranges:\n");
4073        for (i = 0; i < MAX_NR_ZONES; i++) {
4074                if (i == ZONE_MOVABLE)
4075                        continue;
4076                printk("  %-8s %0#10lx -> %0#10lx\n",
4077                                zone_names[i],
4078                                arch_zone_lowest_possible_pfn[i],
4079                                arch_zone_highest_possible_pfn[i]);
4080        }
4081
4082        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4083        printk("Movable zone start PFN for each node\n");
4084        for (i = 0; i < MAX_NUMNODES; i++) {
4085                if (zone_movable_pfn[i])
4086                        printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4087        }
4088
4089        /* Print out the early_node_map[] */
4090        printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4091        for (i = 0; i < nr_nodemap_entries; i++)
4092                printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4093                                                early_node_map[i].start_pfn,
4094                                                early_node_map[i].end_pfn);
4095
4096        /* Initialise every node */
4097        mminit_verify_pageflags_layout();
4098        setup_nr_node_ids();
4099        for_each_online_node(nid) {
4100                pg_data_t *pgdat = NODE_DATA(nid);
4101                free_area_init_node(nid, NULL,
4102                                find_min_pfn_for_node(nid), NULL);
4103
4104                /* Any memory on that node */
4105                if (pgdat->node_present_pages)
4106                        node_set_state(nid, N_HIGH_MEMORY);
4107                check_for_regular_memory(pgdat);
4108        }
4109}
4110
4111static int __init cmdline_parse_core(char *p, unsigned long *core)
4112{
4113        unsigned long long coremem;
4114        if (!p)
4115                return -EINVAL;
4116
4117        coremem = memparse(p, &p);
4118        *core = coremem >> PAGE_SHIFT;
4119
4120        /* Paranoid check that UL is enough for the coremem value */
4121        WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4122
4123        return 0;
4124}
4125
4126/*
4127 * kernelcore=size sets the amount of memory for use for allocations that
4128 * cannot be reclaimed or migrated.
4129 */
4130static int __init cmdline_parse_kernelcore(char *p)
4131{
4132        return cmdline_parse_core(p, &required_kernelcore);
4133}
4134
4135/*
4136 * movablecore=size sets the amount of memory for use for allocations that
4137 * can be reclaimed or migrated.
4138 */
4139static int __init cmdline_parse_movablecore(char *p)
4140{
4141        return cmdline_parse_core(p, &required_movablecore);
4142}
4143
4144early_param("kernelcore", cmdline_parse_kernelcore);
4145early_param("movablecore", cmdline_parse_movablecore);
4146
4147#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4148
4149/**
4150 * set_dma_reserve - set the specified number of pages reserved in the first zone
4151 * @new_dma_reserve: The number of pages to mark reserved
4152 *
4153 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4154 * In the DMA zone, a significant percentage may be consumed by kernel image
4155 * and other unfreeable allocations which can skew the watermarks badly. This
4156 * function may optionally be used to account for unfreeable pages in the
4157 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4158 * smaller per-cpu batchsize.
4159 */
4160void __init set_dma_reserve(unsigned long new_dma_reserve)
4161{
4162        dma_reserve = new_dma_reserve;
4163}
4164
4165#ifndef CONFIG_NEED_MULTIPLE_NODES
4166struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4167EXPORT_SYMBOL(contig_page_data);
4168#endif
4169
4170void __init free_area_init(unsigned long *zones_size)
4171{
4172        free_area_init_node(0, zones_size,
4173                        __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4174}
4175
4176static int page_alloc_cpu_notify(struct notifier_block *self,
4177                                 unsigned long action, void *hcpu)
4178{
4179        int cpu = (unsigned long)hcpu;
4180
4181        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4182                drain_pages(cpu);
4183
4184                /*
4185                 * Spill the event counters of the dead processor
4186                 * into the current processors event counters.
4187                 * This artificially elevates the count of the current
4188                 * processor.
4189                 */
4190                vm_events_fold_cpu(cpu);
4191
4192                /*
4193                 * Zero the differential counters of the dead processor
4194                 * so that the vm statistics are consistent.
4195                 *
4196                 * This is only okay since the processor is dead and cannot
4197                 * race with what we are doing.
