linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *   Amit Shah    <amit.shah@qumranet.com>
  14 *   Ben-Ami Yassour <benami@il.ibm.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include "irq.h"
  23#include "mmu.h"
  24#include "i8254.h"
  25#include "tss.h"
  26#include "kvm_cache_regs.h"
  27#include "x86.h"
  28
  29#include <linux/clocksource.h>
  30#include <linux/interrupt.h>
  31#include <linux/kvm.h>
  32#include <linux/fs.h>
  33#include <linux/vmalloc.h>
  34#include <linux/module.h>
  35#include <linux/mman.h>
  36#include <linux/highmem.h>
  37#include <linux/intel-iommu.h>
  38
  39#include <asm/uaccess.h>
  40#include <asm/msr.h>
  41#include <asm/desc.h>
  42
  43#define MAX_IO_MSRS 256
  44#define CR0_RESERVED_BITS                                               \
  45        (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  46                          | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  47                          | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  48#define CR4_RESERVED_BITS                                               \
  49        (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  50                          | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
  51                          | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
  52                          | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  53
  54#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  55/* EFER defaults:
  56 * - enable syscall per default because its emulated by KVM
  57 * - enable LME and LMA per default on 64 bit KVM
  58 */
  59#ifdef CONFIG_X86_64
  60static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  61#else
  62static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  63#endif
  64
  65#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  66#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  67
  68static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  69                                    struct kvm_cpuid_entry2 __user *entries);
  70
  71struct kvm_x86_ops *kvm_x86_ops;
  72EXPORT_SYMBOL_GPL(kvm_x86_ops);
  73
  74struct kvm_stats_debugfs_item debugfs_entries[] = {
  75        { "pf_fixed", VCPU_STAT(pf_fixed) },
  76        { "pf_guest", VCPU_STAT(pf_guest) },
  77        { "tlb_flush", VCPU_STAT(tlb_flush) },
  78        { "invlpg", VCPU_STAT(invlpg) },
  79        { "exits", VCPU_STAT(exits) },
  80        { "io_exits", VCPU_STAT(io_exits) },
  81        { "mmio_exits", VCPU_STAT(mmio_exits) },
  82        { "signal_exits", VCPU_STAT(signal_exits) },
  83        { "irq_window", VCPU_STAT(irq_window_exits) },
  84        { "nmi_window", VCPU_STAT(nmi_window_exits) },
  85        { "halt_exits", VCPU_STAT(halt_exits) },
  86        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  87        { "hypercalls", VCPU_STAT(hypercalls) },
  88        { "request_irq", VCPU_STAT(request_irq_exits) },
  89        { "irq_exits", VCPU_STAT(irq_exits) },
  90        { "host_state_reload", VCPU_STAT(host_state_reload) },
  91        { "efer_reload", VCPU_STAT(efer_reload) },
  92        { "fpu_reload", VCPU_STAT(fpu_reload) },
  93        { "insn_emulation", VCPU_STAT(insn_emulation) },
  94        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  95        { "irq_injections", VCPU_STAT(irq_injections) },
  96        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  97        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  98        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  99        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 100        { "mmu_flooded", VM_STAT(mmu_flooded) },
 101        { "mmu_recycled", VM_STAT(mmu_recycled) },
 102        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 103        { "mmu_unsync", VM_STAT(mmu_unsync) },
 104        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 105        { "largepages", VM_STAT(lpages) },
 106        { NULL }
 107};
 108
 109unsigned long segment_base(u16 selector)
 110{
 111        struct descriptor_table gdt;
 112        struct desc_struct *d;
 113        unsigned long table_base;
 114        unsigned long v;
 115
 116        if (selector == 0)
 117                return 0;
 118
 119        asm("sgdt %0" : "=m"(gdt));
 120        table_base = gdt.base;
 121
 122        if (selector & 4) {           /* from ldt */
 123                u16 ldt_selector;
 124
 125                asm("sldt %0" : "=g"(ldt_selector));
 126                table_base = segment_base(ldt_selector);
 127        }
 128        d = (struct desc_struct *)(table_base + (selector & ~7));
 129        v = d->base0 | ((unsigned long)d->base1 << 16) |
 130                ((unsigned long)d->base2 << 24);
 131#ifdef CONFIG_X86_64
 132        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
 133                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
 134#endif
 135        return v;
 136}
 137EXPORT_SYMBOL_GPL(segment_base);
 138
 139u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 140{
 141        if (irqchip_in_kernel(vcpu->kvm))
 142                return vcpu->arch.apic_base;
 143        else
 144                return vcpu->arch.apic_base;
 145}
 146EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 147
 148void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 149{
 150        /* TODO: reserve bits check */
 151        if (irqchip_in_kernel(vcpu->kvm))
 152                kvm_lapic_set_base(vcpu, data);
 153        else
 154                vcpu->arch.apic_base = data;
 155}
 156EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 157
 158void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 159{
 160        WARN_ON(vcpu->arch.exception.pending);
 161        vcpu->arch.exception.pending = true;
 162        vcpu->arch.exception.has_error_code = false;
 163        vcpu->arch.exception.nr = nr;
 164}
 165EXPORT_SYMBOL_GPL(kvm_queue_exception);
 166
 167void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
 168                           u32 error_code)
 169{
 170        ++vcpu->stat.pf_guest;
 171        if (vcpu->arch.exception.pending) {
 172                if (vcpu->arch.exception.nr == PF_VECTOR) {
 173                        printk(KERN_DEBUG "kvm: inject_page_fault:"
 174                                        " double fault 0x%lx\n", addr);
 175                        vcpu->arch.exception.nr = DF_VECTOR;
 176                        vcpu->arch.exception.error_code = 0;
 177                } else if (vcpu->arch.exception.nr == DF_VECTOR) {
 178                        /* triple fault -> shutdown */
 179                        set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
 180                }
 181                return;
 182        }
 183        vcpu->arch.cr2 = addr;
 184        kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
 185}
 186
 187void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 188{
 189        vcpu->arch.nmi_pending = 1;
 190}
 191EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 192
 193void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 194{
 195        WARN_ON(vcpu->arch.exception.pending);
 196        vcpu->arch.exception.pending = true;
 197        vcpu->arch.exception.has_error_code = true;
 198        vcpu->arch.exception.nr = nr;
 199        vcpu->arch.exception.error_code = error_code;
 200}
 201EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 202
 203static void __queue_exception(struct kvm_vcpu *vcpu)
 204{
 205        kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
 206                                     vcpu->arch.exception.has_error_code,
 207                                     vcpu->arch.exception.error_code);
 208}
 209
 210/*
 211 * Load the pae pdptrs.  Return true is they are all valid.
 212 */
 213int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
 214{
 215        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 216        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 217        int i;
 218        int ret;
 219        u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 220
 221        ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
 222                                  offset * sizeof(u64), sizeof(pdpte));
 223        if (ret < 0) {
 224                ret = 0;
 225                goto out;
 226        }
 227        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 228                if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
 229                        ret = 0;
 230                        goto out;
 231                }
 232        }
 233        ret = 1;
 234
 235        memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
 236out:
 237
 238        return ret;
 239}
 240EXPORT_SYMBOL_GPL(load_pdptrs);
 241
 242static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 243{
 244        u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 245        bool changed = true;
 246        int r;
 247
 248        if (is_long_mode(vcpu) || !is_pae(vcpu))
 249                return false;
 250
 251        r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
 252        if (r < 0)
 253                goto out;
 254        changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
 255out:
 256
 257        return changed;
 258}
 259
 260void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 261{
 262        if (cr0 & CR0_RESERVED_BITS) {
 263                printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
 264                       cr0, vcpu->arch.cr0);
 265                kvm_inject_gp(vcpu, 0);
 266                return;
 267        }
 268
 269        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
 270                printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
 271                kvm_inject_gp(vcpu, 0);
 272                return;
 273        }
 274
 275        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
 276                printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
 277                       "and a clear PE flag\n");
 278                kvm_inject_gp(vcpu, 0);
 279                return;
 280        }
 281
 282        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 283#ifdef CONFIG_X86_64
 284                if ((vcpu->arch.shadow_efer & EFER_LME)) {
 285                        int cs_db, cs_l;
 286
 287                        if (!is_pae(vcpu)) {
 288                                printk(KERN_DEBUG "set_cr0: #GP, start paging "
 289                                       "in long mode while PAE is disabled\n");
 290                                kvm_inject_gp(vcpu, 0);
 291                                return;
 292                        }
 293                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 294                        if (cs_l) {
 295                                printk(KERN_DEBUG "set_cr0: #GP, start paging "
 296                                       "in long mode while CS.L == 1\n");
 297                                kvm_inject_gp(vcpu, 0);
 298                                return;
 299
 300                        }
 301                } else
 302#endif
 303                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
 304                        printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
 305                               "reserved bits\n");
 306                        kvm_inject_gp(vcpu, 0);
 307                        return;
 308                }
 309
 310        }
 311
 312        kvm_x86_ops->set_cr0(vcpu, cr0);
 313        vcpu->arch.cr0 = cr0;
 314
 315        kvm_mmu_reset_context(vcpu);
 316        return;
 317}
 318EXPORT_SYMBOL_GPL(kvm_set_cr0);
 319
 320void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 321{
 322        kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
 323        KVMTRACE_1D(LMSW, vcpu,
 324                    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
 325                    handler);
 326}
 327EXPORT_SYMBOL_GPL(kvm_lmsw);
 328
 329void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 330{
 331        if (cr4 & CR4_RESERVED_BITS) {
 332                printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
 333                kvm_inject_gp(vcpu, 0);
 334                return;
 335        }
 336
 337        if (is_long_mode(vcpu)) {
 338                if (!(cr4 & X86_CR4_PAE)) {
 339                        printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
 340                               "in long mode\n");
 341                        kvm_inject_gp(vcpu, 0);
 342                        return;
 343                }
 344        } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
 345                   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
 346                printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
 347                kvm_inject_gp(vcpu, 0);
 348                return;
 349        }
 350
 351        if (cr4 & X86_CR4_VMXE) {
 352                printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
 353                kvm_inject_gp(vcpu, 0);
 354                return;
 355        }
 356        kvm_x86_ops->set_cr4(vcpu, cr4);
 357        vcpu->arch.cr4 = cr4;
 358        kvm_mmu_reset_context(vcpu);
 359}
 360EXPORT_SYMBOL_GPL(kvm_set_cr4);
 361
 362void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 363{
 364        if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
 365                kvm_mmu_sync_roots(vcpu);
 366                kvm_mmu_flush_tlb(vcpu);
 367                return;
 368        }
 369
 370        if (is_long_mode(vcpu)) {
 371                if (cr3 & CR3_L_MODE_RESERVED_BITS) {
 372                        printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
 373                        kvm_inject_gp(vcpu, 0);
 374                        return;
 375                }
 376        } else {
 377                if (is_pae(vcpu)) {
 378                        if (cr3 & CR3_PAE_RESERVED_BITS) {
 379                                printk(KERN_DEBUG
 380                                       "set_cr3: #GP, reserved bits\n");
 381                                kvm_inject_gp(vcpu, 0);
 382                                return;
 383                        }
 384                        if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
 385                                printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
 386                                       "reserved bits\n");
 387                                kvm_inject_gp(vcpu, 0);
 388                                return;
 389                        }
 390                }
 391                /*
 392                 * We don't check reserved bits in nonpae mode, because
 393                 * this isn't enforced, and VMware depends on this.
 394                 */
 395        }
 396
 397        /*
 398         * Does the new cr3 value map to physical memory? (Note, we
 399         * catch an invalid cr3 even in real-mode, because it would
 400         * cause trouble later on when we turn on paging anyway.)
 401         *
 402         * A real CPU would silently accept an invalid cr3 and would
 403         * attempt to use it - with largely undefined (and often hard
 404         * to debug) behavior on the guest side.
 405         */
 406        if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 407                kvm_inject_gp(vcpu, 0);
 408        else {
 409                vcpu->arch.cr3 = cr3;
 410                vcpu->arch.mmu.new_cr3(vcpu);
 411        }
 412}
 413EXPORT_SYMBOL_GPL(kvm_set_cr3);
 414
 415void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 416{
 417        if (cr8 & CR8_RESERVED_BITS) {
 418                printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
 419                kvm_inject_gp(vcpu, 0);
 420                return;
 421        }
 422        if (irqchip_in_kernel(vcpu->kvm))
 423                kvm_lapic_set_tpr(vcpu, cr8);
 424        else
 425                vcpu->arch.cr8 = cr8;
 426}
 427EXPORT_SYMBOL_GPL(kvm_set_cr8);
 428
 429unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 430{
 431        if (irqchip_in_kernel(vcpu->kvm))
 432                return kvm_lapic_get_cr8(vcpu);
 433        else
 434                return vcpu->arch.cr8;
 435}
 436EXPORT_SYMBOL_GPL(kvm_get_cr8);
 437
 438/*
 439 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 440 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 441 *
 442 * This list is modified at module load time to reflect the
 443 * capabilities of the host cpu.
 444 */
 445static u32 msrs_to_save[] = {
 446        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 447        MSR_K6_STAR,
 448#ifdef CONFIG_X86_64
 449        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 450#endif
 451        MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 452        MSR_IA32_PERF_STATUS,
 453};
 454
 455static unsigned num_msrs_to_save;
 456
 457static u32 emulated_msrs[] = {
 458        MSR_IA32_MISC_ENABLE,
 459};
 460
 461static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
 462{
 463        if (efer & efer_reserved_bits) {
 464                printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
 465                       efer);
 466                kvm_inject_gp(vcpu, 0);
 467                return;
 468        }
 469
 470        if (is_paging(vcpu)
 471            && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
 472                printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
 473                kvm_inject_gp(vcpu, 0);
 474                return;
 475        }
 476
 477        kvm_x86_ops->set_efer(vcpu, efer);
 478
 479        efer &= ~EFER_LMA;
 480        efer |= vcpu->arch.shadow_efer & EFER_LMA;
 481
 482        vcpu->arch.shadow_efer = efer;
 483}
 484
 485void kvm_enable_efer_bits(u64 mask)
 486{
 487       efer_reserved_bits &= ~mask;
 488}
 489EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 490
 491
 492/*
 493 * Writes msr value into into the appropriate "register".
