linux/mm/vmscan.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>  /* for try_to_release_page(),
  27                                        buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/notifier.h>
  36#include <linux/rwsem.h>
  37#include <linux/delay.h>
  38#include <linux/kthread.h>
  39#include <linux/freezer.h>
  40#include <linux/memcontrol.h>
  41#include <linux/delayacct.h>
  42#include <linux/sysctl.h>
  43
  44#include <asm/tlbflush.h>
  45#include <asm/div64.h>
  46
  47#include <linux/swapops.h>
  48
  49#include "internal.h"
  50
  51struct scan_control {
  52        /* Incremented by the number of inactive pages that were scanned */
  53        unsigned long nr_scanned;
  54
  55        /* Number of pages freed so far during a call to shrink_zones() */
  56        unsigned long nr_reclaimed;
  57
  58        /* This context's GFP mask */
  59        gfp_t gfp_mask;
  60
  61        int may_writepage;
  62
  63        /* Can pages be swapped as part of reclaim? */
  64        int may_swap;
  65
  66        /* This context's SWAP_CLUSTER_MAX. If freeing memory for
  67         * suspend, we effectively ignore SWAP_CLUSTER_MAX.
  68         * In this context, it doesn't matter that we scan the
  69         * whole list at once. */
  70        int swap_cluster_max;
  71
  72        int swappiness;
  73
  74        int all_unreclaimable;
  75
  76        int order;
  77
  78        /* Which cgroup do we reclaim from */
  79        struct mem_cgroup *mem_cgroup;
  80
  81        /* Pluggable isolate pages callback */
  82        unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
  83                        unsigned long *scanned, int order, int mode,
  84                        struct zone *z, struct mem_cgroup *mem_cont,
  85                        int active, int file);
  86};
  87
  88#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  89
  90#ifdef ARCH_HAS_PREFETCH
  91#define prefetch_prev_lru_page(_page, _base, _field)                    \
  92        do {                                                            \
  93                if ((_page)->lru.prev != _base) {                       \
  94                        struct page *prev;                              \
  95                                                                        \
  96                        prev = lru_to_page(&(_page->lru));              \
  97                        prefetch(&prev->_field);                        \
  98                }                                                       \
  99        } while (0)
 100#else
 101#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 102#endif
 103
 104#ifdef ARCH_HAS_PREFETCHW
 105#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 106        do {                                                            \
 107                if ((_page)->lru.prev != _base) {                       \
 108                        struct page *prev;                              \
 109                                                                        \
 110                        prev = lru_to_page(&(_page->lru));              \
 111                        prefetchw(&prev->_field);                       \
 112                }                                                       \
 113        } while (0)
 114#else
 115#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 116#endif
 117
 118/*
 119 * From 0 .. 100.  Higher means more swappy.
 120 */
 121int vm_swappiness = 60;
 122long vm_total_pages;    /* The total number of pages which the VM controls */
 123
 124static LIST_HEAD(shrinker_list);
 125static DECLARE_RWSEM(shrinker_rwsem);
 126
 127#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 128#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
 129#else
 130#define scanning_global_lru(sc) (1)
 131#endif
 132
 133static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 134                                                  struct scan_control *sc)
 135{
 136        if (!scanning_global_lru(sc))
 137                return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 138
 139        return &zone->reclaim_stat;
 140}
 141
 142static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
 143                                   enum lru_list lru)
 144{
 145        if (!scanning_global_lru(sc))
 146                return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
 147
 148        return zone_page_state(zone, NR_LRU_BASE + lru);
 149}
 150
 151
 152/*
 153 * Add a shrinker callback to be called from the vm
 154 */
 155void register_shrinker(struct shrinker *shrinker)
 156{
 157        shrinker->nr = 0;
 158        down_write(&shrinker_rwsem);
 159        list_add_tail(&shrinker->list, &shrinker_list);
 160        up_write(&shrinker_rwsem);
 161}
 162EXPORT_SYMBOL(register_shrinker);
 163
 164/*
 165 * Remove one
 166 */
 167void unregister_shrinker(struct shrinker *shrinker)
 168{
 169        down_write(&shrinker_rwsem);
 170        list_del(&shrinker->list);
 171        up_write(&shrinker_rwsem);
 172}
 173EXPORT_SYMBOL(unregister_shrinker);
 174
 175#define SHRINK_BATCH 128
 176/*
 177 * Call the shrink functions to age shrinkable caches
 178 *
 179 * Here we assume it costs one seek to replace a lru page and that it also
 180 * takes a seek to recreate a cache object.  With this in mind we age equal
 181 * percentages of the lru and ageable caches.  This should balance the seeks
 182 * generated by these structures.
 183 *
 184 * If the vm encountered mapped pages on the LRU it increase the pressure on
 185 * slab to avoid swapping.
 186 *
 187 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 188 *
 189 * `lru_pages' represents the number of on-LRU pages in all the zones which
 190 * are eligible for the caller's allocation attempt.  It is used for balancing
 191 * slab reclaim versus page reclaim.
 192 *
 193 * Returns the number of slab objects which we shrunk.
 194 */
 195unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
 196                        unsigned long lru_pages)
 197{
 198        struct shrinker *shrinker;
 199        unsigned long ret = 0;
 200
 201        if (scanned == 0)
 202                scanned = SWAP_CLUSTER_MAX;
 203
 204        if (!down_read_trylock(&shrinker_rwsem))
 205                return 1;       /* Assume we'll be able to shrink next time */
 206
 207        list_for_each_entry(shrinker, &shrinker_list, list) {
 208                unsigned long long delta;
 209                unsigned long total_scan;
 210                unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
 211
 212                delta = (4 * scanned) / shrinker->seeks;
 213                delta *= max_pass;
 214                do_div(delta, lru_pages + 1);
 215                shrinker->nr += delta;
 216                if (shrinker->nr < 0) {
 217                        printk(KERN_ERR "%s: nr=%ld\n",
 218                                        __func__, shrinker->nr);
 219                        shrinker->nr = max_pass;
 220                }
 221
 222                /*
 223                 * Avoid risking looping forever due to too large nr value:
 224                 * never try to free more than twice the estimate number of
 225                 * freeable entries.
 226                 */
 227                if (shrinker->nr > max_pass * 2)
 228                        shrinker->nr = max_pass * 2;
 229
 230                total_scan = shrinker->nr;
 231                shrinker->nr = 0;
 232
 233                while (total_scan >= SHRINK_BATCH) {
 234                        long this_scan = SHRINK_BATCH;
 235                        int shrink_ret;
 236                        int nr_before;
 237
 238                        nr_before = (*shrinker->shrink)(0, gfp_mask);
 239                        shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
 240                        if (shrink_ret == -1)
 241                                break;
 242                        if (shrink_ret < nr_before)
 243                                ret += nr_before - shrink_ret;
 244                        count_vm_events(SLABS_SCANNED, this_scan);
 245                        total_scan -= this_scan;
 246
 247                        cond_resched();
 248                }
 249
 250                shrinker->nr += total_scan;
 251        }
 252        up_read(&shrinker_rwsem);
 253        return ret;
 254}
 255
 256/* Called without lock on whether page is mapped, so answer is unstable */
 257static inline int page_mapping_inuse(struct page *page)
 258{
 259        struct address_space *mapping;
 260
 261        /* Page is in somebody's page tables. */
 262        if (page_mapped(page))
 263                return 1;
 264
 265        /* Be more reluctant to reclaim swapcache than pagecache */
 266        if (PageSwapCache(page))
 267                return 1;
 268
 269        mapping = page_mapping(page);
 270        if (!mapping)
 271                return 0;
 272
 273        /* File is mmap'd by somebody? */
 274        return mapping_mapped(mapping);
 275}
 276
 277static inline int is_page_cache_freeable(struct page *page)
 278{
 279        return page_count(page) - !!PagePrivate(page) == 2;
 280}
 281
 282static int may_write_to_queue(struct backing_dev_info *bdi)
 283{
 284        if (current->flags & PF_SWAPWRITE)
 285                return 1;
 286        if (!bdi_write_congested(bdi))
 287                return 1;
 288        if (bdi == current->backing_dev_info)
 289                return 1;
 290        return 0;
 291}
 292
 293/*
 294 * We detected a synchronous write error writing a page out.  Probably
 295 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 296 * fsync(), msync() or close().
 297 *
 298 * The tricky part is that after writepage we cannot touch the mapping: nothing
 299 * prevents it from being freed up.  But we have a ref on the page and once
 300 * that page is locked, the mapping is pinned.
 301 *
 302 * We're allowed to run sleeping lock_page() here because we know the caller has
 303 * __GFP_FS.
 304 */
 305static void handle_write_error(struct address_space *mapping,
 306                                struct page *page, int error)
 307{
 308        lock_page(page);
 309        if (page_mapping(page) == mapping)
 310                mapping_set_error(mapping, error);
 311        unlock_page(page);
 312}
 313
 314/* Request for sync pageout. */
 315enum pageout_io {
 316        PAGEOUT_IO_ASYNC,
 317        PAGEOUT_IO_SYNC,
 318};
 319
 320/* possible outcome of pageout() */
 321typedef enum {
 322        /* failed to write page out, page is locked */
 323        PAGE_KEEP,
 324        /* move page to the active list, page is locked */
 325        PAGE_ACTIVATE,
 326        /* page has been sent to the disk successfully, page is unlocked */
 327        PAGE_SUCCESS,
 328        /* page is clean and locked */
 329        PAGE_CLEAN,
 330} pageout_t;
 331
 332/*
 333 * pageout is called by shrink_page_list() for each dirty page.
 334 * Calls ->writepage().
 335 */
 336static pageout_t pageout(struct page *page, struct address_space *mapping,
 337                                                enum pageout_io sync_writeback)
 338{
 339        /*
 340         * If the page is dirty, only perform writeback if that write
 341         * will be non-blocking.  To prevent this allocation from being
 342         * stalled by pagecache activity.  But note that there may be
 343         * stalls if we need to run get_block().  We could test
 344         * PagePrivate for that.
 345         *
 346         * If this process is currently in generic_file_write() against
 347         * this page's queue, we can perform writeback even if that
 348         * will block.
 349         *
 350         * If the page is swapcache, write it back even if that would
 351         * block, for some throttling. This happens by accident, because
 352         * swap_backing_dev_info is bust: it doesn't reflect the
 353         * congestion state of the swapdevs.  Easy to fix, if needed.
 354         * See swapfile.c:page_queue_congested().
 355         */
 356        if (!is_page_cache_freeable(page))
 357                return PAGE_KEEP;
 358        if (!mapping) {
 359                /*
 360                 * Some data journaling orphaned pages can have
 361                 * page->mapping == NULL while being dirty with clean buffers.
