linux/arch/x86/mm/numa_32.c
<<
>>
Prefs
   1/*
   2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
   3 * August 2002: added remote node KVA remap - Martin J. Bligh 
   4 *
   5 * Copyright (C) 2002, IBM Corp.
   6 *
   7 * All rights reserved.          
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17 * NON INFRINGEMENT.  See the GNU General Public License for more
  18 * details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/mm.h>
  26#include <linux/bootmem.h>
  27#include <linux/mmzone.h>
  28#include <linux/highmem.h>
  29#include <linux/initrd.h>
  30#include <linux/nodemask.h>
  31#include <linux/module.h>
  32#include <linux/kexec.h>
  33#include <linux/pfn.h>
  34#include <linux/swap.h>
  35#include <linux/acpi.h>
  36
  37#include <asm/e820.h>
  38#include <asm/setup.h>
  39#include <asm/mmzone.h>
  40#include <asm/bios_ebda.h>
  41#include <asm/proto.h>
  42
  43struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  44EXPORT_SYMBOL(node_data);
  45
  46/*
  47 * numa interface - we expect the numa architecture specific code to have
  48 *                  populated the following initialisation.
  49 *
  50 * 1) node_online_map  - the map of all nodes configured (online) in the system
  51 * 2) node_start_pfn   - the starting page frame number for a node
  52 * 3) node_end_pfn     - the ending page fram number for a node
  53 */
  54unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  55unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  56
  57
  58#ifdef CONFIG_DISCONTIGMEM
  59/*
  60 * 4) physnode_map     - the mapping between a pfn and owning node
  61 * physnode_map keeps track of the physical memory layout of a generic
  62 * numa node on a 64Mb break (each element of the array will
  63 * represent 64Mb of memory and will be marked by the node id.  so,
  64 * if the first gig is on node 0, and the second gig is on node 1
  65 * physnode_map will contain:
  66 *
  67 *     physnode_map[0-15] = 0;
  68 *     physnode_map[16-31] = 1;
  69 *     physnode_map[32- ] = -1;
  70 */
  71s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  72EXPORT_SYMBOL(physnode_map);
  73
  74void memory_present(int nid, unsigned long start, unsigned long end)
  75{
  76        unsigned long pfn;
  77
  78        printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
  79                        nid, start, end);
  80        printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
  81        printk(KERN_DEBUG "  ");
  82        for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  83                physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  84                printk(KERN_CONT "%lx ", pfn);
  85        }
  86        printk(KERN_CONT "\n");
  87}
  88
  89unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  90                                              unsigned long end_pfn)
  91{
  92        unsigned long nr_pages = end_pfn - start_pfn;
  93
  94        if (!nr_pages)
  95                return 0;
  96
  97        return (nr_pages + 1) * sizeof(struct page);
  98}
  99#endif
 100
 101extern unsigned long find_max_low_pfn(void);
 102extern unsigned long highend_pfn, highstart_pfn;
 103
 104#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
 105
 106unsigned long node_remap_size[MAX_NUMNODES];
 107static void *node_remap_start_vaddr[MAX_NUMNODES];
 108void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
 109
 110static unsigned long kva_start_pfn;
 111static unsigned long kva_pages;
 112/*
 113 * FLAT - support for basic PC memory model with discontig enabled, essentially
 114 *        a single node with all available processors in it with a flat
 115 *        memory map.
 116 */
 117int __init get_memcfg_numa_flat(void)
 118{
 119        printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
 120
 121        node_start_pfn[0] = 0;
 122        node_end_pfn[0] = max_pfn;
 123        e820_register_active_regions(0, 0, max_pfn);
 124        memory_present(0, 0, max_pfn);
 125        node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
 126
 127        /* Indicate there is one node available. */
 128        nodes_clear(node_online_map);
 129        node_set_online(0);
 130        return 1;
 131}
 132
 133/*
 134 * Find the highest page frame number we have available for the node
 135 */
 136static void __init propagate_e820_map_node(int nid)
 137{
 138        if (node_end_pfn[nid] > max_pfn)
 139                node_end_pfn[nid] = max_pfn;
 140        /*
 141         * if a user has given mem=XXXX, then we need to make sure 
 142         * that the node _starts_ before that, too, not just ends
 143         */
 144        if (node_start_pfn[nid] > max_pfn)
 145                node_start_pfn[nid] = max_pfn;
 146        BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
 147}
 148
 149/* 
 150 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
 151 * method.  For node zero take this from the bottom of memory, for
 152 * subsequent nodes place them at node_remap_start_vaddr which contains
 153 * node local data in physically node local memory.  See setup_memory()
 154 * for details.