4198                 */
4199                refresh_cpu_vm_stats(cpu);
4200        }
4201        return NOTIFY_OK;
4202}
4203
4204void __init page_alloc_init(void)
4205{
4206        hotcpu_notifier(page_alloc_cpu_notify, 0);
4207}
4208
4209/*
4210 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4211 *      or min_free_kbytes changes.
4212 */
4213static void calculate_totalreserve_pages(void)
4214{
4215        struct pglist_data *pgdat;
4216        unsigned long reserve_pages = 0;
4217        enum zone_type i, j;
4218
4219        for_each_online_pgdat(pgdat) {
4220                for (i = 0; i < MAX_NR_ZONES; i++) {
4221                        struct zone *zone = pgdat->node_zones + i;
4222                        unsigned long max = 0;
4223
4224                        /* Find valid and maximum lowmem_reserve in the zone */
4225                        for (j = i; j < MAX_NR_ZONES; j++) {
4226                                if (zone->lowmem_reserve[j] > max)
4227                                        max = zone->lowmem_reserve[j];
4228                        }
4229
4230                        /* we treat pages_high as reserved pages. */
4231                        max += zone->pages_high;
4232
4233                        if (max > zone->present_pages)
4234                                max = zone->present_pages;
4235                        reserve_pages += max;
4236                }
4237        }
4238        totalreserve_pages = reserve_pages;
4239}
4240
4241/*
4242 * setup_per_zone_lowmem_reserve - called whenever
4243 *      sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4244 *      has a correct pages reserved value, so an adequate number of
4245 *      pages are left in the zone after a successful __alloc_pages().
4246 */
4247static void setup_per_zone_lowmem_reserve(void)
4248{
4249        struct pglist_data *pgdat;
4250        enum zone_type j, idx;
4251
4252        for_each_online_pgdat(pgdat) {
4253                for (j = 0; j < MAX_NR_ZONES; j++) {
4254                        struct zone *zone = pgdat->node_zones + j;
4255                        unsigned long present_pages = zone->present_pages;
4256
4257                        zone->lowmem_reserve[j] = 0;
4258
4259                        idx = j;
4260                        while (idx) {
4261                                struct zone *lower_zone;
4262
4263                                idx--;
4264
4265                                if (sysctl_lowmem_reserve_ratio[idx] < 1)
4266                                        sysctl_lowmem_reserve_ratio[idx] = 1;
4267
4268                                lower_zone = pgdat->node_zones + idx;
4269                                lower_zone->lowmem_reserve[j] = present_pages /
4270                                        sysctl_lowmem_reserve_ratio[idx];
4271                                present_pages += lower_zone->present_pages;
4272                        }
4273                }
4274        }
4275
4276        /* update totalreserve_pages */
4277        calculate_totalreserve_pages();
4278}
4279
4280/**
4281 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4282 *
4283 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4284 * with respect to min_free_kbytes.
4285 */
4286void setup_per_zone_pages_min(void)
4287{
4288        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4289        unsigned long lowmem_pages = 0;
4290        struct zone *zone;
4291        unsigned long flags;
4292
4293        /* Calculate total number of !ZONE_HIGHMEM pages */
4294        for_each_zone(zone) {
4295                if (!is_highmem(zone))
4296                        lowmem_pages += zone->present_pages;
4297        }
4298
4299        for_each_zone(zone) {
4300                u64 tmp;
4301
4302                spin_lock_irqsave(&zone->lock, flags);
4303                tmp = (u64)pages_min * zone->present_pages;
4304                do_div(tmp, lowmem_pages);
4305                if (is_highmem(zone)) {
4306                        /*
4307                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4308                         * need highmem pages, so cap pages_min to a small
4309                         * value here.
4310                         *
4311                         * The (pages_high-pages_low) and (pages_low-pages_min)
4312                         * deltas controls asynch page reclaim, and so should
4313                         * not be capped for highmem.
4314                         */
4315                        int min_pages;
4316
4317                        min_pages = zone->present_pages / 1024;
4318                        if (min_pages < SWAP_CLUSTER_MAX)
4319                                min_pages = SWAP_CLUSTER_MAX;
4320                        if (min_pages > 128)
4321                                min_pages = 128;
4322                        zone->pages_min = min_pages;
4323                } else {
4324                        /*
4325                         * If it's a lowmem zone, reserve a number of pages
4326                         * proportionate to the zone's size.