 362                 */
 363                if (PagePrivate(page)) {
 364                        if (try_to_free_buffers(page)) {
 365                                ClearPageDirty(page);
 366                                printk("%s: orphaned page\n", __func__);
 367                                return PAGE_CLEAN;
 368                        }
 369                }
 370                return PAGE_KEEP;
 371        }
 372        if (mapping->a_ops->writepage == NULL)
 373                return PAGE_ACTIVATE;
 374        if (!may_write_to_queue(mapping->backing_dev_info))
 375                return PAGE_KEEP;
 376
 377        if (clear_page_dirty_for_io(page)) {
 378                int res;
 379                struct writeback_control wbc = {
 380                        .sync_mode = WB_SYNC_NONE,
 381                        .nr_to_write = SWAP_CLUSTER_MAX,
 382                        .range_start = 0,
 383                        .range_end = LLONG_MAX,
 384                        .nonblocking = 1,
 385                        .for_reclaim = 1,
 386                };
 387
 388                SetPageReclaim(page);
 389                res = mapping->a_ops->writepage(page, &wbc);
 390                if (res < 0)
 391                        handle_write_error(mapping, page, res);
 392                if (res == AOP_WRITEPAGE_ACTIVATE) {
 393                        ClearPageReclaim(page);
 394                        return PAGE_ACTIVATE;
 395                }
 396
 397                /*
 398                 * Wait on writeback if requested to. This happens when
 399                 * direct reclaiming a large contiguous area and the
 400                 * first attempt to free a range of pages fails.
 401                 */
 402                if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
 403                        wait_on_page_writeback(page);
 404
 405                if (!PageWriteback(page)) {
 406                        /* synchronous write or broken a_ops? */
 407                        ClearPageReclaim(page);
 408                }
 409                inc_zone_page_state(page, NR_VMSCAN_WRITE);
 410                return PAGE_SUCCESS;
 411        }
 412
 413        return PAGE_CLEAN;
 414}
 415
 416/*
 417 * Same as remove_mapping, but if the page is removed from the mapping, it
 418 * gets returned with a refcount of 0.
 419 */
 420static int __remove_mapping(struct address_space *mapping, struct page *page)
 421{
 422        BUG_ON(!PageLocked(page));
 423        BUG_ON(mapping != page_mapping(page));
 424
 425        spin_lock_irq(&mapping->tree_lock);
 426        /*
 427         * The non racy check for a busy page.
 428         *
 429         * Must be careful with the order of the tests. When someone has
 430         * a ref to the page, it may be possible that they dirty it then
 431         * drop the reference. So if PageDirty is tested before page_count
 432         * here, then the following race may occur:
 433         *
 434         * get_user_pages(&page);
 435         * [user mapping goes away]
 436         * write_to(page);
 437         *                              !PageDirty(page)    [good]
 438         * SetPageDirty(page);
 439         * put_page(page);
 440         *                              !page_count(page)   [good, discard it]
 441         *
 442         * [oops, our write_to data is lost]
 443         *
 444         * Reversing the order of the tests ensures such a situation cannot
 445         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 446         * load is not satisfied before that of page->_count.
 447         *
 448         * Note that if SetPageDirty is always performed via set_page_dirty,
 449         * and thus under tree_lock, then this ordering is not required.
 450         */
 451        if (!page_freeze_refs(page, 2))
 452                goto cannot_free;
 453        /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 454        if (unlikely(PageDirty(page))) {
 455                page_unfreeze_refs(page, 2);
 456                goto cannot_free;
 457        }
 458
 459        if (PageSwapCache(page)) {
 460                swp_entry_t swap = { .val = page_private(page) };
 461                __delete_from_swap_cache(page);
 462                spin_unlock_irq(&mapping->tree_lock);
 463                swap_free(swap);
 464        } else {
 465                __remove_from_page_cache(page);
 466                spin_unlock_irq(&mapping->tree_lock);
 467        }
 468
 469        return 1;
 470
 471cannot_free:
 472        spin_unlock_irq(&mapping->tree_lock);
 473        return 0;
 474}
 475
 476/*
 477 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 478 * someone else has a ref on the page, abort and return 0.  If it was
 479 * successfully detached, return 1.  Assumes the caller has a single ref on
 480 * this page.
 481 */
 482int remove_mapping(struct address_space *mapping, struct page *page)
 483{
 484        if (__remove_mapping(mapping, page)) {
 485                /*
 486                 * Unfreezing the refcount with 1 rather than 2 effectively
 487                 * drops the pagecache ref for us without requiring another
 488                 * atomic operation.
 489                 */
 490                page_unfreeze_refs(page, 1);
 491                return 1;
 492        }
 493        return 0;
 494}
 495
 496/**
 497 * putback_lru_page - put previously isolated page onto appropriate LRU list
 498 * @page: page to be put back to appropriate lru list
 499 *
 500 * Add previously isolated @page to appropriate LRU list.
 501 * Page may still be unevictable for other reasons.
 502 *
 503 * lru_lock must not be held, interrupts must be enabled.
 504 */
 505#ifdef CONFIG_UNEVICTABLE_LRU
 506void putback_lru_page(struct page *page)
 507{
 508        int lru;
 509        int active = !!TestClearPageActive(page);
 510        int was_unevictable = PageUnevictable(page);
 511
 512        VM_BUG_ON(PageLRU(page));
 513
 514redo:
 515        ClearPageUnevictable(page);
 516
 517        if (page_evictable(page, NULL)) {
 518                /*
 519                 * For evictable pages, we can use the cache.
 520                 * In event of a race, worst case is we end up with an
 521                 * unevictable page on [in]active list.
 522                 * We know how to handle that.
 523                 */
 524                lru = active + page_is_file_cache(page);
 525                lru_cache_add_lru(page, lru);
 526        } else {
 527                /*
 528                 * Put unevictable pages directly on zone's unevictable
 529                 * list.
 530                 */
 531                lru = LRU_UNEVICTABLE;
 532                add_page_to_unevictable_list(page);
 533        }
 534
 535        /*
 536         * page's status can change while we move it among lru. If an evictable
 537         * page is on unevictable list, it never be freed. To avoid that,
 538         * check after we added it to the list, again.
 539         */
 540        if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 541                if (!isolate_lru_page(page)) {
 542                        put_page(page);
 543                        goto redo;
 544                }
 545                /* This means someone else dropped this page from LRU
 546                 * So, it will be freed or putback to LRU again. There is
 547                 * nothing to do here.
 548                 */
 549        }
 550
 551        if (was_unevictable && lru != LRU_UNEVICTABLE)
 552                count_vm_event(UNEVICTABLE_PGRESCUED);
 553        else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 554                count_vm_event(UNEVICTABLE_PGCULLED);
 555
 556        put_page(page);         /* drop ref from isolate */
 557}
 558
 559#else /* CONFIG_UNEVICTABLE_LRU */
 560
 561void putback_lru_page(struct page *page)
 562{
 563        int lru;
 564        VM_BUG_ON(PageLRU(page));
 565
 566        lru = !!TestClearPageActive(page) + page_is_file_cache(page);
 567        lru_cache_add_lru(page, lru);
 568        put_page(page);
 569}
 570#endif /* CONFIG_UNEVICTABLE_LRU */
 571
 572
 573/*
 574 * shrink_page_list() returns the number of reclaimed pages
 575 */
 576static unsigned long shrink_page_list(struct list_head *page_list,
 577                                        struct scan_control *sc,
 578                                        enum pageout_io sync_writeback)
 579{
 580        LIST_HEAD(ret_pages);
 581        struct pagevec freed_pvec;
 582        int pgactivate = 0;
 583        unsigned long nr_reclaimed = 0;
 584
 585        cond_resched();
 586
 587        pagevec_init(&freed_pvec, 1);
 588        while (!list_empty(page_list)) {
 589                struct address_space *mapping;
 590                struct page *page;
 591                int may_enter_fs;
 592                int referenced;
 593
 594                cond_resched();
 595
 596                page = lru_to_page(page_list);
 597                list_del(&page->lru);
 598
 599                if (!trylock_page(page))
 600                        goto keep;
 601
 602                VM_BUG_ON(PageActive(page));
 603
 604                sc->nr_scanned++;
 605
 606                if (unlikely(!page_evictable(page, NULL)))
 607                        goto cull_mlocked;
 608
 609                if (!sc->may_swap && page_mapped(page))
 610                        goto keep_locked;
 611
 612                /* Double the slab pressure for mapped and swapcache pages */
 613                if (page_mapped(page) || PageSwapCache(page))
 614                        sc->nr_scanned++;
 615
 616                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 617                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 618
 619                if (PageWriteback(page)) {
 620                        /*
 621                         * Synchronous reclaim is performed in two passes,
 622                         * first an asynchronous pass over the list to
 623                         * start parallel writeback, and a second synchronous
 624                         * pass to wait for the IO to complete.  Wait here
 625                         * for any page for which writeback has already
 626                         * started.
 627                         */
 628                        if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
 629                                wait_on_page_writeback(page);
 630                        else
 631                                goto keep_locked;
 632                }
 633
 634                referenced = page_referenced(page, 1, sc->mem_cgroup);
 635                /* In active use or really unfreeable?  Activate it. */
 636                if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
 637                                        referenced && page_mapping_inuse(page))
 638                        goto activate_locked;
 639
 640                /*
 641                 * Anonymous process memory has backing store?
 642                 * Try to allocate it some swap space here.
 643                 */
 644                if (PageAnon(page) && !PageSwapCache(page)) {
 645                        if (!(sc->gfp_mask & __GFP_IO))
 646                                goto keep_locked;
 647                        if (!add_to_swap(page))
 648                                goto activate_locked;
 649                        may_enter_fs = 1;
 650                }
 651
 652                mapping = page_mapping(page);
 653
 654                /*
 655                 * The page is mapped into the page tables of one or more
 656                 * processes. Try to unmap it here.
 657                 */
 658                if (page_mapped(page) && mapping) {
 659                        switch (try_to_unmap(page, 0)) {
 660                        case SWAP_FAIL:
 661                                goto activate_locked;
 662                        case SWAP_AGAIN:
 663                                goto keep_locked;
 664                        case SWAP_MLOCK:
 665                                goto cull_mlocked;
 666                        case SWAP_SUCCESS:
 667                                ; /* try to free the page below */
 668                        }
 669                }
 670
 671                if (PageDirty(page)) {
 672                        if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
 673                                goto keep_locked;
 674                        if (!may_enter_fs)
 675                                goto keep_locked;
 676                        if (!sc->may_writepage)
 677                                goto keep_locked;
 678
 679                        /* Page is dirty, try to write it out here */
 680                        switch (pageout(page, mapping, sync_writeback)) {
 681                        case PAGE_KEEP:
 682                                goto keep_locked;
 683                        case PAGE_ACTIVATE:
 684                                goto activate_locked;
 685                        case PAGE_SUCCESS:
 686                                if (PageWriteback(page) || PageDirty(page))
 687                                        goto keep;
 688                                /*
 689                                 * A synchronous write - probably a ramdisk.  Go
 690                                 * ahead and try to reclaim the page.