 155 */
 156static void __init allocate_pgdat(int nid)
 157{
 158        char buf[16];
 159
 160        if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
 161                NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
 162        else {
 163                unsigned long pgdat_phys;
 164                pgdat_phys = find_e820_area(min_low_pfn<<PAGE_SHIFT,
 165                                 max_pfn_mapped<<PAGE_SHIFT,
 166                                 sizeof(pg_data_t),
 167                                 PAGE_SIZE);
 168                NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
 169                memset(buf, 0, sizeof(buf));
 170                sprintf(buf, "NODE_DATA %d",  nid);
 171                reserve_early(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
 172        }
 173        printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
 174                nid, (unsigned long)NODE_DATA(nid));
 175}
 176
 177/*
 178 * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
 179 * virtual address space (KVA) is reserved and portions of nodes are mapped
 180 * using it. This is to allow node-local memory to be allocated for
 181 * structures that would normally require ZONE_NORMAL. The memory is
 182 * allocated with alloc_remap() and callers should be prepared to allocate
 183 * from the bootmem allocator instead.
 184 */
 185static unsigned long node_remap_start_pfn[MAX_NUMNODES];
 186static void *node_remap_end_vaddr[MAX_NUMNODES];
 187static void *node_remap_alloc_vaddr[MAX_NUMNODES];
 188static unsigned long node_remap_offset[MAX_NUMNODES];
 189
 190void *alloc_remap(int nid, unsigned long size)
 191{
 192        void *allocation = node_remap_alloc_vaddr[nid];
 193
 194        size = ALIGN(size, L1_CACHE_BYTES);
 195
 196        if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
 197                return 0;
 198
 199        node_remap_alloc_vaddr[nid] += size;
 200        memset(allocation, 0, size);
 201
 202        return allocation;
 203}
 204
 205static void __init remap_numa_kva(void)
 206{
 207        void *vaddr;
 208        unsigned long pfn;
 209        int node;
 210
 211        for_each_online_node(node) {
 212                printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
 213                for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
 214                        vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
 215                        printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
 216                                (unsigned long)vaddr,
 217                                node_remap_start_pfn[node] + pfn);
 218                        set_pmd_pfn((ulong) vaddr, 
 219                                node_remap_start_pfn[node] + pfn, 
 220                                PAGE_KERNEL_LARGE);
 221                }
 222        }
 223}
 224
 225#ifdef CONFIG_HIBERNATION
 226/**
 227 * resume_map_numa_kva - add KVA mapping to the temporary page tables created
 228 *                       during resume from hibernation
 229 * @pgd_base - temporary resume page directory
 230 */
 231void resume_map_numa_kva(pgd_t *pgd_base)
 232{
 233        int node;
 234
 235        for_each_online_node(node) {
 236                unsigned long start_va, start_pfn, size, pfn;
 237
 238                start_va = (unsigned long)node_remap_start_vaddr[node];
 239                start_pfn = node_remap_start_pfn[node];
 240                size = node_remap_size[node];
 241
 242                printk(KERN_DEBUG "%s: node %d\n", __FUNCTION__, node);
 243
 244                for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) {
 245                        unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
 246                        pgd_t *pgd = pgd_base + pgd_index(vaddr);
 247                        pud_t *pud = pud_offset(pgd, vaddr);
 248                        pmd_t *pmd = pmd_offset(pud, vaddr);
 249
 250                        set_pmd(pmd, pfn_pmd(start_pfn + pfn,
 251                                                PAGE_KERNEL_LARGE_EXEC));
 252
 253                        printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
 254                                __FUNCTION__, vaddr, start_pfn + pfn);
 255                }
 256        }
 257}
 258#endif
 259
 260static unsigned long calculate_numa_remap_pages(void)
 261{
 262        int nid;
 263        unsigned long size, reserve_pages = 0;
 264
 265        for_each_online_node(nid) {
 266                u64 node_kva_target;
 267                u64 node_kva_final;
 268
 269                /*
 270                 * The acpi/srat node info can show hot-add memroy zones
 271                 * where memory could be added but not currently present.
