1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/limits.h>
31#include <linux/mutex.h>
32#include <linux/slab.h>
33#include <linux/swap.h>
34#include <linux/spinlock.h>
35#include <linux/fs.h>
36#include <linux/seq_file.h>
37#include <linux/vmalloc.h>
38#include <linux/mm_inline.h>
39#include <linux/page_cgroup.h>
40#include "internal.h"
41
42#include <asm/uaccess.h>
43
44struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45#define MEM_CGROUP_RECLAIM_RETRIES 5
46
47#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48
49int do_swap_account __read_mostly;
50static int really_do_swap_account __initdata = 1;
51#else
52#define do_swap_account (0)
53#endif
54
55static DEFINE_MUTEX(memcg_tasklist);
56
57
58
59
60enum mem_cgroup_stat_index {
61
62
63
64 MEM_CGROUP_STAT_CACHE,
65 MEM_CGROUP_STAT_RSS,
66 MEM_CGROUP_STAT_PGPGIN_COUNT,
67 MEM_CGROUP_STAT_PGPGOUT_COUNT,
68
69 MEM_CGROUP_STAT_NSTATS,
70};
71
72struct mem_cgroup_stat_cpu {
73 s64 count[MEM_CGROUP_STAT_NSTATS];
74} ____cacheline_aligned_in_smp;
75
76struct mem_cgroup_stat {
77 struct mem_cgroup_stat_cpu cpustat[0];
78};
79
80
81
82
83static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 enum mem_cgroup_stat_index idx, int val)
85{
86 stat->count[idx] += val;
87}
88
89static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 enum mem_cgroup_stat_index idx)
91{
92 int cpu;
93 s64 ret = 0;
94 for_each_possible_cpu(cpu)
95 ret += stat->cpustat[cpu].count[idx];
96 return ret;
97}
98
99static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100{
101 s64 ret;
102
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 return ret;
106}
107
108
109
110
111struct mem_cgroup_per_zone {
112
113
114
115 struct list_head lists[NR_LRU_LISTS];
116 unsigned long count[NR_LRU_LISTS];
117
118 struct zone_reclaim_stat reclaim_stat;
119};
120
121#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
122
123struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125};
126
127struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129};
130
131
132
133
134
135
136
137
138
139
140
141
142struct mem_cgroup {
143 struct cgroup_subsys_state css;
144
145
146
147 struct res_counter res;
148
149
150
151 struct res_counter memsw;
152
153
154
155
156 struct mem_cgroup_lru_info info;
157
158
159
160
161 spinlock_t reclaim_param_lock;
162
163 int prev_priority;
164
165
166
167
168
169 int last_scanned_child;
170
171
172
173 bool use_hierarchy;
174 unsigned long last_oom_jiffies;
175 atomic_t refcnt;
176
177 unsigned int swappiness;
178
179
180
181
182 struct mem_cgroup_stat stat;
183};
184
185enum charge_type {
186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM,
189 MEM_CGROUP_CHARGE_TYPE_FORCE,
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT,
191 NR_CHARGE_TYPE,
192};
193
194
195#define PCGF_CACHE (1UL << PCG_CACHE)
196#define PCGF_USED (1UL << PCG_USED)
197#define PCGF_LOCK (1UL << PCG_LOCK)
198static const unsigned long
199pcg_default_flags[NR_CHARGE_TYPE] = {
200 PCGF_CACHE | PCGF_USED | PCGF_LOCK,
201 PCGF_USED | PCGF_LOCK,
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK,
203 0,
204};
205
206
207#define _MEM (0)
208#define _MEMSWAP (1)
209#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211#define MEMFILE_ATTR(val) ((val) & 0xffff)
212
213static void mem_cgroup_get(struct mem_cgroup *mem);
214static void mem_cgroup_put(struct mem_cgroup *mem);
215static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
216
217static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 struct page_cgroup *pc,
219 bool charge)
220{
221 int val = (charge)? 1 : -1;
222 struct mem_cgroup_stat *stat = &mem->stat;
223 struct mem_cgroup_stat_cpu *cpustat;
224 int cpu = get_cpu();
225
226 cpustat = &stat->cpustat[cpu];
227 if (PageCgroupCache(pc))
228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
229 else
230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
231
232 if (charge)
233 __mem_cgroup_stat_add_safe(cpustat,
234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235 else
236 __mem_cgroup_stat_add_safe(cpustat,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
238 put_cpu();
239}
240
241static struct mem_cgroup_per_zone *
242mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
243{
244 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
245}
246
247static struct mem_cgroup_per_zone *
248page_cgroup_zoneinfo(struct page_cgroup *pc)
249{
250 struct mem_cgroup *mem = pc->mem_cgroup;
251 int nid = page_cgroup_nid(pc);
252 int zid = page_cgroup_zid(pc);
253
254 if (!mem)
255 return NULL;
256
257 return mem_cgroup_zoneinfo(mem, nid, zid);
258}
259
260static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
261 enum lru_list idx)
262{
263 int nid, zid;
264 struct mem_cgroup_per_zone *mz;
265 u64 total = 0;
266
267 for_each_online_node(nid)
268 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 total += MEM_CGROUP_ZSTAT(mz, idx);
271 }
272 return total;
273}
274
275static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
276{
277 return container_of(cgroup_subsys_state(cont,
278 mem_cgroup_subsys_id), struct mem_cgroup,
279 css);
280}
281
282struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
283{
284
285
286
287
288
289 if (unlikely(!p))
290 return NULL;
291
292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 struct mem_cgroup, css);
294}
295
296static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
297{
298 struct mem_cgroup *mem = NULL;
299
300 if (!mm)
301 return NULL;
302
303
304
305
306
307 rcu_read_lock();
308 do {
309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310 if (unlikely(!mem))
311 break;
312 } while (!css_tryget(&mem->css));
313 rcu_read_unlock();
314 return mem;
315}
316
317
318
319
320static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
321 int (*func)(struct mem_cgroup *, void *))
322{
323 int found, ret, nextid;
324 struct cgroup_subsys_state *css;
325 struct mem_cgroup *mem;
326
327 if (!root->use_hierarchy)
328 return (*func)(root, data);
329
330 nextid = 1;
331 do {
332 ret = 0;
333 mem = NULL;
334
335 rcu_read_lock();
336 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
337 &found);
338 if (css && css_tryget(css))
339 mem = container_of(css, struct mem_cgroup, css);
340 rcu_read_unlock();
341
342 if (mem) {
343 ret = (*func)(mem, data);
344 css_put(&mem->css);
345 }
346 nextid = found + 1;
347 } while (!ret && css);
348
349 return ret;
350}
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
367{
368 struct page_cgroup *pc;
369 struct mem_cgroup *mem;
370 struct mem_cgroup_per_zone *mz;
371
372 if (mem_cgroup_disabled())
373 return;
374 pc = lookup_page_cgroup(page);
375
376 if (list_empty(&pc->lru) || !pc->mem_cgroup)
377 return;
378
379
380
381
