linux/mm/mempolicy.c
<<
>>
Prefs
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *                in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/gfp.h>
  77#include <linux/slab.h>
  78#include <linux/string.h>
  79#include <linux/module.h>
  80#include <linux/nsproxy.h>
  81#include <linux/interrupt.h>
  82#include <linux/init.h>
  83#include <linux/compat.h>
  84#include <linux/swap.h>
  85#include <linux/seq_file.h>
  86#include <linux/proc_fs.h>
  87#include <linux/migrate.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92
  93#include <asm/tlbflush.h>
  94#include <asm/uaccess.h>
  95
  96#include "internal.h"
  97
  98/* Internal flags */
  99#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
 100#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
 101#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)           /* Gather statistics */
 102
 103static struct kmem_cache *policy_cache;
 104static struct kmem_cache *sn_cache;
 105
 106/* Highest zone. An specific allocation for a zone below that is not
 107   policied. */
 108enum zone_type policy_zone = 0;
 109
 110/*
 111 * run-time system-wide default policy => local allocation
 112 */
 113struct mempolicy default_policy = {
 114        .refcnt = ATOMIC_INIT(1), /* never free it */
 115        .mode = MPOL_PREFERRED,
 116        .flags = MPOL_F_LOCAL,
 117};
 118
 119static const struct mempolicy_operations {
 120        int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 121        void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 122} mpol_ops[MPOL_MAX];
 123
 124/* Check that the nodemask contains at least one populated zone */
 125static int is_valid_nodemask(const nodemask_t *nodemask)
 126{
 127        int nd, k;
 128
 129        /* Check that there is something useful in this mask */
 130        k = policy_zone;
 131
 132        for_each_node_mask(nd, *nodemask) {
 133                struct zone *z;
 134
 135                for (k = 0; k <= policy_zone; k++) {
 136                        z = &NODE_DATA(nd)->node_zones[k];
 137                        if (z->present_pages > 0)
 138                                return 1;
 139                }
 140        }
 141
 142        return 0;
 143}
 144
 145static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 146{
 147        return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
 148}
 149
 150static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 151                                   const nodemask_t *rel)
 152{
 153        nodemask_t tmp;
 154        nodes_fold(tmp, *orig, nodes_weight(*rel));
 155        nodes_onto(*ret, tmp, *rel);
 156}
 157
 158static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 159{
 160        if (nodes_empty(*nodes))
 161                return -EINVAL;
 162        pol->v.nodes = *nodes;
 163        return 0;
 164}
 165
 166static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 167{
 168        if (!nodes)
 169                pol->flags |= MPOL_F_LOCAL;     /* local allocation */
 170        else if (nodes_empty(*nodes))
 171                return -EINVAL;                 /*  no allowed nodes */
 172        else
 173                pol->v.preferred_node = first_node(*nodes);
 174        return 0;
 175}
 176
 177static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 178{
 179        if (!is_valid_nodemask(nodes))
 180                return -EINVAL;
 181        pol->v.nodes = *nodes;
 182        return 0;
 183}
 184
 185/* Create a new policy */
 186static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 187                                  nodemask_t *nodes)
 188{
 189        struct mempolicy *policy;
 190        nodemask_t cpuset_context_nmask;
 191        int ret;
 192
 193        pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 194                 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 195
 196        if (mode == MPOL_DEFAULT) {
 197                if (nodes && !nodes_empty(*nodes))
 198                        return ERR_PTR(-EINVAL);
 199                return NULL;    /* simply delete any existing policy */
 200        }
 201        VM_BUG_ON(!nodes);
 202
 203        /*
 204         * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 205         * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 206         * All other modes require a valid pointer to a non-empty nodemask.
 207         */
 208        if (mode == MPOL_PREFERRED) {
 209                if (nodes_empty(*nodes)) {
 210                        if (((flags & MPOL_F_STATIC_NODES) ||
 211                             (flags & MPOL_F_RELATIVE_NODES)))
 212                                return ERR_PTR(-EINVAL);
 213                        nodes = NULL;   /* flag local alloc */
 214                }
 215        } else if (nodes_empty(*nodes))
 216                return ERR_PTR(-EINVAL);
 217        policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 218        if (!policy)
 219                return ERR_PTR(-ENOMEM);
 220        atomic_set(&policy->refcnt, 1);
 221        policy->mode = mode;
 222        policy->flags = flags;
 223
 224        if (nodes) {
 225                /*
 226                 * cpuset related setup doesn't apply to local allocation
 227                 */
 228                cpuset_update_task_memory_state();
 229                if (flags & MPOL_F_RELATIVE_NODES)
 230                        mpol_relative_nodemask(&cpuset_context_nmask, nodes,
 231                                               &cpuset_current_mems_allowed);
 232                else
 233                        nodes_and(cpuset_context_nmask, *nodes,
 234                                  cpuset_current_mems_allowed);
 235                if (mpol_store_user_nodemask(policy))
 236                        policy->w.user_nodemask = *nodes;
 237                else
 238                        policy->w.cpuset_mems_allowed =
 239                                                cpuset_mems_allowed(current);
 240        }
 241
 242        ret = mpol_ops[mode].create(policy,
 243                                nodes ? &cpuset_context_nmask : NULL);
 244        if (ret < 0) {
 245                kmem_cache_free(policy_cache, policy);
 246                return ERR_PTR(ret);
 247        }
 248        return policy;
 249}
 250
 251/* Slow path of a mpol destructor. */
 252void __mpol_put(struct mempolicy *p)
 253{
 254        if (!atomic_dec_and_test(&p->refcnt))
 255                return;
 256        kmem_cache_free(policy_cache, p);
 257}
 258
 259static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 260{
 261}
 262
 263static void mpol_rebind_nodemask(struct mempolicy *pol,
 264                                 const nodemask_t *nodes)
 265{
 266        nodemask_t tmp;
 267
 268        if (pol->flags & MPOL_F_STATIC_NODES)
 269                nodes_and(tmp, pol->w.user_nodemask, *nodes);
 270        else if (pol->flags & MPOL_F_RELATIVE_NODES)
 271                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 272        else {
 273                nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
 274                            *nodes);
 275                pol->w.cpuset_mems_allowed = *nodes;
 276        }
 277
 278        pol->v.nodes = tmp;
 279        if (!node_isset(current->il_next, tmp)) {
 280                current->il_next = next_node(current->il_next, tmp);
 281                if (current->il_next >= MAX_NUMNODES)
 282                        current->il_next = first_node(tmp);
 283                if (current->il_next >= MAX_NUMNODES)
 284                        current->il_next = numa_node_id();
 285        }
 286}
 287
 288static void mpol_rebind_preferred(struct mempolicy *pol,
 289                                  const nodemask_t *nodes)
 290{
 291        nodemask_t tmp;
 292
 293        if (pol->flags & MPOL_F_STATIC_NODES) {
 294                int node = first_node(pol->w.user_nodemask);
 295
 296                if (node_isset(node, *nodes)) {
 297                        pol->v.preferred_node = node;
 298                        pol->flags &= ~MPOL_F_LOCAL;
 299                } else
 300                        pol->flags |= MPOL_F_LOCAL;
 301        } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 302                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 303                pol->v.preferred_node = first_node(tmp);
 304        } else if (!(pol->flags & MPOL_F_LOCAL)) {
 305                pol->v.preferred_node = node_remap(pol->v.preferred_node,
 306                                                   pol->w.cpuset_mems_allowed,
 307                                                   *nodes);
 308                pol->w.cpuset_mems_allowed = *nodes;
 309        }
 310}
 311
 312/* Migrate a policy to a different set of nodes */
 313static void mpol_rebind_policy(struct mempolicy *pol,
 314                               const nodemask_t *newmask)
 315{
 316        if (!pol)
 317                return;
 318        if (!mpol_store_user_nodemask(pol) &&
 319            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 320                return;
 321        mpol_ops[pol->mode].rebind(pol, newmask);
 322}
 323
 324/*
 325 * Wrapper for mpol_rebind_policy() that just requires task
 326 * pointer, and updates task mempolicy.
 327 */
 328
 329void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 330{
 331        mpol_rebind_policy(tsk->mempolicy, new);
 332}
 333
 334/*
 335 * Rebind each vma in mm to new nodemask.