 494 * Returns 0 on success, non-0 otherwise.
 495 * Assumes vcpu_load() was already called.
 496 */
 497int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 498{
 499        return kvm_x86_ops->set_msr(vcpu, msr_index, data);
 500}
 501
 502/*
 503 * Adapt set_msr() to msr_io()'s calling convention
 504 */
 505static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 506{
 507        return kvm_set_msr(vcpu, index, *data);
 508}
 509
 510static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 511{
 512        static int version;
 513        struct pvclock_wall_clock wc;
 514        struct timespec now, sys, boot;
 515
 516        if (!wall_clock)
 517                return;
 518
 519        version++;
 520
 521        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 522
 523        /*
 524         * The guest calculates current wall clock time by adding
 525         * system time (updated by kvm_write_guest_time below) to the
 526         * wall clock specified here.  guest system time equals host
 527         * system time for us, thus we must fill in host boot time here.
 528         */
 529        now = current_kernel_time();
 530        ktime_get_ts(&sys);
 531        boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
 532
 533        wc.sec = boot.tv_sec;
 534        wc.nsec = boot.tv_nsec;
 535        wc.version = version;
 536
 537        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 538
 539        version++;
 540        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 541}
 542
 543static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 544{
 545        uint32_t quotient, remainder;
 546
 547        /* Don't try to replace with do_div(), this one calculates
 548         * "(dividend << 32) / divisor" */
 549        __asm__ ( "divl %4"
 550                  : "=a" (quotient), "=d" (remainder)
 551                  : "0" (0), "1" (dividend), "r" (divisor) );
 552        return quotient;
 553}
 554
 555static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
 556{
 557        uint64_t nsecs = 1000000000LL;
 558        int32_t  shift = 0;
 559        uint64_t tps64;
 560        uint32_t tps32;
 561
 562        tps64 = tsc_khz * 1000LL;
 563        while (tps64 > nsecs*2) {
 564                tps64 >>= 1;
 565                shift--;
 566        }
 567
 568        tps32 = (uint32_t)tps64;
 569        while (tps32 <= (uint32_t)nsecs) {
 570                tps32 <<= 1;
 571                shift++;
 572        }
 573
 574        hv_clock->tsc_shift = shift;
 575        hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
 576
 577        pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
 578                 __func__, tsc_khz, hv_clock->tsc_shift,
 579                 hv_clock->tsc_to_system_mul);
 580}
 581
 582static void kvm_write_guest_time(struct kvm_vcpu *v)
 583{
 584        struct timespec ts;
 585        unsigned long flags;
 586        struct kvm_vcpu_arch *vcpu = &v->arch;
 587        void *shared_kaddr;
 588
 589        if ((!vcpu->time_page))
 590                return;
 591
 592        if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
 593                kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
 594                vcpu->hv_clock_tsc_khz = tsc_khz;
 595        }
 596
 597        /* Keep irq disabled to prevent changes to the clock */
 598        local_irq_save(flags);
 599        kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
 600                          &vcpu->hv_clock.tsc_timestamp);
 601        ktime_get_ts(&ts);
 602        local_irq_restore(flags);
 603
 604        /* With all the info we got, fill in the values */
 605
 606        vcpu->hv_clock.system_time = ts.tv_nsec +
 607                                     (NSEC_PER_SEC * (u64)ts.tv_sec);
 608        /*
 609         * The interface expects us to write an even number signaling that the
 610         * update is finished. Since the guest won't see the intermediate
 611         * state, we just increase by 2 at the end.
 612         */
 613        vcpu->hv_clock.version += 2;
 614
 615        shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
 616
 617        memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
 618               sizeof(vcpu->hv_clock));
 619
 620        kunmap_atomic(shared_kaddr, KM_USER0);
 621
 622        mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
 623}
 624
 625static bool msr_mtrr_valid(unsigned msr)
 626{
 627        switch (msr) {
 628        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 629        case MSR_MTRRfix64K_00000:
 630        case MSR_MTRRfix16K_80000:
 631        case MSR_MTRRfix16K_A0000:
 632        case MSR_MTRRfix4K_C0000:
 633        case MSR_MTRRfix4K_C8000:
 634        case MSR_MTRRfix4K_D0000:
 635        case MSR_MTRRfix4K_D8000:
 636        case MSR_MTRRfix4K_E0000:
 637        case MSR_MTRRfix4K_E8000:
 638        case MSR_MTRRfix4K_F0000:
 639        case MSR_MTRRfix4K_F8000:
 640        case MSR_MTRRdefType:
 641        case MSR_IA32_CR_PAT:
 642                return true;
 643        case 0x2f8:
 644                return true;
 645        }
 646        return false;
 647}
 648
 649static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 650{
 651        if (!msr_mtrr_valid(msr))
 652                return 1;
 653
 654        vcpu->arch.mtrr[msr - 0x200] = data;
 655        return 0;
 656}
 657
 658int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 659{
 660        switch (msr) {
 661        case MSR_EFER:
 662                set_efer(vcpu, data);
 663                break;
 664        case MSR_IA32_MC0_STATUS:
 665                pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
 666                       __func__, data);
 667                break;
 668        case MSR_IA32_MCG_STATUS:
 669                pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
 670                        __func__, data);
 671                break;
 672        case MSR_IA32_MCG_CTL:
 673                pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
 674                        __func__, data);
 675                break;
 676        case MSR_IA32_DEBUGCTLMSR:
 677                if (!data) {
 678                        /* We support the non-activated case already */
 679                        break;
 680                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
 681                        /* Values other than LBR and BTF are vendor-specific,
 682                           thus reserved and should throw a #GP */
 683                        return 1;
 684                }
 685                pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
 686                        __func__, data);
 687                break;
 688        case MSR_IA32_UCODE_REV:
 689        case MSR_IA32_UCODE_WRITE:
 690                break;
 691        case 0x200 ... 0x2ff:
 692                return set_msr_mtrr(vcpu, msr, data);
 693        case MSR_IA32_APICBASE:
 694                kvm_set_apic_base(vcpu, data);
 695                break;
 696        case MSR_IA32_MISC_ENABLE:
 697                vcpu->arch.ia32_misc_enable_msr = data;
 698                break;
 699        case MSR_KVM_WALL_CLOCK:
 700                vcpu->kvm->arch.wall_clock = data;
 701                kvm_write_wall_clock(vcpu->kvm, data);
 702                break;
 703        case MSR_KVM_SYSTEM_TIME: {
 704                if (vcpu->arch.time_page) {
 705                        kvm_release_page_dirty(vcpu->arch.time_page);
 706                        vcpu->arch.time_page = NULL;
 707                }
 708
 709                vcpu->arch.time = data;
 710
 711                /* we verify if the enable bit is set... */
 712                if (!(data & 1))
 713                        break;
 714
 715                /* ...but clean it before doing the actual write */
 716                vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
 717
 718                vcpu->arch.time_page =
 719                                gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
 720
 721                if (is_error_page(vcpu->arch.time_page)) {
 722                        kvm_release_page_clean(vcpu->arch.time_page);
 723                        vcpu->arch.time_page = NULL;
 724                }
 725
 726                kvm_write_guest_time(vcpu);
 727                break;
 728        }
 729        default:
 730                pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
 731                return 1;
 732        }
 733        return 0;
 734}
 735EXPORT_SYMBOL_GPL(kvm_set_msr_common);
 736
 737
 738/*
 739 * Reads an msr value (of 'msr_index') into 'pdata'.
 740 * Returns 0 on success, non-0 otherwise.
 741 * Assumes vcpu_load() was already called.
 742 */
 743int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
 744{
 745        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
 746}
 747
 748static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 749{
 750        if (!msr_mtrr_valid(msr))
 751                return 1;
 752
 753        *pdata = vcpu->arch.mtrr[msr - 0x200];
 754        return 0;
 755}
 756
 757int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 758{
 759        u64 data;
 760
 761        switch (msr) {
 762        case 0xc0010010: /* SYSCFG */
 763        case 0xc0010015: /* HWCR */
 764        case MSR_IA32_PLATFORM_ID:
 765        case MSR_IA32_P5_MC_ADDR:
 766        case MSR_IA32_P5_MC_TYPE:
 767        case MSR_IA32_MC0_CTL:
 768        case MSR_IA32_MCG_STATUS:
 769        case MSR_IA32_MCG_CAP:
 770        case MSR_IA32_MCG_CTL:
 771        case MSR_IA32_MC0_MISC:
 772        case MSR_IA32_MC0_MISC+4:
 773        case MSR_IA32_MC0_MISC+8:
 774        case MSR_IA32_MC0_MISC+12:
 775        case MSR_IA32_MC0_MISC+16:
 776        case MSR_IA32_MC0_MISC+20:
 777        case MSR_IA32_UCODE_REV:
 778        case MSR_IA32_EBL_CR_POWERON:
 779        case MSR_IA32_DEBUGCTLMSR:
 780        case MSR_IA32_LASTBRANCHFROMIP:
 781        case MSR_IA32_LASTBRANCHTOIP:
 782        case MSR_IA32_LASTINTFROMIP:
 783        case MSR_IA32_LASTINTTOIP:
 784                data = 0;
 785                break;
 786        case MSR_MTRRcap:
 787                data = 0x500 | KVM_NR_VAR_MTRR;
 788                break;
 789        case 0x200 ... 0x2ff:
 790                return get_msr_mtrr(vcpu, msr, pdata);
 791        case 0xcd: /* fsb frequency */
 792                data = 3;
 793                break;
 794        case MSR_IA32_APICBASE:
 795                data = kvm_get_apic_base(vcpu);
 796                break;
 797        case MSR_IA32_MISC_ENABLE:
 798                data = vcpu->arch.ia32_misc_enable_msr;
 799                break;
 800        case MSR_IA32_PERF_STATUS:
 801                /* TSC increment by tick */
 802                data = 1000ULL;
 803                /* CPU multiplier */
 804                data |= (((uint64_t)4ULL) << 40);
 805                break;
 806        case MSR_EFER:
 807                data = vcpu->arch.shadow_efer;
 808                break;
 809        case MSR_KVM_WALL_CLOCK:
 810                data = vcpu->kvm->arch.wall_clock;
 811                break;
 812        case MSR_KVM_SYSTEM_TIME:
 813                data = vcpu->arch.time;
 814                break;
 815        default:
 816                pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
 817                return 1;
 818        }
 819        *pdata = data;
 820        return 0;
 821}
 822EXPORT_SYMBOL_GPL(kvm_get_msr_common);
 823
 824/*
 825 * Read or write a bunch of msrs. All parameters are kernel addresses.
 826 *
 827 * @return number of msrs set successfully.
 828 */
 829static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
 830                    struct kvm_msr_entry *entries,
 831                    int (*do_msr)(struct kvm_vcpu *vcpu,
 832                                  unsigned index, u64 *data))
 833{
 834        int i;
 835
 836        vcpu_load(vcpu);
 837
 838        down_read(&vcpu->kvm->slots_lock);
 839        for (i = 0; i < msrs->nmsrs; ++i)
 840                if (do_msr(vcpu, entries[i].index, &entries[i].data))
 841                        break;
 842        up_read(&vcpu->kvm->slots_lock);
 843
 844        vcpu_put(vcpu);
 845
 846        return i;
 847}
 848
 849/*
 850 * Read or write a bunch of msrs. Parameters are user addresses.
 851 *
 852 * @return number of msrs set successfully.