 691                                 */
 692                                if (!trylock_page(page))
 693                                        goto keep;
 694                                if (PageDirty(page) || PageWriteback(page))
 695                                        goto keep_locked;
 696                                mapping = page_mapping(page);
 697                        case PAGE_CLEAN:
 698                                ; /* try to free the page below */
 699                        }
 700                }
 701
 702                /*
 703                 * If the page has buffers, try to free the buffer mappings
 704                 * associated with this page. If we succeed we try to free
 705                 * the page as well.
 706                 *
 707                 * We do this even if the page is PageDirty().
 708                 * try_to_release_page() does not perform I/O, but it is
 709                 * possible for a page to have PageDirty set, but it is actually
 710                 * clean (all its buffers are clean).  This happens if the
 711                 * buffers were written out directly, with submit_bh(). ext3
 712                 * will do this, as well as the blockdev mapping.
 713                 * try_to_release_page() will discover that cleanness and will
 714                 * drop the buffers and mark the page clean - it can be freed.
 715                 *
 716                 * Rarely, pages can have buffers and no ->mapping.  These are
 717                 * the pages which were not successfully invalidated in
 718                 * truncate_complete_page().  We try to drop those buffers here
 719                 * and if that worked, and the page is no longer mapped into
 720                 * process address space (page_count == 1) it can be freed.
 721                 * Otherwise, leave the page on the LRU so it is swappable.
 722                 */
 723                if (PagePrivate(page)) {
 724                        if (!try_to_release_page(page, sc->gfp_mask))
 725                                goto activate_locked;
 726                        if (!mapping && page_count(page) == 1) {
 727                                unlock_page(page);
 728                                if (put_page_testzero(page))
 729                                        goto free_it;
 730                                else {
 731                                        /*
 732                                         * rare race with speculative reference.
 733                                         * the speculative reference will free
 734                                         * this page shortly, so we may
 735                                         * increment nr_reclaimed here (and
 736                                         * leave it off the LRU).
 737                                         */
 738                                        nr_reclaimed++;
 739                                        continue;
 740                                }
 741                        }
 742                }
 743
 744                if (!mapping || !__remove_mapping(mapping, page))
 745                        goto keep_locked;
 746
 747                /*
 748                 * At this point, we have no other references and there is
 749                 * no way to pick any more up (removed from LRU, removed
 750                 * from pagecache). Can use non-atomic bitops now (and
 751                 * we obviously don't have to worry about waking up a process
 752                 * waiting on the page lock, because there are no references.
 753                 */
 754                __clear_page_locked(page);
 755free_it:
 756                nr_reclaimed++;
 757                if (!pagevec_add(&freed_pvec, page)) {
 758                        __pagevec_free(&freed_pvec);
 759                        pagevec_reinit(&freed_pvec);
 760                }
 761                continue;
 762
 763cull_mlocked:
 764                if (PageSwapCache(page))
 765                        try_to_free_swap(page);
 766                unlock_page(page);
 767                putback_lru_page(page);
 768                continue;
 769
 770activate_locked:
 771                /* Not a candidate for swapping, so reclaim swap space. */
 772                if (PageSwapCache(page) && vm_swap_full())
 773                        try_to_free_swap(page);
 774                VM_BUG_ON(PageActive(page));
 775                SetPageActive(page);
 776                pgactivate++;
 777keep_locked:
 778                unlock_page(page);
 779keep:
 780                list_add(&page->lru, &ret_pages);
 781                VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 782        }
 783        list_splice(&ret_pages, page_list);
 784        if (pagevec_count(&freed_pvec))
 785                __pagevec_free(&freed_pvec);
 786        count_vm_events(PGACTIVATE, pgactivate);
 787        return nr_reclaimed;
 788}
 789
 790/* LRU Isolation modes. */
 791#define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
 792#define ISOLATE_ACTIVE 1        /* Isolate active pages. */
 793#define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
 794
 795/*
 796 * Attempt to remove the specified page from its LRU.  Only take this page
 797 * if it is of the appropriate PageActive status.  Pages which are being
 798 * freed elsewhere are also ignored.
 799 *
 800 * page:        page to consider
 801 * mode:        one of the LRU isolation modes defined above
 802 *
 803 * returns 0 on success, -ve errno on failure.
 804 */
 805int __isolate_lru_page(struct page *page, int mode, int file)
 806{
 807        int ret = -EINVAL;
 808
 809        /* Only take pages on the LRU. */
 810        if (!PageLRU(page))
 811                return ret;
 812
 813        /*
 814         * When checking the active state, we need to be sure we are
 815         * dealing with comparible boolean values.  Take the logical not
 816         * of each.
 817         */
 818        if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
 819                return ret;
 820
 821        if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
 822                return ret;
 823
 824        /*
 825         * When this function is being called for lumpy reclaim, we
 826         * initially look into all LRU pages, active, inactive and
 827         * unevictable; only give shrink_page_list evictable pages.
 828         */
 829        if (PageUnevictable(page))
 830                return ret;
 831
 832        ret = -EBUSY;
 833
 834        if (likely(get_page_unless_zero(page))) {
 835                /*
 836                 * Be careful not to clear PageLRU until after we're
 837                 * sure the page is not being freed elsewhere -- the
 838                 * page release code relies on it.
 839                 */
 840                ClearPageLRU(page);
 841                ret = 0;
 842                mem_cgroup_del_lru(page);
 843        }
 844
 845        return ret;
 846}
 847
 848/*
 849 * zone->lru_lock is heavily contended.  Some of the functions that
 850 * shrink the lists perform better by taking out a batch of pages
 851 * and working on them outside the LRU lock.
 852 *
 853 * For pagecache intensive workloads, this function is the hottest
 854 * spot in the kernel (apart from copy_*_user functions).
 855 *
 856 * Appropriate locks must be held before calling this function.
 857 *
 858 * @nr_to_scan: The number of pages to look through on the list.
 859 * @src:        The LRU list to pull pages off.
 860 * @dst:        The temp list to put pages on to.
 861 * @scanned:    The number of pages that were scanned.
 862 * @order:      The caller's attempted allocation order
 863 * @mode:       One of the LRU isolation modes
 864 * @file:       True [1] if isolating file [!anon] pages
 865 *
 866 * returns how many pages were moved onto *@dst.
 867 */
 868static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
 869                struct list_head *src, struct list_head *dst,
 870                unsigned long *scanned, int order, int mode, int file)
 871{
 872        unsigned long nr_taken = 0;
 873        unsigned long scan;
 874
 875        for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 876                struct page *page;
 877                unsigned long pfn;
 878                unsigned long end_pfn;
 879                unsigned long page_pfn;
 880                int zone_id;
 881
 882                page = lru_to_page(src);
 883                prefetchw_prev_lru_page(page, src, flags);
 884
 885                VM_BUG_ON(!PageLRU(page));
 886
 887                switch (__isolate_lru_page(page, mode, file)) {
 888                case 0:
 889                        list_move(&page->lru, dst);
 890                        nr_taken++;
 891                        break;
 892
 893                case -EBUSY:
 894                        /* else it is being freed elsewhere */
 895                        list_move(&page->lru, src);
 896                        continue;
 897
 898                default:
 899                        BUG();
 900                }
 901
 902                if (!order)
 903                        continue;
 904
 905                /*
 906                 * Attempt to take all pages in the order aligned region
 907                 * surrounding the tag page.  Only take those pages of
 908                 * the same active state as that tag page.  We may safely
 909                 * round the target page pfn down to the requested order
 910                 * as the mem_map is guarenteed valid out to MAX_ORDER,
 911                 * where that page is in a different zone we will detect
 912                 * it from its zone id and abort this block scan.
 913                 */
 914                zone_id = page_zone_id(page);
 915                page_pfn = page_to_pfn(page);
 916                pfn = page_pfn & ~((1 << order) - 1);
 917                end_pfn = pfn + (1 << order);
 918                for (; pfn < end_pfn; pfn++) {
 919                        struct page *cursor_page;
 920
 921                        /* The target page is in the block, ignore it. */
 922                        if (unlikely(pfn == page_pfn))
 923                                continue;
 924
 925                        /* Avoid holes within the zone. */
 926                        if (unlikely(!pfn_valid_within(pfn)))
 927                                break;
 928
 929                        cursor_page = pfn_to_page(pfn);
 930
 931                        /* Check that we have not crossed a zone boundary. */
 932                        if (unlikely(page_zone_id(cursor_page) != zone_id))
 933                                continue;
 934                        switch (__isolate_lru_page(cursor_page, mode, file)) {
 935                        case 0:
 936                                list_move(&cursor_page->lru, dst);
 937                                nr_taken++;
 938                                scan++;
 939                                break;
 940
 941                        case -EBUSY:
 942                                /* else it is being freed elsewhere */
 943                                list_move(&cursor_page->lru, src);
 944                        default:
 945                                break;  /* ! on LRU or wrong list */
 946                        }
 947                }
 948        }
 949
 950        *scanned = scan;
 951        return nr_taken;
 952}
 953
 954static unsigned long isolate_pages_global(unsigned long nr,
 955                                        struct list_head *dst,
 956                                        unsigned long *scanned, int order,
 957                                        int mode, struct zone *z,
 958                                        struct mem_cgroup *mem_cont,
 959                                        int active, int file)
 960{
 961        int lru = LRU_BASE;
 962        if (active)
 963                lru += LRU_ACTIVE;
 964        if (file)
 965                lru += LRU_FILE;
 966        return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
 967                                                                mode, !!file);
 968}
 969
 970/*
 971 * clear_active_flags() is a helper for shrink_active_list(), clearing
 972 * any active bits from the pages in the list.
 973 */
 974static unsigned long clear_active_flags(struct list_head *page_list,
 975                                        unsigned int *count)
 976{
 977        int nr_active = 0;
 978        int lru;
 979        struct page *page;
 980
 981        list_for_each_entry(page, page_list, lru) {
 982                lru = page_is_file_cache(page);
 983                if (PageActive(page)) {
 984                        lru += LRU_ACTIVE;
 985                        ClearPageActive(page);
 986                        nr_active++;
 987                }
 988                count[lru]++;
 989        }
 990
 991        return nr_active;
 992}
 993
 994/**
 995 * isolate_lru_page - tries to isolate a page from its LRU list
 996 * @page: page to isolate from its LRU list
 997 *
 998 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 999 * vmstat statistic corresponding to whatever LRU list the page was on.
