linux/mm/mlock.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/mlock.c
   3 *
   4 *  (C) Copyright 1995 Linus Torvalds
   5 *  (C) Copyright 2002 Christoph Hellwig
   6 */
   7
   8#include <linux/capability.h>
   9#include <linux/mman.h>
  10#include <linux/mm.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/syscalls.h>
  16#include <linux/sched.h>
  17#include <linux/module.h>
  18#include <linux/rmap.h>
  19#include <linux/mmzone.h>
  20#include <linux/hugetlb.h>
  21
  22#include "internal.h"
  23
  24int can_do_mlock(void)
  25{
  26        if (capable(CAP_IPC_LOCK))
  27                return 1;
  28        if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
  29                return 1;
  30        return 0;
  31}
  32EXPORT_SYMBOL(can_do_mlock);
  33
  34#ifdef CONFIG_UNEVICTABLE_LRU
  35/*
  36 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  37 * in vmscan and, possibly, the fault path; and to support semi-accurate
  38 * statistics.
  39 *
  40 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  41 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  42 * The unevictable list is an LRU sibling list to the [in]active lists.
  43 * PageUnevictable is set to indicate the unevictable state.
  44 *
  45 * When lazy mlocking via vmscan, it is important to ensure that the
  46 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  47 * may have mlocked a page that is being munlocked. So lazy mlock must take
  48 * the mmap_sem for read, and verify that the vma really is locked
  49 * (see mm/rmap.c).
  50 */
  51
  52/*
  53 *  LRU accounting for clear_page_mlock()
  54 */
  55void __clear_page_mlock(struct page *page)
  56{
  57        VM_BUG_ON(!PageLocked(page));
  58
  59        if (!page->mapping) {   /* truncated ? */
  60                return;
  61        }
  62
  63        dec_zone_page_state(page, NR_MLOCK);
  64        count_vm_event(UNEVICTABLE_PGCLEARED);
  65        if (!isolate_lru_page(page)) {
  66                putback_lru_page(page);
  67        } else {
  68                /*
  69                 * We lost the race. the page already moved to evictable list.
  70                 */
  71                if (PageUnevictable(page))
  72                        count_vm_event(UNEVICTABLE_PGSTRANDED);
  73        }
  74}
  75
  76/*
  77 * Mark page as mlocked if not already.
  78 * If page on LRU, isolate and putback to move to unevictable list.
  79 */
  80void mlock_vma_page(struct page *page)
  81{
  82        BUG_ON(!PageLocked(page));
  83
  84        if (!TestSetPageMlocked(page)) {
  85                inc_zone_page_state(page, NR_MLOCK);
  86                count_vm_event(UNEVICTABLE_PGMLOCKED);
  87                if (!isolate_lru_page(page))
  88                        putback_lru_page(page);
  89        }
  90}
  91
  92/*
  93 * called from munlock()/munmap() path with page supposedly on the LRU.
  94 *
  95 * Note:  unlike mlock_vma_page(), we can't just clear the PageMlocked
  96 * [in try_to_munlock()] and then attempt to isolate the page.  We must
  97 * isolate the page to keep others from messing with its unevictable
  98 * and mlocked state while trying to munlock.  However, we pre-clear the
  99 * mlocked state anyway as we might lose the isolation race and we might
 100 * not get another chance to clear PageMlocked.  If we successfully
 101 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
 102 * mapping the page, it will restore the PageMlocked state, unless the page
 103 * is mapped in a non-linear vma.  So, we go ahead and SetPageMlocked(),
 104 * perhaps redundantly.
 105 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
 106 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
 107 * either of which will restore the PageMlocked state by calling
 108 * mlock_vma_page() above, if it can grab the vma's mmap sem.
 109 */
 110static void munlock_vma_page(struct page *page)
 111{
 112        BUG_ON(!PageLocked(page));
 113
 114        if (TestClearPageMlocked(page)) {
 115                dec_zone_page_state(page, NR_MLOCK);
 116                if (!isolate_lru_page(page)) {
 117                        int ret = try_to_munlock(page);
 118                        /*
 119                         * did try_to_unlock() succeed or punt?