382 mz = page_cgroup_zoneinfo(pc);
383 mem = pc->mem_cgroup;
384 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
385 list_del_init(&pc->lru);
386 return;
387}
388
389void mem_cgroup_del_lru(struct page *page)
390{
391 mem_cgroup_del_lru_list(page, page_lru(page));
392}
393
394void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
395{
396 struct mem_cgroup_per_zone *mz;
397 struct page_cgroup *pc;
398
399 if (mem_cgroup_disabled())
400 return;
401
402 pc = lookup_page_cgroup(page);
403
404
405
406
407 smp_rmb();
408
409 if (!PageCgroupUsed(pc))
410 return;
411 mz = page_cgroup_zoneinfo(pc);
412 list_move(&pc->lru, &mz->lists[lru]);
413}
414
415void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
416{
417 struct page_cgroup *pc;
418 struct mem_cgroup_per_zone *mz;
419
420 if (mem_cgroup_disabled())
421 return;
422 pc = lookup_page_cgroup(page);
423
424
425
426
427 smp_rmb();
428 if (!PageCgroupUsed(pc))
429 return;
430
431 mz = page_cgroup_zoneinfo(pc);
432 MEM_CGROUP_ZSTAT(mz, lru) += 1;
433 list_add(&pc->lru, &mz->lists[lru]);
434}
435
436
437
438
439
440
441
442
443static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
444{
445 unsigned long flags;
446 struct zone *zone = page_zone(page);
447 struct page_cgroup *pc = lookup_page_cgroup(page);
448
449 spin_lock_irqsave(&zone->lru_lock, flags);
450
451
452
453
454 if (!PageCgroupUsed(pc))
455 mem_cgroup_del_lru_list(page, page_lru(page));
456 spin_unlock_irqrestore(&zone->lru_lock, flags);
457}
458
459static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
460{
461 unsigned long flags;
462 struct zone *zone = page_zone(page);
463 struct page_cgroup *pc = lookup_page_cgroup(page);
464
465 spin_lock_irqsave(&zone->lru_lock, flags);
466
467 if (PageLRU(page) && list_empty(&pc->lru))
468 mem_cgroup_add_lru_list(page, page_lru(page));
469 spin_unlock_irqrestore(&zone->lru_lock, flags);
470}
471
472
473void mem_cgroup_move_lists(struct page *page,
474 enum lru_list from, enum lru_list to)
475{
476 if (mem_cgroup_disabled())
477 return;
478 mem_cgroup_del_lru_list(page, from);
479 mem_cgroup_add_lru_list(page, to);
480}
481
482int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
483{
484 int ret;
485 struct mem_cgroup *curr = NULL;
486
487 task_lock(task);
488 rcu_read_lock();
489 curr = try_get_mem_cgroup_from_mm(task->mm);
490 rcu_read_unlock();
491 task_unlock(task);
492 if (!curr)
493 return 0;
494 if (curr->use_hierarchy)
495 ret = css_is_ancestor(&curr->css, &mem->css);
496 else
497 ret = (curr == mem);
498 css_put(&curr->css);
499 return ret;
500}
501
502
503
504
505int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
506{
507 int prev_priority;
508
509 spin_lock(&mem->reclaim_param_lock);
510 prev_priority = mem->prev_priority;
511 spin_unlock(&mem->reclaim_param_lock);
512
513 return prev_priority;
514}
515
516void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
517{
518 spin_lock(&mem->reclaim_param_lock);
519 if (priority < mem->prev_priority)
520 mem->prev_priority = priority;
521 spin_unlock(&mem->reclaim_param_lock);
522}
523
524void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
525{
526 spin_lock(&mem->reclaim_param_lock);
527 mem->prev_priority = priority;
528 spin_unlock(&mem->reclaim_param_lock);
529}
530
531static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
532{
533 unsigned long active;
534 unsigned long inactive;
535 unsigned long gb;
536 unsigned long inactive_ratio;
537
538 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
539 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
540
541 gb = (inactive + active) >> (30 - PAGE_SHIFT);
542 if (gb)
543 inactive_ratio = int_sqrt(10 * gb);
544 else
545 inactive_ratio = 1;
546
547 if (present_pages) {
548 present_pages[0] = inactive;
549 present_pages[1] = active;
550 }
551
552 return inactive_ratio;
553}
554
555int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
556{
557 unsigned long active;
558 unsigned long inactive;
559 unsigned long present_pages[2];
560 unsigned long inactive_ratio;
561
562 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
563
564 inactive = present_pages[0];
565 active = present_pages[1];
566
567 if (inactive * inactive_ratio < active)
568 return 1;
569
570 return 0;
571}
572
573unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
574 struct zone *zone,
575 enum lru_list lru)
576{
577 int nid = zone->zone_pgdat->node_id;
578 int zid = zone_idx(zone);
579 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
580
581 return MEM_CGROUP_ZSTAT(mz, lru);
582}
583
584struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
585 struct zone *zone)
586{
587 int nid = zone->zone_pgdat->node_id;
588 int zid = zone_idx(zone);
589 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
590
591 return &mz->reclaim_stat;
592}
593
594struct zone_reclaim_stat *
595mem_cgroup_get_reclaim_stat_from_page(struct page *page)
596{
597 struct page_cgroup *pc;
598 struct mem_cgroup_per_zone *mz;
599
600 if (mem_cgroup_disabled())
601 return NULL;
602
603 pc = lookup_page_cgroup(page);
604
605
606
607
608 smp_rmb();
609 if (!PageCgroupUsed(pc))
610 return NULL;
611
612 mz = page_cgroup_zoneinfo(pc);
613 if (!mz)
614 return NULL;
615
616 return &mz->reclaim_stat;
617}
618
619unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
620 struct list_head *dst,
621 unsigned long *scanned, int order,
622 int mode, struct zone *z,
623 struct mem_cgroup *mem_cont,
624 int active, int file)
625{
626 unsigned long nr_taken = 0;
627 struct page *page;
628 unsigned long scan;
629 LIST_HEAD(pc_list);
630 struct list_head *src;
631 struct page_cgroup *pc, *tmp;
632 int nid = z->zone_pgdat->node_id;
633 int zid = zone_idx(z);
634 struct mem_cgroup_per_zone *mz;
635 int lru = LRU_FILE * !!file + !!active;
636
637 BUG_ON(!mem_cont);
638 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
639 src = &mz->lists[lru];
640
641 scan = 0;
642 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
643 if (scan >= nr_to_scan)
644 break;
645
646 page = pc->page;
647 if (unlikely(!PageCgroupUsed(pc)))
648 continue;
649 if (unlikely(!PageLRU(page)))
650 continue;
651
652 scan++;
653 if (__isolate_lru_page(page, mode, file) == 0) {
654 list_move(&page->lru, dst);
655 nr_taken++;
656 }
657 }
658
659 *scanned = scan;
660 return nr_taken;
661}
662
663#define mem_cgroup_from_res_counter(counter, member) \
664 container_of(counter, struct mem_cgroup, member)
665
666static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
667{
668 if (do_swap_account) {
669 if (res_counter_check_under_limit(&mem->res) &&
670 res_counter_check_under_limit(&mem->memsw))
671 return true;
672 } else
673 if (res_counter_check_under_limit(&mem->res))
674 return true;