 853 */
 854static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
 855                  int (*do_msr)(struct kvm_vcpu *vcpu,
 856                                unsigned index, u64 *data),
 857                  int writeback)
 858{
 859        struct kvm_msrs msrs;
 860        struct kvm_msr_entry *entries;
 861        int r, n;
 862        unsigned size;
 863
 864        r = -EFAULT;
 865        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
 866                goto out;
 867
 868        r = -E2BIG;
 869        if (msrs.nmsrs >= MAX_IO_MSRS)
 870                goto out;
 871
 872        r = -ENOMEM;
 873        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
 874        entries = vmalloc(size);
 875        if (!entries)
 876                goto out;
 877
 878        r = -EFAULT;
 879        if (copy_from_user(entries, user_msrs->entries, size))
 880                goto out_free;
 881
 882        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
 883        if (r < 0)
 884                goto out_free;
 885
 886        r = -EFAULT;
 887        if (writeback && copy_to_user(user_msrs->entries, entries, size))
 888                goto out_free;
 889
 890        r = n;
 891
 892out_free:
 893        vfree(entries);
 894out:
 895        return r;
 896}
 897
 898int kvm_dev_ioctl_check_extension(long ext)
 899{
 900        int r;
 901
 902        switch (ext) {
 903        case KVM_CAP_IRQCHIP:
 904        case KVM_CAP_HLT:
 905        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
 906        case KVM_CAP_USER_MEMORY:
 907        case KVM_CAP_SET_TSS_ADDR:
 908        case KVM_CAP_EXT_CPUID:
 909        case KVM_CAP_CLOCKSOURCE:
 910        case KVM_CAP_PIT:
 911        case KVM_CAP_NOP_IO_DELAY:
 912        case KVM_CAP_MP_STATE:
 913        case KVM_CAP_SYNC_MMU:
 914                r = 1;
 915                break;
 916        case KVM_CAP_COALESCED_MMIO:
 917                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 918                break;
 919        case KVM_CAP_VAPIC:
 920                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
 921                break;
 922        case KVM_CAP_NR_VCPUS:
 923                r = KVM_MAX_VCPUS;
 924                break;
 925        case KVM_CAP_NR_MEMSLOTS:
 926                r = KVM_MEMORY_SLOTS;
 927                break;
 928        case KVM_CAP_PV_MMU:
 929                r = !tdp_enabled;
 930                break;
 931        case KVM_CAP_IOMMU:
 932                r = intel_iommu_found();
 933                break;
 934        default:
 935                r = 0;
 936                break;
 937        }
 938        return r;
 939
 940}
 941
 942long kvm_arch_dev_ioctl(struct file *filp,
 943                        unsigned int ioctl, unsigned long arg)
 944{
 945        void __user *argp = (void __user *)arg;
 946        long r;
 947
 948        switch (ioctl) {
 949        case KVM_GET_MSR_INDEX_LIST: {
 950                struct kvm_msr_list __user *user_msr_list = argp;
 951                struct kvm_msr_list msr_list;
 952                unsigned n;
 953
 954                r = -EFAULT;
 955                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
 956                        goto out;
 957                n = msr_list.nmsrs;
 958                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
 959                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
 960                        goto out;
 961                r = -E2BIG;
 962                if (n < num_msrs_to_save)
 963                        goto out;
 964                r = -EFAULT;
 965                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
 966                                 num_msrs_to_save * sizeof(u32)))
 967                        goto out;
 968                if (copy_to_user(user_msr_list->indices
 969                                 + num_msrs_to_save * sizeof(u32),
 970                                 &emulated_msrs,
 971                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
 972                        goto out;
 973                r = 0;
 974                break;
 975        }
 976        case KVM_GET_SUPPORTED_CPUID: {
 977                struct kvm_cpuid2 __user *cpuid_arg = argp;
 978                struct kvm_cpuid2 cpuid;
 979
 980                r = -EFAULT;
 981                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 982                        goto out;
 983                r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
 984                        cpuid_arg->entries);
 985                if (r)
 986                        goto out;
 987
 988                r = -EFAULT;
 989                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
 990                        goto out;
 991                r = 0;
 992                break;
 993        }
 994        default:
 995                r = -EINVAL;
 996        }
 997out:
 998        return r;
 999}
1000
1001void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1002{
1003        kvm_x86_ops->vcpu_load(vcpu, cpu);
1004        kvm_write_guest_time(vcpu);
1005}
1006
1007void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1008{
1009        kvm_x86_ops->vcpu_put(vcpu);
1010        kvm_put_guest_fpu(vcpu);
1011}
1012
1013static int is_efer_nx(void)
1014{
1015        u64 efer;
1016
1017        rdmsrl(MSR_EFER, efer);
1018        return efer & EFER_NX;
1019}
1020
1021static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1022{
1023        int i;
1024        struct kvm_cpuid_entry2 *e, *entry;
1025
1026        entry = NULL;
1027        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1028                e = &vcpu->arch.cpuid_entries[i];
1029                if (e->function == 0x80000001) {
1030                        entry = e;
1031                        break;
1032                }
1033        }
1034        if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1035                entry->edx &= ~(1 << 20);
1036                printk(KERN_INFO "kvm: guest NX capability removed\n");
1037        }
1038}
1039
1040/* when an old userspace process fills a new kernel module */
1041static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1042                                    struct kvm_cpuid *cpuid,
1043                                    struct kvm_cpuid_entry __user *entries)
1044{
1045        int r, i;
1046        struct kvm_cpuid_entry *cpuid_entries;
1047
1048        r = -E2BIG;
1049        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1050                goto out;
1051        r = -ENOMEM;
1052        cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1053        if (!cpuid_entries)
1054                goto out;
1055        r = -EFAULT;
1056        if (copy_from_user(cpuid_entries, entries,
1057                           cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1058                goto out_free;
1059        for (i = 0; i < cpuid->nent; i++) {
1060                vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1061                vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1062                vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1063                vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1064                vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1065                vcpu->arch.cpuid_entries[i].index = 0;
1066                vcpu->arch.cpuid_entries[i].flags = 0;
1067                vcpu->arch.cpuid_entries[i].padding[0] = 0;
1068                vcpu->arch.cpuid_entries[i].padding[1] = 0;
1069                vcpu->arch.cpuid_entries[i].padding[2] = 0;
1070        }
1071        vcpu->arch.cpuid_nent = cpuid->nent;
1072        cpuid_fix_nx_cap(vcpu);
1073        r = 0;
1074
1075out_free:
1076        vfree(cpuid_entries);
1077out:
1078        return r;
1079}
1080
1081static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1082                                    struct kvm_cpuid2 *cpuid,
1083                                    struct kvm_cpuid_entry2 __user *entries)
1084{
1085        int r;
1086
1087        r = -E2BIG;
1088        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1089                goto out;
1090        r = -EFAULT;
1091        if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1092                           cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1093                goto out;
1094        vcpu->arch.cpuid_nent = cpuid->nent;
1095        return 0;
1096
1097out:
1098        return r;
1099}
1100
1101static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1102                                    struct kvm_cpuid2 *cpuid,
1103                                    struct kvm_cpuid_entry2 __user *entries)
1104{
1105        int r;
1106
1107        r = -E2BIG;
1108        if (cpuid->nent < vcpu->arch.cpuid_nent)
1109                goto out;
1110        r = -EFAULT;
1111        if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1112                           vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1113                goto out;
1114        return 0;
1115
1116out:
1117        cpuid->nent = vcpu->arch.cpuid_nent;
1118        return r;
1119}
1120
1121static inline u32 bit(int bitno)
1122{
1123        return 1 << (bitno & 31);
1124}
1125
1126static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1127                          u32 index)
1128{
1129        entry->function = function;
1130        entry->index = index;
1131        cpuid_count(entry->function, entry->index,
1132                &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1133        entry->flags = 0;
1134}
1135
1136static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1137                         u32 index, int *nent, int maxnent)
1138{
1139        const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1140                bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1141                bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1142                bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1143                bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1144                bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1145                bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1146                bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1147                bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1148                bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1149        const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1150                bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1151                bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1152                bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1153                bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1154                bit(X86_FEATURE_PGE) |
1155                bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1156                bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1157                bit(X86_FEATURE_SYSCALL) |
1158                (bit(X86_FEATURE_NX) && is_efer_nx()) |
1159#ifdef CONFIG_X86_64
1160                bit(X86_FEATURE_LM) |
1161#endif
1162                bit(X86_FEATURE_MMXEXT) |
1163                bit(X86_FEATURE_3DNOWEXT) |
1164                bit(X86_FEATURE_3DNOW);
1165        const u32 kvm_supported_word3_x86_features =
1166                bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1167        const u32 kvm_supported_word6_x86_features =
1168                bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1169
1170        /* all func 2 cpuid_count() should be called on the same cpu */
1171        get_cpu();
1172        do_cpuid_1_ent(entry, function, index);
1173        ++*nent;
1174
1175        switch (function) {
1176        case 0:
1177                entry->eax = min(entry->eax, (u32)0xb);
1178                break;
1179        case 1:
1180                entry->edx &= kvm_supported_word0_x86_features;
1181                entry->ecx &= kvm_supported_word3_x86_features;
1182                break;
1183        /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1184         * may return different values. This forces us to get_cpu() before
1185         * issuing the first command, and also to emulate this annoying behavior
1186         * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1187        case 2: {
1188                int t, times = entry->eax & 0xff;
1189
1190                entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1191                for (t = 1; t < times && *nent < maxnent; ++t) {
1192                        do_cpuid_1_ent(&entry[t], function, 0);
1193                        entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1194                        ++*nent;
1195                }
1196                break;
1197        }
1198        /* function 4 and 0xb have additional index. */
1199        case 4: {
1200                int i, cache_type;
1201
1202                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1203                /* read more entries until cache_type is zero */
1204                for (i = 1; *nent < maxnent; ++i) {
1205                        cache_type = entry[i - 1].eax & 0x1f;
1206                        if (!cache_type)
1207                                break;
1208                        do_cpuid_1_ent(&entry[i], function, i);
1209                        entry[i].flags |=
1210                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1211                        ++*nent;
1212                }
1213                break;
1214        }
1215        case 0xb: {
1216                int i, level_type;
1217
1218                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1219                /* read more entries until level_type is zero */
1220                for (i = 1; *nent < maxnent; ++i) {
1221                        level_type = entry[i - 1].ecx & 0xff;
1222                        if (!level_type)
1223                                break;
1224                        do_cpuid_1_ent(&entry[i], function, i);
1225                        entry[i].flags |=
1226                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1227                        ++*nent;
1228                }
1229                break;
1230        }
1231        case 0x80000000:
1232                entry->eax = min(entry->eax, 0x8000001a);
1233                break;
1234        case 0x80000001:
1235                entry->edx &= kvm_supported_word1_x86_features;
1236                entry->ecx &= kvm_supported_word6_x86_features;
1237                break;
1238        }
1239        put_cpu();
1240}
1241
1242static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1243                                    struct kvm_cpuid_entry2 __user *entries)
1244{
1245        struct kvm_cpuid_entry2 *cpuid_entries;
1246        int limit, nent = 0, r = -E2BIG;
1247        u32 func;
1248
1249        if (cpuid->nent < 1)
1250                goto out;
1251        r = -ENOMEM;
1252        cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1253        if (!cpuid_entries)
1254                goto out;
1255
1256        do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1257        limit = cpuid_entries[0].eax;
1258        for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1259                do_cpuid_ent(&cpuid_entries[nent], func, 0,
1260                                &nent, cpuid->nent);
1261        r = -E2BIG;
1262        if (nent >= cpuid->nent)
1263                goto out_free;
1264
1265        do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1266        limit = cpuid_entries[nent - 1].eax;
1267        for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1268                do_cpuid_ent(&cpuid_entries[nent], func, 0,
1269                               &nent, cpuid->nent);
1270        r = -EFAULT;
1271        if (copy_to_user(entries, cpuid_entries,
1272                        nent * sizeof(struct kvm_cpuid_entry2)))
1273                goto out_free;
1274        cpuid->nent = nent;
1275        r = 0;
1276
1277out_free:
1278        vfree(cpuid_entries);
1279out:
1280        return r;
1281}
1282
1283static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1284                                    struct kvm_lapic_state *s)
1285{
1286        vcpu_load(vcpu);
1287        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1288        vcpu_put(vcpu);
1289
1290        return 0;
1291}
1292
1293static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1294                                    struct kvm_lapic_state *s)
1295{
1296        vcpu_load(vcpu);
1297        memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1298        kvm_apic_post_state_restore(vcpu);
1299        vcpu_put(vcpu);
1300
1301        return 0;
1302}
1303
1304static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1305                                    struct kvm_interrupt *irq)
1306{
1307        if (irq->irq < 0 || irq->irq >= 256)
1308                return -EINVAL;
1309        if (irqchip_in_kernel(vcpu->kvm))
1310                return -ENXIO;
1311        vcpu_load(vcpu);
1312
1313        set_bit(irq->irq, vcpu->arch.irq_pending);
1314        set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1315
1316        vcpu_put(vcpu);
1317
1318        return 0;
1319}
1320
1321static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1322                                           struct kvm_tpr_access_ctl *tac)
1323{
1324        if (tac->flags)
1325                return -EINVAL;
1326        vcpu->arch.tpr_access_reporting = !!tac->enabled;
1327        return 0;
1328}
1329
1330long kvm_arch_vcpu_ioctl(struct file *filp,
1331                         unsigned int ioctl, unsigned long arg)
1332{
1333        struct kvm_vcpu *vcpu = filp->private_data;
1334        void __user *argp = (void __user *)arg;
1335        int r;
1336        struct kvm_lapic_state *lapic = NULL;
1337
1338        switch (ioctl) {
1339        case KVM_GET_LAPIC: {
1340                lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1341
1342                r = -ENOMEM;
1343                if (!lapic)
1344                        goto out;
1345                r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1346                if (r)
1347                        goto out;
1348                r = -EFAULT;
1349                if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1350                        goto out;
1351                r = 0;
1352                break;
1353        }
1354        case KVM_SET_LAPIC: {
1355                lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1356                r = -ENOMEM;
1357                if (!lapic)
1358                        goto out;
1359                r = -EFAULT;
1360                if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1361                        goto out;
1362                r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1363                if (r)
1364                        goto out;
1365                r = 0;
1366                break;
1367        }
1368        case KVM_INTERRUPT: {
1369                struct kvm_interrupt irq;
1370
1371                r = -EFAULT;
1372                if (copy_from_user(&irq, argp, sizeof irq))
1373                        goto out;
1374                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1375                if (r)
1376                        goto out;
1377                r = 0;
1378                break;
1379        }
1380        case KVM_SET_CPUID: {
1381                struct kvm_cpuid __user *cpuid_arg = argp;
1382                struct kvm_cpuid cpuid;
1383
1384                r = -EFAULT;
1385                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1386                        goto out;
1387                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1388                if (r)
1389                        goto out;
1390                break;
1391        }
1392        case KVM_SET_CPUID2: {
1393                struct kvm_cpuid2 __user *cpuid_arg = argp;
1394                struct kvm_cpuid2 cpuid;
1395
1396                r = -EFAULT;
1397                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1398                        goto out;
1399                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1400                                cpuid_arg->entries);
1401                if (r)
1402                        goto out;
1403                break;
1404        }
1405        case KVM_GET_CPUID2: {
1406                struct kvm_cpuid2 __user *cpuid_arg = argp;
1407                struct kvm_cpuid2 cpuid;
1408
1409                r = -EFAULT;
1410                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1411                        goto out;
1412                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1413                                cpuid_arg->entries);
1414                if (r)
1415                        goto out;
1416                r = -EFAULT;
1417                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1418                        goto out;
1419                r = 0;
1420                break;
1421        }
1422        case KVM_GET_MSRS:
1423                r = msr_io(vcpu, argp, kvm_get_msr, 1);
1424                break;
1425        case KVM_SET_MSRS:
1426                r = msr_io(vcpu, argp, do_set_msr, 0);
1427                break;
1428        case KVM_TPR_ACCESS_REPORTING: {
1429                struct kvm_tpr_access_ctl tac;
1430
1431                r = -EFAULT;
1432                if (copy_from_user(&tac, argp, sizeof tac))
1433                        goto out;
1434                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1435                if (r)
1436                        goto out;
1437                r = -EFAULT;
1438                if (copy_to_user(argp, &tac, sizeof tac))
1439                        goto out;
1440                r = 0;
1441                break;
1442        };
1443        case KVM_SET_VAPIC_ADDR: {
1444                struct kvm_vapic_addr va;
1445
1446                r = -EINVAL;
1447                if (!irqchip_in_kernel(vcpu->kvm))
1448                        goto out;
1449                r = -EFAULT;
1450                if (copy_from_user(&va, argp, sizeof va))
1451                        goto out;
1452                r = 0;
1453                kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1454                break;
1455        }
1456        default:
1457                r = -EINVAL;
1458        }
1459out:
1460        if (lapic)
1461                kfree(lapic);
1462        return r;
1463}
1464
1465static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1466{
1467        int ret;
1468
1469        if (addr > (unsigned int)(-3 * PAGE_SIZE))
1470                return -1;
1471        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1472        return ret;
1473}
1474
1475static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1476                                          u32 kvm_nr_mmu_pages)
1477{
1478        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1479                return -EINVAL;
1480
1481        down_write(&kvm->slots_lock);
1482
1483        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1484        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1485
1486        up_write(&kvm->slots_lock);
1487        return 0;
1488}
1489
1490static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1491{
1492        return kvm->arch.n_alloc_mmu_pages;
1493}
1494
1495gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1496{
1497        int i;
1498        struct kvm_mem_alias *alias;
1499
1500        for (i = 0; i < kvm->arch.naliases; ++i) {
1501                alias = &kvm->arch.aliases[i];
1502                if (gfn >= alias->base_gfn
1503                    && gfn < alias->base_gfn + alias->npages)
1504                        return alias->target_gfn + gfn - alias->base_gfn;
1505        }
1506        return gfn;
1507}
1508
1509/*
1510 * Set a new alias region.  Aliases map a portion of physical memory into
1511 * another portion.  This is useful for memory windows, for example the PC
1512 * VGA region.