 120                         */
 121                        if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
 122                                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 123
 124                        putback_lru_page(page);
 125                } else {
 126                        /*
 127                         * We lost the race.  let try_to_unmap() deal
 128                         * with it.  At least we get the page state and
 129                         * mlock stats right.  However, page is still on
 130                         * the noreclaim list.  We'll fix that up when
 131                         * the page is eventually freed or we scan the
 132                         * noreclaim list.
 133                         */
 134                        if (PageUnevictable(page))
 135                                count_vm_event(UNEVICTABLE_PGSTRANDED);
 136                        else
 137                                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 138                }
 139        }
 140}
 141
 142/**
 143 * __mlock_vma_pages_range() -  mlock/munlock a range of pages in the vma.
 144 * @vma:   target vma
 145 * @start: start address
 146 * @end:   end address
 147 * @mlock: 0 indicate munlock, otherwise mlock.
 148 *
 149 * If @mlock == 0, unlock an mlocked range;
 150 * else mlock the range of pages.  This takes care of making the pages present ,
 151 * too.
 152 *
 153 * return 0 on success, negative error code on error.
 154 *
 155 * vma->vm_mm->mmap_sem must be held for at least read.
 156 */
 157static long __mlock_vma_pages_range(struct vm_area_struct *vma,
 158                                   unsigned long start, unsigned long end,
 159                                   int mlock)
 160{
 161        struct mm_struct *mm = vma->vm_mm;
 162        unsigned long addr = start;
 163        struct page *pages[16]; /* 16 gives a reasonable batch */
 164        int nr_pages = (end - start) / PAGE_SIZE;
 165        int ret = 0;
 166        int gup_flags = 0;
 167
 168        VM_BUG_ON(start & ~PAGE_MASK);
 169        VM_BUG_ON(end   & ~PAGE_MASK);
 170        VM_BUG_ON(start < vma->vm_start);
 171        VM_BUG_ON(end   > vma->vm_end);
 172        VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
 173                  (atomic_read(&mm->mm_users) != 0));
 174
 175        /*
 176         * mlock:   don't page populate if vma has PROT_NONE permission.
 177         * munlock: always do munlock although the vma has PROT_NONE
 178         *          permission, or SIGKILL is pending.
 179         */
 180        if (!mlock)
 181                gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS |
 182                             GUP_FLAGS_IGNORE_SIGKILL;
 183
 184        if (vma->vm_flags & VM_WRITE)
 185                gup_flags |= GUP_FLAGS_WRITE;
 186
 187        while (nr_pages > 0) {
 188                int i;
 189
 190                cond_resched();
 191
 192                /*
 193                 * get_user_pages makes pages present if we are
 194                 * setting mlock. and this extra reference count will
 195                 * disable migration of this page.  However, page may
 196                 * still be truncated out from under us.
 197                 */
 198                ret = __get_user_pages(current, mm, addr,
 199                                min_t(int, nr_pages, ARRAY_SIZE(pages)),
 200                                gup_flags, pages, NULL);
 201                /*
 202                 * This can happen for, e.g., VM_NONLINEAR regions before
 203                 * a page has been allocated and mapped at a given offset,
 204                 * or for addresses that map beyond end of a file.
 205                 * We'll mlock the the pages if/when they get faulted in.
 206                 */
 207                if (ret < 0)
 208                        break;
 209                if (ret == 0) {
 210                        /*
 211                         * We know the vma is there, so the only time
 212                         * we cannot get a single page should be an
 213                         * error (ret < 0) case.
 214                         */
 215                        WARN_ON(1);
 216                        break;
 217                }
 218
 219                lru_add_drain();        /* push cached pages to LRU */
 220
 221                for (i = 0; i < ret; i++) {
 222                        struct page *page = pages[i];
 223
 224                        lock_page(page);
 225                        /*
 226                         * Because we lock page here and migration is blocked
 227                         * by the elevated reference, we need only check for
 228                         * page truncation (file-cache only).
 229                         */
 230                        if (page->mapping) {
 231                                if (mlock)
 232                                        mlock_vma_page(page);
 233                                else
 234                                        munlock_vma_page(page);
 235                        }
 236                        unlock_page(page);
 237                        put_page(page);         /* ref from get_user_pages() */
 238
 239                        /*
 240                         * here we assume that get_user_pages() has given us
 241                         * a list of virtually contiguous pages.