675 return false;
676}
677
678static unsigned int get_swappiness(struct mem_cgroup *memcg)
679{
680 struct cgroup *cgrp = memcg->css.cgroup;
681 unsigned int swappiness;
682
683
684 if (cgrp->parent == NULL)
685 return vm_swappiness;
686
687 spin_lock(&memcg->reclaim_param_lock);
688 swappiness = memcg->swappiness;
689 spin_unlock(&memcg->reclaim_param_lock);
690
691 return swappiness;
692}
693
694static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
695{
696 int *val = data;
697 (*val)++;
698 return 0;
699}
700
701
702
703
704
705
706
707
708
709void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
710{
711 struct cgroup *task_cgrp;
712 struct cgroup *mem_cgrp;
713
714
715
716
717
718 static char memcg_name[PATH_MAX];
719 int ret;
720
721 if (!memcg)
722 return;
723
724
725 rcu_read_lock();
726
727 mem_cgrp = memcg->css.cgroup;
728 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
729
730 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
731 if (ret < 0) {
732
733
734
735
736 rcu_read_unlock();
737 goto done;
738 }
739 rcu_read_unlock();
740
741 printk(KERN_INFO "Task in %s killed", memcg_name);
742
743 rcu_read_lock();
744 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
745 if (ret < 0) {
746 rcu_read_unlock();
747 goto done;
748 }
749 rcu_read_unlock();
750
751
752
753
754 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
755done:
756
757 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
758 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
759 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
760 res_counter_read_u64(&memcg->res, RES_FAILCNT));
761 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
762 "failcnt %llu\n",
763 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
764 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
765 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
766}
767
768
769
770
771
772static int mem_cgroup_count_children(struct mem_cgroup *mem)
773{
774 int num = 0;
775 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
776 return num;
777}
778
779
780
781
782
783
784static struct mem_cgroup *
785mem_cgroup_select_victim(struct mem_cgroup *root_mem)
786{
787 struct mem_cgroup *ret = NULL;
788 struct cgroup_subsys_state *css;
789 int nextid, found;
790
791 if (!root_mem->use_hierarchy) {
792 css_get(&root_mem->css);
793 ret = root_mem;
794 }
795
796 while (!ret) {
797 rcu_read_lock();
798 nextid = root_mem->last_scanned_child + 1;
799 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
800 &found);
801 if (css && css_tryget(css))
802 ret = container_of(css, struct mem_cgroup, css);
803
804 rcu_read_unlock();
805
806 spin_lock(&root_mem->reclaim_param_lock);
807 if (!css) {
808
809 root_mem->last_scanned_child = 0;
810 } else
811 root_mem->last_scanned_child = found;
812 spin_unlock(&root_mem->reclaim_param_lock);
813 }
814
815 return ret;
816}
817
818
819
820
821
822
823
824
825
826
827
828
829
830static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
831 gfp_t gfp_mask, bool noswap, bool shrink)
832{
833 struct mem_cgroup *victim;
834 int ret, total = 0;
835 int loop = 0;
836
837 while (loop < 2) {
838 victim = mem_cgroup_select_victim(root_mem);
839 if (victim == root_mem)
840 loop++;
841 if (!mem_cgroup_local_usage(&victim->stat)) {
842
843 css_put(&victim->css);
844 continue;
845 }
846
847 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
848 get_swappiness(victim));
849 css_put(&victim->css);
850
851
852
853
854
855 if (shrink)
856 return ret;
857 total += ret;
858 if (mem_cgroup_check_under_limit(root_mem))
859 return 1 + total;
860 }
861 return total;
862}
863
864bool mem_cgroup_oom_called(struct task_struct *task)
865{
866 bool ret = false;
867 struct mem_cgroup *mem;
868 struct mm_struct *mm;
869
870 rcu_read_lock();
871 mm = task->mm;
872 if (!mm)
873 mm = &init_mm;
874 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
875 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
876 ret = true;
877 rcu_read_unlock();
878 return ret;
879}
880
881static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
882{
883 mem->last_oom_jiffies = jiffies;
884 return 0;
885}
886
887static void record_last_oom(struct mem_cgroup *mem)
888{
889 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
890}
891
892
893
894
895
896
897static int __mem_cgroup_try_charge(struct mm_struct *mm,
898 gfp_t gfp_mask, struct mem_cgroup **memcg,
899 bool oom)
900{
901 struct mem_cgroup *mem, *mem_over_limit;
902 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
903 struct res_counter *fail_res;
904
905 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
906
907 *memcg = NULL;
908 return 0;
909 }
910
911
912
913
914
915
916
917 mem = *memcg;
918 if (likely(!mem)) {
919 mem = try_get_mem_cgroup_from_mm(mm);
920 *memcg = mem;
921 } else {
922 css_get(&mem->css);
923 }
924 if (unlikely(!mem))
925 return 0;
926
927 VM_BUG_ON(css_is_removed(&mem->css));
928
929 while (1) {
930 int ret;
931 bool noswap = false;
932
933 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
934 if (likely(!ret)) {
935 if (!do_swap_account)
936 break;
937 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
938 &fail_res);
939 if (likely(!ret))
940 break;
941
942 res_counter_uncharge(&mem->res, PAGE_SIZE);
943 noswap = true;
944 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
945 memsw);
946 } else
947
948 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
949 res);
950
951 if (!(gfp_mask & __GFP_WAIT))
952 goto nomem;
953
954 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
955 noswap, false);
956 if (ret)
957 continue;
958
959
960
961
962
963
964
965
966
967 if (mem_cgroup_check_under_limit(mem_over_limit))
968 continue;
969
970 if (!nr_retries--) {
971 if (oom) {
972 mutex_lock(&memcg_tasklist);
973 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
974 mutex_unlock(&memcg_tasklist);
975 record_last_oom(mem_over_limit);
976 }
977 goto nomem;
978 }
979 }
980 return 0;
981nomem:
982 css_put(&mem->css);
983 return -ENOMEM;
984}
985
986
987
988
989
990
991
992
993static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
994{
995 struct cgroup_subsys_state *css;
996
997
998 if (!id)
999 return NULL;
1000 css = css_lookup(&mem_cgroup_subsys, id);
1001 if (!css)
1002 return NULL;
1003 return container_of(css, struct mem_cgroup, css);
1004}
1005
1006static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1007{
1008 struct mem_cgroup *mem;
1009 struct page_cgroup *pc;
1010 unsigned short id;
1011 swp_entry_t ent;
1012
1013 VM_BUG_ON(!PageLocked(page));
1014
1015 if (!PageSwapCache(page))
1016 return NULL;
1017
1018 pc = lookup_page_cgroup(page);
1019 lock_page_cgroup(pc);
1020 if (PageCgroupUsed(pc)) {