4327                         */
4328                        zone->pages_min = tmp;
4329                }
4330
4331                zone->pages_low   = zone->pages_min + (tmp >> 2);
4332                zone->pages_high  = zone->pages_min + (tmp >> 1);
4333                setup_zone_migrate_reserve(zone);
4334                spin_unlock_irqrestore(&zone->lock, flags);
4335        }
4336
4337        /* update totalreserve_pages */
4338        calculate_totalreserve_pages();
4339}
4340
4341/**
4342 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4343 *
4344 * The inactive anon list should be small enough that the VM never has to
4345 * do too much work, but large enough that each inactive page has a chance
4346 * to be referenced again before it is swapped out.
4347 *
4348 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4349 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4350 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4351 * the anonymous pages are kept on the inactive list.
4352 *
4353 * total     target    max
4354 * memory    ratio     inactive anon
4355 * -------------------------------------
4356 *   10MB       1         5MB
4357 *  100MB       1        50MB
4358 *    1GB       3       250MB
4359 *   10GB      10       0.9GB
4360 *  100GB      31         3GB
4361 *    1TB     101        10GB
4362 *   10TB     320        32GB
4363 */
4364static void setup_per_zone_inactive_ratio(void)
4365{
4366        struct zone *zone;
4367
4368        for_each_zone(zone) {
4369                unsigned int gb, ratio;
4370
4371                /* Zone size in gigabytes */
4372                gb = zone->present_pages >> (30 - PAGE_SHIFT);
4373                ratio = int_sqrt(10 * gb);
4374                if (!ratio)
4375                        ratio = 1;
4376
4377                zone->inactive_ratio = ratio;
4378        }
4379}
4380
4381/*
4382 * Initialise min_free_kbytes.
4383 *
4384 * For small machines we want it small (128k min).  For large machines
4385 * we want it large (64MB max).  But it is not linear, because network
4386 * bandwidth does not increase linearly with machine size.  We use
4387 *
4388 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4389 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
4390 *
4391 * which yields
4392 *
4393 * 16MB:        512k
4394 * 32MB:        724k
4395 * 64MB:        1024k
4396 * 128MB:       1448k
4397 * 256MB:       2048k
4398 * 512MB:       2896k
4399 * 1024MB:      4096k
4400 * 2048MB:      5792k
4401 * 4096MB:      8192k
4402 * 8192MB:      11584k
4403 * 16384MB:     16384k
4404 */
4405static int __init init_per_zone_pages_min(void)
4406{
4407        unsigned long lowmem_kbytes;
4408
4409        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4410
4411        min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4412        if (min_free_kbytes < 128)
4413                min_free_kbytes = 128;
4414        if (min_free_kbytes > 65536)
4415                min_free_kbytes = 65536;
4416        setup_per_zone_pages_min();
4417        setup_per_zone_lowmem_reserve();
4418        setup_per_zone_inactive_ratio();
4419        return 0;
4420}
4421module_init(init_per_zone_pages_min)
4422
4423/*
4424 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 
4425 *      that we can call two helper functions whenever min_free_kbytes
4426 *      changes.
4427 */
4428int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 
4429        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4430{
4431        proc_dointvec(table, write, file, buffer, length, ppos);
4432        if (write)
4433                setup_per_zone_pages_min();
4434        return 0;
4435}
4436
4437#ifdef CONFIG_NUMA
4438int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4439        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4440{
4441        struct zone *zone;
4442        int rc;
4443
4444        rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4445        if (rc)
4446                return rc;
4447
4448        for_each_zone(zone)
4449                zone->min_unmapped_pages = (zone->present_pages *
4450                                sysctl_min_unmapped_ratio) / 100;
4451        return 0;
4452}
4453
4454int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4455        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4456{
4457        struct zone *zone;
4458        int rc;
4459
4460        rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4461        if (rc)
4462                return rc;
4463
4464        for_each_zone(zone)
4465                zone->min_slab_pages = (zone->present_pages *
4466                                sysctl_min_slab_ratio) / 100;
4467        return 0;
4468}
4469#endif
4470
4471/*
4472 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4473 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4474 *      whenever sysctl_lowmem_reserve_ratio changes.