 242                         */
 243                        addr += PAGE_SIZE;      /* for next get_user_pages() */
 244                        nr_pages--;
 245                }
 246                ret = 0;
 247        }
 248
 249        return ret;     /* count entire vma as locked_vm */
 250}
 251
 252/*
 253 * convert get_user_pages() return value to posix mlock() error
 254 */
 255static int __mlock_posix_error_return(long retval)
 256{
 257        if (retval == -EFAULT)
 258                retval = -ENOMEM;
 259        else if (retval == -ENOMEM)
 260                retval = -EAGAIN;
 261        return retval;
 262}
 263
 264#else /* CONFIG_UNEVICTABLE_LRU */
 265
 266/*
 267 * Just make pages present if VM_LOCKED.  No-op if unlocking.
 268 */
 269static long __mlock_vma_pages_range(struct vm_area_struct *vma,
 270                                   unsigned long start, unsigned long end,
 271                                   int mlock)
 272{
 273        if (mlock && (vma->vm_flags & VM_LOCKED))
 274                return make_pages_present(start, end);
 275        return 0;
 276}
 277
 278static inline int __mlock_posix_error_return(long retval)
 279{
 280        return 0;
 281}
 282
 283#endif /* CONFIG_UNEVICTABLE_LRU */
 284
 285/**
 286 * mlock_vma_pages_range() - mlock pages in specified vma range.
 287 * @vma - the vma containing the specfied address range
 288 * @start - starting address in @vma to mlock
 289 * @end   - end address [+1] in @vma to mlock
 290 *
 291 * For mmap()/mremap()/expansion of mlocked vma.
 292 *
 293 * return 0 on success for "normal" vmas.
 294 *
 295 * return number of pages [> 0] to be removed from locked_vm on success
 296 * of "special" vmas.
 297 */
 298long mlock_vma_pages_range(struct vm_area_struct *vma,
 299                        unsigned long start, unsigned long end)
 300{
 301        int nr_pages = (end - start) / PAGE_SIZE;
 302        BUG_ON(!(vma->vm_flags & VM_LOCKED));
 303
 304        /*
 305         * filter unlockable vmas
 306         */
 307        if (vma->vm_flags & (VM_IO | VM_PFNMAP))
 308                goto no_mlock;
 309
 310        if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
 311                        is_vm_hugetlb_page(vma) ||
 312                        vma == get_gate_vma(current))) {
 313
 314                __mlock_vma_pages_range(vma, start, end, 1);
 315
 316                /* Hide errors from mmap() and other callers */
 317                return 0;
 318        }
 319
 320        /*
 321         * User mapped kernel pages or huge pages:
 322         * make these pages present to populate the ptes, but
 323         * fall thru' to reset VM_LOCKED--no need to unlock, and
 324         * return nr_pages so these don't get counted against task's
 325         * locked limit.  huge pages are already counted against
 326         * locked vm limit.
 327         */
 328        make_pages_present(start, end);
 329
 330no_mlock:
 331        vma->vm_flags &= ~VM_LOCKED;    /* and don't come back! */
 332        return nr_pages;                /* error or pages NOT mlocked */
 333}
 334
 335
 336/*
 337 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 338 * @vma - vma containing range to be munlock()ed.
 339 * @start - start address in @vma of the range
 340 * @end - end of range in @vma.
 341 *
 342 *  For mremap(), munmap() and exit().
 343 *
 344 * Called with @vma VM_LOCKED.
 345 *
 346 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 347 * deal with this.
 348 *
 349 * We don't save and restore VM_LOCKED here because pages are
 350 * still on lru.  In unmap path, pages might be scanned by reclaim
 351 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 352 * free them.  This will result in freeing mlocked pages.
 353 */
 354void munlock_vma_pages_range(struct vm_area_struct *vma,
 355                           unsigned long start, unsigned long end)
 356{
 357        vma->vm_flags &= ~VM_LOCKED;
 358        __mlock_vma_pages_range(vma, start, end, 0);
 359}
 360
 361/*
 362 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 363 *
 364 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 365 * munlock is a no-op.  However, for some special vmas, we go ahead and
 366 * populate the ptes via make_pages_present().
 367 *
 368 * For vmas that pass the filters, merge/split as appropriate.