 272                 */
 273                printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
 274                        nid, node_start_pfn[nid], node_end_pfn[nid]);
 275                if (node_start_pfn[nid] > max_pfn)
 276                        continue;
 277                if (!node_end_pfn[nid])
 278                        continue;
 279                if (node_end_pfn[nid] > max_pfn)
 280                        node_end_pfn[nid] = max_pfn;
 281
 282                /* ensure the remap includes space for the pgdat. */
 283                size = node_remap_size[nid] + sizeof(pg_data_t);
 284
 285                /* convert size to large (pmd size) pages, rounding up */
 286                size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
 287                /* now the roundup is correct, convert to PAGE_SIZE pages */
 288                size = size * PTRS_PER_PTE;
 289
 290                node_kva_target = round_down(node_end_pfn[nid] - size,
 291                                                 PTRS_PER_PTE);
 292                node_kva_target <<= PAGE_SHIFT;
 293                do {
 294                        node_kva_final = find_e820_area(node_kva_target,
 295                                        ((u64)node_end_pfn[nid])<<PAGE_SHIFT,
 296                                                ((u64)size)<<PAGE_SHIFT,
 297                                                LARGE_PAGE_BYTES);
 298                        node_kva_target -= LARGE_PAGE_BYTES;
 299                } while (node_kva_final == -1ULL &&
 300                         (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid]));
 301
 302                if (node_kva_final == -1ULL)
 303                        panic("Can not get kva ram\n");
 304
 305                node_remap_size[nid] = size;
 306                node_remap_offset[nid] = reserve_pages;
 307                reserve_pages += size;
 308                printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
 309                                  " node %d at %llx\n",
 310                                size, nid, node_kva_final>>PAGE_SHIFT);
 311
 312                /*
 313                 *  prevent kva address below max_low_pfn want it on system
 314                 *  with less memory later.
 315                 *  layout will be: KVA address , KVA RAM
 316                 *
 317                 *  we are supposed to only record the one less then max_low_pfn
 318                 *  but we could have some hole in high memory, and it will only
 319                 *  check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
 320                 *  to use it as free.
 321                 *  So reserve_early here, hope we don't run out of that array
 322                 */
 323                reserve_early(node_kva_final,
 324                              node_kva_final+(((u64)size)<<PAGE_SHIFT),
 325                              "KVA RAM");
 326
 327                node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT;
 328                remove_active_range(nid, node_remap_start_pfn[nid],
 329                                         node_remap_start_pfn[nid] + size);
 330        }
 331        printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
 332                        reserve_pages);
 333        return reserve_pages;
 334}
 335
 336static void init_remap_allocator(int nid)
 337{
 338        node_remap_start_vaddr[nid] = pfn_to_kaddr(
 339                        kva_start_pfn + node_remap_offset[nid]);
 340        node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
 341                (node_remap_size[nid] * PAGE_SIZE);
 342        node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
 343                ALIGN(sizeof(pg_data_t), PAGE_SIZE);
 344
 345        printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
 346                (ulong) node_remap_start_vaddr[nid],
 347                (ulong) node_remap_end_vaddr[nid]);
 348}
 349
 350void __init initmem_init(unsigned long start_pfn,
 351                                  unsigned long end_pfn)
 352{
 353        int nid;
 354        long kva_target_pfn;
 355
 356        /*
 357         * When mapping a NUMA machine we allocate the node_mem_map arrays
 358         * from node local memory.  They are then mapped directly into KVA
 359         * between zone normal and vmalloc space.  Calculate the size of
 360         * this space and use it to adjust the boundary between ZONE_NORMAL
 361         * and ZONE_HIGHMEM.