4475 *
4476 * The reserve ratio obviously has absolutely no relation with the
4477 * pages_min watermarks. The lowmem reserve ratio can only make sense
4478 * if in function of the boot time zone sizes.
4479 */
4480int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4481        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4482{
4483        proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4484        setup_per_zone_lowmem_reserve();
4485        return 0;
4486}
4487
4488/*
4489 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4490 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4491 * can have before it gets flushed back to buddy allocator.
4492 */
4493
4494int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4495        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4496{
4497        struct zone *zone;
4498        unsigned int cpu;
4499        int ret;
4500
4501        ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4502        if (!write || (ret == -EINVAL))
4503                return ret;
4504        for_each_populated_zone(zone) {
4505                for_each_online_cpu(cpu) {
4506                        unsigned long  high;
4507                        high = zone->present_pages / percpu_pagelist_fraction;
4508                        setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4509                }
4510        }
4511        return 0;
4512}
4513
4514int hashdist = HASHDIST_DEFAULT;
4515
4516#ifdef CONFIG_NUMA
4517static int __init set_hashdist(char *str)
4518{
4519        if (!str)
4520                return 0;
4521        hashdist = simple_strtoul(str, &str, 0);
4522        return 1;
4523}
4524__setup("hashdist=", set_hashdist);
4525#endif
4526
4527/*
4528 * allocate a large system hash table from bootmem
4529 * - it is assumed that the hash table must contain an exact power-of-2
4530 *   quantity of entries
4531 * - limit is the number of hash buckets, not the total allocation size
4532 */
4533void *__init alloc_large_system_hash(const char *tablename,
4534                                     unsigned long bucketsize,
4535                                     unsigned long numentries,
4536                                     int scale,
4537                                     int flags,
4538                                     unsigned int *_hash_shift,
4539                                     unsigned int *_hash_mask,
4540                                     unsigned long limit)
4541{
4542        unsigned long long max = limit;
4543        unsigned long log2qty, size;
4544        void *table = NULL;
4545
4546        /* allow the kernel cmdline to have a say */
4547        if (!numentries) {
4548                /* round applicable memory size up to nearest megabyte */
4549                numentries = nr_kernel_pages;
4550                numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4551                numentries >>= 20 - PAGE_SHIFT;
4552                numentries <<= 20 - PAGE_SHIFT;
4553
4554                /* limit to 1 bucket per 2^scale bytes of low memory */
4555                if (scale > PAGE_SHIFT)
4556                        numentries >>= (scale - PAGE_SHIFT);
4557                else
4558                        numentries <<= (PAGE_SHIFT - scale);
4559
4560                /* Make sure we've got at least a 0-order allocation.. */
4561                if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4562                        numentries = PAGE_SIZE / bucketsize;
4563        }
4564        numentries = roundup_pow_of_two(numentries);
4565
4566        /* limit allocation size to 1/16 total memory by default */
4567        if (max == 0) {
4568                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4569                do_div(max, bucketsize);
4570        }
4571
4572        if (numentries > max)
4573                numentries = max;
4574
4575        log2qty = ilog2(numentries);
4576
4577        do {
4578                size = bucketsize << log2qty;
4579                if (flags & HASH_EARLY)
4580                        table = alloc_bootmem_nopanic(size);
4581                else if (hashdist)
4582                        table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4583                else {
4584                        unsigned long order = get_order(size);
4585                        table = (void*) __get_free_pages(GFP_ATOMIC, order);
4586                        /*
4587                         * If bucketsize is not a power-of-two, we may free
4588                         * some pages at the end of hash table.