 336 *
 337 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 338 */
 339
 340void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 341{
 342        struct vm_area_struct *vma;
 343
 344        down_write(&mm->mmap_sem);
 345        for (vma = mm->mmap; vma; vma = vma->vm_next)
 346                mpol_rebind_policy(vma->vm_policy, new);
 347        up_write(&mm->mmap_sem);
 348}
 349
 350static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 351        [MPOL_DEFAULT] = {
 352                .rebind = mpol_rebind_default,
 353        },
 354        [MPOL_INTERLEAVE] = {
 355                .create = mpol_new_interleave,
 356                .rebind = mpol_rebind_nodemask,
 357        },
 358        [MPOL_PREFERRED] = {
 359                .create = mpol_new_preferred,
 360                .rebind = mpol_rebind_preferred,
 361        },
 362        [MPOL_BIND] = {
 363                .create = mpol_new_bind,
 364                .rebind = mpol_rebind_nodemask,
 365        },
 366};
 367
 368static void gather_stats(struct page *, void *, int pte_dirty);
 369static void migrate_page_add(struct page *page, struct list_head *pagelist,
 370                                unsigned long flags);
 371
 372/* Scan through pages checking if pages follow certain conditions. */
 373static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 374                unsigned long addr, unsigned long end,
 375                const nodemask_t *nodes, unsigned long flags,
 376                void *private)
 377{
 378        pte_t *orig_pte;
 379        pte_t *pte;
 380        spinlock_t *ptl;
 381
 382        orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 383        do {
 384                struct page *page;
 385                int nid;
 386
 387                if (!pte_present(*pte))
 388                        continue;
 389                page = vm_normal_page(vma, addr, *pte);
 390                if (!page)
 391                        continue;
 392                /*
 393                 * The check for PageReserved here is important to avoid
 394                 * handling zero pages and other pages that may have been
 395                 * marked special by the system.
 396                 *
 397                 * If the PageReserved would not be checked here then f.e.
 398                 * the location of the zero page could have an influence
 399                 * on MPOL_MF_STRICT, zero pages would be counted for
 400                 * the per node stats, and there would be useless attempts
 401                 * to put zero pages on the migration list.
 402                 */
 403                if (PageReserved(page))
 404                        continue;
 405                nid = page_to_nid(page);
 406                if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 407                        continue;
 408
 409                if (flags & MPOL_MF_STATS)
 410                        gather_stats(page, private, pte_dirty(*pte));
 411                else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 412                        migrate_page_add(page, private, flags);
 413                else
 414                        break;
 415        } while (pte++, addr += PAGE_SIZE, addr != end);
 416        pte_unmap_unlock(orig_pte, ptl);
 417        return addr != end;
 418}
 419
 420static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 421                unsigned long addr, unsigned long end,
 422                const nodemask_t *nodes, unsigned long flags,
 423                void *private)
 424{
 425        pmd_t *pmd;
 426        unsigned long next;
 427
 428        pmd = pmd_offset(pud, addr);
 429        do {
 430                next = pmd_addr_end(addr, end);
 431                if (pmd_none_or_clear_bad(pmd))
 432                        continue;
 433                if (check_pte_range(vma, pmd, addr, next, nodes,
 434                                    flags, private))
 435                        return -EIO;
 436        } while (pmd++, addr = next, addr != end);
 437        return 0;
 438}
 439
 440static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 441                unsigned long addr, unsigned long end,
 442                const nodemask_t *nodes, unsigned long flags,
 443                void *private)
 444{
 445        pud_t *pud;
 446        unsigned long next;
 447
 448        pud = pud_offset(pgd, addr);
 449        do {
 450                next = pud_addr_end(addr, end);
 451                if (pud_none_or_clear_bad(pud))
 452                        continue;
 453                if (check_pmd_range(vma, pud, addr, next, nodes,
 454                                    flags, private))
 455                        return -EIO;
 456        } while (pud++, addr = next, addr != end);
 457        return 0;
 458}
 459
 460static inline int check_pgd_range(struct vm_area_struct *vma,
 461                unsigned long addr, unsigned long end,
 462                const nodemask_t *nodes, unsigned long flags,
 463                void *private)
 464{
 465        pgd_t *pgd;
 466        unsigned long next;
 467
 468        pgd = pgd_offset(vma->vm_mm, addr);
 469        do {
 470                next = pgd_addr_end(addr, end);
 471                if (pgd_none_or_clear_bad(pgd))
 472                        continue;
 473                if (check_pud_range(vma, pgd, addr, next, nodes,
 474                                    flags, private))
 475                        return -EIO;
 476        } while (pgd++, addr = next, addr != end);
 477        return 0;
 478}
 479
 480/*
 481 * Check if all pages in a range are on a set of nodes.
 482 * If pagelist != NULL then isolate pages from the LRU and
 483 * put them on the pagelist.
 484 */
 485static struct vm_area_struct *
 486check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 487                const nodemask_t *nodes, unsigned long flags, void *private)
 488{
 489        int err;
 490        struct vm_area_struct *first, *vma, *prev;
 491
 492
 493        first = find_vma(mm, start);
 494        if (!first)
 495                return ERR_PTR(-EFAULT);
 496        prev = NULL;
 497        for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 498                if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 499                        if (!vma->vm_next && vma->vm_end < end)
 500                                return ERR_PTR(-EFAULT);
 501                        if (prev && prev->vm_end < vma->vm_start)
 502                                return ERR_PTR(-EFAULT);
 503                }
 504                if (!is_vm_hugetlb_page(vma) &&
 505                    ((flags & MPOL_MF_STRICT) ||
 506                     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 507                                vma_migratable(vma)))) {
 508                        unsigned long endvma = vma->vm_end;
 509
 510                        if (endvma > end)
 511                                endvma = end;
 512                        if (vma->vm_start > start)
 513                                start = vma->vm_start;
 514                        err = check_pgd_range(vma, start, endvma, nodes,
 515                                                flags, private);
 516                        if (err) {
 517                                first = ERR_PTR(err);
 518                                break;
 519                        }
 520                }
 521                prev = vma;
 522        }
 523        return first;
 524}
 525
 526/* Apply policy to a single VMA */
 527static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 528{
 529        int err = 0;
 530        struct mempolicy *old = vma->vm_policy;
 531
 532        pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 533                 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 534                 vma->vm_ops, vma->vm_file,
 535                 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 536
 537        if (vma->vm_ops && vma->vm_ops->set_policy)
 538                err = vma->vm_ops->set_policy(vma, new);
 539        if (!err) {
 540                mpol_get(new);
 541                vma->vm_policy = new;
 542                mpol_put(old);
 543        }
 544        return err;
 545}
 546
 547/* Step 2: apply policy to a range and do splits. */
 548static int mbind_range(struct vm_area_struct *vma, unsigned long start,
 549                       unsigned long end, struct mempolicy *new)
 550{
 551        struct vm_area_struct *next;
 552        int err;
 553
 554        err = 0;
 555        for (; vma && vma->vm_start < end; vma = next) {
 556                next = vma->vm_next;
 557                if (vma->vm_start < start)
 558                        err = split_vma(vma->vm_mm, vma, start, 1);
 559                if (!err && vma->vm_end > end)
 560                        err = split_vma(vma->vm_mm, vma, end, 0);
 561                if (!err)
 562                        err = policy_vma(vma, new);
 563                if (err)
 564                        break;
 565        }
 566        return err;
 567}
 568
 569/*
 570 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 571 * mempolicy.  Allows more rapid checking of this (combined perhaps
 572 * with other PF_* flag bits) on memory allocation hot code paths.
 573 *
 574 * If called from outside this file, the task 'p' should -only- be
 575 * a newly forked child not yet visible on the task list, because
 576 * manipulating the task flags of a visible task is not safe.
 577 *
 578 * The above limitation is why this routine has the funny name
 579 * mpol_fix_fork_child_flag().
 580 *
 581 * It is also safe to call this with a task pointer of current,
 582 * which the static wrapper mpol_set_task_struct_flag() does,
 583 * for use within this file.
 584 */
 585
 586void mpol_fix_fork_child_flag(struct task_struct *p)
 587{
 588        if (p->mempolicy)
 589                p->flags |= PF_MEMPOLICY;
 590        else
 591                p->flags &= ~PF_MEMPOLICY;
 592}
 593
 594static void mpol_set_task_struct_flag(void)
 595{
 596        mpol_fix_fork_child_flag(current);
 597}
 598
 599/* Set the process memory policy */
 600static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 601                             nodemask_t *nodes)
 602{
 603        struct mempolicy *new;
 604        struct mm_struct *mm = current->mm;
 605
 606        new = mpol_new(mode, flags, nodes);
 607        if (IS_ERR(new))
 608                return PTR_ERR(new);
 609
 610        /*
 611         * prevent changing our mempolicy while show_numa_maps()
 612         * is using it.
 613         * Note:  do_set_mempolicy() can be called at init time
 614         * with no 'mm'.