1021 mem = pc->mem_cgroup;
1022 if (mem && !css_tryget(&mem->css))
1023 mem = NULL;
1024 } else {
1025 ent.val = page_private(page);
1026 id = lookup_swap_cgroup(ent);
1027 rcu_read_lock();
1028 mem = mem_cgroup_lookup(id);
1029 if (mem && !css_tryget(&mem->css))
1030 mem = NULL;
1031 rcu_read_unlock();
1032 }
1033 unlock_page_cgroup(pc);
1034 return mem;
1035}
1036
1037
1038
1039
1040
1041
1042static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1043 struct page_cgroup *pc,
1044 enum charge_type ctype)
1045{
1046
1047 if (!mem)
1048 return;
1049
1050 lock_page_cgroup(pc);
1051 if (unlikely(PageCgroupUsed(pc))) {
1052 unlock_page_cgroup(pc);
1053 res_counter_uncharge(&mem->res, PAGE_SIZE);
1054 if (do_swap_account)
1055 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1056 css_put(&mem->css);
1057 return;
1058 }
1059 pc->mem_cgroup = mem;
1060 smp_wmb();
1061 pc->flags = pcg_default_flags[ctype];
1062
1063 mem_cgroup_charge_statistics(mem, pc, true);
1064
1065 unlock_page_cgroup(pc);
1066}
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084static int mem_cgroup_move_account(struct page_cgroup *pc,
1085 struct mem_cgroup *from, struct mem_cgroup *to)
1086{
1087 struct mem_cgroup_per_zone *from_mz, *to_mz;
1088 int nid, zid;
1089 int ret = -EBUSY;
1090
1091 VM_BUG_ON(from == to);
1092 VM_BUG_ON(PageLRU(pc->page));
1093
1094 nid = page_cgroup_nid(pc);
1095 zid = page_cgroup_zid(pc);
1096 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1097 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1098
1099 if (!trylock_page_cgroup(pc))
1100 return ret;
1101
1102 if (!PageCgroupUsed(pc))
1103 goto out;
1104
1105 if (pc->mem_cgroup != from)
1106 goto out;
1107
1108 res_counter_uncharge(&from->res, PAGE_SIZE);
1109 mem_cgroup_charge_statistics(from, pc, false);
1110 if (do_swap_account)
1111 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1112 css_put(&from->css);
1113
1114 css_get(&to->css);
1115 pc->mem_cgroup = to;
1116 mem_cgroup_charge_statistics(to, pc, true);
1117 ret = 0;
1118out:
1119 unlock_page_cgroup(pc);
1120 return ret;
1121}
1122
1123
1124
1125
1126
1127static int mem_cgroup_move_parent(struct page_cgroup *pc,
1128 struct mem_cgroup *child,
1129 gfp_t gfp_mask)
1130{
1131 struct page *page = pc->page;
1132 struct cgroup *cg = child->css.cgroup;
1133 struct cgroup *pcg = cg->parent;
1134 struct mem_cgroup *parent;
1135 int ret;
1136
1137
1138 if (!pcg)
1139 return -EINVAL;
1140
1141
1142 parent = mem_cgroup_from_cont(pcg);
1143
1144
1145 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1146 if (ret || !parent)
1147 return ret;
1148
1149 if (!get_page_unless_zero(page)) {
1150 ret = -EBUSY;
1151 goto uncharge;
1152 }
1153
1154 ret = isolate_lru_page(page);
1155
1156 if (ret)
1157 goto cancel;
1158
1159 ret = mem_cgroup_move_account(pc, child, parent);
1160
1161 putback_lru_page(page);
1162 if (!ret) {
1163 put_page(page);
1164
1165 css_put(&parent->css);
1166 return 0;
1167 }
1168
1169cancel:
1170 put_page(page);
1171uncharge:
1172
1173 css_put(&parent->css);
1174
1175 res_counter_uncharge(&parent->res, PAGE_SIZE);
1176 if (do_swap_account)
1177 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1178 return ret;
1179}
1180
1181
1182
1183
1184
1185
1186
1187static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1188 gfp_t gfp_mask, enum charge_type ctype,
1189 struct mem_cgroup *memcg)
1190{
1191 struct mem_cgroup *mem;
1192 struct page_cgroup *pc;
1193 int ret;
1194
1195 pc = lookup_page_cgroup(page);
1196
1197 if (unlikely(!pc))
1198 return 0;
1199 prefetchw(pc);
1200
1201 mem = memcg;
1202 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1203 if (ret || !mem)
1204 return ret;
1205
1206 __mem_cgroup_commit_charge(mem, pc, ctype);
1207 return 0;
1208}
1209
1210int mem_cgroup_newpage_charge(struct page *page,
1211 struct mm_struct *mm, gfp_t gfp_mask)
1212{
1213 if (mem_cgroup_disabled())
1214 return 0;
1215 if (PageCompound(page))
1216 return 0;
1217
1218
1219
1220
1221
1222
1223
1224 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1225 return 0;
1226 if (unlikely(!mm))
1227 mm = &init_mm;
1228 return mem_cgroup_charge_common(page, mm, gfp_mask,
1229 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1230}
1231
1232static void
1233__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1234 enum charge_type ctype);
1235
1236int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1237 gfp_t gfp_mask)
1238{
1239 struct mem_cgroup *mem = NULL;
1240 int ret;
1241
1242 if (mem_cgroup_disabled())
1243 return 0;
1244 if (PageCompound(page))
1245 return 0;
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257 if (!(gfp_mask & __GFP_WAIT)) {
1258 struct page_cgroup *pc;
1259
1260
1261 pc = lookup_page_cgroup(page);
1262 if (!pc)
1263 return 0;
1264 lock_page_cgroup(pc);
1265 if (PageCgroupUsed(pc)) {
1266 unlock_page_cgroup(pc);
1267 return 0;
1268 }
1269 unlock_page_cgroup(pc);
1270 }
1271
1272 if (unlikely(!mm && !mem))
1273 mm = &init_mm;
1274
1275 if (page_is_file_cache(page))
1276 return mem_cgroup_charge_common(page, mm, gfp_mask,
1277 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1278
1279
1280 if (PageSwapCache(page)) {
1281 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1282 if (!ret)
1283 __mem_cgroup_commit_charge_swapin(page, mem,
1284 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1285 } else
1286 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1287 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1288
1289 return ret;
1290}
1291
1292
1293
1294
1295
1296
1297
1298int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1299 struct page *page,
1300 gfp_t mask, struct mem_cgroup **ptr)
1301{
1302 struct mem_cgroup *mem;
1303 int ret;
1304
1305 if (mem_cgroup_disabled())
1306 return 0;
1307
1308 if (!do_swap_account)
1309 goto charge_cur_mm;
1310
1311
1312
1313
1314
1315 if (!PageSwapCache(page))
1316 return 0;
1317 mem = try_get_mem_cgroup_from_swapcache(page);
1318 if (!mem)
1319 goto charge_cur_mm;
1320 *ptr = mem;
1321 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1322
1323 css_put(&mem->css);
1324 return ret;
1325charge_cur_mm:
1326 if (unlikely(!mm))
1327 mm = &init_mm;
1328 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1329}
1330
1331static void
1332__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1333 enum charge_type ctype)
1334{
1335 struct page_cgroup *pc;
1336
1337 if (mem_cgroup_disabled())
1338 return;
1339 if (!ptr)
1340 return;
1341 pc = lookup_page_cgroup(page);
1342 mem_cgroup_lru_del_before_commit_swapcache(page);
1343 __mem_cgroup_commit_charge(ptr, pc, ctype);
1344 mem_cgroup_lru_add_after_commit_swapcache(page);
1345
1346
1347
1348
1349
1350
1351
1352 if (do_swap_account && PageSwapCache(page)) {