1000 *
1001 * Returns 0 if the page was removed from an LRU list.
1002 * Returns -EBUSY if the page was not on an LRU list.
1003 *
1004 * The returned page will have PageLRU() cleared.  If it was found on
1005 * the active list, it will have PageActive set.  If it was found on
1006 * the unevictable list, it will have the PageUnevictable bit set. That flag
1007 * may need to be cleared by the caller before letting the page go.
1008 *
1009 * The vmstat statistic corresponding to the list on which the page was
1010 * found will be decremented.
1011 *
1012 * Restrictions:
1013 * (1) Must be called with an elevated refcount on the page. This is a
1014 *     fundamentnal difference from isolate_lru_pages (which is called
1015 *     without a stable reference).
1016 * (2) the lru_lock must not be held.
1017 * (3) interrupts must be enabled.
1018 */
1019int isolate_lru_page(struct page *page)
1020{
1021        int ret = -EBUSY;
1022
1023        if (PageLRU(page)) {
1024                struct zone *zone = page_zone(page);
1025
1026                spin_lock_irq(&zone->lru_lock);
1027                if (PageLRU(page) && get_page_unless_zero(page)) {
1028                        int lru = page_lru(page);
1029                        ret = 0;
1030                        ClearPageLRU(page);
1031
1032                        del_page_from_lru_list(zone, page, lru);
1033                }
1034                spin_unlock_irq(&zone->lru_lock);
1035        }
1036        return ret;
1037}
1038
1039/*
1040 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1041 * of reclaimed pages
1042 */
1043static unsigned long shrink_inactive_list(unsigned long max_scan,
1044                        struct zone *zone, struct scan_control *sc,
1045                        int priority, int file)
1046{
1047        LIST_HEAD(page_list);
1048        struct pagevec pvec;
1049        unsigned long nr_scanned = 0;
1050        unsigned long nr_reclaimed = 0;
1051        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1052
1053        pagevec_init(&pvec, 1);
1054
1055        lru_add_drain();
1056        spin_lock_irq(&zone->lru_lock);
1057        do {
1058                struct page *page;
1059                unsigned long nr_taken;
1060                unsigned long nr_scan;
1061                unsigned long nr_freed;
1062                unsigned long nr_active;
1063                unsigned int count[NR_LRU_LISTS] = { 0, };
1064                int mode = ISOLATE_INACTIVE;
1065
1066                /*
1067                 * If we need a large contiguous chunk of memory, or have
1068                 * trouble getting a small set of contiguous pages, we
1069                 * will reclaim both active and inactive pages.
1070                 *
1071                 * We use the same threshold as pageout congestion_wait below.
1072                 */
1073                if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1074                        mode = ISOLATE_BOTH;
1075                else if (sc->order && priority < DEF_PRIORITY - 2)
1076                        mode = ISOLATE_BOTH;
1077
1078                nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1079                             &page_list, &nr_scan, sc->order, mode,
1080                                zone, sc->mem_cgroup, 0, file);
1081                nr_active = clear_active_flags(&page_list, count);
1082                __count_vm_events(PGDEACTIVATE, nr_active);
1083
1084                __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1085                                                -count[LRU_ACTIVE_FILE]);
1086                __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1087                                                -count[LRU_INACTIVE_FILE]);
1088                __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1089                                                -count[LRU_ACTIVE_ANON]);
1090                __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1091                                                -count[LRU_INACTIVE_ANON]);
1092
1093                if (scanning_global_lru(sc))
1094                        zone->pages_scanned += nr_scan;
1095
1096                reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1097                reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1098                reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1099                reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1100
1101                spin_unlock_irq(&zone->lru_lock);
1102
1103                nr_scanned += nr_scan;
1104                nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1105
1106                /*
1107                 * If we are direct reclaiming for contiguous pages and we do
1108                 * not reclaim everything in the list, try again and wait
1109                 * for IO to complete. This will stall high-order allocations
1110                 * but that should be acceptable to the caller
1111                 */
1112                if (nr_freed < nr_taken && !current_is_kswapd() &&
1113                                        sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1114                        congestion_wait(WRITE, HZ/10);
1115
1116                        /*
1117                         * The attempt at page out may have made some
1118                         * of the pages active, mark them inactive again.
1119                         */
1120                        nr_active = clear_active_flags(&page_list, count);
1121                        count_vm_events(PGDEACTIVATE, nr_active);
1122
1123                        nr_freed += shrink_page_list(&page_list, sc,
1124                                                        PAGEOUT_IO_SYNC);
1125                }
1126
1127                nr_reclaimed += nr_freed;
1128                local_irq_disable();
1129                if (current_is_kswapd()) {
1130                        __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1131                        __count_vm_events(KSWAPD_STEAL, nr_freed);
1132                } else if (scanning_global_lru(sc))
1133                        __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1134
1135                __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1136
1137                if (nr_taken == 0)
1138                        goto done;
1139
1140                spin_lock(&zone->lru_lock);
1141                /*
1142                 * Put back any unfreeable pages.
1143                 */
1144                while (!list_empty(&page_list)) {
1145                        int lru;
1146                        page = lru_to_page(&page_list);
1147                        VM_BUG_ON(PageLRU(page));
1148                        list_del(&page->lru);
1149                        if (unlikely(!page_evictable(page, NULL))) {
1150                                spin_unlock_irq(&zone->lru_lock);
1151                                putback_lru_page(page);
1152                                spin_lock_irq(&zone->lru_lock);
1153                                continue;
1154                        }
1155                        SetPageLRU(page);
1156                        lru = page_lru(page);
1157                        add_page_to_lru_list(zone, page, lru);
1158                        if (PageActive(page)) {
1159                                int file = !!page_is_file_cache(page);
1160                                reclaim_stat->recent_rotated[file]++;
1161                        }
1162                        if (!pagevec_add(&pvec, page)) {
1163                                spin_unlock_irq(&zone->lru_lock);
1164                                __pagevec_release(&pvec);
1165                                spin_lock_irq(&zone->lru_lock);
1166                        }
1167                }
1168        } while (nr_scanned < max_scan);
1169        spin_unlock(&zone->lru_lock);
1170done:
1171        local_irq_enable();
1172        pagevec_release(&pvec);
1173        return nr_reclaimed;
1174}
1175
1176/*
1177 * We are about to scan this zone at a certain priority level.  If that priority
1178 * level is smaller (ie: more urgent) than the previous priority, then note
1179 * that priority level within the zone.  This is done so that when the next
1180 * process comes in to scan this zone, it will immediately start out at this
1181 * priority level rather than having to build up its own scanning priority.
1182 * Here, this priority affects only the reclaim-mapped threshold.
1183 */
1184static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1185{
1186        if (priority < zone->prev_priority)
1187                zone->prev_priority = priority;
1188}
1189
1190/*
1191 * This moves pages from the active list to the inactive list.
1192 *
1193 * We move them the other way if the page is referenced by one or more
1194 * processes, from rmap.
1195 *
1196 * If the pages are mostly unmapped, the processing is fast and it is
1197 * appropriate to hold zone->lru_lock across the whole operation.  But if
1198 * the pages are mapped, the processing is slow (page_referenced()) so we
1199 * should drop zone->lru_lock around each page.  It's impossible to balance
1200 * this, so instead we remove the pages from the LRU while processing them.
1201 * It is safe to rely on PG_active against the non-LRU pages in here because
1202 * nobody will play with that bit on a non-LRU page.
1203 *
1204 * The downside is that we have to touch page->_count against each page.
1205 * But we had to alter page->flags anyway.
1206 */
1207
1208
1209static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1210                        struct scan_control *sc, int priority, int file)
1211{
1212        unsigned long pgmoved;
1213        int pgdeactivate = 0;
1214        unsigned long pgscanned;
1215        LIST_HEAD(l_hold);      /* The pages which were snipped off */
1216        LIST_HEAD(l_inactive);
1217        struct page *page;
1218        struct pagevec pvec;
1219        enum lru_list lru;
1220        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1221
1222        lru_add_drain();
1223        spin_lock_irq(&zone->lru_lock);
1224        pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1225                                        ISOLATE_ACTIVE, zone,
1226                                        sc->mem_cgroup, 1, file);
1227        /*
1228         * zone->pages_scanned is used for detect zone's oom
1229         * mem_cgroup remembers nr_scan by itself.
1230         */
1231        if (scanning_global_lru(sc)) {
1232                zone->pages_scanned += pgscanned;
1233        }
1234        reclaim_stat->recent_scanned[!!file] += pgmoved;
1235
1236        if (file)
1237                __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1238        else
1239                __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1240        spin_unlock_irq(&zone->lru_lock);
1241
1242        pgmoved = 0;
1243        while (!list_empty(&l_hold)) {
1244                cond_resched();
1245                page = lru_to_page(&l_hold);
1246                list_del(&page->lru);
1247
1248                if (unlikely(!page_evictable(page, NULL))) {
1249                        putback_lru_page(page);
1250                        continue;
1251                }
1252
1253                /* page_referenced clears PageReferenced */
1254                if (page_mapping_inuse(page) &&
1255                    page_referenced(page, 0, sc->mem_cgroup))
1256                        pgmoved++;
1257
1258                list_add(&page->lru, &l_inactive);
1259        }
1260
1261        /*
1262         * Move the pages to the [file or anon] inactive list.
1263         */
1264        pagevec_init(&pvec, 1);
1265        lru = LRU_BASE + file * LRU_FILE;
1266
1267        spin_lock_irq(&zone->lru_lock);
1268        /*
1269         * Count referenced pages from currently used mappings as
1270         * rotated, even though they are moved to the inactive list.
1271         * This helps balance scan pressure between file and anonymous
1272         * pages in get_scan_ratio.