 615         */
 616        if (mm)
 617                down_write(&mm->mmap_sem);
 618        mpol_put(current->mempolicy);
 619        current->mempolicy = new;
 620        mpol_set_task_struct_flag();
 621        if (new && new->mode == MPOL_INTERLEAVE &&
 622            nodes_weight(new->v.nodes))
 623                current->il_next = first_node(new->v.nodes);
 624        if (mm)
 625                up_write(&mm->mmap_sem);
 626
 627        return 0;
 628}
 629
 630/*
 631 * Return nodemask for policy for get_mempolicy() query
 632 */
 633static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 634{
 635        nodes_clear(*nodes);
 636        if (p == &default_policy)
 637                return;
 638
 639        switch (p->mode) {
 640        case MPOL_BIND:
 641                /* Fall through */
 642        case MPOL_INTERLEAVE:
 643                *nodes = p->v.nodes;
 644                break;
 645        case MPOL_PREFERRED:
 646                if (!(p->flags & MPOL_F_LOCAL))
 647                        node_set(p->v.preferred_node, *nodes);
 648                /* else return empty node mask for local allocation */
 649                break;
 650        default:
 651                BUG();
 652        }
 653}
 654
 655static int lookup_node(struct mm_struct *mm, unsigned long addr)
 656{
 657        struct page *p;
 658        int err;
 659
 660        err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 661        if (err >= 0) {
 662                err = page_to_nid(p);
 663                put_page(p);
 664        }
 665        return err;
 666}
 667
 668/* Retrieve NUMA policy */
 669static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 670                             unsigned long addr, unsigned long flags)
 671{
 672        int err;
 673        struct mm_struct *mm = current->mm;
 674        struct vm_area_struct *vma = NULL;
 675        struct mempolicy *pol = current->mempolicy;
 676
 677        cpuset_update_task_memory_state();
 678        if (flags &
 679                ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 680                return -EINVAL;
 681
 682        if (flags & MPOL_F_MEMS_ALLOWED) {
 683                if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 684                        return -EINVAL;
 685                *policy = 0;    /* just so it's initialized */
 686                *nmask  = cpuset_current_mems_allowed;
 687                return 0;
 688        }
 689
 690        if (flags & MPOL_F_ADDR) {
 691                /*
 692                 * Do NOT fall back to task policy if the
 693                 * vma/shared policy at addr is NULL.  We
 694                 * want to return MPOL_DEFAULT in this case.
 695                 */
 696                down_read(&mm->mmap_sem);
 697                vma = find_vma_intersection(mm, addr, addr+1);
 698                if (!vma) {
 699                        up_read(&mm->mmap_sem);
 700                        return -EFAULT;
 701                }
 702                if (vma->vm_ops && vma->vm_ops->get_policy)
 703                        pol = vma->vm_ops->get_policy(vma, addr);
 704                else
 705                        pol = vma->vm_policy;
 706        } else if (addr)
 707                return -EINVAL;
 708
 709        if (!pol)
 710                pol = &default_policy;  /* indicates default behavior */
 711
 712        if (flags & MPOL_F_NODE) {
 713                if (flags & MPOL_F_ADDR) {
 714                        err = lookup_node(mm, addr);
 715                        if (err < 0)
 716                                goto out;
 717                        *policy = err;
 718                } else if (pol == current->mempolicy &&
 719                                pol->mode == MPOL_INTERLEAVE) {
 720                        *policy = current->il_next;
 721                } else {
 722                        err = -EINVAL;
 723                        goto out;
 724                }
 725        } else {
 726                *policy = pol == &default_policy ? MPOL_DEFAULT :
 727                                                pol->mode;
 728                /*
 729                 * Internal mempolicy flags must be masked off before exposing
 730                 * the policy to userspace.
 731                 */
 732                *policy |= (pol->flags & MPOL_MODE_FLAGS);
 733        }
 734
 735        if (vma) {
 736                up_read(&current->mm->mmap_sem);
 737                vma = NULL;
 738        }
 739
 740        err = 0;
 741        if (nmask)
 742                get_policy_nodemask(pol, nmask);
 743
 744 out:
 745        mpol_cond_put(pol);
 746        if (vma)
 747                up_read(&current->mm->mmap_sem);
 748        return err;
 749}
 750
 751#ifdef CONFIG_MIGRATION
 752/*
 753 * page migration
 754 */
 755static void migrate_page_add(struct page *page, struct list_head *pagelist,
 756                                unsigned long flags)
 757{
 758        /*
 759         * Avoid migrating a page that is shared with others.
 760         */
 761        if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 762                if (!isolate_lru_page(page)) {
 763                        list_add_tail(&page->lru, pagelist);
 764                }
 765        }
 766}
 767
 768static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 769{
 770        return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
 771}
 772
 773/*
 774 * Migrate pages from one node to a target node.
 775 * Returns error or the number of pages not migrated.
 776 */
 777static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 778                           int flags)
 779{
 780        nodemask_t nmask;
 781        LIST_HEAD(pagelist);
 782        int err = 0;
 783
 784        nodes_clear(nmask);
 785        node_set(source, nmask);
 786
 787        check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
 788                        flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 789
 790        if (!list_empty(&pagelist))
 791                err = migrate_pages(&pagelist, new_node_page, dest);
 792
 793        return err;
 794}
 795
 796/*
 797 * Move pages between the two nodesets so as to preserve the physical
 798 * layout as much as possible.
 799 *
 800 * Returns the number of page that could not be moved.
 801 */
 802int do_migrate_pages(struct mm_struct *mm,
 803        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 804{
 805        int busy = 0;
 806        int err;
 807        nodemask_t tmp;
 808
 809        err = migrate_prep();
 810        if (err)
 811                return err;
 812
 813        down_read(&mm->mmap_sem);
 814
 815        err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 816        if (err)
 817                goto out;
 818
 819/*
 820 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 821 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 822 * bit in 'tmp', and return that <source, dest> pair for migration.
 823 * The pair of nodemasks 'to' and 'from' define the map.
 824 *
 825 * If no pair of bits is found that way, fallback to picking some
 826 * pair of 'source' and 'dest' bits that are not the same.  If the
 827 * 'source' and 'dest' bits are the same, this represents a node
 828 * that will be migrating to itself, so no pages need move.
 829 *
 830 * If no bits are left in 'tmp', or if all remaining bits left
 831 * in 'tmp' correspond to the same bit in 'to', return false
 832 * (nothing left to migrate).
 833 *
 834 * This lets us pick a pair of nodes to migrate between, such that
 835 * if possible the dest node is not already occupied by some other
 836 * source node, minimizing the risk of overloading the memory on a
 837 * node that would happen if we migrated incoming memory to a node
 838 * before migrating outgoing memory source that same node.
 839 *
 840 * A single scan of tmp is sufficient.  As we go, we remember the
 841 * most recent <s, d> pair that moved (s != d).  If we find a pair
 842 * that not only moved, but what's better, moved to an empty slot
 843 * (d is not set in tmp), then we break out then, with that pair.
 844 * Otherwise when we finish scannng from_tmp, we at least have the
 845 * most recent <s, d> pair that moved.  If we get all the way through
 846 * the scan of tmp without finding any node that moved, much less
 847 * moved to an empty node, then there is nothing left worth migrating.
 848 */
 849
 850        tmp = *from_nodes;
 851        while (!nodes_empty(tmp)) {
 852                int s,d;
 853                int source = -1;
 854                int dest = 0;
 855
 856                for_each_node_mask(s, tmp) {
 857                        d = node_remap(s, *from_nodes, *to_nodes);
 858                        if (s == d)
 859                                continue;
 860
 861                        source = s;     /* Node moved. Memorize */
 862                        dest = d;
 863
 864                        /* dest not in remaining from nodes? */
 865                        if (!node_isset(dest, tmp))
 866                                break;
 867                }
 868                if (source == -1)
 869                        break;
 870
 871                node_clear(source, tmp);
 872                err = migrate_to_node(mm, source, dest, flags);
 873                if (err > 0)
 874                        busy += err;
 875                if (err < 0)
 876                        break;
 877        }
 878out:
 879        up_read(&mm->mmap_sem);
 880        if (err < 0)
 881                return err;
 882        return busy;
 883
 884}
 885
 886/*
 887 * Allocate a new page for page migration based on vma policy.
 888 * Start assuming that page is mapped by vma pointed to by @private.
 889 * Search forward from there, if not.  N.B., this assumes that the
 890 * list of pages handed to migrate_pages()--which is how we get here--
 891 * is in virtual address order.