1513 */
1514static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1515                                         struct kvm_memory_alias *alias)
1516{
1517        int r, n;
1518        struct kvm_mem_alias *p;
1519
1520        r = -EINVAL;
1521        /* General sanity checks */
1522        if (alias->memory_size & (PAGE_SIZE - 1))
1523                goto out;
1524        if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1525                goto out;
1526        if (alias->slot >= KVM_ALIAS_SLOTS)
1527                goto out;
1528        if (alias->guest_phys_addr + alias->memory_size
1529            < alias->guest_phys_addr)
1530                goto out;
1531        if (alias->target_phys_addr + alias->memory_size
1532            < alias->target_phys_addr)
1533                goto out;
1534
1535        down_write(&kvm->slots_lock);
1536        spin_lock(&kvm->mmu_lock);
1537
1538        p = &kvm->arch.aliases[alias->slot];
1539        p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1540        p->npages = alias->memory_size >> PAGE_SHIFT;
1541        p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1542
1543        for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1544                if (kvm->arch.aliases[n - 1].npages)
1545                        break;
1546        kvm->arch.naliases = n;
1547
1548        spin_unlock(&kvm->mmu_lock);
1549        kvm_mmu_zap_all(kvm);
1550
1551        up_write(&kvm->slots_lock);
1552
1553        return 0;
1554
1555out:
1556        return r;
1557}
1558
1559static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1560{
1561        int r;
1562
1563        r = 0;
1564        switch (chip->chip_id) {
1565        case KVM_IRQCHIP_PIC_MASTER:
1566                memcpy(&chip->chip.pic,
1567                        &pic_irqchip(kvm)->pics[0],
1568                        sizeof(struct kvm_pic_state));
1569                break;
1570        case KVM_IRQCHIP_PIC_SLAVE:
1571                memcpy(&chip->chip.pic,
1572                        &pic_irqchip(kvm)->pics[1],
1573                        sizeof(struct kvm_pic_state));
1574                break;
1575        case KVM_IRQCHIP_IOAPIC:
1576                memcpy(&chip->chip.ioapic,
1577                        ioapic_irqchip(kvm),
1578                        sizeof(struct kvm_ioapic_state));
1579                break;
1580        default:
1581                r = -EINVAL;
1582                break;
1583        }
1584        return r;
1585}
1586
1587static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1588{
1589        int r;
1590
1591        r = 0;
1592        switch (chip->chip_id) {
1593        case KVM_IRQCHIP_PIC_MASTER:
1594                memcpy(&pic_irqchip(kvm)->pics[0],
1595                        &chip->chip.pic,
1596                        sizeof(struct kvm_pic_state));
1597                break;
1598        case KVM_IRQCHIP_PIC_SLAVE:
1599                memcpy(&pic_irqchip(kvm)->pics[1],
1600                        &chip->chip.pic,
1601                        sizeof(struct kvm_pic_state));
1602                break;
1603        case KVM_IRQCHIP_IOAPIC:
1604                memcpy(ioapic_irqchip(kvm),
1605                        &chip->chip.ioapic,
1606                        sizeof(struct kvm_ioapic_state));
1607                break;
1608        default:
1609                r = -EINVAL;
1610                break;
1611        }
1612        kvm_pic_update_irq(pic_irqchip(kvm));
1613        return r;
1614}
1615
1616static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1617{
1618        int r = 0;
1619
1620        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1621        return r;
1622}
1623
1624static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1625{
1626        int r = 0;
1627
1628        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1629        kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1630        return r;
1631}
1632
1633/*
1634 * Get (and clear) the dirty memory log for a memory slot.
1635 */
1636int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1637                                      struct kvm_dirty_log *log)
1638{
1639        int r;
1640        int n;
1641        struct kvm_memory_slot *memslot;
1642        int is_dirty = 0;
1643
1644        down_write(&kvm->slots_lock);
1645
1646        r = kvm_get_dirty_log(kvm, log, &is_dirty);
1647        if (r)
1648                goto out;
1649
1650        /* If nothing is dirty, don't bother messing with page tables. */
1651        if (is_dirty) {
1652                kvm_mmu_slot_remove_write_access(kvm, log->slot);
1653                kvm_flush_remote_tlbs(kvm);
1654                memslot = &kvm->memslots[log->slot];
1655                n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1656                memset(memslot->dirty_bitmap, 0, n);
1657        }
1658        r = 0;
1659out:
1660        up_write(&kvm->slots_lock);
1661        return r;
1662}
1663
1664long kvm_arch_vm_ioctl(struct file *filp,
1665                       unsigned int ioctl, unsigned long arg)
1666{
1667        struct kvm *kvm = filp->private_data;
1668        void __user *argp = (void __user *)arg;
1669        int r = -EINVAL;
1670        /*
1671         * This union makes it completely explicit to gcc-3.x
1672         * that these two variables' stack usage should be
1673         * combined, not added together.
1674         */
1675        union {
1676                struct kvm_pit_state ps;
1677                struct kvm_memory_alias alias;
1678        } u;
1679
1680        switch (ioctl) {
1681        case KVM_SET_TSS_ADDR:
1682                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1683                if (r < 0)
1684                        goto out;
1685                break;
1686        case KVM_SET_MEMORY_REGION: {
1687                struct kvm_memory_region kvm_mem;
1688                struct kvm_userspace_memory_region kvm_userspace_mem;
1689
1690                r = -EFAULT;
1691                if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1692                        goto out;
1693                kvm_userspace_mem.slot = kvm_mem.slot;
1694                kvm_userspace_mem.flags = kvm_mem.flags;
1695                kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1696                kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1697                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1698                if (r)
1699                        goto out;
1700                break;
1701        }
1702        case KVM_SET_NR_MMU_PAGES:
1703                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1704                if (r)
1705                        goto out;
1706                break;
1707        case KVM_GET_NR_MMU_PAGES:
1708                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1709                break;
1710        case KVM_SET_MEMORY_ALIAS:
1711                r = -EFAULT;
1712                if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1713                        goto out;
1714                r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1715                if (r)
1716                        goto out;
1717                break;
1718        case KVM_CREATE_IRQCHIP:
1719                r = -ENOMEM;
1720                kvm->arch.vpic = kvm_create_pic(kvm);
1721                if (kvm->arch.vpic) {
1722                        r = kvm_ioapic_init(kvm);
1723                        if (r) {
1724                                kfree(kvm->arch.vpic);
1725                                kvm->arch.vpic = NULL;
1726                                goto out;
1727                        }
1728                } else
1729                        goto out;
1730                break;
1731        case KVM_CREATE_PIT:
1732                r = -ENOMEM;
1733                kvm->arch.vpit = kvm_create_pit(kvm);
1734                if (kvm->arch.vpit)
1735                        r = 0;
1736                break;
1737        case KVM_IRQ_LINE: {
1738                struct kvm_irq_level irq_event;
1739
1740                r = -EFAULT;
1741                if (copy_from_user(&irq_event, argp, sizeof irq_event))
1742                        goto out;
1743                if (irqchip_in_kernel(kvm)) {
1744                        mutex_lock(&kvm->lock);
1745                        kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1746                                    irq_event.irq, irq_event.level);
1747                        mutex_unlock(&kvm->lock);
1748                        r = 0;
1749                }
1750                break;
1751        }
1752        case KVM_GET_IRQCHIP: {
1753                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1754                struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1755
1756                r = -ENOMEM;
1757                if (!chip)
1758                        goto out;
1759                r = -EFAULT;
1760                if (copy_from_user(chip, argp, sizeof *chip))
1761                        goto get_irqchip_out;
1762                r = -ENXIO;
1763                if (!irqchip_in_kernel(kvm))
1764                        goto get_irqchip_out;
1765                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1766                if (r)
1767                        goto get_irqchip_out;
1768                r = -EFAULT;
1769                if (copy_to_user(argp, chip, sizeof *chip))
1770                        goto get_irqchip_out;
1771                r = 0;
1772        get_irqchip_out:
1773                kfree(chip);
1774                if (r)
1775                        goto out;
1776                break;
1777        }
1778        case KVM_SET_IRQCHIP: {
1779                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1780                struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1781
1782                r = -ENOMEM;
1783                if (!chip)
1784                        goto out;
1785                r = -EFAULT;
1786                if (copy_from_user(chip, argp, sizeof *chip))
1787                        goto set_irqchip_out;
1788                r = -ENXIO;
1789                if (!irqchip_in_kernel(kvm))
1790                        goto set_irqchip_out;
1791                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1792                if (r)
1793                        goto set_irqchip_out;
1794                r = 0;
1795        set_irqchip_out:
1796                kfree(chip);
1797                if (r)
1798                        goto out;
1799                break;
1800        }
1801        case KVM_GET_PIT: {
1802                r = -EFAULT;
1803                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1804                        goto out;
1805                r = -ENXIO;
1806                if (!kvm->arch.vpit)
1807                        goto out;
1808                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1809                if (r)
1810                        goto out;
1811                r = -EFAULT;
1812                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1813                        goto out;
1814                r = 0;
1815                break;
1816        }
1817        case KVM_SET_PIT: {
1818                r = -EFAULT;
1819                if (copy_from_user(&u.ps, argp, sizeof u.ps))
1820                        goto out;
1821                r = -ENXIO;
1822                if (!kvm->arch.vpit)
1823                        goto out;
1824                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1825                if (r)
1826                        goto out;
1827                r = 0;
1828                break;
1829        }
1830        default:
1831                ;
1832        }
1833out:
1834        return r;
1835}
1836
1837static void kvm_init_msr_list(void)
1838{
1839        u32 dummy[2];
1840        unsigned i, j;
1841
1842        for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1843                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1844                        continue;
1845                if (j < i)
1846                        msrs_to_save[j] = msrs_to_save[i];
1847                j++;
1848        }
1849        num_msrs_to_save = j;
1850}
1851
1852/*
1853 * Only apic need an MMIO device hook, so shortcut now..
1854 */
1855static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1856                                                gpa_t addr, int len,
1857                                                int is_write)
1858{
1859        struct kvm_io_device *dev;
1860
1861        if (vcpu->arch.apic) {
1862                dev = &vcpu->arch.apic->dev;
1863                if (dev->in_range(dev, addr, len, is_write))
1864                        return dev;
1865        }
1866        return NULL;
1867}
1868
1869
1870static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1871                                                gpa_t addr, int len,
1872                                                int is_write)
1873{
1874        struct kvm_io_device *dev;
1875
1876        dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1877        if (dev == NULL)
1878                dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1879                                          is_write);
1880        return dev;
1881}
1882
1883int emulator_read_std(unsigned long addr,
1884                             void *val,
1885                             unsigned int bytes,
1886                             struct kvm_vcpu *vcpu)
1887{
1888        void *data = val;
1889        int r = X86EMUL_CONTINUE;
1890
1891        while (bytes) {
1892                gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1893                unsigned offset = addr & (PAGE_SIZE-1);
1894                unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1895                int ret;
1896
1897                if (gpa == UNMAPPED_GVA) {
1898                        r = X86EMUL_PROPAGATE_FAULT;
1899                        goto out;
1900                }
1901                ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1902                if (ret < 0) {
1903                        r = X86EMUL_UNHANDLEABLE;
1904                        goto out;
1905                }
1906
1907                bytes -= tocopy;
1908                data += tocopy;
1909                addr += tocopy;
1910        }
1911out:
1912        return r;
1913}
1914EXPORT_SYMBOL_GPL(emulator_read_std);
1915
1916static int emulator_read_emulated(unsigned long addr,
1917                                  void *val,
1918                                  unsigned int bytes,
1919                                  struct kvm_vcpu *vcpu)
1920{
1921        struct kvm_io_device *mmio_dev;
1922        gpa_t                 gpa;
1923
1924        if (vcpu->mmio_read_completed) {
1925                memcpy(val, vcpu->mmio_data, bytes);
1926                vcpu->mmio_read_completed = 0;
1927                return X86EMUL_CONTINUE;
1928        }
1929
1930        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1931
1932        /* For APIC access vmexit */
1933        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1934                goto mmio;
1935
1936        if (emulator_read_std(addr, val, bytes, vcpu)
1937                        == X86EMUL_CONTINUE)
1938                return X86EMUL_CONTINUE;
1939        if (gpa == UNMAPPED_GVA)
1940                return X86EMUL_PROPAGATE_FAULT;
1941
1942mmio:
1943        /*
1944         * Is this MMIO handled locally?