1353 swp_entry_t ent = {.val = page_private(page)};
1354 unsigned short id;
1355 struct mem_cgroup *memcg;
1356
1357 id = swap_cgroup_record(ent, 0);
1358 rcu_read_lock();
1359 memcg = mem_cgroup_lookup(id);
1360 if (memcg) {
1361
1362
1363
1364
1365 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1366 mem_cgroup_put(memcg);
1367 }
1368 rcu_read_unlock();
1369 }
1370
1371
1372}
1373
1374void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1375{
1376 __mem_cgroup_commit_charge_swapin(page, ptr,
1377 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1378}
1379
1380void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1381{
1382 if (mem_cgroup_disabled())
1383 return;
1384 if (!mem)
1385 return;
1386 res_counter_uncharge(&mem->res, PAGE_SIZE);
1387 if (do_swap_account)
1388 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1389 css_put(&mem->css);
1390}
1391
1392
1393
1394
1395
1396static struct mem_cgroup *
1397__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1398{
1399 struct page_cgroup *pc;
1400 struct mem_cgroup *mem = NULL;
1401 struct mem_cgroup_per_zone *mz;
1402
1403 if (mem_cgroup_disabled())
1404 return NULL;
1405
1406 if (PageSwapCache(page))
1407 return NULL;
1408
1409
1410
1411
1412 pc = lookup_page_cgroup(page);
1413 if (unlikely(!pc || !PageCgroupUsed(pc)))
1414 return NULL;
1415
1416 lock_page_cgroup(pc);
1417
1418 mem = pc->mem_cgroup;
1419
1420 if (!PageCgroupUsed(pc))
1421 goto unlock_out;
1422
1423 switch (ctype) {
1424 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1425 if (page_mapped(page))
1426 goto unlock_out;
1427 break;
1428 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1429 if (!PageAnon(page)) {
1430 if (page->mapping && !page_is_file_cache(page))
1431 goto unlock_out;
1432 } else if (page_mapped(page))
1433 goto unlock_out;
1434 break;
1435 default:
1436 break;
1437 }
1438
1439 res_counter_uncharge(&mem->res, PAGE_SIZE);
1440 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1441 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1442 mem_cgroup_charge_statistics(mem, pc, false);
1443
1444 ClearPageCgroupUsed(pc);
1445
1446
1447
1448
1449
1450
1451
1452 mz = page_cgroup_zoneinfo(pc);
1453 unlock_page_cgroup(pc);
1454
1455
1456 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1457 css_put(&mem->css);
1458
1459 return mem;
1460
1461unlock_out:
1462 unlock_page_cgroup(pc);
1463 return NULL;
1464}
1465
1466void mem_cgroup_uncharge_page(struct page *page)
1467{
1468
1469 if (page_mapped(page))
1470 return;
1471 if (page->mapping && !PageAnon(page))
1472 return;
1473 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1474}
1475
1476void mem_cgroup_uncharge_cache_page(struct page *page)
1477{
1478 VM_BUG_ON(page_mapped(page));
1479 VM_BUG_ON(page->mapping);
1480 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1481}
1482
1483#ifdef CONFIG_SWAP
1484
1485
1486
1487
1488void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1489{
1490 struct mem_cgroup *memcg;
1491
1492 memcg = __mem_cgroup_uncharge_common(page,
1493 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1494
1495 if (do_swap_account && memcg) {
1496 swap_cgroup_record(ent, css_id(&memcg->css));
1497 mem_cgroup_get(memcg);
1498 }
1499 if (memcg)
1500 css_put(&memcg->css);
1501}
1502#endif
1503
1504#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1505
1506
1507
1508
1509void mem_cgroup_uncharge_swap(swp_entry_t ent)
1510{
1511 struct mem_cgroup *memcg;
1512 unsigned short id;
1513
1514 if (!do_swap_account)
1515 return;
1516
1517 id = swap_cgroup_record(ent, 0);
1518 rcu_read_lock();
1519 memcg = mem_cgroup_lookup(id);
1520 if (memcg) {
1521
1522
1523
1524
1525 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1526 mem_cgroup_put(memcg);
1527 }
1528 rcu_read_unlock();
1529}
1530#endif
1531
1532
1533
1534
1535
1536int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1537{
1538 struct page_cgroup *pc;
1539 struct mem_cgroup *mem = NULL;
1540 int ret = 0;
1541
1542 if (mem_cgroup_disabled())
1543 return 0;
1544
1545 pc = lookup_page_cgroup(page);
1546 lock_page_cgroup(pc);
1547 if (PageCgroupUsed(pc)) {
1548 mem = pc->mem_cgroup;
1549 css_get(&mem->css);
1550 }
1551 unlock_page_cgroup(pc);
1552
1553 if (mem) {
1554 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1555 css_put(&mem->css);
1556 }
1557 *ptr = mem;
1558 return ret;
1559}
1560
1561
1562void mem_cgroup_end_migration(struct mem_cgroup *mem,
1563 struct page *oldpage, struct page *newpage)
1564{
1565 struct page *target, *unused;
1566 struct page_cgroup *pc;
1567 enum charge_type ctype;
1568
1569 if (!mem)
1570 return;
1571
1572
1573 if (oldpage->mapping) {
1574 target = oldpage;
1575 unused = NULL;
1576 } else {
1577 target = newpage;
1578 unused = oldpage;
1579 }
1580
1581 if (PageAnon(target))
1582 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1583 else if (page_is_file_cache(target))
1584 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1585 else
1586 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1587
1588
1589 if (unused)
1590 __mem_cgroup_uncharge_common(unused, ctype);
1591
1592 pc = lookup_page_cgroup(target);
1593
1594
1595
1596
1597 __mem_cgroup_commit_charge(mem, pc, ctype);
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1610 mem_cgroup_uncharge_page(target);
1611}
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621int mem_cgroup_shmem_charge_fallback(struct page *page,
1622 struct mm_struct *mm,
1623 gfp_t gfp_mask)
1624{
1625 struct mem_cgroup *mem = NULL;
1626 int ret;
1627
1628 if (mem_cgroup_disabled())
1629 return 0;
1630
1631 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1632 if (!ret)
1633 mem_cgroup_cancel_charge_swapin(mem);
1634
1635 return ret;
1636}
1637
1638static DEFINE_MUTEX(set_limit_mutex);
1639
1640static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1641 unsigned long long val)
1642{
1643 int retry_count;
1644 int progress;
1645 u64 memswlimit;
1646 int ret = 0;
1647 int children = mem_cgroup_count_children(memcg);
1648 u64 curusage, oldusage;
1649
1650
1651
1652
1653
1654
1655 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1656
1657 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1658
1659 while (retry_count) {
1660 if (signal_pending(current)) {
1661 ret = -EINTR;
1662 break;
1663 }
1664
1665
1666
1667
1668
1669 mutex_lock(&set_limit_mutex);
1670 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1671 if (memswlimit < val) {
1672 ret = -EINVAL;
1673 mutex_unlock(&set_limit_mutex);
1674 break;
1675 }
1676 ret = res_counter_set_limit(&memcg->res, val);
1677 mutex_unlock(&set_limit_mutex);
1678
1679 if (!ret)
1680 break;
1681
1682 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1683 false, true);