 362         */
 363
 364        get_memcfg_numa();
 365
 366        kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE);
 367
 368        kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
 369        do {
 370                kva_start_pfn = find_e820_area(kva_target_pfn<<PAGE_SHIFT,
 371                                        max_low_pfn<<PAGE_SHIFT,
 372                                        kva_pages<<PAGE_SHIFT,
 373                                        PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
 374                kva_target_pfn -= PTRS_PER_PTE;
 375        } while (kva_start_pfn == -1UL && kva_target_pfn > min_low_pfn);
 376
 377        if (kva_start_pfn == -1UL)
 378                panic("Can not get kva space\n");
 379
 380        printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
 381                kva_start_pfn, max_low_pfn);
 382        printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
 383
 384        /* avoid clash with initrd */
 385        reserve_early(kva_start_pfn<<PAGE_SHIFT,
 386                      (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
 387                     "KVA PG");
 388#ifdef CONFIG_HIGHMEM
 389        highstart_pfn = highend_pfn = max_pfn;
 390        if (max_pfn > max_low_pfn)
 391                highstart_pfn = max_low_pfn;
 392        printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
 393               pages_to_mb(highend_pfn - highstart_pfn));
 394        num_physpages = highend_pfn;
 395        high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
 396#else
 397        num_physpages = max_low_pfn;
 398        high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
 399#endif
 400        printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
 401                        pages_to_mb(max_low_pfn));
 402        printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
 403                        max_low_pfn, highstart_pfn);
 404
 405        printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
 406                        (ulong) pfn_to_kaddr(max_low_pfn));
 407        for_each_online_node(nid) {
 408                init_remap_allocator(nid);
 409
 410                allocate_pgdat(nid);
 411        }
 412        remap_numa_kva();
 413
 414        printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
 415                        (ulong) pfn_to_kaddr(highstart_pfn));
 416        for_each_online_node(nid)
 417                propagate_e820_map_node(nid);
 418
 419        for_each_online_node(nid)
 420                memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 421
 422        NODE_DATA(0)->bdata = &bootmem_node_data[0];
 423        setup_bootmem_allocator();
 424}
 425
 426void __init set_highmem_pages_init(void)
 427{
 428#ifdef CONFIG_HIGHMEM
 429        struct zone *zone;
 430        int nid;
 431
 432        for_each_zone(zone) {
 433                unsigned long zone_start_pfn, zone_end_pfn;
 434
 435                if (!is_highmem(zone))
 436                        continue;
 437
 438                zone_start_pfn = zone->zone_start_pfn;
 439                zone_end_pfn = zone_start_pfn + zone->spanned_pages;
 440
 441                nid = zone_to_nid(zone);
 442                printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n",
 443                                zone->name, nid, zone_start_pfn, zone_end_pfn);
 444
 445                add_highpages_with_active_regions(nid, zone_start_pfn,
 446                                 zone_end_pfn);
 447        }
 448        totalram_pages += totalhigh_pages;
 449#endif
 450}
 451
 452#ifdef CONFIG_MEMORY_HOTPLUG
 453static int paddr_to_nid(u64 addr)
 454{
 455        int nid;
 456        unsigned long pfn = PFN_DOWN(addr);
 457
 458        for_each_node(nid)
 459                if (node_start_pfn[nid] <= pfn &&
 460                    pfn < node_end_pfn[nid])
 461                        return nid;
 462
 463        return -1;
 464}
 465
 466/*
 467 * This function is used to ask node id BEFORE memmap and mem_section's
 468 * initialization (pfn_to_nid() can't be used yet).
 469 * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
 470 */
 471int memory_add_physaddr_to_nid(u64 addr)
 472{
 473        int nid = paddr_to_nid(addr);
 474        return (nid >= 0) ? nid : 0;
 475}
 476
 477EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 478#endif
 479
 480