 369 */
 370static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 371        unsigned long start, unsigned long end, unsigned int newflags)
 372{
 373        struct mm_struct *mm = vma->vm_mm;
 374        pgoff_t pgoff;
 375        int nr_pages;
 376        int ret = 0;
 377        int lock = newflags & VM_LOCKED;
 378
 379        if (newflags == vma->vm_flags ||
 380                        (vma->vm_flags & (VM_IO | VM_PFNMAP)))
 381                goto out;       /* don't set VM_LOCKED,  don't count */
 382
 383        if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
 384                        is_vm_hugetlb_page(vma) ||
 385                        vma == get_gate_vma(current)) {
 386                if (lock)
 387                        make_pages_present(start, end);
 388                goto out;       /* don't set VM_LOCKED,  don't count */
 389        }
 390
 391        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 392        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 393                          vma->vm_file, pgoff, vma_policy(vma));
 394        if (*prev) {
 395                vma = *prev;
 396                goto success;
 397        }
 398
 399        if (start != vma->vm_start) {
 400                ret = split_vma(mm, vma, start, 1);
 401                if (ret)
 402                        goto out;
 403        }
 404
 405        if (end != vma->vm_end) {
 406                ret = split_vma(mm, vma, end, 0);
 407                if (ret)
 408                        goto out;
 409        }
 410
 411success:
 412        /*
 413         * Keep track of amount of locked VM.
 414         */
 415        nr_pages = (end - start) >> PAGE_SHIFT;
 416        if (!lock)
 417                nr_pages = -nr_pages;
 418        mm->locked_vm += nr_pages;
 419
 420        /*
 421         * vm_flags is protected by the mmap_sem held in write mode.
 422         * It's okay if try_to_unmap_one unmaps a page just after we
 423         * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
 424         */
 425        vma->vm_flags = newflags;
 426
 427        if (lock) {
 428                ret = __mlock_vma_pages_range(vma, start, end, 1);
 429
 430                if (ret > 0) {
 431                        mm->locked_vm -= ret;
 432                        ret = 0;
 433                } else
 434                        ret = __mlock_posix_error_return(ret); /* translate if needed */
 435        } else {
 436                __mlock_vma_pages_range(vma, start, end, 0);
 437        }
 438
 439out:
 440        *prev = vma;
 441        return ret;
 442}
 443
 444static int do_mlock(unsigned long start, size_t len, int on)
 445{
 446        unsigned long nstart, end, tmp;
 447        struct vm_area_struct * vma, * prev;
 448        int error;
 449
 450        len = PAGE_ALIGN(len);
 451        end = start + len;
 452        if (end < start)
 453                return -EINVAL;
 454        if (end == start)
 455                return 0;
 456        vma = find_vma_prev(current->mm, start, &prev);
 457        if (!vma || vma->vm_start > start)
 458                return -ENOMEM;
 459
 460        if (start > vma->vm_start)
 461                prev = vma;
 462
 463        for (nstart = start ; ; ) {
 464                unsigned int newflags;
 465
 466                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 467
 468                newflags = vma->vm_flags | VM_LOCKED;
 469                if (!on)
 470                        newflags &= ~VM_LOCKED;
 471
 472                tmp = vma->vm_end;
 473                if (tmp > end)
 474                        tmp = end;
 475                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 476                if (error)
 477                        break;
 478                nstart = tmp;
 479                if (nstart < prev->vm_end)
 480                        nstart = prev->vm_end;
 481                if (nstart >= end)
 482                        break;
 483
 484                vma = prev->vm_next;
 485                if (!vma || vma->vm_start != nstart) {
 486                        error = -ENOMEM;
 487                        break;
 488                }
 489        }
 490        return error;
 491}
 492
 493SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 494{
 495        unsigned long locked;
 496        unsigned long lock_limit;
 497        int error = -ENOMEM;
 498
 499        if (!can_do_mlock())
 500                return -EPERM;
 501
 502        lru_add_drain_all();    /* flush pagevec */
 503
 504        down_write(&current->mm->mmap_sem);
 505        len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 506        start &= PAGE_MASK;
 507
 508        locked = len >> PAGE_SHIFT;
 509        locked += current->mm->locked_vm;
 510
 511        lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 512        lock_limit >>= PAGE_SHIFT;
 513
 514        /* check against resource limits */