 892 */
 893static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
 894{
 895        struct vm_area_struct *vma = (struct vm_area_struct *)private;
 896        unsigned long uninitialized_var(address);
 897
 898        while (vma) {
 899                address = page_address_in_vma(page, vma);
 900                if (address != -EFAULT)
 901                        break;
 902                vma = vma->vm_next;
 903        }
 904
 905        /*
 906         * if !vma, alloc_page_vma() will use task or system default policy
 907         */
 908        return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 909}
 910#else
 911
 912static void migrate_page_add(struct page *page, struct list_head *pagelist,
 913                                unsigned long flags)
 914{
 915}
 916
 917int do_migrate_pages(struct mm_struct *mm,
 918        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 919{
 920        return -ENOSYS;
 921}
 922
 923static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
 924{
 925        return NULL;
 926}
 927#endif
 928
 929static long do_mbind(unsigned long start, unsigned long len,
 930                     unsigned short mode, unsigned short mode_flags,
 931                     nodemask_t *nmask, unsigned long flags)
 932{
 933        struct vm_area_struct *vma;
 934        struct mm_struct *mm = current->mm;
 935        struct mempolicy *new;
 936        unsigned long end;
 937        int err;
 938        LIST_HEAD(pagelist);
 939
 940        if (flags & ~(unsigned long)(MPOL_MF_STRICT |
 941                                     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 942                return -EINVAL;
 943        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 944                return -EPERM;
 945
 946        if (start & ~PAGE_MASK)
 947                return -EINVAL;
 948
 949        if (mode == MPOL_DEFAULT)
 950                flags &= ~MPOL_MF_STRICT;
 951
 952        len = (len + PAGE_SIZE - 1) & PAGE_MASK;
 953        end = start + len;
 954
 955        if (end < start)
 956                return -EINVAL;
 957        if (end == start)
 958                return 0;
 959
 960        new = mpol_new(mode, mode_flags, nmask);
 961        if (IS_ERR(new))
 962                return PTR_ERR(new);
 963
 964        /*
 965         * If we are using the default policy then operation
 966         * on discontinuous address spaces is okay after all
 967         */
 968        if (!new)
 969                flags |= MPOL_MF_DISCONTIG_OK;
 970
 971        pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
 972                 start, start + len, mode, mode_flags,
 973                 nmask ? nodes_addr(*nmask)[0] : -1);
 974
 975        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 976
 977                err = migrate_prep();
 978                if (err)
 979                        return err;
 980        }
 981        down_write(&mm->mmap_sem);
 982        vma = check_range(mm, start, end, nmask,
 983                          flags | MPOL_MF_INVERT, &pagelist);
 984
 985        err = PTR_ERR(vma);
 986        if (!IS_ERR(vma)) {
 987                int nr_failed = 0;
 988
 989                err = mbind_range(vma, start, end, new);
 990
 991                if (!list_empty(&pagelist))
 992                        nr_failed = migrate_pages(&pagelist, new_vma_page,
 993                                                (unsigned long)vma);
 994
 995                if (!err && nr_failed && (flags & MPOL_MF_STRICT))
 996                        err = -EIO;
 997        }
 998
 999        up_write(&mm->mmap_sem);
1000        mpol_put(new);
1001        return err;
1002}
1003
1004/*
1005 * User space interface with variable sized bitmaps for nodelists.
1006 */
1007
1008/* Copy a node mask from user space. */
1009static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1010                     unsigned long maxnode)
1011{
1012        unsigned long k;
1013        unsigned long nlongs;
1014        unsigned long endmask;
1015
1016        --maxnode;
1017        nodes_clear(*nodes);
1018        if (maxnode == 0 || !nmask)
1019                return 0;
1020        if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1021                return -EINVAL;
1022
1023        nlongs = BITS_TO_LONGS(maxnode);
1024        if ((maxnode % BITS_PER_LONG) == 0)
1025                endmask = ~0UL;
1026        else
1027                endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1028
1029        /* When the user specified more nodes than supported just check
1030           if the non supported part is all zero. */
1031        if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1032                if (nlongs > PAGE_SIZE/sizeof(long))
1033                        return -EINVAL;
1034                for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1035                        unsigned long t;
1036                        if (get_user(t, nmask + k))
1037                                return -EFAULT;
1038                        if (k == nlongs - 1) {
1039                                if (t & endmask)
1040                                        return -EINVAL;
1041                        } else if (t)
1042                                return -EINVAL;
1043                }
1044                nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1045                endmask = ~0UL;
1046        }
1047
1048        if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1049                return -EFAULT;
1050        nodes_addr(*nodes)[nlongs-1] &= endmask;
1051        return 0;
1052}
1053
1054/* Copy a kernel node mask to user space */
1055static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1056                              nodemask_t *nodes)
1057{
1058        unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1059        const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1060
1061        if (copy > nbytes) {
1062                if (copy > PAGE_SIZE)
1063                        return -EINVAL;
1064                if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1065                        return -EFAULT;
1066                copy = nbytes;
1067        }
1068        return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1069}
1070
1071SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1072                unsigned long, mode, unsigned long __user *, nmask,
1073                unsigned long, maxnode, unsigned, flags)
1074{
1075        nodemask_t nodes;
1076        int err;
1077        unsigned short mode_flags;
1078
1079        mode_flags = mode & MPOL_MODE_FLAGS;
1080        mode &= ~MPOL_MODE_FLAGS;
1081        if (mode >= MPOL_MAX)
1082                return -EINVAL;
1083        if ((mode_flags & MPOL_F_STATIC_NODES) &&
1084            (mode_flags & MPOL_F_RELATIVE_NODES))
1085                return -EINVAL;
1086        err = get_nodes(&nodes, nmask, maxnode);
1087        if (err)
1088                return err;
1089        return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1090}
1091
1092/* Set the process memory policy */
1093SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1094                unsigned long, maxnode)
1095{
1096        int err;
1097        nodemask_t nodes;
1098        unsigned short flags;
1099
1100        flags = mode & MPOL_MODE_FLAGS;
1101        mode &= ~MPOL_MODE_FLAGS;
1102        if ((unsigned int)mode >= MPOL_MAX)
1103                return -EINVAL;
1104        if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1105                return -EINVAL;
1106        err = get_nodes(&nodes, nmask, maxnode);
1107        if (err)
1108                return err;
1109        return do_set_mempolicy(mode, flags, &nodes);
1110}
1111
1112SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1113                const unsigned long __user *, old_nodes,
1114                const unsigned long __user *, new_nodes)
1115{
1116        const struct cred *cred = current_cred(), *tcred;
1117        struct mm_struct *mm;
1118        struct task_struct *task;
1119        nodemask_t old;
1120        nodemask_t new;
1121        nodemask_t task_nodes;
1122        int err;
1123
1124        err = get_nodes(&old, old_nodes, maxnode);
1125        if (err)
1126                return err;
1127
1128        err = get_nodes(&new, new_nodes, maxnode);
1129        if (err)
1130                return err;
1131
1132        /* Find the mm_struct */
1133        read_lock(&tasklist_lock);
1134        task = pid ? find_task_by_vpid(pid) : current;
1135        if (!task) {
1136                read_unlock(&tasklist_lock);
1137                return -ESRCH;
1138        }
1139        mm = get_task_mm(task);
1140        read_unlock(&tasklist_lock);
1141
1142        if (!mm)
1143                return -EINVAL;
1144
1145        /*
1146         * Check if this process has the right to modify the specified
1147         * process. The right exists if the process has administrative
1148         * capabilities, superuser privileges or the same
1149         * userid as the target process.