4589                         */
4590                        if (table) {
4591                                unsigned long alloc_end = (unsigned long)table +
4592                                                (PAGE_SIZE << order);
4593                                unsigned long used = (unsigned long)table +
4594                                                PAGE_ALIGN(size);
4595                                split_page(virt_to_page(table), order);
4596                                while (used < alloc_end) {
4597                                        free_page(used);
4598                                        used += PAGE_SIZE;
4599                                }
4600                        }
4601                }
4602        } while (!table && size > PAGE_SIZE && --log2qty);
4603
4604        if (!table)
4605                panic("Failed to allocate %s hash table\n", tablename);
4606
4607        printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4608               tablename,
4609               (1U << log2qty),
4610               ilog2(size) - PAGE_SHIFT,
4611               size);
4612
4613        if (_hash_shift)
4614                *_hash_shift = log2qty;
4615        if (_hash_mask)
4616                *_hash_mask = (1 << log2qty) - 1;
4617
4618        return table;
4619}
4620
4621/* Return a pointer to the bitmap storing bits affecting a block of pages */
4622static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4623                                                        unsigned long pfn)
4624{
4625#ifdef CONFIG_SPARSEMEM
4626        return __pfn_to_section(pfn)->pageblock_flags;
4627#else
4628        return zone->pageblock_flags;
4629#endif /* CONFIG_SPARSEMEM */
4630}
4631
4632static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4633{
4634#ifdef CONFIG_SPARSEMEM
4635        pfn &= (PAGES_PER_SECTION-1);
4636        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4637#else
4638        pfn = pfn - zone->zone_start_pfn;
4639        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4640#endif /* CONFIG_SPARSEMEM */
4641}
4642
4643/**
4644 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4645 * @page: The page within the block of interest
4646 * @start_bitidx: The first bit of interest to retrieve
4647 * @end_bitidx: The last bit of interest
4648 * returns pageblock_bits flags
4649 */
4650unsigned long get_pageblock_flags_group(struct page *page,
4651                                        int start_bitidx, int end_bitidx)
4652{
4653        struct zone *zone;
4654        unsigned long *bitmap;
4655        unsigned long pfn, bitidx;
4656        unsigned long flags = 0;
4657        unsigned long value = 1;
4658
4659        zone = page_zone(page);
4660        pfn = page_to_pfn(page);
4661        bitmap = get_pageblock_bitmap(zone, pfn);
4662        bitidx = pfn_to_bitidx(zone, pfn);
4663
4664        for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4665                if (test_bit(bitidx + start_bitidx, bitmap))
4666                        flags |= value;
4667
4668        return flags;
4669}
4670
4671/**
4672 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4673 * @page: The page within the block of interest
4674 * @start_bitidx: The first bit of interest
4675 * @end_bitidx: The last bit of interest
4676 * @flags: The flags to set
4677 */
4678void set_pageblock_flags_group(struct page *page, unsigned long flags,
4679                                        int start_bitidx, int end_bitidx)
4680{
4681        struct zone *zone;
4682        unsigned long *bitmap;
4683        unsigned long pfn, bitidx;
4684        unsigned long value = 1;
4685
4686        zone = page_zone(page);
4687        pfn = page_to_pfn(page);
4688        bitmap = get_pageblock_bitmap(zone, pfn);
4689        bitidx = pfn_to_bitidx(zone, pfn);
4690        VM_BUG_ON(pfn < zone->zone_start_pfn);
4691        VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4692
4693        for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4694                if (flags & value)
4695                        __set_bit(bitidx + start_bitidx, bitmap);
4696                else
4697                        __clear_bit(bitidx + start_bitidx, bitmap);
4698}
4699
4700/*
4701 * This is designed as sub function...plz see page_isolation.c also.
4702 * set/clear page block's type to be ISOLATE.
4703 * page allocater never alloc memory from ISOLATE block.
4704 */
4705
4706int set_migratetype_isolate(struct page *page)
4707{
4708        struct zone *zone;
4709        unsigned long flags;
4710        int ret = -EBUSY;
4711
4712        zone = page_zone(page);
4713        spin_lock_irqsave(&zone->lock, flags);
4714        /*
4715         * In future, more migrate types will be able to be isolation target.
4716         */
4717        if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4718                goto out;
4719        set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4720        move_freepages_block(zone, page, MIGRATE_ISOLATE);
4721        ret = 0;
4722out:
4723        spin_unlock_irqrestore(&zone->lock, flags);
4724        if (!ret)
4725                drain_all_pages();
4726        return ret;
4727}
4728
4729void unset_migratetype_isolate(struct page *