1945         */
1946        mutex_lock(&vcpu->kvm->lock);
1947        mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1948        if (mmio_dev) {
1949                kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1950                mutex_unlock(&vcpu->kvm->lock);
1951                return X86EMUL_CONTINUE;
1952        }
1953        mutex_unlock(&vcpu->kvm->lock);
1954
1955        vcpu->mmio_needed = 1;
1956        vcpu->mmio_phys_addr = gpa;
1957        vcpu->mmio_size = bytes;
1958        vcpu->mmio_is_write = 0;
1959
1960        return X86EMUL_UNHANDLEABLE;
1961}
1962
1963int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1964                          const void *val, int bytes)
1965{
1966        int ret;
1967
1968        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1969        if (ret < 0)
1970                return 0;
1971        kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1972        return 1;
1973}
1974
1975static int emulator_write_emulated_onepage(unsigned long addr,
1976                                           const void *val,
1977                                           unsigned int bytes,
1978                                           struct kvm_vcpu *vcpu)
1979{
1980        struct kvm_io_device *mmio_dev;
1981        gpa_t                 gpa;
1982
1983        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1984
1985        if (gpa == UNMAPPED_GVA) {
1986                kvm_inject_page_fault(vcpu, addr, 2);
1987                return X86EMUL_PROPAGATE_FAULT;
1988        }
1989
1990        /* For APIC access vmexit */
1991        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1992                goto mmio;
1993
1994        if (emulator_write_phys(vcpu, gpa, val, bytes))
1995                return X86EMUL_CONTINUE;
1996
1997mmio:
1998        /*
1999         * Is this MMIO handled locally?
2000         */
2001        mutex_lock(&vcpu->kvm->lock);
2002        mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2003        if (mmio_dev) {
2004                kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2005                mutex_unlock(&vcpu->kvm->lock);
2006                return X86EMUL_CONTINUE;
2007        }
2008        mutex_unlock(&vcpu->kvm->lock);
2009
2010        vcpu->mmio_needed = 1;
2011        vcpu->mmio_phys_addr = gpa;
2012        vcpu->mmio_size = bytes;
2013        vcpu->mmio_is_write = 1;
2014        memcpy(vcpu->mmio_data, val, bytes);
2015
2016        return X86EMUL_CONTINUE;
2017}
2018
2019int emulator_write_emulated(unsigned long addr,
2020                                   const void *val,
2021                                   unsigned int bytes,
2022                                   struct kvm_vcpu *vcpu)
2023{
2024        /* Crossing a page boundary? */
2025        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2026                int rc, now;
2027
2028                now = -addr & ~PAGE_MASK;
2029                rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2030                if (rc != X86EMUL_CONTINUE)
2031                        return rc;
2032                addr += now;
2033                val += now;
2034                bytes -= now;
2035        }
2036        return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2037}
2038EXPORT_SYMBOL_GPL(emulator_write_emulated);
2039
2040static int emulator_cmpxchg_emulated(unsigned long addr,
2041                                     const void *old,
2042                                     const void *new,
2043                                     unsigned int bytes,
2044                                     struct kvm_vcpu *vcpu)
2045{
2046        static int reported;
2047
2048        if (!reported) {
2049                reported = 1;
2050                printk(KERN_WARNING "kvm: emulating exchange as write\n");
2051        }
2052#ifndef CONFIG_X86_64
2053        /* guests cmpxchg8b have to be emulated atomically */
2054        if (bytes == 8) {
2055                gpa_t gpa;
2056                struct page *page;
2057                char *kaddr;
2058                u64 val;
2059
2060                gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2061
2062                if (gpa == UNMAPPED_GVA ||
2063                   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2064                        goto emul_write;
2065
2066                if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2067                        goto emul_write;
2068
2069                val = *(u64 *)new;
2070
2071                page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2072
2073                kaddr = kmap_atomic(page, KM_USER0);
2074                set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2075                kunmap_atomic(kaddr, KM_USER0);
2076                kvm_release_page_dirty(page);
2077        }
2078emul_write:
2079#endif
2080
2081        return emulator_write_emulated(addr, new, bytes, vcpu);
2082}
2083
2084static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2085{
2086        return kvm_x86_ops->get_segment_base(vcpu, seg);
2087}
2088
2089int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2090{
2091        kvm_mmu_invlpg(vcpu, address);
2092        return X86EMUL_CONTINUE;
2093}
2094
2095int emulate_clts(struct kvm_vcpu *vcpu)
2096{
2097        KVMTRACE_0D(CLTS, vcpu, handler);
2098        kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2099        return X86EMUL_CONTINUE;
2100}
2101
2102int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2103{
2104        struct kvm_vcpu *vcpu = ctxt->vcpu;
2105
2106        switch (dr) {
2107        case 0 ... 3:
2108                *dest = kvm_x86_ops->get_dr(vcpu, dr);
2109                return X86EMUL_CONTINUE;
2110        default:
2111                pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2112                return X86EMUL_UNHANDLEABLE;
2113        }
2114}
2115
2116int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2117{
2118        unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2119        int exception;
2120
2121        kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2122        if (exception) {
2123                /* FIXME: better handling */
2124                return X86EMUL_UNHANDLEABLE;
2125        }
2126        return X86EMUL_CONTINUE;
2127}
2128
2129void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2130{
2131        u8 opcodes[4];
2132        unsigned long rip = kvm_rip_read(vcpu);
2133        unsigned long rip_linear;
2134
2135        if (!printk_ratelimit())
2136                return;
2137
2138        rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2139
2140        emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2141
2142        printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2143               context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2144}
2145EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2146
2147static struct x86_emulate_ops emulate_ops = {
2148        .read_std            = emulator_read_std,
2149        .read_emulated       = emulator_read_emulated,
2150        .write_emulated      = emulator_write_emulated,
2151        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2152};
2153
2154static void cache_all_regs(struct kvm_vcpu *vcpu)
2155{
2156        kvm_register_read(vcpu, VCPU_REGS_RAX);
2157        kvm_register_read(vcpu, VCPU_REGS_RSP);
2158        kvm_register_read(vcpu, VCPU_REGS_RIP);
2159        vcpu->arch.regs_dirty = ~0;
2160}
2161
2162int emulate_instruction(struct kvm_vcpu *vcpu,
2163                        struct kvm_run *run,
2164                        unsigned long cr2,
2165                        u16 error_code,
2166                        int emulation_type)
2167{
2168        int r;
2169        struct decode_cache *c;
2170
2171        kvm_clear_exception_queue(vcpu);
2172        vcpu->arch.mmio_fault_cr2 = cr2;
2173        /*
2174         * TODO: fix x86_emulate.c to use guest_read/write_register
2175         * instead of direct ->regs accesses, can save hundred cycles
2176         * on Intel for instructions that don't read/change RSP, for
2177         * for example.
2178         */
2179        cache_all_regs(vcpu);
2180
2181        vcpu->mmio_is_write = 0;
2182        vcpu->arch.pio.string = 0;
2183
2184        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2185                int cs_db, cs_l;
2186                kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2187
2188                vcpu->arch.emulate_ctxt.vcpu = vcpu;
2189                vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2190                vcpu->arch.emulate_ctxt.mode =
2191                        (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2192                        ? X86EMUL_MODE_REAL : cs_l
2193                        ? X86EMUL_MODE_PROT64 : cs_db
2194                        ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2195
2196                r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2197
2198                /* Reject the instructions other than VMCALL/VMMCALL when
2199                 * try to emulate invalid opcode */
2200                c = &vcpu->arch.emulate_ctxt.decode;
2201                if ((emulation_type & EMULTYPE_TRAP_UD) &&
2202                    (!(c->twobyte && c->b == 0x01 &&
2203                      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2204                       c->modrm_mod == 3 && c->modrm_rm == 1)))
2205                        return EMULATE_FAIL;
2206
2207                ++vcpu->stat.insn_emulation;
2208                if (r)  {
2209                        ++vcpu->stat.insn_emulation_fail;
2210                        if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2211                                return EMULATE_DONE;
2212                        return EMULATE_FAIL;
2213                }
2214        }
2215
2216        r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2217
2218        if (vcpu->arch.pio.string)
2219                return EMULATE_DO_MMIO;
2220
2221        if ((r || vcpu->mmio_is_write) && run) {
2222                run->exit_reason = KVM_EXIT_MMIO;
2223                run->mmio.phys_addr = vcpu->mmio_phys_addr;
2224                memcpy(run->mmio.data, vcpu->mmio_data, 8);
2225                run->mmio.len = vcpu->mmio_size;
2226                run->mmio.is_write = vcpu->mmio_is_write;
2227        }
2228
2229        if (r) {
2230                if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2231                        return EMULATE_DONE;
2232                if (!vcpu->mmio_needed) {
2233                        kvm_report_emulation_failure(vcpu, "mmio");
2234                        return EMULATE_FAIL;
2235                }
2236                return EMULATE_DO_MMIO;
2237        }
2238
2239        kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2240
2241        if (vcpu->mmio_is_write) {
2242                vcpu->mmio_needed = 0;
2243                return EMULATE_DO_MMIO;
2244        }
2245
2246        return EMULATE_DONE;
2247}
2248EXPORT_SYMBOL_GPL(emulate_instruction);
2249
2250static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2251{
2252        int i;
2253
2254        for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2255                if (vcpu->arch.pio.guest_pages[i]) {
2256                        kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2257                        vcpu->arch.pio.guest_pages[i] = NULL;
2258                }
2259}
2260
2261static int pio_copy_data(struct kvm_vcpu *vcpu)
2262{
2263        void *p = vcpu->arch.pio_data;
2264        void *q;
2265        unsigned bytes;
2266        int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2267
2268        q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2269                 PAGE_KERNEL);
2270        if (!q) {
2271                free_pio_guest_pages(vcpu);
2272                return -ENOMEM;
2273        }
2274        q += vcpu->arch.pio.guest_page_offset;
2275        bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2276        if (vcpu->arch.pio.in)
2277                memcpy(q, p, bytes);
2278        else
2279                memcpy(p, q, bytes);
2280        q -= vcpu->arch.pio.guest_page_offset;
2281        vunmap(q);
2282        free_pio_guest_pages(vcpu);
2283        return 0;
2284}
2285
2286int complete_pio(struct kvm_vcpu *vcpu)
2287{
2288        struct kvm_pio_request *io = &vcpu->arch.pio;
2289        long delta;
2290        int r;
2291        unsigned long val;
2292
2293        if (!io->string) {
2294                if (io->in) {
2295                        val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2296                        memcpy(&val, vcpu->arch.pio_data, io->size);
2297                        kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2298                }
2299        } else {
2300                if (io->in) {
2301                        r = pio_copy_data(vcpu);
2302                        if (r)
2303                                return r;
2304                }
2305
2306                delta = 1;
2307                if (io->rep) {
2308                        delta *= io->cur_count;
2309                        /*
2310                         * The size of the register should really depend on
2311                         * current address size.
2312                         */
2313                        val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2314                        val -= delta;
2315                        kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2316                }
2317                if (io->down)
2318                        delta = -delta;
2319                delta *= io->size;
2320                if (io->in) {
2321                        val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2322                        val += delta;
2323                        kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2324                } else {
2325                        val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2326                        val += delta;
2327                        kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2328                }
2329        }
2330
2331        io->count -= io->cur_count;
2332        io->cur_count = 0;
2333
2334        return 0;
2335}
2336
2337static void kernel_pio(struct kvm_io_device *pio_dev,
2338                       struct kvm_vcpu *vcpu,
2339                       void *pd)
2340{
2341        /* TODO: String I/O for in kernel device */
2342
2343        mutex_lock(&vcpu->kvm->lock);
2344        if (vcpu->arch.pio.in)
2345                kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2346                                  vcpu->arch.pio.size,
2347                                  pd);
2348        else
2349                kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2350                                   vcpu->arch.pio.size,
2351                                   pd);
2352        mutex_unlock(&vcpu->kvm->lock);
2353}
2354
2355static void pio_string_write(struct kvm_io_device *pio_dev,
2356                             struct kvm_vcpu *vcpu)
2357{
2358        struct kvm_pio_request *io = &vcpu->arch.pio;
2359        void *pd = vcpu->arch.pio_data;
2360        int i;
2361
2362        mutex_lock(&vcpu->kvm->lock);
2363        for (i = 0; i < io->cur_count; i++) {
2364                kvm_iodevice_write(pio_dev, io->port,
2365                                   io->size,
2366                                   pd);
2367                pd += io->size;
2368        }
2369        mutex_unlock(&vcpu->kvm->lock);
2370}
2371
2372static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2373                                               gpa_t addr, int len,
2374                                               int is_write)
2375{
2376        return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2377}
2378
2379int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2380                  int size, unsigned port)
2381{
2382        struct kvm_io_device *pio_dev;
2383        unsigned long val;
2384
2385        vcpu->run->exit_reason = KVM_EXIT_IO;
2386        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2387        vcpu->run->io.size = vcpu->arch.pio.size = size;
2388        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2389        vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2390        vcpu->run->io.port = vcpu->arch.pio.port = port;
2391        vcpu->arch.pio.in = in;
2392        vcpu->arch.pio.string = 0;
2393        vcpu->arch.pio.down = 0;
2394        vcpu->arch.pio.guest_page_offset = 0;
2395        vcpu->arch.pio.rep = 0;
2396
2397        if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2398                KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2399                            handler);
2400        else
2401                KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2402                            handler);
2403
2404        val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2405        memcpy(vcpu->arch.pio_data, &val, 4);
2406
2407        kvm_x86_ops->skip_emulated_instruction(vcpu);
2408
2409        pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2410        if (pio_dev) {
2411                kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2412                complete_pio(vcpu);
2413                return 1;
2414        }
2415        return 0;
2416}
2417EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2418
2419int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2420                  int size, unsigned long count, int down,
2421                  gva_t address, int rep, unsigned port)
2422{
2423        unsigned now, in_page;
2424        int i, ret = 0;
2425        int nr_pages = 1;
2426        struct page *page;
2427        struct kvm_io_device *pio_dev;
2428
2429        vcpu->run->exit_reason = KVM_EXIT_IO;
2430        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2431        vcpu->run->io.size = vcpu->arch.pio.size = size;
2432        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2433        vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2434        vcpu->run->io.port = vcpu->arch.pio.port = port;
2435        vcpu->arch.pio.in = in;
2436        vcpu->arch.pio.string = 1;
2437        vcpu->arch.pio.down = down;
2438        vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2439        vcpu->arch.pio.rep = rep;
2440
2441        if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2442                KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2443                            handler);
2444        else
2445                KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2446                            handler);
2447
2448        if (!count) {
2449                kvm_x86_ops->skip_emulated_instruction(vcpu);
2450                return 1;
2451        }
2452
2453        if (!down)
2454                in_page = PAGE_SIZE - offset_in_page(address);
2455        else
2456                in_page = offset_in_page(address) + size;
2457        now = min(count, (unsigned long)in_page / size);
2458        if (!now) {
2459                /*
2460                 * String I/O straddles page boundary.  Pin two guest pages
2461                 * so that we satisfy atomicity constraints.  Do just one
2462                 * transaction to avoid complexity.