1273         */
1274        reclaim_stat->recent_rotated[!!file] += pgmoved;
1275
1276        pgmoved = 0;
1277        while (!list_empty(&l_inactive)) {
1278                page = lru_to_page(&l_inactive);
1279                prefetchw_prev_lru_page(page, &l_inactive, flags);
1280                VM_BUG_ON(PageLRU(page));
1281                SetPageLRU(page);
1282                VM_BUG_ON(!PageActive(page));
1283                ClearPageActive(page);
1284
1285                list_move(&page->lru, &zone->lru[lru].list);
1286                mem_cgroup_add_lru_list(page, lru);
1287                pgmoved++;
1288                if (!pagevec_add(&pvec, page)) {
1289                        __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1290                        spin_unlock_irq(&zone->lru_lock);
1291                        pgdeactivate += pgmoved;
1292                        pgmoved = 0;
1293                        if (buffer_heads_over_limit)
1294                                pagevec_strip(&pvec);
1295                        __pagevec_release(&pvec);
1296                        spin_lock_irq(&zone->lru_lock);
1297                }
1298        }
1299        __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1300        pgdeactivate += pgmoved;
1301        if (buffer_heads_over_limit) {
1302                spin_unlock_irq(&zone->lru_lock);
1303                pagevec_strip(&pvec);
1304                spin_lock_irq(&zone->lru_lock);
1305        }
1306        __count_zone_vm_events(PGREFILL, zone, pgscanned);
1307        __count_vm_events(PGDEACTIVATE, pgdeactivate);
1308        spin_unlock_irq(&zone->lru_lock);
1309        if (vm_swap_full())
1310                pagevec_swap_free(&pvec);
1311
1312        pagevec_release(&pvec);
1313}
1314
1315static int inactive_anon_is_low_global(struct zone *zone)
1316{
1317        unsigned long active, inactive;
1318
1319        active = zone_page_state(zone, NR_ACTIVE_ANON);
1320        inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321
1322        if (inactive * zone->inactive_ratio < active)
1323                return 1;
1324
1325        return 0;
1326}
1327
1328/**
1329 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1330 * @zone: zone to check
1331 * @sc:   scan control of this context
1332 *
1333 * Returns true if the zone does not have enough inactive anon pages,
1334 * meaning some active anon pages need to be deactivated.
1335 */
1336static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1337{
1338        int low;
1339
1340        if (scanning_global_lru(sc))
1341                low = inactive_anon_is_low_global(zone);
1342        else
1343                low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1344        return low;
1345}
1346
1347static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1348        struct zone *zone, struct scan_control *sc, int priority)
1349{
1350        int file = is_file_lru(lru);
1351
1352        if (lru == LRU_ACTIVE_FILE) {
1353                shrink_active_list(nr_to_scan, zone, sc, priority, file);
1354                return 0;
1355        }
1356
1357        if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1358                shrink_active_list(nr_to_scan, zone, sc, priority, file);
1359                return 0;
1360        }
1361        return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1362}
1363
1364/*
1365 * Determine how aggressively the anon and file LRU lists should be
1366 * scanned.  The relative value of each set of LRU lists is determined
1367 * by looking at the fraction of the pages scanned we did rotate back
1368 * onto the active list instead of evict.
1369 *
1370 * percent[0] specifies how much pressure to put on ram/swap backed
1371 * memory, while percent[1] determines pressure on the file LRUs.
1372 */
1373static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1374                                        unsigned long *percent)
1375{
1376        unsigned long anon, file, free;
1377        unsigned long anon_prio, file_prio;
1378        unsigned long ap, fp;
1379        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1380
1381        /* If we have no swap space, do not bother scanning anon pages. */
1382        if (nr_swap_pages <= 0) {
1383                percent[0] = 0;
1384                percent[1] = 100;
1385                return;
1386        }
1387
1388        anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1389                zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1390        file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1391                zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1392
1393        if (scanning_global_lru(sc)) {
1394                free  = zone_page_state(zone, NR_FREE_PAGES);
1395                /* If we have very few page cache pages,
1396                   force-scan anon pages. */
1397                if (unlikely(file + free <= zone->pages_high)) {
1398                        percent[0] = 100;
1399                        percent[1] = 0;
1400                        return;
1401                }
1402        }
1403
1404        /*
1405         * OK, so we have swap space and a fair amount of page cache
1406         * pages.  We use the recently rotated / recently scanned
1407         * ratios to determine how valuable each cache is.
1408         *
1409         * Because workloads change over time (and to avoid overflow)
1410         * we keep these statistics as a floating average, which ends
1411         * up weighing recent references more than old ones.
1412         *
1413         * anon in [0], file in [1]
1414         */
1415        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1416                spin_lock_irq(&zone->lru_lock);
1417                reclaim_stat->recent_scanned[0] /= 2;
1418                reclaim_stat->recent_rotated[0] /= 2;
1419                spin_unlock_irq(&zone->lru_lock);
1420        }
1421
1422        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1423                spin_lock_irq(&zone->lru_lock);
1424                reclaim_stat->recent_scanned[1] /= 2;
1425                reclaim_stat->recent_rotated[1] /= 2;
1426                spin_unlock_irq(&zone->lru_lock);
1427        }
1428
1429        /*
1430         * With swappiness at 100, anonymous and file have the same priority.
1431         * This scanning priority is essentially the inverse of IO cost.
1432         */
1433        anon_prio = sc->swappiness;
1434        file_prio = 200 - sc->swappiness;
1435
1436        /*
1437         * The amount of pressure on anon vs file pages is inversely
1438         * proportional to the fraction of recently scanned pages on
1439         * each list that were recently referenced and in active use.
1440         */
1441        ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1442        ap /= reclaim_stat->recent_rotated[0] + 1;
1443
1444        fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1445        fp /= reclaim_stat->recent_rotated[1] + 1;
1446
1447        /* Normalize to percentages */
1448        percent[0] = 100 * ap / (ap + fp + 1);
1449        percent[1] = 100 - percent[0];
1450}
1451
1452
1453/*
1454 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1455 */
1456static void shrink_zone(int priority, struct zone *zone,
1457                                struct scan_control *sc)
1458{
1459        unsigned long nr[NR_LRU_LISTS];
1460        unsigned long nr_to_scan;
1461        unsigned long percent[2];       /* anon @ 0; file @ 1 */
1462        enum lru_list l;
1463        unsigned long nr_reclaimed = sc->nr_reclaimed;
1464        unsigned long swap_cluster_max = sc->swap_cluster_max;
1465
1466        get_scan_ratio(zone, sc, percent);
1467
1468        for_each_evictable_lru(l) {
1469                int file = is_file_lru(l);
1470                int scan;
1471
1472                scan = zone_nr_pages(zone, sc, l);
1473                if (priority) {
1474                        scan >>= priority;
1475                        scan = (scan * percent[file]) / 100;
1476                }
1477                if (scanning_global_lru(sc)) {
1478                        zone->lru[l].nr_scan += scan;
1479                        nr[l] = zone->lru[l].nr_scan;
1480                        if (nr[l] >= swap_cluster_max)
1481                                zone->lru[l].nr_scan = 0;
1482                        else
1483                                nr[l] = 0;
1484                } else
1485                        nr[l] = scan;
1486        }
1487
1488        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1489                                        nr[LRU_INACTIVE_FILE]) {
1490                for_each_evictable_lru(l) {
1491                        if (nr[l]) {
1492                                nr_to_scan = min(nr[l], swap_cluster_max);
1493                                nr[l] -= nr_to_scan;
1494
1495                                nr_reclaimed += shrink_list(l, nr_to_scan,
1496                                                            zone, sc, priority);
1497                        }
1498                }
1499                /*
1500                 * On large memory systems, scan >> priority can become
1501                 * really large. This is fine for the starting priority;
1502                 * we want to put equal scanning pressure on each zone.
1503                 * However, if the VM has a harder time of freeing pages,
1504                 * with multiple processes reclaiming pages, the total
1505                 * freeing target can get unreasonably large.
1506                 */
1507                if (nr_reclaimed > swap_cluster_max &&
1508                        priority < DEF_PRIORITY && !current_is_kswapd())
1509                        break;
1510        }
1511
1512        sc->nr_reclaimed = nr_reclaimed;
1513
1514        /*
1515         * Even if we did not try to evict anon pages at all, we want to
1516         * rebalance the anon lru active/inactive ratio.
1517         */
1518        if (inactive_anon_is_low(zone, sc))
1519                shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1520
1521        throttle_vm_writeout(sc->gfp_mask);
1522}
1523
1524/*
1525 * This is the direct reclaim path, for page-allocating processes.  We only
1526 * try to reclaim pages from zones which will satisfy the caller's allocation
1527 * request.
1528 *
1529 * We reclaim from a zone even if that zone is over pages_high.  Because:
1530 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1531 *    allocation or
1532 * b) The zones may be over pages_high but they must go *over* pages_high to
1533 *    satisfy the `incremental min' zone defense algorithm.
1534 *
1535 * If a zone is deemed to be full of pinned pages then just give it a light
1536 * scan then give up on it.
1537 */
1538static void shrink_zones(int priority, struct zonelist *zonelist,
1539                                        struct scan_control *sc)
1540{
1541        enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1542        struct zoneref *z;
1543        struct zone *zone;
1544
1545        sc->all_unreclaimable = 1;
1546        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1547                if (!populated_zone(zone))
1548                        continue;
1549                /*
1550                 * Take care memory controller reclaiming has small influence
1551                 * to global LRU.
1552                 */
1553                if (scanning_global_lru(sc)) {
1554                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1555                                continue;
1556                        note_zone_scanning_priority(zone, priority);
1557
1558                        if (zone_is_all_unreclaimable(zone) &&
1559                                                priority != DEF_PRIORITY)
1560                                continue;       /* Let kswapd poll it */
1561                        sc->all_unreclaimable = 0;
1562                } else {
1563                        /*
1564                         * Ignore cpuset limitation here. We just want to reduce
1565                         * # of used pages by us regardless of memory shortage.
1566                         */
1567                        sc->all_unreclaimable = 0;
1568                        mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1569                                                        priority);
1570                }
1571
1572                shrink_zone(priority, zone, sc);
1573        }
1574}
1575
1576/*
1577 * This is the main entry point to direct page reclaim.
1578 *
1579 * If a full scan of the inactive list fails to free enough memory then we
1580 * are "out of memory" and something needs to be killed.
1581 *
1582 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1583 * high - the zone may be full of dirty or under-writeback pages, which this
1584 * caller can't do much about.  We kick pdflush and take explicit naps in the
1585 * hope that some of these pages can be written.  But if the allocating task
1586 * holds filesystem locks which prevent writeout this might not work, and the
1587 * allocation attempt will fail.
1588 *
1589 * returns:     0, if no pages reclaimed
1590 *              else, the number of pages reclaimed
1591 */
1592static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1593                                        struct scan_control *sc)
1594{
1595        int priority;
1596        unsigned long ret = 0;
1597        unsigned long total_scanned = 0;
1598        struct reclaim_state *reclaim_state = current->reclaim_state;
1599        unsigned long lru_pages = 0;
1600        struct zoneref *z;
1601        struct zone *zone;
1602        enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1603
1604        delayacct_freepages_start();
1605
1606        if (scanning_global_lru(sc))
1607                count_vm_event(ALLOCSTALL);
1608        /*
1609         * mem_cgroup will not do shrink_slab.