1150         */
1151        rcu_read_lock();
1152        tcred = __task_cred(task);
1153        if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1154            cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1155            !capable(CAP_SYS_NICE)) {
1156                rcu_read_unlock();
1157                err = -EPERM;
1158                goto out;
1159        }
1160        rcu_read_unlock();
1161
1162        task_nodes = cpuset_mems_allowed(task);
1163        /* Is the user allowed to access the target nodes? */
1164        if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1165                err = -EPERM;
1166                goto out;
1167        }
1168
1169        if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1170                err = -EINVAL;
1171                goto out;
1172        }
1173
1174        err = security_task_movememory(task);
1175        if (err)
1176                goto out;
1177
1178        err = do_migrate_pages(mm, &old, &new,
1179                capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1180out:
1181        mmput(mm);
1182        return err;
1183}
1184
1185
1186/* Retrieve NUMA policy */
1187SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1188                unsigned long __user *, nmask, unsigned long, maxnode,
1189                unsigned long, addr, unsigned long, flags)
1190{
1191        int err;
1192        int uninitialized_var(pval);
1193        nodemask_t nodes;
1194
1195        if (nmask != NULL && maxnode < MAX_NUMNODES)
1196                return -EINVAL;
1197
1198        err = do_get_mempolicy(&pval, &nodes, addr, flags);
1199
1200        if (err)
1201                return err;
1202
1203        if (policy && put_user(pval, policy))
1204                return -EFAULT;
1205
1206        if (nmask)
1207                err = copy_nodes_to_user(nmask, maxnode, &nodes);
1208
1209        return err;
1210}
1211
1212#ifdef CONFIG_COMPAT
1213
1214asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1215                                     compat_ulong_t __user *nmask,
1216                                     compat_ulong_t maxnode,
1217                                     compat_ulong_t addr, compat_ulong_t flags)
1218{
1219        long err;
1220        unsigned long __user *nm = NULL;
1221        unsigned long nr_bits, alloc_size;
1222        DECLARE_BITMAP(bm, MAX_NUMNODES);
1223
1224        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1225        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1226
1227        if (nmask)
1228                nm = compat_alloc_user_space(alloc_size);
1229
1230        err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1231
1232        if (!err && nmask) {
1233                err = copy_from_user(bm, nm, alloc_size);
1234                /* ensure entire bitmap is zeroed */
1235                err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1236                err |= compat_put_bitmap(nmask, bm, nr_bits);
1237        }
1238
1239        return err;
1240}
1241
1242asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1243                                     compat_ulong_t maxnode)
1244{
1245        long err = 0;
1246        unsigned long __user *nm = NULL;
1247        unsigned long nr_bits, alloc_size;
1248        DECLARE_BITMAP(bm, MAX_NUMNODES);
1249
1250        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1251        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1252
1253        if (nmask) {
1254                err = compat_get_bitmap(bm, nmask, nr_bits);
1255                nm = compat_alloc_user_space(alloc_size);
1256                err |= copy_to_user(nm, bm, alloc_size);
1257        }
1258
1259        if (err)
1260                return -EFAULT;
1261
1262        return sys_set_mempolicy(mode, nm, nr_bits+1);
1263}
1264
1265asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1266                             compat_ulong_t mode, compat_ulong_t __user *nmask,
1267                             compat_ulong_t maxnode, compat_ulong_t flags)
1268{
1269        long err = 0;
1270        unsigned long __user *nm = NULL;
1271        unsigned long nr_bits, alloc_size;
1272        nodemask_t bm;
1273
1274        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1275        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1276
1277        if (nmask) {
1278                err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1279                nm = compat_alloc_user_space(alloc_size);
1280                err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1281        }
1282
1283        if (err)
1284                return -EFAULT;
1285
1286        return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1287}
1288
1289#endif
1290
1291/*
1292 * get_vma_policy(@task, @vma, @addr)
1293 * @task - task for fallback if vma policy == default
1294 * @vma   - virtual memory area whose policy is sought
1295 * @addr  - address in @vma for shared policy lookup
1296 *
1297 * Returns effective policy for a VMA at specified address.
1298 * Falls back to @task or system default policy, as necessary.
1299 * Current or other task's task mempolicy and non-shared vma policies
1300 * are protected by the task's mmap_sem, which must be held for read by
1301 * the caller.
1302 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1303 * count--added by the get_policy() vm_op, as appropriate--to protect against
1304 * freeing by another task.  It is the caller's responsibility to free the
1305 * extra reference for shared policies.
1306 */
1307static struct mempolicy *get_vma_policy(struct task_struct *task,
1308                struct vm_area_struct *vma, unsigned long addr)
1309{
1310        struct mempolicy *pol = task->mempolicy;
1311
1312        if (vma) {
1313                if (vma->vm_ops && vma->vm_ops->get_policy) {
1314                        struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1315                                                                        addr);
1316                        if (vpol)
1317                                pol = vpol;
1318                } else if (vma->vm_policy)
1319                        pol = vma->vm_policy;
1320        }
1321        if (!pol)
1322                pol = &default_policy;
1323        return pol;
1324}
1325
1326/*
1327 * Return a nodemask representing a mempolicy for filtering nodes for
1328 * page allocation
1329 */
1330static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1331{
1332        /* Lower zones don't get a nodemask applied for MPOL_BIND */
1333        if (unlikely(policy->mode == MPOL_BIND) &&
1334                        gfp_zone(gfp) >= policy_zone &&
1335                        cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1336                return &policy->v.nodes;
1337
1338        return NULL;
1339}
1340
1341/* Return a zonelist indicated by gfp for node representing a mempolicy */
1342static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1343{
1344        int nd = numa_node_id();
1345
1346        switch (policy->mode) {
1347        case MPOL_PREFERRED:
1348                if (!(policy->flags & MPOL_F_LOCAL))
1349                        nd = policy->v.preferred_node;
1350                break;
1351        case MPOL_BIND:
1352                /*
1353                 * Normally, MPOL_BIND allocations are node-local within the
1354                 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1355                 * current node is part of the mask, we use the zonelist for
1356                 * the first node in the mask instead.
1357                 */
1358                if (unlikely(gfp & __GFP_THISNODE) &&
1359                                unlikely(!node_isset(nd, policy->v.nodes)))
1360                        nd = first_node(policy->v.nodes);
1361                break;
1362        case MPOL_INTERLEAVE: /* should not happen */
1363                break;
1364        default:
1365                BUG();
1366        }
1367        return node_zonelist(nd, gfp);
1368}
1369
1370/* Do dynamic interleaving for a process */
1371static unsigned interleave_nodes(struct mempolicy *policy)
1372{
1373        unsigned nid, next;
1374        struct task_struct *me = current;
1375
1376        nid = me->il_next;
1377        next = next_node(nid, policy->v.nodes);
1378        if (next >= MAX_NUMNODES)
1379                next = first_node(policy->v.nodes);
1380        if (next < MAX_NUMNODES)
1381                me->il_next = next;
1382        return nid;
1383}
1384
1385/*
1386 * Depending on the memory policy provide a node from which to allocate the
1387 * next slab entry.
1388 * @policy must be protected by freeing by the caller.  If @policy is
1389 * the current task's mempolicy, this protection is implicit, as only the
1390 * task can change it's policy.  The system default policy requires no
1391 * such protection.
1392 */
1393unsigned slab_node(struct mempolicy *policy)
1394{
1395        if (!policy || policy->flags & MPOL_F_LOCAL)
1396                return numa_node_id();
1397
1398        switch (policy->mode) {
1399        case MPOL_PREFERRED:
1400                /*
1401                 * handled MPOL_F_LOCAL above
1402                 */
1403                return policy->v.preferred_node;
1404
1405        case MPOL_INTERLEAVE:
1406                return interleave_nodes(policy);
1407
1408        case MPOL_BIND: {
1409                /*
1410                 * Follow bind policy behavior and start allocation at the
1411                 * first node.
1412                 */
1413                struct zonelist *zonelist;
1414                struct zone *zone;
1415                enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1416                zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1417                (void)first_zones_zonelist(zonelist, highest_zoneidx,
1418                                                        &policy->v.nodes,
1419                                                        &zone);
1420                return zone->node;
1421        }
1422
1423        default:
1424                BUG();
1425        }
1426}
1427
1428/* Do static interleaving for a VMA with known offset. */
1429static unsigned offset_il_node(struct mempolicy *pol,
1430                struct vm_area_struct *vma, unsigned long off)
1431{
1432        unsigned nnodes = nodes_weight(pol->v.nodes);
1433        unsigned target;
1434        int c;
1435        int nid = -1;
1436
1437        if (!nnodes)
1438                return numa_node_id();
1439        target = (unsigned int)off % nnodes;
1440        c = 0;
1441        do {
1442                nid = next_node(nid, pol->v.nodes);
1443                c++;
1444        } while (c <= target);
1445        return nid;
1446}
1447
1448/* Determine a node number for interleave */
1449static inline unsigned interleave_nid(struct mempolicy *pol,
1450                 struct vm_area_struct *vma, unsigned long addr, int shift)
1451{
1452        if (vma) {
1453                unsigned long off;
1454
1455                /*
1456                 * for small pages, there is no difference between
1457                 * shift and PAGE_SHIFT, so the bit-shift is safe.
1458                 * for huge pages, since vm_pgoff is in units of small
1459                 * pages, we need to shift off the always 0 bits to get
1460                 * a useful offset.
1461                 */
1462                BUG_ON(shift < PAGE_SHIFT);
1463                off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1464                off += (addr - vma->vm_start) >> shift;
1465                return offset_il_node(pol, vma, off);
1466        } else
1467                return interleave_nodes(pol);
1468}
1469
1470#ifdef CONFIG_HUGETLBFS
1471/*
1472 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1473 * @vma = virtual memory area whose policy is sought
1474 * @addr = address in @vma for shared policy lookup and interleave policy
1475 * @gfp_flags = for requested zone
1476 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1477 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1478 *
1479 * Returns a zonelist suitable for a huge page allocation and a pointer
1480 * to the struct mempolicy for conditional unref after allocation.
1481 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1482 * @nodemask for filtering the zonelist.
1483 */
1484struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1485                                gfp_t gfp_flags, struct mempolicy **mpol,
1486                                nodemask_t **nodemask)
1487{
1488        struct zonelist *zl;
1489
1490        *mpol = get_vma_policy(current, vma, addr);
1491        *nodemask = NULL;       /* assume !MPOL_BIND */
1492
1493        if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1494                zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1495                                huge_page_shift(hstate_vma(vma))), gfp_flags);
1496        } else {
1497                zl = policy_zonelist(gfp_flags, *mpol);
1498                if ((*mpol)->mode == MPOL_BIND)
1499                        *nodemask = &(*mpol)->v.nodes;
1500        }
1501        return zl;
1502}
1503#endif
1504
1505/* Allocate a page in interleaved policy.