2463                 */
2464                nr_pages = 2;
2465                now = 1;
2466        }
2467        if (down) {
2468                /*
2469                 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2470                 */
2471                pr_unimpl(vcpu, "guest string pio down\n");
2472                kvm_inject_gp(vcpu, 0);
2473                return 1;
2474        }
2475        vcpu->run->io.count = now;
2476        vcpu->arch.pio.cur_count = now;
2477
2478        if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2479                kvm_x86_ops->skip_emulated_instruction(vcpu);
2480
2481        for (i = 0; i < nr_pages; ++i) {
2482                page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2483                vcpu->arch.pio.guest_pages[i] = page;
2484                if (!page) {
2485                        kvm_inject_gp(vcpu, 0);
2486                        free_pio_guest_pages(vcpu);
2487                        return 1;
2488                }
2489        }
2490
2491        pio_dev = vcpu_find_pio_dev(vcpu, port,
2492                                    vcpu->arch.pio.cur_count,
2493                                    !vcpu->arch.pio.in);
2494        if (!vcpu->arch.pio.in) {
2495                /* string PIO write */
2496                ret = pio_copy_data(vcpu);
2497                if (ret >= 0 && pio_dev) {
2498                        pio_string_write(pio_dev, vcpu);
2499                        complete_pio(vcpu);
2500                        if (vcpu->arch.pio.count == 0)
2501                                ret = 1;
2502                }
2503        } else if (pio_dev)
2504                pr_unimpl(vcpu, "no string pio read support yet, "
2505                       "port %x size %d count %ld\n",
2506                        port, size, count);
2507
2508        return ret;
2509}
2510EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2511
2512int kvm_arch_init(void *opaque)
2513{
2514        int r;
2515        struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2516
2517        if (kvm_x86_ops) {
2518                printk(KERN_ERR "kvm: already loaded the other module\n");
2519                r = -EEXIST;
2520                goto out;
2521        }
2522
2523        if (!ops->cpu_has_kvm_support()) {
2524                printk(KERN_ERR "kvm: no hardware support\n");
2525                r = -EOPNOTSUPP;
2526                goto out;
2527        }
2528        if (ops->disabled_by_bios()) {
2529                printk(KERN_ERR "kvm: disabled by bios\n");
2530                r = -EOPNOTSUPP;
2531                goto out;
2532        }
2533
2534        r = kvm_mmu_module_init();
2535        if (r)
2536                goto out;
2537
2538        kvm_init_msr_list();
2539
2540        kvm_x86_ops = ops;
2541        kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2542        kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2543        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2544                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
2545        return 0;
2546
2547out:
2548        return r;
2549}
2550
2551void kvm_arch_exit(void)
2552{
2553        kvm_x86_ops = NULL;
2554        kvm_mmu_module_exit();
2555}
2556
2557int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2558{
2559        ++vcpu->stat.halt_exits;
2560        KVMTRACE_0D(HLT, vcpu, handler);
2561        if (irqchip_in_kernel(vcpu->kvm)) {
2562                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2563                return 1;
2564        } else {
2565                vcpu->run->exit_reason = KVM_EXIT_HLT;
2566                return 0;
2567        }
2568}
2569EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2570
2571static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2572                           unsigned long a1)
2573{
2574        if (is_long_mode(vcpu))
2575                return a0;
2576        else
2577                return a0 | ((gpa_t)a1 << 32);
2578}
2579
2580int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2581{
2582        unsigned long nr, a0, a1, a2, a3, ret;
2583        int r = 1;
2584
2585        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2586        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2587        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2588        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2589        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2590
2591        KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2592
2593        if (!is_long_mode(vcpu)) {
2594                nr &= 0xFFFFFFFF;
2595                a0 &= 0xFFFFFFFF;
2596                a1 &= 0xFFFFFFFF;
2597                a2 &= 0xFFFFFFFF;
2598                a3 &= 0xFFFFFFFF;
2599        }
2600
2601        switch (nr) {
2602        case KVM_HC_VAPIC_POLL_IRQ:
2603                ret = 0;
2604                break;
2605        case KVM_HC_MMU_OP:
2606                r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2607                break;
2608        default:
2609                ret = -KVM_ENOSYS;
2610                break;
2611        }
2612        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2613        ++vcpu->stat.hypercalls;
2614        return r;
2615}
2616EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2617
2618int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2619{
2620        char instruction[3];
2621        int ret = 0;
2622        unsigned long rip = kvm_rip_read(vcpu);
2623
2624
2625        /*
2626         * Blow out the MMU to ensure that no other VCPU has an active mapping
2627         * to ensure that the updated hypercall appears atomically across all
2628         * VCPUs.
2629         */
2630        kvm_mmu_zap_all(vcpu->kvm);
2631
2632        kvm_x86_ops->patch_hypercall(vcpu, instruction);
2633        if (emulator_write_emulated(rip, instruction, 3, vcpu)
2634            != X86EMUL_CONTINUE)
2635                ret = -EFAULT;
2636
2637        return ret;
2638}
2639
2640static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2641{
2642        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2643}
2644
2645void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2646{
2647        struct descriptor_table dt = { limit, base };
2648
2649        kvm_x86_ops->set_gdt(vcpu, &dt);
2650}
2651
2652void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2653{
2654        struct descriptor_table dt = { limit, base };
2655
2656        kvm_x86_ops->set_idt(vcpu, &dt);
2657}
2658
2659void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2660                   unsigned long *rflags)
2661{
2662        kvm_lmsw(vcpu, msw);
2663        *rflags = kvm_x86_ops->get_rflags(vcpu);
2664}
2665
2666unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2667{
2668        unsigned long value;
2669
2670        kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2671        switch (cr) {
2672        case 0:
2673                value = vcpu->arch.cr0;
2674                break;
2675        case 2:
2676                value = vcpu->arch.cr2;
2677                break;
2678        case 3:
2679                value = vcpu->arch.cr3;
2680                break;
2681        case 4:
2682                value = vcpu->arch.cr4;
2683                break;
2684        case 8:
2685                value = kvm_get_cr8(vcpu);
2686                break;
2687        default:
2688                vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2689                return 0;
2690        }
2691        KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2692                    (u32)((u64)value >> 32), handler);
2693
2694        return value;
2695}
2696
2697void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2698                     unsigned long *rflags)
2699{
2700        KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2701                    (u32)((u64)val >> 32), handler);
2702
2703        switch (cr) {
2704        case 0:
2705                kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2706                *rflags = kvm_x86_ops->get_rflags(vcpu);
2707                break;
2708        case 2:
2709                vcpu->arch.cr2 = val;
2710                break;
2711        case 3:
2712                kvm_set_cr3(vcpu, val);
2713                break;
2714        case 4:
2715                kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2716                break;
2717        case 8:
2718                kvm_set_cr8(vcpu, val & 0xfUL);
2719                break;
2720        default:
2721                vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2722        }
2723}
2724
2725static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2726{
2727        struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2728        int j, nent = vcpu->arch.cpuid_nent;
2729
2730        e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2731        /* when no next entry is found, the current entry[i] is reselected */
2732        for (j = i + 1; j == i; j = (j + 1) % nent) {
2733                struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2734                if (ej->function == e->function) {
2735                        ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2736                        return j;
2737                }
2738        }
2739        return 0; /* silence gcc, even though control never reaches here */
2740}
2741
2742/* find an entry with matching function, matching index (if needed), and that
2743 * should be read next (if it's stateful) */
2744static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2745        u32 function, u32 index)
2746{
2747        if (e->function != function)
2748                return 0;
2749        if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2750                return 0;
2751        if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2752                !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2753                return 0;
2754        return 1;
2755}
2756
2757void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2758{
2759        int i;
2760        u32 function, index;
2761        struct kvm_cpuid_entry2 *e, *best;
2762
2763        function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2764        index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2765        kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2766        kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2767        kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2768        kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2769        best = NULL;
2770        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2771                e = &vcpu->arch.cpuid_entries[i];
2772                if (is_matching_cpuid_entry(e, function, index)) {
2773                        if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2774                                move_to_next_stateful_cpuid_entry(vcpu, i);
2775                        best = e;
2776                        break;
2777                }
2778                /*
2779                 * Both basic or both extended?
2780                 */
2781                if (((e->function ^ function) & 0x80000000) == 0)
2782                        if (!best || e->function > best->function)
2783                                best = e;
2784        }
2785        if (best) {
2786                kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2787                kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2788                kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2789                kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2790        }
2791        kvm_x86_ops->skip_emulated_instruction(vcpu);
2792        KVMTRACE_5D(CPUID, vcpu, function,
2793                    (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2794                    (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2795                    (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2796                    (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2797}
2798EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2799
2800/*
2801 * Check if userspace requested an interrupt window, and that the
2802 * interrupt window is open.
2803 *
2804 * No need to exit to userspace if we already have an interrupt queued.
2805 */
2806static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2807                                          struct kvm_run *kvm_run)
2808{
2809        return (!vcpu->arch.irq_summary &&
2810                kvm_run->request_interrupt_window &&
2811                vcpu->arch.interrupt_window_open &&
2812                (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2813}
2814
2815static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2816                              struct kvm_run *kvm_run)
2817{
2818        kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2819        kvm_run->cr8 = kvm_get_cr8(vcpu);
2820        kvm_run->apic_base = kvm_get_apic_base(vcpu);
2821        if (irqchip_in_kernel(vcpu->kvm))
2822                kvm_run->ready_for_interrupt_injection = 1;
2823        else
2824                kvm_run->ready_for_interrupt_injection =
2825                                        (vcpu->arch.interrupt_window_open &&
2826                                         vcpu->arch.irq_summary == 0);
2827}
2828
2829static void vapic_enter(struct kvm_vcpu *vcpu)
2830{
2831        struct kvm_lapic *apic = vcpu->arch.apic;
2832        struct page *page;
2833
2834        if (!apic || !apic->vapic_addr)
2835                return;
2836
2837        page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2838
2839        vcpu->arch.apic->vapic_page = page;
2840}
2841
2842static void vapic_exit(struct kvm_vcpu *vcpu)
2843{
2844        struct kvm_lapic *apic = vcpu->arch.apic;
2845
2846        if (!apic || !apic->vapic_addr)
2847                return;
2848
2849        down_read(&vcpu->kvm->slots_lock);
2850        kvm_release_page_dirty(apic->vapic_page);
2851        mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2852        up_read(&vcpu->kvm->slots_lock);
2853}
2854
2855static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2856{
2857        int r;
2858
2859        if (vcpu->requests)
2860                if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2861                        kvm_mmu_unload(vcpu);
2862
2863        r = kvm_mmu_reload(vcpu);
2864        if (unlikely(r))
2865                goto out;
2866
2867        if (vcpu->requests) {
2868                if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2869                        __kvm_migrate_timers(vcpu);
2870                if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2871                        kvm_mmu_sync_roots(vcpu);
2872                if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2873                        kvm_x86_ops->tlb_flush(vcpu);
2874                if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2875                                       &vcpu->requests)) {
2876                        kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2877                        r = 0;
2878                        goto out;
2879                }
2880                if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2881                        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2882                        r = 0;
2883                        goto out;
2884                }
2885        }
2886
2887        clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2888        kvm_inject_pending_timer_irqs(vcpu);
2889
2890        preempt_disable();
2891
2892        kvm_x86_ops->prepare_guest_switch(vcpu);
2893        kvm_load_guest_fpu(vcpu);
2894
2895        local_irq_disable();
2896
2897        if (vcpu->requests || need_resched() || signal_pending(current)) {
2898                local_irq_enable();
2899                preempt_enable();
2900                r = 1;
2901                goto out;
2902        }
2903
2904        if (vcpu->guest_debug.enabled)
2905                kvm_x86_ops->guest_debug_pre(vcpu);
2906
2907        vcpu->guest_mode = 1;
2908        /*
2909         * Make sure that guest_mode assignment won't happen after
2910         * testing the pending IRQ vector bitmap.
2911         */
2912        smp_wmb();
2913
2914        if (vcpu->arch.exception.pending)
2915                __queue_exception(vcpu);
2916        else if (irqchip_in_kernel(vcpu->kvm))
2917                kvm_x86_ops->inject_pending_irq(vcpu);
2918        else
2919                kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2920
2921        kvm_lapic_sync_to_vapic(vcpu);
2922
2923        up_read(&vcpu->kvm->slots_lock);
2924
2925        kvm_guest_enter();
2926
2927
2928        KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2929        kvm_x86_ops->run(vcpu, kvm_run);
2930
2931        vcpu->guest_mode = 0;
2932        local_irq_enable();
2933
2934        ++vcpu->stat.exits;
2935
2936        /*
2937         * We must have an instruction between local_irq_enable() and
2938         * kvm_guest_exit(), so the timer interrupt isn't delayed by
2939         * the interrupt shadow.  The stat.exits increment will do nicely.