1684 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1685
1686 if (curusage >= oldusage)
1687 retry_count--;
1688 else
1689 oldusage = curusage;
1690 }
1691
1692 return ret;
1693}
1694
1695int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1696 unsigned long long val)
1697{
1698 int retry_count;
1699 u64 memlimit, oldusage, curusage;
1700 int children = mem_cgroup_count_children(memcg);
1701 int ret = -EBUSY;
1702
1703 if (!do_swap_account)
1704 return -EINVAL;
1705
1706 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1707 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1708 while (retry_count) {
1709 if (signal_pending(current)) {
1710 ret = -EINTR;
1711 break;
1712 }
1713
1714
1715
1716
1717
1718 mutex_lock(&set_limit_mutex);
1719 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1720 if (memlimit > val) {
1721 ret = -EINVAL;
1722 mutex_unlock(&set_limit_mutex);
1723 break;
1724 }
1725 ret = res_counter_set_limit(&memcg->memsw, val);
1726 mutex_unlock(&set_limit_mutex);
1727
1728 if (!ret)
1729 break;
1730
1731 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1732 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1733
1734 if (curusage >= oldusage)
1735 retry_count--;
1736 else
1737 oldusage = curusage;
1738 }
1739 return ret;
1740}
1741
1742
1743
1744
1745
1746static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1747 int node, int zid, enum lru_list lru)
1748{
1749 struct zone *zone;
1750 struct mem_cgroup_per_zone *mz;
1751 struct page_cgroup *pc, *busy;
1752 unsigned long flags, loop;
1753 struct list_head *list;
1754 int ret = 0;
1755
1756 zone = &NODE_DATA(node)->node_zones[zid];
1757 mz = mem_cgroup_zoneinfo(mem, node, zid);
1758 list = &mz->lists[lru];
1759
1760 loop = MEM_CGROUP_ZSTAT(mz, lru);
1761
1762 loop += 256;
1763 busy = NULL;
1764 while (loop--) {
1765 ret = 0;
1766 spin_lock_irqsave(&zone->lru_lock, flags);
1767 if (list_empty(list)) {
1768 spin_unlock_irqrestore(&zone->lru_lock, flags);
1769 break;
1770 }
1771 pc = list_entry(list->prev, struct page_cgroup, lru);
1772 if (busy == pc) {
1773 list_move(&pc->lru, list);
1774 busy = 0;
1775 spin_unlock_irqrestore(&zone->lru_lock, flags);
1776 continue;
1777 }
1778 spin_unlock_irqrestore(&zone->lru_lock, flags);
1779
1780 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1781 if (ret == -ENOMEM)
1782 break;
1783
1784 if (ret == -EBUSY || ret == -EINVAL) {
1785
1786 busy = pc;
1787 cond_resched();
1788 } else
1789 busy = NULL;
1790 }
1791
1792 if (!ret && !list_empty(list))
1793 return -EBUSY;
1794 return ret;
1795}
1796
1797
1798
1799
1800
1801static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1802{
1803 int ret;
1804 int node, zid, shrink;
1805 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1806 struct cgroup *cgrp = mem->css.cgroup;
1807
1808 css_get(&mem->css);
1809
1810 shrink = 0;
1811
1812 if (free_all)
1813 goto try_to_free;
1814move_account:
1815 while (mem->res.usage > 0) {
1816 ret = -EBUSY;
1817 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1818 goto out;
1819 ret = -EINTR;
1820 if (signal_pending(current))
1821 goto out;
1822
1823 lru_add_drain_all();
1824 ret = 0;
1825 for_each_node_state(node, N_HIGH_MEMORY) {
1826 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1827 enum lru_list l;
1828 for_each_lru(l) {
1829 ret = mem_cgroup_force_empty_list(mem,
1830 node, zid, l);
1831 if (ret)
1832 break;
1833 }
1834 }
1835 if (ret)
1836 break;
1837 }
1838
1839 if (ret == -ENOMEM)
1840 goto try_to_free;
1841 cond_resched();
1842 }
1843 ret = 0;
1844out:
1845 css_put(&mem->css);
1846 return ret;
1847
1848try_to_free:
1849
1850 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1851 ret = -EBUSY;
1852 goto out;
1853 }
1854
1855 lru_add_drain_all();
1856
1857 shrink = 1;
1858 while (nr_retries && mem->res.usage > 0) {
1859 int progress;
1860
1861 if (signal_pending(current)) {
1862 ret = -EINTR;
1863 goto out;
1864 }
1865 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1866 false, get_swappiness(mem));
1867 if (!progress) {
1868 nr_retries--;
1869
1870 congestion_wait(WRITE, HZ/10);
1871 }
1872
1873 }
1874 lru_add_drain();
1875
1876 if (mem->res.usage)
1877 goto move_account;
1878 ret = 0;
1879 goto out;
1880}
1881
1882int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1883{
1884 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1885}
1886
1887
1888static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1889{
1890 return mem_cgroup_from_cont(cont)->use_hierarchy;
1891}
1892
1893static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1894 u64 val)
1895{
1896 int retval = 0;
1897 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1898 struct cgroup *parent = cont->parent;
1899 struct mem_cgroup *parent_mem = NULL;
1900
1901 if (parent)
1902 parent_mem = mem_cgroup_from_cont(parent);
1903
1904 cgroup_lock();
1905
1906
1907
1908
1909
1910
1911
1912
1913 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1914 (val == 1 || val == 0)) {
1915 if (list_empty(&cont->children))
1916 mem->use_hierarchy = val;
1917 else
1918 retval = -EBUSY;
1919 } else
1920 retval = -EINVAL;
1921 cgroup_unlock();
1922
1923 return retval;
1924}
1925
1926static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1927{
1928 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1929 u64 val = 0;
1930 int type, name;
1931
1932 type = MEMFILE_TYPE(cft->private);
1933 name = MEMFILE_ATTR(cft->private);
1934 switch (type) {
1935 case _MEM:
1936 val = res_counter_read_u64(&mem->res, name);
1937 break;
1938 case _MEMSWAP:
1939 if (do_swap_account)
1940 val = res_counter_read_u64(&mem->memsw, name);
1941 break;
1942 default:
1943 BUG();
1944 break;
1945 }
1946 return val;
1947}
1948
1949
1950
1951
1952static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1953 const char *buffer)
1954{
1955 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1956 int type, name;
1957 unsigned long long val;
1958 int ret;
1959
1960 type = MEMFILE_TYPE(cft->private);
1961 name = MEMFILE_ATTR(cft->private);
1962 switch (name) {
1963 case RES_LIMIT:
1964
1965 ret = res_counter_memparse_write_strategy(buffer, &val);
1966 if (ret)
1967 break;
1968 if (type == _MEM)
1969 ret = mem_cgroup_resize_limit(memcg, val);
1970 else
1971 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1972 break;
1973 default:
1974 ret = -EINVAL;
1975 break;
1976 }
1977 return ret;
1978}
1979
1980static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1981 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1982{
1983 struct cgroup *cgroup;
1984 unsigned long long min_limit, min_memsw_limit, tmp;
1985
1986 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1987 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1988 cgroup = memcg->css.cgroup;