1506   Own path because it needs to do special accounting. */
1507static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1508                                        unsigned nid)
1509{
1510        struct zonelist *zl;
1511        struct page *page;
1512
1513        zl = node_zonelist(nid, gfp);
1514        page = __alloc_pages(gfp, order, zl);
1515        if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1516                inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1517        return page;
1518}
1519
1520/**
1521 *      alloc_page_vma  - Allocate a page for a VMA.
1522 *
1523 *      @gfp:
1524 *      %GFP_USER    user allocation.
1525 *      %GFP_KERNEL  kernel allocations,
1526 *      %GFP_HIGHMEM highmem/user allocations,
1527 *      %GFP_FS      allocation should not call back into a file system.
1528 *      %GFP_ATOMIC  don't sleep.
1529 *
1530 *      @vma:  Pointer to VMA or NULL if not available.
1531 *      @addr: Virtual Address of the allocation. Must be inside the VMA.
1532 *
1533 *      This function allocates a page from the kernel page pool and applies
1534 *      a NUMA policy associated with the VMA or the current process.
1535 *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
1536 *      mm_struct of the VMA to prevent it from going away. Should be used for
1537 *      all allocations for pages that will be mapped into
1538 *      user space. Returns NULL when no page can be allocated.
1539 *
1540 *      Should be called with the mm_sem of the vma hold.
1541 */
1542struct page *
1543alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1544{
1545        struct mempolicy *pol = get_vma_policy(current, vma, addr);
1546        struct zonelist *zl;
1547
1548        cpuset_update_task_memory_state();
1549
1550        if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1551                unsigned nid;
1552
1553                nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1554                mpol_cond_put(pol);
1555                return alloc_page_interleave(gfp, 0, nid);
1556        }
1557        zl = policy_zonelist(gfp, pol);
1558        if (unlikely(mpol_needs_cond_ref(pol))) {
1559                /*
1560                 * slow path: ref counted shared policy
1561                 */
1562                struct page *page =  __alloc_pages_nodemask(gfp, 0,
1563                                                zl, policy_nodemask(gfp, pol));
1564                __mpol_put(pol);
1565                return page;
1566        }
1567        /*
1568         * fast path:  default or task policy
1569         */
1570        return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1571}
1572
1573/**
1574 *      alloc_pages_current - Allocate pages.
1575 *
1576 *      @gfp:
1577 *              %GFP_USER   user allocation,
1578 *              %GFP_KERNEL kernel allocation,
1579 *              %GFP_HIGHMEM highmem allocation,
1580 *              %GFP_FS     don't call back into a file system.
1581 *              %GFP_ATOMIC don't sleep.
1582 *      @order: Power of two of allocation size in pages. 0 is a single page.
1583 *
1584 *      Allocate a page from the kernel page pool.  When not in
1585 *      interrupt context and apply the current process NUMA policy.
1586 *      Returns NULL when no page can be allocated.
1587 *
1588 *      Don't call cpuset_update_task_memory_state() unless
1589 *      1) it's ok to take cpuset_sem (can WAIT), and
1590 *      2) allocating for current task (not interrupt).
1591 */
1592struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1593{
1594        struct mempolicy *pol = current->mempolicy;
1595
1596        if ((gfp & __GFP_WAIT) && !in_interrupt())
1597                cpuset_update_task_memory_state();
1598        if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1599                pol = &default_policy;
1600
1601        /*
1602         * No reference counting needed for current->mempolicy
1603         * nor system default_policy
1604         */
1605        if (pol->mode == MPOL_INTERLEAVE)
1606                return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1607        return __alloc_pages_nodemask(gfp, order,
1608                        policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1609}
1610EXPORT_SYMBOL(alloc_pages_current);
1611
1612/*
1613 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1614 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1615 * with the mems_allowed returned by cpuset_mems_allowed().  This
1616 * keeps mempolicies cpuset relative after its cpuset moves.  See
1617 * further kernel/cpuset.c update_nodemask().
1618 */
1619
1620/* Slow path of a mempolicy duplicate */
1621struct mempolicy *__mpol_dup(struct mempolicy *old)
1622{
1623        struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1624
1625        if (!new)
1626                return ERR_PTR(-ENOMEM);
1627        if (current_cpuset_is_being_rebound()) {
1628                nodemask_t mems = cpuset_mems_allowed(current);
1629                mpol_rebind_policy(old, &mems);
1630        }
1631        *new = *old;
1632        atomic_set(&new->refcnt, 1);
1633        return new;
1634}
1635
1636/*
1637 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1638 * eliminate the * MPOL_F_* flags that require conditional ref and
1639 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1640 * after return.  Use the returned value.
1641 *
1642 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1643 * policy lookup, even if the policy needs/has extra ref on lookup.
1644 * shmem_readahead needs this.
1645 */
1646struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1647                                                struct mempolicy *frompol)
1648{
1649        if (!mpol_needs_cond_ref(frompol))
1650                return frompol;
1651
1652        *tompol = *frompol;
1653        tompol->flags &= ~MPOL_F_SHARED;        /* copy doesn't need unref */
1654        __mpol_put(frompol);
1655        return tompol;
1656}
1657
1658static int mpol_match_intent(const struct mempolicy *a,
1659                             const struct mempolicy *b)
1660{
1661        if (a->flags != b->flags)
1662                return 0;
1663        if (!mpol_store_user_nodemask(a))
1664                return 1;
1665        return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1666}
1667
1668/* Slow path of a mempolicy comparison */
1669int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1670{
1671        if (!a || !b)
1672                return 0;
1673        if (a->mode != b->mode)
1674                return 0;
1675        if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1676                return 0;
1677        switch (a->mode) {
1678        case MPOL_BIND:
1679                /* Fall through */
1680        case MPOL_INTERLEAVE:
1681                return nodes_equal(a->v.nodes, b->v.nodes);
1682        case MPOL_PREFERRED:
1683                return a->v.preferred_node == b->v.preferred_node &&
1684                        a->flags == b->flags;
1685        default:
1686                BUG();
1687                return 0;
1688        }
1689}
1690
1691/*
1692 * Shared memory backing store policy support.
1693 *
1694 * Remember policies even when nobody has shared memory mapped.
1695 * The policies are kept in Red-Black tree linked from the inode.
1696 * They are protected by the sp->lock spinlock, which should be held
1697 * for any accesses to the tree.