1610         */
1611        if (scanning_global_lru(sc)) {
1612                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1613
1614                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1615                                continue;
1616
1617                        lru_pages += zone_lru_pages(zone);
1618                }
1619        }
1620
1621        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1622                sc->nr_scanned = 0;
1623                if (!priority)
1624                        disable_swap_token();
1625                shrink_zones(priority, zonelist, sc);
1626                /*
1627                 * Don't shrink slabs when reclaiming memory from
1628                 * over limit cgroups
1629                 */
1630                if (scanning_global_lru(sc)) {
1631                        shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1632                        if (reclaim_state) {
1633                                sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1634                                reclaim_state->reclaimed_slab = 0;
1635                        }
1636                }
1637                total_scanned += sc->nr_scanned;
1638                if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1639                        ret = sc->nr_reclaimed;
1640                        goto out;
1641                }
1642
1643                /*
1644                 * Try to write back as many pages as we just scanned.  This
1645                 * tends to cause slow streaming writers to write data to the
1646                 * disk smoothly, at the dirtying rate, which is nice.   But
1647                 * that's undesirable in laptop mode, where we *want* lumpy
1648                 * writeout.  So in laptop mode, write out the whole world.
1649                 */
1650                if (total_scanned > sc->swap_cluster_max +
1651                                        sc->swap_cluster_max / 2) {
1652                        wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1653                        sc->may_writepage = 1;
1654                }
1655
1656                /* Take a nap, wait for some writeback to complete */
1657                if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1658                        congestion_wait(WRITE, HZ/10);
1659        }
1660        /* top priority shrink_zones still had more to do? don't OOM, then */
1661        if (!sc->all_unreclaimable && scanning_global_lru(sc))
1662                ret = sc->nr_reclaimed;
1663out:
1664        /*
1665         * Now that we've scanned all the zones at this priority level, note
1666         * that level within the zone so that the next thread which performs
1667         * scanning of this zone will immediately start out at this priority
1668         * level.  This affects only the decision whether or not to bring
1669         * mapped pages onto the inactive list.
1670         */
1671        if (priority < 0)
1672                priority = 0;
1673
1674        if (scanning_global_lru(sc)) {
1675                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1676
1677                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1678                                continue;
1679
1680                        zone->prev_priority = priority;
1681                }
1682        } else
1683                mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1684
1685        delayacct_freepages_end();
1686
1687        return ret;
1688}
1689
1690unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1691                                                                gfp_t gfp_mask)
1692{
1693        struct scan_control sc = {
1694                .gfp_mask = gfp_mask,
1695                .may_writepage = !laptop_mode,
1696                .swap_cluster_max = SWAP_CLUSTER_MAX,
1697                .may_swap = 1,
1698                .swappiness = vm_swappiness,
1699                .order = order,
1700                .mem_cgroup = NULL,
1701                .isolate_pages = isolate_pages_global,
1702        };
1703
1704        return do_try_to_free_pages(zonelist, &sc);
1705}
1706
1707#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1708
1709unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1710                                           gfp_t gfp_mask,
1711                                           bool noswap,
1712                                           unsigned int swappiness)
1713{
1714        struct scan_control sc = {
1715                .may_writepage = !laptop_mode,
1716                .may_swap = 1,
1717                .swap_cluster_max = SWAP_CLUSTER_MAX,
1718                .swappiness = swappiness,
1719                .order = 0,
1720                .mem_cgroup = mem_cont,
1721                .isolate_pages = mem_cgroup_isolate_pages,
1722        };
1723        struct zonelist *zonelist;
1724
1725        if (noswap)
1726                sc.may_swap = 0;
1727
1728        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1729                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1730        zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1731        return do_try_to_free_pages(zonelist, &sc);
1732}
1733#endif
1734
1735/*
1736 * For kswapd, balance_pgdat() will work across all this node's zones until
1737 * they are all at pages_high.
1738 *
1739 * Returns the number of pages which were actually freed.
1740 *
1741 * There is special handling here for zones which are full of pinned pages.
1742 * This can happen if the pages are all mlocked, or if they are all used by
1743 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1744 * What we do is to detect the case where all pages in the zone have been
1745 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1746 * dead and from now on, only perform a short scan.  Basically we're polling
1747 * the zone for when the problem goes away.
1748 *
1749 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1750 * zones which have free_pages > pages_high, but once a zone is found to have
1751 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1752 * of the number of free pages in the lower zones.  This interoperates with
1753 * the page allocator fallback scheme to ensure that aging of pages is balanced
1754 * across the zones.
1755 */
1756static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1757{
1758        int all_zones_ok;
1759        int priority;
1760        int i;
1761        unsigned long total_scanned;
1762        struct reclaim_state *reclaim_state = current->reclaim_state;
1763        struct scan_control sc = {
1764                .gfp_mask = GFP_KERNEL,
1765                .may_swap = 1,
1766                .swap_cluster_max = SWAP_CLUSTER_MAX,
1767                .swappiness = vm_swappiness,
1768                .order = order,
1769                .mem_cgroup = NULL,
1770                .isolate_pages = isolate_pages_global,
1771        };
1772        /*
1773         * temp_priority is used to remember the scanning priority at which
1774         * this zone was successfully refilled to free_pages == pages_high.
1775         */
1776        int temp_priority[MAX_NR_ZONES];
1777
1778loop_again:
1779        total_scanned = 0;
1780        sc.nr_reclaimed = 0;
1781        sc.may_writepage = !laptop_mode;
1782        count_vm_event(PAGEOUTRUN);
1783
1784        for (i = 0; i < pgdat->nr_zones; i++)
1785                temp_priority[i] = DEF_PRIORITY;
1786
1787        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1788                int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1789                unsigned long lru_pages = 0;
1790
1791                /* The swap token gets in the way of swapout... */
1792                if (!priority)
1793                        disable_swap_token();
1794
1795                all_zones_ok = 1;
1796
1797                /*
1798                 * Scan in the highmem->dma direction for the highest
1799                 * zone which needs scanning
1800                 */
1801                for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1802                        struct zone *zone = pgdat->node_zones + i;
1803
1804                        if (!populated_zone(zone))
1805                                continue;
1806
1807                        if (zone_is_all_unreclaimable(zone) &&
1808                            priority != DEF_PRIORITY)
1809                                continue;
1810
1811                        /*
1812                         * Do some background aging of the anon list, to give
1813                         * pages a chance to be referenced before reclaiming.
1814                         */
1815                        if (inactive_anon_is_low(zone, &sc))
1816                                shrink_active_list(SWAP_CLUSTER_MAX, zone,
1817                                                        &sc, priority, 0);
1818
1819                        if (!zone_watermark_ok(zone, order, zone->pages_high,
1820                                               0, 0)) {
1821                                end_zone = i;
1822                                break;
1823                        }
1824                }
1825                if (i < 0)
1826                        goto out;
1827
1828                for (i = 0; i <= end_zone; i++) {
1829                        struct zone *zone = pgdat->node_zones + i;
1830
1831                        lru_pages += zone_lru_pages(zone);
1832                }
1833
1834                /*
1835                 * Now scan the zone in the dma->highmem direction, stopping
1836                 * at the last zone which needs scanning.
1837                 *
1838                 * We do this because the page allocator works in the opposite
1839                 * direction.  This prevents the page allocator from allocating
1840                 * pages behind kswapd's direction of progress, which would
1841                 * cause too much scanning of the lower zones.
1842                 */
1843                for (i = 0; i <= end_zone; i++) {
1844                        struct zone *zone = pgdat->node_zones + i;
1845                        int nr_slab;
1846
1847                        if (!populated_zone(zone))
1848                                continue;
1849
1850                        if (zone_is_all_unreclaimable(zone) &&
1851                                        priority != DEF_PRIORITY)
1852                                continue;
1853
1854                        if (!zone_watermark_ok(zone, order, zone->pages_high,
1855                                               end_zone, 0))
1856                                all_zones_ok = 0;
1857                        temp_priority[i] = priority;
1858                        sc.nr_scanned = 0;
1859                        note_zone_scanning_priority(zone, priority);
1860                        /*
1861                         * We put equal pressure on every zone, unless one
1862                         * zone has way too many pages free already.
1863                         */
1864                        if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1865                                                end_zone, 0))
1866                                shrink_zone(priority, zone, &sc);
1867                        reclaim_state->reclaimed_slab = 0;
1868                        nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1869                                                lru_pages);
1870                        sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1871                        total_scanned += sc.nr_scanned;
1872                        if (zone_is_all_unreclaimable(zone))
1873                                continue;
1874                        if (nr_slab == 0 && zone->pages_scanned >=
1875                                                (zone_lru_pages(zone) * 6))
1876                                        zone_set_flag(zone,
1877                                                      ZONE_ALL_UNRECLAIMABLE);
1878                        /*
1879                         * If we've done a decent amount of scanning and
1880                         * the reclaim ratio is low, start doing writepage
1881                         * even in laptop mode
1882                         */
1883                        if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1884                            total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1885                                sc.may_writepage = 1;
1886                }
1887                if (all_zones_ok)
1888                        break;          /* kswapd: all done */
1889                /*
1890                 * OK, kswapd is getting into trouble.  Take a nap, then take
1891                 * another pass across the zones.
1892                 */
1893                if (total_scanned && priority < DEF_PRIORITY - 2)
1894                        congestion_wait(WRITE, HZ/10);
1895
1896                /*
1897                 * We do this so kswapd doesn't build up large priorities for
1898                 * example when it is freeing in parallel with allocators. It
1899                 * matches the direct reclaim path behaviour in terms of impact
1900                 * on zone->*_priority.
1901                 */
1902                if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1903                        break;
1904        }
1905out:
1906        /*
1907         * Note within each zone the priority level at which this zone was
1908         * brought into a happy state.  So that the next thread which scans this
1909         * zone will start out at that priority level.
1910         */
1911        for (i = 0; i < pgdat->nr_zones; i++) {
1912                struct zone *zone = pgdat->node_zones + i;
1913
1914                zone->prev_priority = temp_priority[i];
1915        }
1916        if (!all_zones_ok) {
1917                cond_resched();
1918
1919                try_to_freeze();
1920
1921                /*
1922                 * Fragmentation may mean that the system cannot be
1923                 * rebalanced for high-order allocations in all zones.
1924                 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1925                 * it means the zones have been fully scanned and are still
1926                 * not balanced. For high-order allocations, there is
1927                 * little point trying all over again as kswapd may
1928                 * infinite loop.
1929                 *
1930                 * Instead, recheck all watermarks at order-0 as they
1931                 * are the most important. If watermarks are ok, kswapd will go
1932                 * back to sleep. High-order users can still perform direct
1933                 * reclaim if they wish.
1934                 */
1935                if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1936                        order = sc.order = 0;
1937
1938                goto loop_again;
1939        }
1940
1941        return sc.nr_reclaimed;
1942}
1943
1944/*
1945 * The background pageout daemon, started as a kernel thread
1946 * from the init process.