1989 if (!memcg->use_hierarchy)
1990 goto out;
1991
1992 while (cgroup->parent) {
1993 cgroup = cgroup->parent;
1994 memcg = mem_cgroup_from_cont(cgroup);
1995 if (!memcg->use_hierarchy)
1996 break;
1997 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1998 min_limit = min(min_limit, tmp);
1999 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2000 min_memsw_limit = min(min_memsw_limit, tmp);
2001 }
2002out:
2003 *mem_limit = min_limit;
2004 *memsw_limit = min_memsw_limit;
2005 return;
2006}
2007
2008static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2009{
2010 struct mem_cgroup *mem;
2011 int type, name;
2012
2013 mem = mem_cgroup_from_cont(cont);
2014 type = MEMFILE_TYPE(event);
2015 name = MEMFILE_ATTR(event);
2016 switch (name) {
2017 case RES_MAX_USAGE:
2018 if (type == _MEM)
2019 res_counter_reset_max(&mem->res);
2020 else
2021 res_counter_reset_max(&mem->memsw);
2022 break;
2023 case RES_FAILCNT:
2024 if (type == _MEM)
2025 res_counter_reset_failcnt(&mem->res);
2026 else
2027 res_counter_reset_failcnt(&mem->memsw);
2028 break;
2029 }
2030 return 0;
2031}
2032
2033
2034
2035enum {
2036 MCS_CACHE,
2037 MCS_RSS,
2038 MCS_PGPGIN,
2039 MCS_PGPGOUT,
2040 MCS_INACTIVE_ANON,
2041 MCS_ACTIVE_ANON,
2042 MCS_INACTIVE_FILE,
2043 MCS_ACTIVE_FILE,
2044 MCS_UNEVICTABLE,
2045 NR_MCS_STAT,
2046};
2047
2048struct mcs_total_stat {
2049 s64 stat[NR_MCS_STAT];
2050};
2051
2052struct {
2053 char *local_name;
2054 char *total_name;
2055} memcg_stat_strings[NR_MCS_STAT] = {
2056 {"cache", "total_cache"},
2057 {"rss", "total_rss"},
2058 {"pgpgin", "total_pgpgin"},
2059 {"pgpgout", "total_pgpgout"},
2060 {"inactive_anon", "total_inactive_anon"},
2061 {"active_anon", "total_active_anon"},
2062 {"inactive_file", "total_inactive_file"},
2063 {"active_file", "total_active_file"},
2064 {"unevictable", "total_unevictable"}
2065};
2066
2067
2068static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2069{
2070 struct mcs_total_stat *s = data;
2071 s64 val;
2072
2073
2074 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2075 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2076 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2077 s->stat[MCS_RSS] += val * PAGE_SIZE;
2078 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2079 s->stat[MCS_PGPGIN] += val;
2080 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2081 s->stat[MCS_PGPGOUT] += val;
2082
2083
2084 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2085 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2086 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2087 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2088 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2089 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2090 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2091 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2092 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2093 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2094 return 0;
2095}
2096
2097static void
2098mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2099{
2100 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2101}
2102
2103static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2104 struct cgroup_map_cb *cb)
2105{
2106 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2107 struct mcs_total_stat mystat;
2108 int i;
2109
2110 memset(&mystat, 0, sizeof(mystat));
2111 mem_cgroup_get_local_stat(mem_cont, &mystat);
2112
2113 for (i = 0; i < NR_MCS_STAT; i++)
2114 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2115
2116
2117 {
2118 unsigned long long limit, memsw_limit;
2119 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2120 cb->fill(cb, "hierarchical_memory_limit", limit);
2121 if (do_swap_account)
2122 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2123 }
2124
2125 memset(&mystat, 0, sizeof(mystat));
2126 mem_cgroup_get_total_stat(mem_cont, &mystat);
2127 for (i = 0; i < NR_MCS_STAT; i++)
2128 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2129
2130
2131#ifdef CONFIG_DEBUG_VM
2132 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2133
2134 {
2135 int nid, zid;
2136 struct mem_cgroup_per_zone *mz;
2137 unsigned long recent_rotated[2] = {0, 0};
2138 unsigned long recent_scanned[2] = {0, 0};
2139
2140 for_each_online_node(nid)
2141 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2142 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2143
2144 recent_rotated[0] +=
2145 mz->reclaim_stat.recent_rotated[0];
2146 recent_rotated[1] +=
2147 mz->reclaim_stat.recent_rotated[1];
2148 recent_scanned[0] +=
2149 mz->reclaim_stat.recent_scanned[0];
2150 recent_scanned[1] +=
2151 mz->reclaim_stat.recent_scanned[1];
2152 }
2153 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2154 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2155 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2156 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2157 }
2158#endif
2159
2160 return 0;
2161}
2162
2163static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2164{
2165 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2166
2167 return get_swappiness(memcg);
2168}
2169
2170static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2171 u64 val)
2172{
2173 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2174 struct mem_cgroup *parent;
2175
2176 if (val > 100)
2177 return -EINVAL;
2178
2179 if (cgrp->parent == NULL)
2180 return -EINVAL;
2181
2182 parent = mem_cgroup_from_cont(cgrp->parent);
2183
2184 cgroup_lock();
2185
2186
2187 if ((parent->use_hierarchy) ||
2188 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2189 cgroup_unlock();
2190 return -EINVAL;
2191 }
2192
2193 spin_lock(&memcg->reclaim_param_lock);
2194 memcg->swappiness = val;
2195 spin_unlock(&memcg->reclaim_param_lock);
2196
2197 cgroup_unlock();
2198
2199 return 0;
2200}
2201
2202
2203static struct cftype mem_cgroup_files[] = {
2204 {
2205 .name = "usage_in_bytes",
2206 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2207 .read_u64 = mem_cgroup_read,
2208 },
2209 {
2210 .name = "max_usage_in_bytes",
2211 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2212 .trigger = mem_cgroup_reset,
2213 .read_u64 = mem_cgroup_read,
2214 },
2215 {
2216 .name = "limit_in_bytes",
2217 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2218 .write_string = mem_cgroup_write,
2219 .read_u64 = mem_cgroup_read,
2220 },
2221 {
2222 .name = "failcnt",
2223 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2224 .trigger = mem_cgroup_reset,
2225 .read_u64 = mem_cgroup_read,
2226 },
2227 {
2228 .name = "stat",
2229 .read_map = mem_control_stat_show,