2940         * But we need to prevent reordering, hence this barrier():
2941         */
2942        barrier();
2943
2944        kvm_guest_exit();
2945
2946        preempt_enable();
2947
2948        down_read(&vcpu->kvm->slots_lock);
2949
2950        /*
2951         * Profile KVM exit RIPs:
2952         */
2953        if (unlikely(prof_on == KVM_PROFILING)) {
2954                unsigned long rip = kvm_rip_read(vcpu);
2955                profile_hit(KVM_PROFILING, (void *)rip);
2956        }
2957
2958        if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2959                vcpu->arch.exception.pending = false;
2960
2961        kvm_lapic_sync_from_vapic(vcpu);
2962
2963        r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2964out:
2965        return r;
2966}
2967
2968static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2969{
2970        int r;
2971
2972        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2973                pr_debug("vcpu %d received sipi with vector # %x\n",
2974                         vcpu->vcpu_id, vcpu->arch.sipi_vector);
2975                kvm_lapic_reset(vcpu);
2976                r = kvm_x86_ops->vcpu_reset(vcpu);
2977                if (r)
2978                        return r;
2979                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2980        }
2981
2982        down_read(&vcpu->kvm->slots_lock);
2983        vapic_enter(vcpu);
2984
2985        r = 1;
2986        while (r > 0) {
2987                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
2988                        r = vcpu_enter_guest(vcpu, kvm_run);
2989                else {
2990                        up_read(&vcpu->kvm->slots_lock);
2991                        kvm_vcpu_block(vcpu);
2992                        down_read(&vcpu->kvm->slots_lock);
2993                        if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
2994                                if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
2995                                        vcpu->arch.mp_state =
2996                                                        KVM_MP_STATE_RUNNABLE;
2997                        if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2998                                r = -EINTR;
2999                }
3000
3001                if (r > 0) {
3002                        if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3003                                r = -EINTR;
3004                                kvm_run->exit_reason = KVM_EXIT_INTR;
3005                                ++vcpu->stat.request_irq_exits;
3006                        }
3007                        if (signal_pending(current)) {
3008                                r = -EINTR;
3009                                kvm_run->exit_reason = KVM_EXIT_INTR;
3010                                ++vcpu->stat.signal_exits;
3011                        }
3012                        if (need_resched()) {
3013                                up_read(&vcpu->kvm->slots_lock);
3014                                kvm_resched(vcpu);
3015                                down_read(&vcpu->kvm->slots_lock);
3016                        }
3017                }
3018        }
3019
3020        up_read(&vcpu->kvm->slots_lock);
3021        post_kvm_run_save(vcpu, kvm_run);
3022
3023        vapic_exit(vcpu);
3024
3025        return r;
3026}
3027
3028int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3029{
3030        int r;
3031        sigset_t sigsaved;
3032
3033        vcpu_load(vcpu);
3034
3035        if (vcpu->sigset_active)
3036                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3037
3038        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3039                kvm_vcpu_block(vcpu);
3040                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3041                r = -EAGAIN;
3042                goto out;
3043        }
3044
3045        /* re-sync apic's tpr */
3046        if (!irqchip_in_kernel(vcpu->kvm))
3047                kvm_set_cr8(vcpu, kvm_run->cr8);
3048
3049        if (vcpu->arch.pio.cur_count) {
3050                r = complete_pio(vcpu);
3051                if (r)
3052                        goto out;
3053        }
3054#if CONFIG_HAS_IOMEM
3055        if (vcpu->mmio_needed) {
3056                memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3057                vcpu->mmio_read_completed = 1;
3058                vcpu->mmio_needed = 0;
3059
3060                down_read(&vcpu->kvm->slots_lock);
3061                r = emulate_instruction(vcpu, kvm_run,
3062                                        vcpu->arch.mmio_fault_cr2, 0,
3063                                        EMULTYPE_NO_DECODE);
3064                up_read(&vcpu->kvm->slots_lock);
3065                if (r == EMULATE_DO_MMIO) {
3066                        /*
3067                         * Read-modify-write.  Back to userspace.
3068                         */
3069                        r = 0;
3070                        goto out;
3071                }
3072        }
3073#endif
3074        if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3075                kvm_register_write(vcpu, VCPU_REGS_RAX,
3076                                     kvm_run->hypercall.ret);
3077
3078        r = __vcpu_run(vcpu, kvm_run);
3079
3080out:
3081        if (vcpu->sigset_active)
3082                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3083
3084        vcpu_put(vcpu);
3085        return r;
3086}
3087
3088int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3089{
3090        vcpu_load(vcpu);
3091
3092        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3093        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3094        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3095        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3096        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3097        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3098        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3099        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3100#ifdef CONFIG_X86_64
3101        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3102        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3103        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3104        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3105        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3106        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3107        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3108        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3109#endif
3110
3111        regs->rip = kvm_rip_read(vcpu);
3112        regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3113
3114        /*
3115         * Don't leak debug flags in case they were set for guest debugging
3116         */
3117        if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3118                regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3119
3120        vcpu_put(vcpu);
3121
3122        return 0;
3123}
3124
3125int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3126{
3127        vcpu_load(vcpu);
3128
3129        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3130        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3131        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3132        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3133        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3134        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3135        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3136        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3137#ifdef CONFIG_X86_64
3138        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3139        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3140        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3141        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3142        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3143        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3144        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3145        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3146
3147#endif
3148
3149        kvm_rip_write(vcpu, regs->rip);
3150        kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3151
3152
3153        vcpu->arch.exception.pending = false;
3154
3155        vcpu_put(vcpu);
3156
3157        return 0;
3158}
3159
3160void kvm_get_segment(struct kvm_vcpu *vcpu,
3161                     struct kvm_segment *var, int seg)
3162{
3163        kvm_x86_ops->get_segment(vcpu, var, seg);
3164}
3165
3166void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3167{
3168        struct kvm_segment cs;
3169
3170        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3171        *db = cs.db;
3172        *l = cs.l;
3173}
3174EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3175
3176int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3177                                  struct kvm_sregs *sregs)
3178{
3179        struct descriptor_table dt;
3180        int pending_vec;
3181
3182        vcpu_load(vcpu);
3183
3184        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3185        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3186        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3187        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3188        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3189        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3190
3191        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3192        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3193
3194        kvm_x86_ops->get_idt(vcpu, &dt);
3195        sregs->idt.limit = dt.limit;
3196        sregs->idt.base = dt.base;
3197        kvm_x86_ops->get_gdt(vcpu, &dt);
3198        sregs->gdt.limit = dt.limit;
3199        sregs->gdt.base = dt.base;
3200
3201        kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3202        sregs->cr0 = vcpu->arch.cr0;
3203        sregs->cr2 = vcpu->arch.cr2;
3204        sregs->cr3 = vcpu->arch.cr3;
3205        sregs->cr4 = vcpu->arch.cr4;
3206        sregs->cr8 = kvm_get_cr8(vcpu);
3207        sregs->efer = vcpu->arch.shadow_efer;
3208        sregs->apic_base = kvm_get_apic_base(vcpu);
3209
3210        if (irqchip_in_kernel(vcpu->kvm)) {
3211                memset(sregs->interrupt_bitmap, 0,
3212                       sizeof sregs->interrupt_bitmap);
3213                pending_vec = kvm_x86_ops->get_irq(vcpu);
3214                if (pending_vec >= 0)
3215                        set_bit(pending_vec,
3216                                (unsigned long *)sregs->interrupt_bitmap);
3217        } else
3218                memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3219                       sizeof sregs->interrupt_bitmap);
3220
3221        vcpu_put(vcpu);
3222
3223        return 0;
3224}
3225
3226int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3227                                    struct kvm_mp_state *mp_state)
3228{
3229        vcpu_load(vcpu);
3230        mp_state->mp_state = vcpu->arch.mp_state;
3231        vcpu_put(vcpu);
3232        return 0;
3233}
3234
3235int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3236                                    struct kvm_mp_state *mp_state)
3237{
3238        vcpu_load(vcpu);
3239        vcpu->arch.mp_state = mp_state->mp_state;
3240        vcpu_put(vcpu);
3241        return 0;
3242}
3243
3244static void kvm_set_segment(struct kvm_vcpu *vcpu,
3245                        struct kvm_segment *var, int seg)
3246{
3247        kvm_x86_ops->set_segment(vcpu, var, seg);
3248}
3249
3250static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3251                                   struct kvm_segment *kvm_desct)
3252{
3253        kvm_desct->base = seg_desc->base0;
3254        kvm_desct->base |= seg_desc->base1 << 16;
3255        kvm_desct->base |= seg_desc->base2 << 24;
3256        kvm_desct->limit = seg_desc->limit0;
3257        kvm_desct->limit |= seg_desc->limit << 16;
3258        if (seg_desc->g) {
3259                kvm_desct->limit <<= 12;
3260                kvm_desct->limit |= 0xfff;
3261        }
3262        kvm_desct->selector = selector;
3263        kvm_desct->type = seg_desc->type;
3264        kvm_desct->present = seg_desc->p;
3265        kvm_desct->dpl = seg_desc->dpl;
3266        kvm_desct->db = seg_desc->d;
3267        kvm_desct->s = seg_desc->s;
3268        kvm_desct->l = seg_desc->l;
3269        kvm_desct->g = seg_desc->g;
3270        kvm_desct->avl = seg_desc->avl;
3271        if (!selector)
3272                kvm_desct->unusable = 1;
3273        else
3274                kvm_desct->unusable = 0;
3275        kvm_desct->padding = 0;
3276}
3277
3278static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3279                                           u16 selector,
3280                                           struct descriptor_table *dtable)
3281{
3282        if (selector & 1 << 2) {
3283                struct kvm_segment kvm_seg;
3284
3285                kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3286
3287                if (kvm_seg.unusable)
3288                        dtable->limit = 0;
3289                else
3290                        dtable->limit = kvm_seg.limit;
3291                dtable->base = kvm_seg.base;
3292        }
3293        else
3294                kvm_x86_ops->get_gdt(vcpu, dtable);
3295}
3296
3297/* allowed just for 8 bytes segments */
3298static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3299                                         struct desc_struct *seg_desc)
3300{
3301        gpa_t gpa;
3302        struct descriptor_table dtable;
3303        u16 index = selector >> 3;
3304
3305        get_segment_descritptor_dtable(vcpu, selector, &dtable);
3306
3307        if (dtable.limit < index * 8 + 7) {
3308                kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3309                return 1;
3310        }
3311        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3312        gpa += index * 8;
3313        return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3314}
3315
3316/* allowed just for 8 bytes segments */
3317static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3318                                         struct desc_struct *seg_desc)
3319{
3320        gpa_t gpa;
3321        struct descriptor_table dtable;
3322        u16 index = selector >> 3;
3323
3324        get_segment_descritptor_dtable(vcpu, selector, &dtable);
3325
3326        if (dtable.limit < index * 8 + 7)
3327                return 1;
3328        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3329        gpa += index * 8;
3330        return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3331}
3332
3333static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3334                             struct desc_struct *seg_desc)
3335{
3336        u32 base_addr;
3337
3338        base_addr = seg_desc->base0;
3339        base_addr |= (seg_desc->base1 << 16);
3340        base_addr |= (seg_desc->base2 << 24);
3341
3342        return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3343}
3344
3345static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3346{
3347        struct kvm_segment kvm_seg;
3348
3349        kvm_get_segment(vcpu, &kvm_seg, seg);
3350        return kvm_seg.selector;
3351}
3352
3353static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3354                                                u16 selector,
3355                                                struct kvm_segment *kvm_seg)
3356{
3357        struct desc_struct seg_desc;
3358
3359        if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3360                return 1;
3361        seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3362        return 0;
3363}
3364
3365static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3366{
3367        struct kvm_segment segvar = {
3368                .base = selector << 4,
3369                .limit = 0xffff,
3370                .selector = selector,
3371                .type = 3,
3372                .present = 1,
3373                .dpl = 3,
3374                .db = 0,
3375                .s = 1,
3376                .l = 0,
3377                .g = 0,
3378                .avl = 0,
3379                .unusable = 0,
3380        };
3381        kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3382        return 0;
3383}
3384
3385int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3386                                int type_bits, int seg)
3387{
3388        struct kvm_segment kvm_seg;
3389
3390        if (!(vcpu->arch.cr0 & X86_CR0_PE))
3391                return kvm_load_realmode_segment(vcpu, selector, seg);
3392        if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3393                return 1;
3394        kvm_seg.type |= type_bits;
3395
3396        if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3397            seg != VCPU_SREG_LDTR)
3398                if (!kvm_seg.s)
3399                        kvm_seg.unusable = 1;
3400
3401        kvm_set_segment(vcpu, &kvm_seg, seg);
3402        return 0;
3403}
3404
3405static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3406                                struct tss_segment_32 *tss)
3407{
3408        tss->cr3 = vcpu->arch.cr3;
3409        tss->eip = kvm_rip_read(vcpu);
3410        tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3411        tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3412        tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3413        tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3414        tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3415        tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3416        tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3417        tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3418        tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3419        tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3420        tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3421        tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3422        tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3423        tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3424        tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3425        tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3426        tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3427}
3428
3429static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3430                                  struct tss_segment_32 *tss)
3431{
3432        kvm_set_cr3(vcpu, tss->cr3);
3433
3434        kvm_rip_write(vcpu, tss->eip);
3435        kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3436
3437        kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3438        kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3439        kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3440        kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3441        kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3442        kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3443        kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3444        kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3445
3446        if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3447                return 1;
3448
3449        if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3450                return 1;
3451
3452        if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3453                return 1;
3454
3455        if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3456                return 1;
3457
3458        if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3459                return 1;
3460
3461        if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3462                return 1;
3463
3464        if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3465                return 1;
3466        return 0;
3467}
3468
3469static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3470                                struct tss_segment_16 *tss)
3471{
3472        tss->ip = kvm_rip_read(vcpu);
3473        tss->flag = kvm_x86_ops->get_rflags(vcpu);
3474        tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3475        tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3476        tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3477        tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3478        tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3479        tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3480        tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3481        tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3482
3483        tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3484        tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3485        tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3486        tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3487        tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3488        tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3489}
3490
3491static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3492                                 struct tss_segment_16 *tss)
3493{
3494        kvm_rip_write(vcpu, tss->ip);
3495        kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3496        kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3497        kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3498        kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3499        kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3500        kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3501        kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3502        kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3503        kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3504
3505        if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3506                return 1;
3507
3508        if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3509                return 1;
3510
3511        if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3512                return 1;
3513
3514        if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3515                return 1;
3516
3517        if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3518                return 1;
3519        return 0;
3520}
3521
3522static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3523                       u32 old_tss_base,
3524                       struct desc_struct *nseg_desc)
3525{
3526        struct tss_segment_16 tss_segment_16;
3527        int ret = 0;
3528
3529        if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3530                           sizeof tss_segment_16))
3531                goto out;
3532
3533        save_state_to_tss16(vcpu, &tss_segment_16);
3534
3535        if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3536                            sizeof tss_segment_16))
3537                goto out;
3538
3539        if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3540                           &tss_segment_16, sizeof tss_segment_16))
3541                goto out;
3542
3543        if (load_state_from_tss16(vcpu, &tss_segment_16))
3544                goto out;
3545
3546        ret = 1;
3547out:
3548        return ret;
3549}
3550
3551static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3552                       u32 old_tss_base,
3553                       struct desc_struct *nseg_desc)
3554{
3555        struct tss_segment_32 tss_segment_32;
3556        int ret = 0;
3557
3558        if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3559                           sizeof tss_segment_32))
3560                goto out;
3561
3562        save_state_to_tss32(vcpu, &tss_segment_32);
3563
3564        if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3565                            sizeof tss_segment_32))
3566                goto out;
3567
3568        if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3569                           &tss_segment_32, sizeof tss_segment_32))
3570                goto out;
3571
3572        if (load_state_from_tss32(vcpu, &tss_segment_32))
3573                goto out;
3574
3575        ret = 1;
3576out:
3577        return ret;
3578}
3579
3580int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3581{
3582        struct kvm_segment tr_seg;
3583        struct desc_struct cseg_desc;
3584        struct desc_struct nseg_desc;
3585        int ret = 0;
3586        u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3587        u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3588
3589        old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3590
3591        /* FIXME: Handle errors. Failure to read either TSS or their
3592         * descriptors should generate a pagefault.