1947 *
1948 * This basically trickles out pages so that we have _some_
1949 * free memory available even if there is no other activity
1950 * that frees anything up. This is needed for things like routing
1951 * etc, where we otherwise might have all activity going on in
1952 * asynchronous contexts that cannot page things out.
1953 *
1954 * If there are applications that are active memory-allocators
1955 * (most normal use), this basically shouldn't matter.
1956 */
1957static int kswapd(void *p)
1958{
1959        unsigned long order;
1960        pg_data_t *pgdat = (pg_data_t*)p;
1961        struct task_struct *tsk = current;
1962        DEFINE_WAIT(wait);
1963        struct reclaim_state reclaim_state = {
1964                .reclaimed_slab = 0,
1965        };
1966        node_to_cpumask_ptr(cpumask, pgdat->node_id);
1967
1968        if (!cpumask_empty(cpumask))
1969                set_cpus_allowed_ptr(tsk, cpumask);
1970        current->reclaim_state = &reclaim_state;
1971
1972        /*
1973         * Tell the memory management that we're a "memory allocator",
1974         * and that if we need more memory we should get access to it
1975         * regardless (see "__alloc_pages()"). "kswapd" should
1976         * never get caught in the normal page freeing logic.
1977         *
1978         * (Kswapd normally doesn't need memory anyway, but sometimes
1979         * you need a small amount of memory in order to be able to
1980         * page out something else, and this flag essentially protects
1981         * us from recursively trying to free more memory as we're
1982         * trying to free the first piece of memory in the first place).
1983         */
1984        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1985        set_freezable();
1986
1987        order = 0;
1988        for ( ; ; ) {
1989                unsigned long new_order;
1990
1991                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1992                new_order = pgdat->kswapd_max_order;
1993                pgdat->kswapd_max_order = 0;
1994                if (order < new_order) {
1995                        /*
1996                         * Don't sleep if someone wants a larger 'order'
1997                         * allocation
1998                         */
1999                        order = new_order;
2000                } else {
2001                        if (!freezing(current))
2002                                schedule();
2003
2004                        order = pgdat->kswapd_max_order;
2005                }
2006                finish_wait(&pgdat->kswapd_wait, &wait);
2007
2008                if (!try_to_freeze()) {
2009                        /* We can speed up thawing tasks if we don't call
2010                         * balance_pgdat after returning from the refrigerator
2011                         */
2012                        balance_pgdat(pgdat, order);
2013                }
2014        }
2015        return 0;
2016}
2017
2018/*
2019 * A zone is low on free memory, so wake its kswapd task to service it.
2020 */
2021void wakeup_kswapd(struct zone *zone, int order)
2022{
2023        pg_data_t *pgdat;
2024
2025        if (!populated_zone(zone))
2026                return;
2027
2028        pgdat = zone->zone_pgdat;
2029        if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2030                return;
2031        if (pgdat->kswapd_max_order < order)
2032                pgdat->kswapd_max_order = order;
2033        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2034                return;
2035        if (!waitqueue_active(&pgdat->kswapd_wait))
2036                return;
2037        wake_up_interruptible(&pgdat->kswapd_wait);
2038}
2039
2040unsigned long global_lru_pages(void)
2041{
2042        return global_page_state(NR_ACTIVE_ANON)
2043                + global_page_state(NR_ACTIVE_FILE)
2044                + global_page_state(NR_INACTIVE_ANON)
2045                + global_page_state(NR_INACTIVE_FILE);
2046}
2047
2048#ifdef CONFIG_PM
2049/*
2050 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2051 * from LRU lists system-wide, for given pass and priority, and returns the
2052 * number of reclaimed pages
2053 *
2054 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2055 */
2056static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2057                                      int pass, struct scan_control *sc)
2058{
2059        struct zone *zone;
2060        unsigned long ret = 0;
2061
2062        for_each_zone(zone) {
2063                enum lru_list l;
2064
2065                if (!populated_zone(zone))
2066                        continue;
2067                if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2068                        continue;
2069
2070                for_each_evictable_lru(l) {
2071                        enum zone_stat_item ls = NR_LRU_BASE + l;
2072                        unsigned long lru_pages = zone_page_state(zone, ls);
2073
2074                        /* For pass = 0, we don't shrink the active list */
2075                        if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2076                                                l == LRU_ACTIVE_FILE))
2077                                continue;
2078
2079                        zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2080                        if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2081                                unsigned long nr_to_scan;
2082
2083                                zone->lru[l].nr_scan = 0;
2084                                nr_to_scan = min(nr_pages, lru_pages);
2085                                ret += shrink_list(l, nr_to_scan, zone,
2086                                                                sc, prio);
2087                                if (ret >= nr_pages)
2088                                        return ret;
2089                        }
2090                }
2091        }
2092        return ret;
2093}
2094
2095/*
2096 * Try to free `nr_pages' of memory, system-wide, and return the number of
2097 * freed pages.
2098 *
2099 * Rather than trying to age LRUs the aim is to preserve the overall
2100 * LRU order by reclaiming preferentially
2101 * inactive > active > active referenced > active mapped
2102 */
2103unsigned long shrink_all_memory(unsigned long nr_pages)
2104{
2105        unsigned long lru_pages, nr_slab;
2106        unsigned long ret = 0;
2107        int pass;
2108        struct reclaim_state reclaim_state;
2109        struct scan_control sc = {
2110                .gfp_mask = GFP_KERNEL,
2111                .may_swap = 0,
2112                .swap_cluster_max = nr_pages,
2113                .may_writepage = 1,
2114                .isolate_pages = isolate_pages_global,
2115        };
2116
2117        current->reclaim_state = &reclaim_state;
2118
2119        lru_pages = global_lru_pages();
2120        nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2121        /* If slab caches are huge, it's better to hit them first */
2122        while (nr_slab >= lru_pages) {
2123                reclaim_state.reclaimed_slab = 0;
2124                shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2125                if (!reclaim_state.reclaimed_slab)
2126                        break;
2127
2128                ret += reclaim_state.reclaimed_slab;
2129                if (ret >= nr_pages)
2130                        goto out;
2131
2132                nr_slab -= reclaim_state.reclaimed_slab;
2133        }
2134
2135        /*
2136         * We try to shrink LRUs in 5 passes:
2137         * 0 = Reclaim from inactive_list only
2138         * 1 = Reclaim from active list but don't reclaim mapped
2139         * 2 = 2nd pass of type 1
2140         * 3 = Reclaim mapped (normal reclaim)
2141         * 4 = 2nd pass of type 3
2142         */
2143        for (pass = 0; pass < 5; pass++) {
2144                int prio;
2145
2146                /* Force reclaiming mapped pages in the passes #3 and #4 */
2147                if (pass > 2)
2148                        sc.may_swap = 1;
2149
2150                for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2151                        unsigned long nr_to_scan = nr_pages - ret;
2152
2153                        sc.nr_scanned = 0;
2154                        ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2155                        if (ret >= nr_pages)
2156                                goto out;
2157
2158                        reclaim_state.reclaimed_slab = 0;
2159                        shrink_slab(sc.nr_scanned, sc.gfp_mask,
2160                                        global_lru_pages());
2161                        ret += reclaim_state.reclaimed_slab;
2162                        if (ret >= nr_pages)
2163                                goto out;
2164
2165                        if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2166                                congestion_wait(WRITE, HZ / 10);
2167                }
2168        }
2169
2170        /*
2171         * If ret = 0, we could not shrink LRUs, but there may be something
2172         * in slab caches
2173         */
2174        if (!ret) {
2175                do {
2176                        reclaim_state.reclaimed_slab = 0;
2177                        shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2178                        ret += reclaim_state.reclaimed_slab;
2179                } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2180        }
2181
2182out:
2183        current->reclaim_state = NULL;
2184
2185        return ret;
2186}
2187#endif
2188
2189/* It's optimal to keep kswapds on the same CPUs as their memory, but
2190   not required for correctness.  So if the last cpu in a node goes
2191   away, we get changed to run anywhere: as the first one comes back,
2192   restore their cpu bindings. */
2193static int __devinit cpu_callback(struct notifier_block *nfb,
2194                                  unsigned long action, void *hcpu)
2195{
2196        int nid;
2197
2198        if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2199                for_each_node_state(nid, N_HIGH_MEMORY) {
2200                        pg_data_t *pgdat = NODE_DATA(nid);
2201                        node_to_cpumask_ptr(mask, pgdat->node_id);
2202
2203                        if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2204                                /* One of our CPUs online: restore mask */
2205                                set_cpus_allowed_ptr(pgdat->kswapd, mask);
2206                }
2207        }
2208        return NOTIFY_OK;
2209}
2210
2211/*
2212 * This kswapd start function will be called by init and node-hot-add.
2213 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2214 */
2215int kswapd_run(int nid)
2216{
2217        pg_data_t *pgdat = NODE_DATA(nid);
2218        int ret = 0;
2219
2220        if (pgdat->kswapd)
2221                return 0;
2222
2223        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2224        if (IS_ERR(pgdat->kswapd)) {
2225                /* failure at boot is fatal */
2226                BUG_ON(system_state == SYSTEM_BOOTING);
2227                printk("Failed to start kswapd on node %d\n",nid);
2228                ret = -1;
2229        }
2230        return ret;
2231}
2232
2233static int __init kswapd_init(void)
2234{
2235        int nid;
2236
2237        swap_setup();
2238        for_each_node_state(nid, N_HIGH_MEMORY)
2239                kswapd_run(nid);
2240        hotcpu_notifier(cpu_callback, 0);
2241        return 0;
2242}
2243
2244module_init(kswapd_init)
2245
2246#ifdef CONFIG_NUMA
2247/*
2248 * Zone reclaim mode
2249 *
2250 * If non-zero call zone_reclaim when the number of free pages falls below
2251 * the watermarks.
2252 */
2253int zone_reclaim_mode __read_mostly;
2254
2255#define RECLAIM_OFF 0
2256#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2257#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2258#define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2259
2260/*
2261 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2262 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2263 * a zone.
2264 */
2265#define ZONE_RECLAIM_PRIORITY 4
2266
2267/*
2268 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2269 * occur.
2270 */
2271int sysctl_min_unmapped_ratio = 1;
2272
2273/*
2274 * If the number of slab pages in a zone grows beyond this percentage then
2275 * slab reclaim needs to occur.
2276 */
2277int sysctl_min_slab_ratio = 5;
2278
2279/*
2280 * Try to free up some pages from this zone through reclaim.