2230 },
2231 {
2232 .name = "force_empty",
2233 .trigger = mem_cgroup_force_empty_write,
2234 },
2235 {
2236 .name = "use_hierarchy",
2237 .write_u64 = mem_cgroup_hierarchy_write,
2238 .read_u64 = mem_cgroup_hierarchy_read,
2239 },
2240 {
2241 .name = "swappiness",
2242 .read_u64 = mem_cgroup_swappiness_read,
2243 .write_u64 = mem_cgroup_swappiness_write,
2244 },
2245};
2246
2247#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2248static struct cftype memsw_cgroup_files[] = {
2249 {
2250 .name = "memsw.usage_in_bytes",
2251 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2252 .read_u64 = mem_cgroup_read,
2253 },
2254 {
2255 .name = "memsw.max_usage_in_bytes",
2256 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2257 .trigger = mem_cgroup_reset,
2258 .read_u64 = mem_cgroup_read,
2259 },
2260 {
2261 .name = "memsw.limit_in_bytes",
2262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2263 .write_string = mem_cgroup_write,
2264 .read_u64 = mem_cgroup_read,
2265 },
2266 {
2267 .name = "memsw.failcnt",
2268 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2269 .trigger = mem_cgroup_reset,
2270 .read_u64 = mem_cgroup_read,
2271 },
2272};
2273
2274static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2275{
2276 if (!do_swap_account)
2277 return 0;
2278 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2279 ARRAY_SIZE(memsw_cgroup_files));
2280};
2281#else
2282static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2283{
2284 return 0;
2285}
2286#endif
2287
2288static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2289{
2290 struct mem_cgroup_per_node *pn;
2291 struct mem_cgroup_per_zone *mz;
2292 enum lru_list l;
2293 int zone, tmp = node;
2294
2295
2296
2297
2298
2299
2300
2301
2302 if (!node_state(node, N_NORMAL_MEMORY))
2303 tmp = -1;
2304 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2305 if (!pn)
2306 return 1;
2307
2308 mem->info.nodeinfo[node] = pn;
2309 memset(pn, 0, sizeof(*pn));
2310
2311 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2312 mz = &pn->zoneinfo[zone];
2313 for_each_lru(l)
2314 INIT_LIST_HEAD(&mz->lists[l]);
2315 }
2316 return 0;
2317}
2318
2319static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2320{
2321 kfree(mem->info.nodeinfo[node]);
2322}
2323
2324static int mem_cgroup_size(void)
2325{
2326 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2327 return sizeof(struct mem_cgroup) + cpustat_size;
2328}
2329
2330static struct mem_cgroup *mem_cgroup_alloc(void)
2331{
2332 struct mem_cgroup *mem;
2333 int size = mem_cgroup_size();
2334
2335 if (size < PAGE_SIZE)
2336 mem = kmalloc(size, GFP_KERNEL);
2337 else
2338 mem = vmalloc(size);
2339
2340 if (mem)
2341 memset(mem, 0, size);
2342 return mem;
2343}
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356static void __mem_cgroup_free(struct mem_cgroup *mem)
2357{
2358 int node;
2359
2360 free_css_id(&mem_cgroup_subsys, &mem->css);
2361
2362 for_each_node_state(node, N_POSSIBLE)
2363 free_mem_cgroup_per_zone_info(mem, node);
2364
2365 if (mem_cgroup_size() < PAGE_SIZE)
2366 kfree(mem);
2367 else
2368 vfree(mem);
2369}
2370
2371static void mem_cgroup_get(struct mem_cgroup *mem)
2372{
2373 atomic_inc(&mem->refcnt);
2374}
2375
2376static void mem_cgroup_put(struct mem_cgroup *mem)
2377{
2378 if (atomic_dec_and_test(&mem->refcnt)) {
2379 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2380 __mem_cgroup_free(mem);
2381 if (parent)
2382 mem_cgroup_put(parent);
2383 }
2384}
2385
2386
2387
2388
2389static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2390{
2391 if (!mem->res.parent)
2392 return NULL;
2393 return mem_cgroup_from_res_counter(mem->res.parent, res);
2394}
2395
2396#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2397static void __init enable_swap_cgroup(void)
2398{
2399 if (!mem_cgroup_disabled() && really_do_swap_account)
2400 do_swap_account = 1;
2401}
2402#else
2403static void __init enable_swap_cgroup(void)
2404{
2405}
2406#endif
2407
2408static struct cgroup_subsys_state * __ref
2409mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2410{
2411 struct mem_cgroup *mem, *parent;
2412 long error = -ENOMEM;
2413 int node;
2414
2415 mem = mem_cgroup_alloc();
2416 if (!mem)
2417 return ERR_PTR(error);
2418
2419 for_each_node_state(node, N_POSSIBLE)
2420 if (alloc_mem_cgroup_per_zone_info(mem, node))
2421 goto free_out;
2422
2423 if (cont->parent == NULL) {
2424 enable_swap_cgroup();
2425 parent = NULL;
2426 } else {
2427 parent = mem_cgroup_from_cont(cont->parent);
2428 mem->use_hierarchy = parent->use_hierarchy;
2429 }
2430
2431 if (parent && parent->use_hierarchy) {
2432 res_counter_init(&mem->res, &parent->res);
2433 res_counter_init(&mem->memsw, &parent->memsw);
2434
2435
2436
2437
2438
2439
2440 mem_cgroup_get(parent);
2441 } else {
2442 res_counter_init(&mem->res, NULL);
2443 res_counter_init(&mem->memsw, NULL);
2444 }
2445 mem->last_scanned_child = 0;
2446 spin_lock_init(&mem->reclaim_param_lock);
2447
2448 if (parent)
2449 mem->swappiness = get_swappiness(parent);
2450 atomic_set(&mem->refcnt, 1);
2451 return &mem->css;
2452free_out:
2453 __mem_cgroup_free(mem);
2454 return ERR_PTR(error);
2455}
2456
2457static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2458 struct cgroup *cont)
2459{
2460 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2461
2462 return mem_cgroup_force_empty(mem, false);
2463}
2464
2465static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2466 struct cgroup *cont)
2467{
2468 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2469
2470 mem_cgroup_put(mem);
2471}
2472
2473static int mem_cgroup_populate(struct cgroup_subsys *ss,
2474 struct cgroup *cont)
2475{
2476 int ret;
2477
2478 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2479 ARRAY_SIZE(mem_cgroup_files));
2480
2481 if (!ret)
2482 ret = register_memsw_files(cont, ss);
2483 return ret;
2484}
2485
2486static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2487 struct cgroup *cont,
2488 struct cgroup *old_cont,
2489 struct task_struct *p)
2490{
2491 mutex_lock(&memcg_tasklist);
2492
2493
2494
2495
2496 mutex_unlock(&memcg_tasklist);
2497}
2498
2499struct cgroup_subsys mem_cgroup_subsys = {
2500 .name = "memory",
2501 .subsys_id = mem_cgroup_subsys_id,
2502 .create = mem_cgroup_create,
2503 .pre_destroy = mem_cgroup_pre_destroy,
2504 .destroy = mem_cgroup_destroy,
2505 .populate = mem_cgroup_populate,
2506 .attach = mem_cgroup_move_task,
2507 .early_init = 0,
2508 .use_id = 1,
2509};
2510
2511#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2512
2513static int __init disable_swap_account(char *s)
2514{
2515 really_do_swap_account = 0;
2516 return 1;
2517}
2518__setup("noswapaccount", disable_swap_account);
2519#endif
2520