1698 */
1699
1700/* lookup first element intersecting start-end */
1701/* Caller holds sp->lock */
1702static struct sp_node *
1703sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1704{
1705        struct rb_node *n = sp->root.rb_node;
1706
1707        while (n) {
1708                struct sp_node *p = rb_entry(n, struct sp_node, nd);
1709
1710                if (start >= p->end)
1711                        n = n->rb_right;
1712                else if (end <= p->start)
1713                        n = n->rb_left;
1714                else
1715                        break;
1716        }
1717        if (!n)
1718                return NULL;
1719        for (;;) {
1720                struct sp_node *w = NULL;
1721                struct rb_node *prev = rb_prev(n);
1722                if (!prev)
1723                        break;
1724                w = rb_entry(prev, struct sp_node, nd);
1725                if (w->end <= start)
1726                        break;
1727                n = prev;
1728        }
1729        return rb_entry(n, struct sp_node, nd);
1730}
1731
1732/* Insert a new shared policy into the list. */
1733/* Caller holds sp->lock */
1734static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1735{
1736        struct rb_node **p = &sp->root.rb_node;
1737        struct rb_node *parent = NULL;
1738        struct sp_node *nd;
1739
1740        while (*p) {
1741                parent = *p;
1742                nd = rb_entry(parent, struct sp_node, nd);
1743                if (new->start < nd->start)
1744                        p = &(*p)->rb_left;
1745                else if (new->end > nd->end)
1746                        p = &(*p)->rb_right;
1747                else
1748                        BUG();
1749        }
1750        rb_link_node(&new->nd, parent, p);
1751        rb_insert_color(&new->nd, &sp->root);
1752        pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1753                 new->policy ? new->policy->mode : 0);
1754}
1755
1756/* Find shared policy intersecting idx */
1757struct mempolicy *
1758mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1759{
1760        struct mempolicy *pol = NULL;
1761        struct sp_node *sn;
1762
1763        if (!sp->root.rb_node)
1764                return NULL;
1765        spin_lock(&sp->lock);
1766        sn = sp_lookup(sp, idx, idx+1);
1767        if (sn) {
1768                mpol_get(sn->policy);
1769                pol = sn->policy;
1770        }
1771        spin_unlock(&sp->lock);
1772        return pol;
1773}
1774
1775static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1776{
1777        pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1778        rb_erase(&n->nd, &sp->root);
1779        mpol_put(n->policy);
1780        kmem_cache_free(sn_cache, n);
1781}
1782
1783static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1784                                struct mempolicy *pol)
1785{
1786        struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1787
1788        if (!n)
1789                return NULL;
1790        n->start = start;
1791        n->end = end;
1792        mpol_get(pol);
1793        pol->flags |= MPOL_F_SHARED;    /* for unref */
1794        n->policy = pol;
1795        return n;
1796}
1797
1798/* Replace a policy range. */
1799static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1800                                 unsigned long end, struct sp_node *new)
1801{
1802        struct sp_node *n, *new2 = NULL;
1803
1804restart:
1805        spin_lock(&sp->lock);
1806        n = sp_lookup(sp, start, end);
1807        /* Take care of old policies in the same range. */
1808        while (n && n->start < end) {
1809                struct rb_node *next = rb_next(&n->nd);
1810                if (n->start >= start) {
1811                        if (n->end <= end)
1812                                sp_delete(sp, n);
1813                        else
1814                                n->start = end;
1815                } else {
1816                        /* Old policy spanning whole new range. */
1817                        if (n->end > end) {
1818                                if (!new2) {
1819                                        spin_unlock(&sp->lock);
1820                                        new2 = sp_alloc(end, n->end, n->policy);
1821                                        if (!new2)
1822                                                return -ENOMEM;
1823                                        goto restart;
1824                                }
1825                                n->end = start;
1826                                sp_insert(sp, new2);
1827                                new2 = NULL;
1828                                break;
1829                        } else
1830                                n->end = start;
1831                }
1832                if (!next)
1833                        break;
1834                n = rb_entry(next, struct sp_node, nd);
1835        }
1836        if (new)
1837                sp_insert(sp, new);
1838        spin_unlock(&sp->lock);
1839        if (new2) {
1840                mpol_put(new2->policy);
1841                kmem_cache_free(sn_cache, new2);
1842        }
1843        return 0;
1844}
1845
1846/**
1847 * mpol_shared_policy_init - initialize shared policy for inode
1848 * @sp: pointer to inode shared policy
1849 * @mpol:  struct mempolicy to install
1850 *
1851 * Install non-NULL @mpol in inode's shared policy rb-tree.
1852 * On entry, the current task has a reference on a non-NULL @mpol.
1853 * This must be released on exit.
1854 */
1855void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1856{
1857        sp->root = RB_ROOT;             /* empty tree == default mempolicy */
1858        spin_lock_init(&sp->lock);
1859
1860        if (mpol) {
1861                struct vm_area_struct pvma;
1862                struct mempolicy *new;
1863
1864                /* contextualize the tmpfs mount point mempolicy */
1865                new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1866                mpol_put(mpol); /* drop our ref on sb mpol */
1867                if (IS_ERR(new))
1868                        return;         /* no valid nodemask intersection */
1869
1870                /* Create pseudo-vma that contains just the policy */
1871                memset(&pvma, 0, sizeof(struct vm_area_struct));
1872                pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
1873                mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1874                mpol_put(new);                  /* drop initial ref */
1875        }
1876}
1877
1878int mpol_set_shared_policy(struct shared_policy *info,
1879                        struct vm_area_struct *vma, struct mempolicy *npol)
1880{
1881        int err;
1882        struct sp_node *new = NULL;
1883        unsigned long sz = vma_pages(vma);
1884
1885        pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1886                 vma->vm_pgoff,
1887                 sz, npol ? npol->mode : -1,
1888                 npol ? npol->flags : -1,
1889                 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1890
1891        if (npol) {
1892                new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1893                if (!new)
1894                        return -ENOMEM;
1895        }
1896        err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1897        if (err && new)
1898                kmem_cache_free(sn_cache, new);
1899        return err;
1900}
1901
1902/* Free a backing policy store on inode delete. */
1903void mpol_free_shared_policy(struct shared_policy *p)
1904{
1905        struct sp_node *n;
1906        struct rb_node *next;
1907
1908        if (!p->root.rb_node)
1909                return;
1910        spin_lock(&p->lock);
1911        next = rb_first(&p->root);
1912        while (next) {
1913                n = rb_entry(next, struct sp_node, nd);
1914                next = rb_next(&n->nd);
1915                rb_erase(&n->nd, &p->root);
1916                mpol_put(n->policy);
1917                kmem_cache_free(sn_cache, n);
1918        }
1919        spin_unlock(&p->lock);
1920}
1921
1922/* assumes fs == KERNEL_DS */
1923void __init numa_policy_init(void)
1924{
1925        nodemask_t interleave_nodes;
1926        unsigned long largest = 0;
1927        int nid, prefer = 0;
1928
1929        policy_cache = kmem_cache_create("numa_policy",
1930                                         sizeof(struct mempolicy),
1931                                         0, SLAB_PANIC, NULL);
1932
1933        sn_cache = kmem_cache_create("shared_policy_node",
1934                                     sizeof(struct sp_node),
1935                                     0, SLAB_PANIC, NULL);
1936
1937        /*
1938         * Set interleaving policy for system init. Interleaving is only
1939         * enabled across suitably sized nodes (default is >= 16MB), or
1940         * fall back to the largest node if they're all smaller.
1941         */
1942        nodes_clear(interleave_nodes);
1943        for_each_node_state(nid, N_HIGH_MEMORY) {
1944                unsigned long total_pages = node_present_pages(nid);
1945
1946                /* Preserve the largest node */
1947                if (largest < total_pages) {
1948                        largest = total_pages;
1949                        prefer = nid;
1950                }
1951
1952                /* Interleave this node? */
1953                if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1954                        node_set(nid, interleave_nodes);
1955        }
1956
1957        /* All too small, use the largest */
1958        if (unlikely(nodes_empty(interleave_nodes)))
1959                node_set(prefer, interleave_nodes);
1960
1961        if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1962                printk("numa_policy_init: interleaving failed\n");
1963}
1964
1965/* Reset policy of current process to default */
1966void numa_default_policy(void)
1967{
1968        do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1969}
1970
1971/*
1972 * Parse and format mempolicy from/to strings
1973 */
1974
1975/*
1976 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
1977 * Used only for mpol_parse_str() and mpol_to_str()
1978 */
1979#define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1980static const char * const policy_types[] =
1981        { "default", "prefer", "bind", "interleave", "local" };
1982
1983
1984#ifdef CONFIG_TMPFS
1985/**
1986 * mpol_parse_str - parse string to mempolicy
1987 * @str:  string containing mempolicy to parse
1988 * @mpol:  pointer to struct mempolicy pointer, returned on success.
1989 * @no_context:  flag whether to "contextualize" the mempolicy
1990 *
1991 * Format of input:
1992 *      <mode>[=<flags>][:<nodelist>]
1993 *
1994 * if @no_context is true, save the input nodemask in w.user_nodemask in
1995 * the returned mempolicy.  This will be used to "clone" the mempolicy in
1996 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
1997 * mount option.  Note that if 'static' or 'relative' mode flags were
1998 * specified, the input nodemask will already have been saved.  Saving
1999 * it again is redundant, but safe.
2000 *
2001 * On success, returns 0, else 1
2002 */
2003int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2004{
2005        struct mempolicy *new = NULL;
2006        unsigned short uninitialized_var(mode);
2007        unsigned short uninitialized_var(mode_flags);
2008        nodemask_t nodes;
2009        char *nodelist = strchr(str, ':');
2010        char *flags = strchr(str, '=');
2011        int i;
2012        int err = 1;
2013
2014        if (nodelist) {
2015                /* NUL-terminate mode or flags string */
2016                *nodelist++ = '\0';
2017                if (nodelist_parse(nodelist, nodes))
2018                        goto out;
2019                if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2020                        goto out;
2021        } else
2022                nodes_clear(nodes);
2023
2024        if (flags)
2025                *flags++ = '\0';        /* terminate mode string */
2026
2027        for (i = 0; i <= MPOL_LOCAL; i++) {
2028                if (!strcmp(str, policy_types[i])) {
2029                        mode = i;
2030                        break;
2031                }
2032        }
2033        if (i > MPOL_LOCAL)
2034                goto out;
2035
2036        switch (mode) {
2037        case MPOL_PREFERRED:
2038                /*
2039                 * Insist on a nodelist of one node only
2040                 */
2041                if (nodelist) {
2042                        char *rest = nodelist;
2043                        while (isdigit(*rest))
2044                                rest++;
2045                        if (!*rest)
2046                                err = 0;
2047                }
2048                break;
2049        case MPOL_INTERLEAVE:
2050                /*
2051                 * Default to online nodes with memory if no nodelist
2052                 */
2053                if (!nodelist)
2054                        nodes = node_states[N_HIGH_MEMORY];
2055                err = 0;
2056                break;
2057        case MPOL_LOCAL:
2058                /*
2059                 * Don't allow a nodelist;  mpol_new() checks flags
2060                 */
2061                if (nodelist)
2062                        goto out;
2063                mode = MPOL_PREFERRED;
2064                break;
2065
2066        /*
2067         * case MPOL_BIND:    mpol_new() enforces non-empty nodemask.