2281 */
2282static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2283{
2284        /* Minimum pages needed in order to stay on node */
2285        const unsigned long nr_pages = 1 << order;
2286        struct task_struct *p = current;
2287        struct reclaim_state reclaim_state;
2288        int priority;
2289        struct scan_control sc = {
2290                .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2291                .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2292                .swap_cluster_max = max_t(unsigned long, nr_pages,
2293                                        SWAP_CLUSTER_MAX),
2294                .gfp_mask = gfp_mask,
2295                .swappiness = vm_swappiness,
2296                .isolate_pages = isolate_pages_global,
2297        };
2298        unsigned long slab_reclaimable;
2299
2300        disable_swap_token();
2301        cond_resched();
2302        /*
2303         * We need to be able to allocate from the reserves for RECLAIM_SWAP
2304         * and we also need to be able to write out pages for RECLAIM_WRITE
2305         * and RECLAIM_SWAP.
2306         */
2307        p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2308        reclaim_state.reclaimed_slab = 0;
2309        p->reclaim_state = &reclaim_state;
2310
2311        if (zone_page_state(zone, NR_FILE_PAGES) -
2312                zone_page_state(zone, NR_FILE_MAPPED) >
2313                zone->min_unmapped_pages) {
2314                /*
2315                 * Free memory by calling shrink zone with increasing
2316                 * priorities until we have enough memory freed.
2317                 */
2318                priority = ZONE_RECLAIM_PRIORITY;
2319                do {
2320                        note_zone_scanning_priority(zone, priority);
2321                        shrink_zone(priority, zone, &sc);
2322                        priority--;
2323                } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2324        }
2325
2326        slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2327        if (slab_reclaimable > zone->min_slab_pages) {
2328                /*
2329                 * shrink_slab() does not currently allow us to determine how
2330                 * many pages were freed in this zone. So we take the current
2331                 * number of slab pages and shake the slab until it is reduced
2332                 * by the same nr_pages that we used for reclaiming unmapped
2333                 * pages.
2334                 *
2335                 * Note that shrink_slab will free memory on all zones and may
2336                 * take a long time.
2337                 */
2338                while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2339                        zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2340                                slab_reclaimable - nr_pages)
2341                        ;
2342
2343                /*
2344                 * Update nr_reclaimed by the number of slab pages we
2345                 * reclaimed from this zone.
2346                 */
2347                sc.nr_reclaimed += slab_reclaimable -
2348                        zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2349        }
2350
2351        p->reclaim_state = NULL;
2352        current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2353        return sc.nr_reclaimed >= nr_pages;
2354}
2355
2356int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2357{
2358        int node_id;
2359        int ret;
2360
2361        /*
2362         * Zone reclaim reclaims unmapped file backed pages and
2363         * slab pages if we are over the defined limits.
2364         *
2365         * A small portion of unmapped file backed pages is needed for
2366         * file I/O otherwise pages read by file I/O will be immediately
2367         * thrown out if the zone is overallocated. So we do not reclaim
2368         * if less than a specified percentage of the zone is used by
2369         * unmapped file backed pages.
2370         */
2371        if (zone_page_state(zone, NR_FILE_PAGES) -
2372            zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2373            && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2374                        <= zone->min_slab_pages)
2375                return 0;
2376
2377        if (zone_is_all_unreclaimable(zone))
2378                return 0;
2379
2380        /*
2381         * Do not scan if the allocation should not be delayed.
2382         */
2383        if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2384                        return 0;
2385
2386        /*
2387         * Only run zone reclaim on the local zone or on zones that do not
2388         * have associated processors. This will favor the local processor
2389         * over remote processors and spread off node memory allocations
2390         * as wide as possible.
2391         */
2392        node_id = zone_to_nid(zone);
2393        if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2394                return 0;
2395
2396        if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2397                return 0;
2398        ret = __zone_reclaim(zone, gfp_mask, order);
2399        zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2400
2401        return ret;
2402}
2403#endif
2404
2405#ifdef CONFIG_UNEVICTABLE_LRU
2406/*
2407 * page_evictable - test whether a page is evictable
2408 * @page: the page to test
2409 * @vma: the VMA in which the page is or will be mapped, may be NULL
2410 *
2411 * Test whether page is evictable--i.e., should be placed on active/inactive
2412 * lists vs unevictable list.  The vma argument is !NULL when called from the
2413 * fault path to determine how to instantate a new page.
2414 *
2415 * Reasons page might not be evictable:
2416 * (1) page's mapping marked unevictable
2417 * (2) page is part of an mlocked VMA
2418 *
2419 */
2420int page_evictable(struct page *page, struct vm_area_struct *vma)
2421{
2422
2423        if (mapping_unevictable(page_mapping(page)))
2424                return 0;
2425
2426        if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2427                return 0;
2428
2429        return 1;
2430}
2431
2432/**
2433 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2434 * @page: page to check evictability and move to appropriate lru list
2435 * @zone: zone page is in
2436 *
2437 * Checks a page for evictability and moves the page to the appropriate
2438 * zone lru list.
2439 *
2440 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2441 * have PageUnevictable set.
2442 */
2443static void check_move_unevictable_page(struct page *page, struct zone *zone)
2444{
2445        VM_BUG_ON(PageActive(page));
2446
2447retry:
2448        ClearPageUnevictable(page);
2449        if (page_evictable(page, NULL)) {
2450                enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2451
2452                __dec_zone_state(zone, NR_UNEVICTABLE);
2453                list_move(&page->lru, &zone->lru[l].list);
2454                mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2455                __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2456                __count_vm_event(UNEVICTABLE_PGRESCUED);
2457        } else {
2458                /*
2459                 * rotate unevictable list
2460                 */
2461                SetPageUnevictable(page);
2462                list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2463                mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2464                if (page_evictable(page, NULL))
2465                        goto retry;
2466        }
2467}
2468
2469/**
2470 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2471 * @mapping: struct address_space to scan for evictable pages
2472 *
2473 * Scan all pages in mapping.  Check unevictable pages for
2474 * evictability and move them to the appropriate zone lru list.
2475 */
2476void scan_mapping_unevictable_pages(struct address_space *mapping)
2477{
2478        pgoff_t next = 0;
2479        pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2480                         PAGE_CACHE_SHIFT;
2481        struct zone *zone;
2482        struct pagevec pvec;
2483
2484        if (mapping->nrpages == 0)
2485                return;
2486
2487        pagevec_init(&pvec, 0);
2488        while (next < end &&
2489                pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2490                int i;
2491                int pg_scanned = 0;
2492
2493                zone = NULL;
2494
2495                for (i = 0; i < pagevec_count(&pvec); i++) {
2496                        struct page *page = pvec.pages[i];
2497                        pgoff_t page_index = page->index;
2498                        struct zone *pagezone = page_zone(page);
2499
2500                        pg_scanned++;
2501                        if (page_index > next)
2502                                next = page_index;
2503                        next++;
2504
2505                        if (pagezone != zone) {
2506                                if (zone)
2507                                        spin_unlock_irq(&zone->lru_lock);
2508                                zone = pagezone;
2509                                spin_lock_irq(&zone->lru_lock);
2510                        }
2511
2512                        if (PageLRU(page) && PageUnevictable(page))
2513                                check_move_unevictable_page(page, zone);
2514                }
2515                if (zone)
2516                        spin_unlock_irq(&zone->lru_lock);
2517                pagevec_release(&pvec);
2518
2519                count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2520        }
2521
2522}
2523
2524/**
2525 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2526 * @zone - zone of which to scan the unevictable list
2527 *
2528 * Scan @zone's unevictable LRU lists to check for pages that have become
2529 * evictable.  Move those that have to @zone's inactive list where they
2530 * become candidates for reclaim, unless shrink_inactive_zone() decides
2531 * to reactivate them.  Pages that are still unevictable are rotated
2532 * back onto @zone's unevictable list.
2533 */
2534#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2535static void scan_zone_unevictable_pages(struct zone *zone)
2536{
2537        struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2538        unsigned long scan;
2539        unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2540
2541        while (nr_to_scan > 0) {
2542                unsigned long batch_size = min(nr_to_scan,
2543                                                SCAN_UNEVICTABLE_BATCH_SIZE);
2544
2545                spin_lock_irq(&zone->lru_lock);
2546                for (scan = 0;  scan < batch_size; scan++) {
2547                        struct page *page = lru_to_page(l_unevictable);
2548
2549                        if (!trylock_page(page))
2550                                continue;
2551
2552                        prefetchw_prev_lru_page(page, l_unevictable, flags);
2553
2554                        if (likely(PageLRU(page) && PageUnevictable(page)))
2555                                check_move_unevictable_page(page, zone);
2556
2557                        unlock_page(page);
2558                }
2559                spin_unlock_irq(&zone->lru_lock);
2560
2561                nr_to_scan -= batch_size;
2562        }
2563}
2564
2565
2566/**
2567 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2568 *
2569 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2570 * pages that have become evictable.  Move those back to the zones'
2571 * inactive list where they become candidates for reclaim.
2572 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2573 * and we add swap to the system.  As such, it runs in the context of a task
2574 * that has possibly/probably made some previously unevictable pages
2575 * evictable.
2576 */
2577static void scan_all_zones_unevictable_pages(void)
2578{
2579        struct zone *zone;
2580
2581        for_each_zone(zone) {
2582                scan_zone_unevictable_pages(zone);
2583        }
2584}
2585
2586/*
2587 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2588 * all nodes' unevictable lists for evictable pages
2589 */
2590unsigned long scan_unevictable_pages;
2591
2592int scan_unevictable_handler(struct ctl_table *table, int write,
2593                           struct file *file, void __user *buffer,
2594                           size_t *length, loff_t *ppos)
2595{
2596        proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2597
2598        if (write && *(unsigned long *)table->data)
2599                scan_all_zones_unevictable_pages();
2600
2601        scan_unevictable_pages = 0;
2602        return 0;
2603}
2604
2605/*
2606 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2607 * a specified node's per zone unevictable lists for evictable pages.
2608 */
2609
2610static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2611                                          struct sysdev_attribute *attr,
2612                                          char *buf)
2613{
2614        return sprintf(buf, "0\n");     /* always zero; should fit... */
2615}
2616
2617static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2618                                           struct sysdev_attribute *attr,
2619                                        const char *buf, size_t count)
2620{
2621        struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2622        struct zone *zone;
2623        unsigned long res;
2624        unsigned long req = strict_strtoul(buf, 10, &res);
2625
2626        if (!req)
2627                return 1;       /* zero is no-op */
2628
2629        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2630                if (!populated_zone(zone))
2631                        continue;
2632                scan_zone_unevictable_pages(zone);
2633        }
2634        return 1;
2635}
2636
2637
2638static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2639                        read_scan_unevictable_node,
2640                        write_scan_unevictable_node);
2641
2642int scan_unevictable_register_node(struct node *node)
2643{
2644        return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2645}
2646
2647void scan_unevictable_unregister_node(struct node *node)
2648{
2649        sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2650}
2651
2652#endif
2653