 515        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 516                error = do_mlock(start, len, 1);
 517        up_write(&current->mm->mmap_sem);
 518        return error;
 519}
 520
 521SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 522{
 523        int ret;
 524
 525        down_write(&current->mm->mmap_sem);
 526        len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 527        start &= PAGE_MASK;
 528        ret = do_mlock(start, len, 0);
 529        up_write(&current->mm->mmap_sem);
 530        return ret;
 531}
 532
 533static int do_mlockall(int flags)
 534{
 535        struct vm_area_struct * vma, * prev = NULL;
 536        unsigned int def_flags = 0;
 537
 538        if (flags & MCL_FUTURE)
 539                def_flags = VM_LOCKED;
 540        current->mm->def_flags = def_flags;
 541        if (flags == MCL_FUTURE)
 542                goto out;
 543
 544        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 545                unsigned int newflags;
 546
 547                newflags = vma->vm_flags | VM_LOCKED;
 548                if (!(flags & MCL_CURRENT))
 549                        newflags &= ~VM_LOCKED;
 550
 551                /* Ignore errors */
 552                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 553        }
 554out:
 555        return 0;
 556}
 557
 558SYSCALL_DEFINE1(mlockall, int, flags)
 559{
 560        unsigned long lock_limit;
 561        int ret = -EINVAL;
 562
 563        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
 564                goto out;
 565
 566        ret = -EPERM;
 567        if (!can_do_mlock())
 568                goto out;
 569
 570        lru_add_drain_all();    /* flush pagevec */
 571
 572        down_write(&current->mm->mmap_sem);
 573
 574        lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 575        lock_limit >>= PAGE_SHIFT;
 576
 577        ret = -ENOMEM;
 578        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 579            capable(CAP_IPC_LOCK))
 580                ret = do_mlockall(flags);
 581        up_write(&current->mm->mmap_sem);
 582out:
 583        return ret;
 584}
 585
 586SYSCALL_DEFINE0(munlockall)
 587{
 588        int ret;
 589
 590        down_write(&current->mm->mmap_sem);
 591        ret = do_mlockall(0);
 592        up_write(&current->mm->mmap_sem);
 593        return ret;
 594}
 595
 596/*
 597 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 598 * shm segments) get accounted against the user_struct instead.
 599 */
 600static DEFINE_SPINLOCK(shmlock_user_lock);
 601
 602int user_shm_lock(size_t size, struct user_struct *user)
 603{
 604        unsigned long lock_limit, locked;
 605        int allowed = 0;
 606
 607        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 608        lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 609        if (lock_limit == RLIM_INFINITY)
 610                allowed = 1;
 611        lock_limit >>= PAGE_SHIFT;
 612        spin_lock(&shmlock_user_lock);
 613        if (!allowed &&
 614            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 615                goto out;
 616        get_uid(user);
 617        user->locked_shm += locked;
 618        allowed = 1;
 619out:
 620        spin_unlock(&shmlock_user_lock);
 621        return allowed;
 622}
 623
 624void user_shm_unlock(size_t size, struct user_struct *user)
 625{
 626        spin_lock(&shmlock_user_lock);
 627        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 628        spin_unlock(&shmlock_user_lock);
 629        free_uid(user);
 630}
 631
 632void *alloc_locked_buffer(size_t size)
 633{
 634        unsigned long rlim, vm, pgsz;
 635        void *buffer = NULL;
 636
 637        pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
 638
 639        down_write(&current->mm->mmap_sem);
 640
 641        rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
 642        vm   = current->mm->total_vm + pgsz;
 643        if (rlim < vm)
 644                goto out;
 645
 646        rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
 647        vm   = current->mm->locked_vm + pgsz;
 648        if (rlim < vm)
 649                goto out;
 650
 651        buffer = kzalloc(size, GFP_KERNEL);
 652        if (!buffer)
 653                goto out;
 654
 655        current->mm->total_vm  += pgsz;
 656        current->mm->locked_vm += pgsz;
 657
 658 out:
 659        up_write(&current->mm->mmap_sem);
 660        return buffer;
 661}
 662
 663void release_locked_buffer(void *buffer, size_t size)
 664{
 665        unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
 666
 667        down_write(&current->mm->mmap_sem);
 668
 669        current->mm->total_vm  -= pgsz;
 670        current->mm->locked_vm -= pgsz;
 671
 672        up_write(&current->mm->mmap_sem);
 673}
 674
 675void free_locked_buffer(void *buffer, size_t size)
 676{
 677        release_locked_buffer(buffer, size);
 678
 679        kfree(buffer);
 680}
 681