2068         * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2069         */
2070        }
2071
2072        mode_flags = 0;
2073        if (flags) {
2074                /*
2075                 * Currently, we only support two mutually exclusive
2076                 * mode flags.
2077                 */
2078                if (!strcmp(flags, "static"))
2079                        mode_flags |= MPOL_F_STATIC_NODES;
2080                else if (!strcmp(flags, "relative"))
2081                        mode_flags |= MPOL_F_RELATIVE_NODES;
2082                else
2083                        err = 1;
2084        }
2085
2086        new = mpol_new(mode, mode_flags, &nodes);
2087        if (IS_ERR(new))
2088                err = 1;
2089        else if (no_context)
2090                new->w.user_nodemask = nodes;   /* save for contextualization */
2091
2092out:
2093        /* Restore string for error message */
2094        if (nodelist)
2095                *--nodelist = ':';
2096        if (flags)
2097                *--flags = '=';
2098        if (!err)
2099                *mpol = new;
2100        return err;
2101}
2102#endif /* CONFIG_TMPFS */
2103
2104/**
2105 * mpol_to_str - format a mempolicy structure for printing
2106 * @buffer:  to contain formatted mempolicy string
2107 * @maxlen:  length of @buffer
2108 * @pol:  pointer to mempolicy to be formatted
2109 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2110 *
2111 * Convert a mempolicy into a string.
2112 * Returns the number of characters in buffer (if positive)
2113 * or an error (negative)
2114 */
2115int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2116{
2117        char *p = buffer;
2118        int l;
2119        nodemask_t nodes;
2120        unsigned short mode;
2121        unsigned short flags = pol ? pol->flags : 0;
2122
2123        /*
2124         * Sanity check:  room for longest mode, flag and some nodes
2125         */
2126        VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2127
2128        if (!pol || pol == &default_policy)
2129                mode = MPOL_DEFAULT;
2130        else
2131                mode = pol->mode;
2132
2133        switch (mode) {
2134        case MPOL_DEFAULT:
2135                nodes_clear(nodes);
2136                break;
2137
2138        case MPOL_PREFERRED:
2139                nodes_clear(nodes);
2140                if (flags & MPOL_F_LOCAL)
2141                        mode = MPOL_LOCAL;      /* pseudo-policy */
2142                else
2143                        node_set(pol->v.preferred_node, nodes);
2144                break;
2145
2146        case MPOL_BIND:
2147                /* Fall through */
2148        case MPOL_INTERLEAVE:
2149                if (no_context)
2150                        nodes = pol->w.user_nodemask;
2151                else
2152                        nodes = pol->v.nodes;
2153                break;
2154
2155        default:
2156                BUG();
2157        }
2158
2159        l = strlen(policy_types[mode]);
2160        if (buffer + maxlen < p + l + 1)
2161                return -ENOSPC;
2162
2163        strcpy(p, policy_types[mode]);
2164        p += l;
2165
2166        if (flags & MPOL_MODE_FLAGS) {
2167                if (buffer + maxlen < p + 2)
2168                        return -ENOSPC;
2169                *p++ = '=';
2170
2171                /*
2172                 * Currently, the only defined flags are mutually exclusive
2173                 */
2174                if (flags & MPOL_F_STATIC_NODES)
2175                        p += snprintf(p, buffer + maxlen - p, "static");
2176                else if (flags & MPOL_F_RELATIVE_NODES)
2177                        p += snprintf(p, buffer + maxlen - p, "relative");
2178        }
2179
2180        if (!nodes_empty(nodes)) {
2181                if (buffer + maxlen < p + 2)
2182                        return -ENOSPC;
2183                *p++ = ':';
2184                p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2185        }
2186        return p - buffer;
2187}
2188
2189struct numa_maps {
2190        unsigned long pages;
2191        unsigned long anon;
2192        unsigned long active;
2193        unsigned long writeback;
2194        unsigned long mapcount_max;
2195        unsigned long dirty;
2196        unsigned long swapcache;
2197        unsigned long node[MAX_NUMNODES];
2198};
2199
2200static void gather_stats(struct page *page, void *private, int pte_dirty)
2201{
2202        struct numa_maps *md = private;
2203        int count = page_mapcount(page);
2204
2205        md->pages++;
2206        if (pte_dirty || PageDirty(page))
2207                md->dirty++;
2208
2209        if (PageSwapCache(page))
2210                md->swapcache++;
2211
2212        if (PageActive(page) || PageUnevictable(page))
2213                md->active++;
2214
2215        if (PageWriteback(page))
2216                md->writeback++;
2217
2218        if (PageAnon(page))
2219                md->anon++;
2220
2221        if (count > md->mapcount_max)
2222                md->mapcount_max = count;
2223
2224        md->node[page_to_nid(page)]++;
2225}
2226
2227#ifdef CONFIG_HUGETLB_PAGE
2228static void check_huge_range(struct vm_area_struct *vma,
2229                unsigned long start, unsigned long end,
2230                struct numa_maps *md)
2231{
2232        unsigned long addr;
2233        struct page *page;
2234        struct hstate *h = hstate_vma(vma);
2235        unsigned long sz = huge_page_size(h);
2236
2237        for (addr = start; addr < end; addr += sz) {
2238                pte_t *ptep = huge_pte_offset(vma->vm_mm,
2239                                                addr & huge_page_mask(h));
2240                pte_t pte;
2241
2242                if (!ptep)
2243                        continue;
2244
2245                pte = *ptep;
2246                if (pte_none(pte))
2247                        continue;
2248
2249                page = pte_page(pte);
2250                if (!page)
2251                        continue;
2252
2253                gather_stats(page, md, pte_dirty(*ptep));
2254        }
2255}
2256#else
2257static inline void check_huge_range(struct vm_area_struct *vma,
2258                unsigned long start, unsigned long end,
2259                struct numa_maps *md)
2260{
2261}
2262#endif
2263
2264/*
2265 * Display pages allocated per node and memory policy via /proc.
2266 */
2267int show_numa_map(struct seq_file *m, void *v)
2268{
2269        struct proc_maps_private *priv = m->private;
2270        struct vm_area_struct *vma = v;
2271        struct numa_maps *md;
2272        struct file *file = vma->vm_file;
2273        struct mm_struct *mm = vma->vm_mm;
2274        struct mempolicy *pol;
2275        int n;
2276        char buffer[50];
2277
2278        if (!mm)
2279                return 0;
2280
2281        md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2282        if (!md)
2283                return 0;
2284
2285        pol = get_vma_policy(priv->task, vma, vma->vm_start);
2286        mpol_to_str(buffer, sizeof(buffer), pol, 0);
2287        mpol_cond_put(pol);
2288
2289        seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2290
2291        if (file) {
2292                seq_printf(m, " file=");
2293                seq_path(m, &file->f_path, "\n\t= ");
2294        } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2295                seq_printf(m, " heap");
2296        } else if (vma->vm_start <= mm->start_stack &&
2297                        vma->vm_end >= mm->start_stack) {
2298                seq_printf(m, " stack");
2299        }
2300
2301        if (is_vm_hugetlb_page(vma)) {
2302                check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2303                seq_printf(m, " huge");
2304        } else {
2305                check_pgd_range(vma, vma->vm_start, vma->vm_end,
2306                        &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2307        }
2308
2309        if (!md->pages)
2310                goto out;
2311
2312        if (md->anon)
2313                seq_printf(m," anon=%lu",md->anon);
2314
2315        if (md->dirty)
2316                seq_printf(m," dirty=%lu",md->dirty);
2317
2318        if (md->pages != md->anon && md->pages != md->dirty)
2319                seq_printf(m, " mapped=%lu", md->pages);
2320
2321        if (md->mapcount_max > 1)
2322                seq_printf(m, " mapmax=%lu", md->mapcount_max);
2323
2324        if (md->swapcache)
2325                seq_printf(m," swapcache=%lu", md->swapcache);
2326
2327        if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2328                seq_printf(m," active=%lu", md->active);
2329
2330        if (md->writeback)
2331                seq_printf(m," writeback=%lu", md->writeback);
2332
2333        for_each_node_state(n, N_HIGH_MEMORY)
2334                if (md->node[n])
2335                        seq_printf(m, " N%d=%lu", n, md->node[n]);
2336out:
2337        seq_putc(m, '\n');
2338        kfree(md);
2339
2340        if (m->count < m->size)
2341                m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2342        return 0;
2343}
2344