3593         */
3594        if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3595                goto out;
3596
3597        if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3598                goto out;
3599
3600        if (reason != TASK_SWITCH_IRET) {
3601                int cpl;
3602
3603                cpl = kvm_x86_ops->get_cpl(vcpu);
3604                if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3605                        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3606                        return 1;
3607                }
3608        }
3609
3610        if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3611                kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3612                return 1;
3613        }
3614
3615        if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3616                cseg_desc.type &= ~(1 << 1); //clear the B flag
3617                save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3618        }
3619
3620        if (reason == TASK_SWITCH_IRET) {
3621                u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3622                kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3623        }
3624
3625        kvm_x86_ops->skip_emulated_instruction(vcpu);
3626
3627        if (nseg_desc.type & 8)
3628                ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3629                                         &nseg_desc);
3630        else
3631                ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3632                                         &nseg_desc);
3633
3634        if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3635                u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3636                kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3637        }
3638
3639        if (reason != TASK_SWITCH_IRET) {
3640                nseg_desc.type |= (1 << 1);
3641                save_guest_segment_descriptor(vcpu, tss_selector,
3642                                              &nseg_desc);
3643        }
3644
3645        kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3646        seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3647        tr_seg.type = 11;
3648        kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3649out:
3650        return ret;
3651}
3652EXPORT_SYMBOL_GPL(kvm_task_switch);
3653
3654int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3655                                  struct kvm_sregs *sregs)
3656{
3657        int mmu_reset_needed = 0;
3658        int i, pending_vec, max_bits;
3659        struct descriptor_table dt;
3660
3661        vcpu_load(vcpu);
3662
3663        dt.limit = sregs->idt.limit;
3664        dt.base = sregs->idt.base;
3665        kvm_x86_ops->set_idt(vcpu, &dt);
3666        dt.limit = sregs->gdt.limit;
3667        dt.base = sregs->gdt.base;
3668        kvm_x86_ops->set_gdt(vcpu, &dt);
3669
3670        vcpu->arch.cr2 = sregs->cr2;
3671        mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3672        vcpu->arch.cr3 = sregs->cr3;
3673
3674        kvm_set_cr8(vcpu, sregs->cr8);
3675
3676        mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3677        kvm_x86_ops->set_efer(vcpu, sregs->efer);
3678        kvm_set_apic_base(vcpu, sregs->apic_base);
3679
3680        kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3681
3682        mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3683        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3684        vcpu->arch.cr0 = sregs->cr0;
3685
3686        mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3687        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3688        if (!is_long_mode(vcpu) && is_pae(vcpu))
3689                load_pdptrs(vcpu, vcpu->arch.cr3);
3690
3691        if (mmu_reset_needed)
3692                kvm_mmu_reset_context(vcpu);
3693
3694        if (!irqchip_in_kernel(vcpu->kvm)) {
3695                memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3696                       sizeof vcpu->arch.irq_pending);
3697                vcpu->arch.irq_summary = 0;
3698                for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3699                        if (vcpu->arch.irq_pending[i])
3700                                __set_bit(i, &vcpu->arch.irq_summary);
3701        } else {
3702                max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3703                pending_vec = find_first_bit(
3704                        (const unsigned long *)sregs->interrupt_bitmap,
3705                        max_bits);
3706                /* Only pending external irq is handled here */
3707                if (pending_vec < max_bits) {
3708                        kvm_x86_ops->set_irq(vcpu, pending_vec);
3709                        pr_debug("Set back pending irq %d\n",
3710                                 pending_vec);
3711                }
3712                kvm_pic_clear_isr_ack(vcpu->kvm);
3713        }
3714
3715        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3716        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3717        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3718        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3719        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3720        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3721
3722        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3723        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3724
3725        /* Older userspace won't unhalt the vcpu on reset. */
3726        if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3727            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3728            !(vcpu->arch.cr0 & X86_CR0_PE))
3729                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3730
3731        vcpu_put(vcpu);
3732
3733        return 0;
3734}
3735
3736int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3737                                    struct kvm_debug_guest *dbg)
3738{
3739        int r;
3740
3741        vcpu_load(vcpu);
3742
3743        r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3744
3745        vcpu_put(vcpu);
3746
3747        return r;
3748}
3749
3750/*
3751 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
3752 * we have asm/x86/processor.h
3753 */
3754struct fxsave {
3755        u16     cwd;
3756        u16     swd;
3757        u16     twd;
3758        u16     fop;
3759        u64     rip;
3760        u64     rdp;
3761        u32     mxcsr;
3762        u32     mxcsr_mask;
3763        u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
3764#ifdef CONFIG_X86_64
3765        u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
3766#else
3767        u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
3768#endif
3769};
3770
3771/*
3772 * Translate a guest virtual address to a guest physical address.
3773 */
3774int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3775                                    struct kvm_translation *tr)
3776{
3777        unsigned long vaddr = tr->linear_address;
3778        gpa_t gpa;
3779
3780        vcpu_load(vcpu);
3781        down_read(&vcpu->kvm->slots_lock);
3782        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3783        up_read(&vcpu->kvm->slots_lock);
3784        tr->physical_address = gpa;
3785        tr->valid = gpa != UNMAPPED_GVA;
3786        tr->writeable = 1;
3787        tr->usermode = 0;
3788        vcpu_put(vcpu);
3789
3790        return 0;
3791}
3792
3793int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3794{
3795        struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3796
3797        vcpu_load(vcpu);
3798
3799        memcpy(fpu->fpr, fxsave->st_space, 128);
3800        fpu->fcw = fxsave->cwd;
3801        fpu->fsw = fxsave->swd;
3802        fpu->ftwx = fxsave->twd;
3803        fpu->last_opcode = fxsave->fop;
3804        fpu->last_ip = fxsave->rip;
3805        fpu->last_dp = fxsave->rdp;
3806        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3807
3808        vcpu_put(vcpu);
3809
3810        return 0;
3811}
3812
3813int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3814{
3815        struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3816
3817        vcpu_load(vcpu);
3818
3819        memcpy(fxsave->st_space, fpu->fpr, 128);
3820        fxsave->cwd = fpu->fcw;
3821        fxsave->swd = fpu->fsw;
3822        fxsave->twd = fpu->ftwx;
3823        fxsave->fop = fpu->last_opcode;
3824        fxsave->rip = fpu->last_ip;
3825        fxsave->rdp = fpu->last_dp;
3826        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3827
3828        vcpu_put(vcpu);
3829
3830        return 0;
3831}
3832
3833void fx_init(struct kvm_vcpu *vcpu)
3834{
3835        unsigned after_mxcsr_mask;
3836
3837        /*
3838         * Touch the fpu the first time in non atomic context as if
3839         * this is the first fpu instruction the exception handler
3840         * will fire before the instruction returns and it'll have to
3841         * allocate ram with GFP_KERNEL.
3842         */
3843        if (!used_math())
3844                kvm_fx_save(&vcpu->arch.host_fx_image);
3845
3846        /* Initialize guest FPU by resetting ours and saving into guest's */
3847        preempt_disable();
3848        kvm_fx_save(&vcpu->arch.host_fx_image);
3849        kvm_fx_finit();
3850        kvm_fx_save(&vcpu->arch.guest_fx_image);
3851        kvm_fx_restore(&vcpu->arch.host_fx_image);
3852        preempt_enable();
3853
3854        vcpu->arch.cr0 |= X86_CR0_ET;
3855        after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3856        vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3857        memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3858               0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3859}
3860EXPORT_SYMBOL_GPL(fx_init);
3861
3862void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3863{
3864        if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3865                return;
3866
3867        vcpu->guest_fpu_loaded = 1;
3868        kvm_fx_save(&vcpu->arch.host_fx_image);
3869        kvm_fx_restore(&vcpu->arch.guest_fx_image);
3870}
3871EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3872
3873void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3874{
3875        if (!vcpu->guest_fpu_loaded)
3876                return;
3877
3878        vcpu->guest_fpu_loaded = 0;
3879        kvm_fx_save(&vcpu->arch.guest_fx_image);
3880        kvm_fx_restore(&vcpu->arch.host_fx_image);
3881        ++vcpu->stat.fpu_reload;
3882}
3883EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3884
3885void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3886{
3887        kvm_x86_ops->vcpu_free(vcpu);
3888}
3889
3890struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3891                                                unsigned int id)
3892{
3893        return kvm_x86_ops->vcpu_create(kvm, id);
3894}
3895
3896int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3897{
3898        int r;
3899
3900        /* We do fxsave: this must be aligned. */
3901        BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3902
3903        vcpu_load(vcpu);
3904        r = kvm_arch_vcpu_reset(vcpu);
3905        if (r == 0)
3906                r = kvm_mmu_setup(vcpu);
3907        vcpu_put(vcpu);
3908        if (r < 0)
3909                goto free_vcpu;
3910
3911        return 0;
3912free_vcpu:
3913        kvm_x86_ops->vcpu_free(vcpu);
3914        return r;
3915}
3916
3917void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3918{
3919        vcpu_load(vcpu);
3920        kvm_mmu_unload(vcpu);
3921        vcpu_put(vcpu);
3922
3923        kvm_x86_ops->vcpu_free(vcpu);
3924}
3925
3926int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3927{
3928        return kvm_x86_ops->vcpu_reset(vcpu);
3929}
3930
3931void kvm_arch_hardware_enable(void *garbage)
3932{
3933        kvm_x86_ops->hardware_enable(garbage);
3934}
3935
3936void kvm_arch_hardware_disable(void *garbage)
3937{
3938        kvm_x86_ops->hardware_disable(garbage);
3939}
3940
3941int kvm_arch_hardware_setup(void)
3942{
3943        return kvm_x86_ops->hardware_setup();
3944}
3945
3946void kvm_arch_hardware_unsetup(void)
3947{
3948        kvm_x86_ops->hardware_unsetup();
3949}
3950
3951void kvm_arch_check_processor_compat(void *rtn)
3952{
3953        kvm_x86_ops->check_processor_compatibility(rtn);
3954}
3955
3956int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3957{
3958        struct page *page;
3959        struct kvm *kvm;
3960        int r;
3961
3962        BUG_ON(vcpu->kvm == NULL);
3963        kvm = vcpu->kvm;
3964
3965        vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3966        if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3967                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3968        else
3969                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3970
3971        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3972        if (!page) {
3973                r = -ENOMEM;
3974                goto fail;
3975        }
3976        vcpu->arch.pio_data = page_address(page);
3977
3978        r = kvm_mmu_create(vcpu);
3979        if (r < 0)
3980                goto fail_free_pio_data;
3981
3982        if (irqchip_in_kernel(kvm)) {
3983                r = kvm_create_lapic(vcpu);
3984                if (r < 0)
3985                        goto fail_mmu_destroy;
3986        }
3987
3988        return 0;
3989
3990fail_mmu_destroy:
3991        kvm_mmu_destroy(vcpu);
3992fail_free_pio_data:
3993        free_page((unsigned long)vcpu->arch.pio_data);
3994fail:
3995        return r;
3996}
3997
3998void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3999{
4000        kvm_free_lapic(vcpu);
4001        down_read(&vcpu->kvm->slots_lock);
4002        kvm_mmu_destroy(vcpu);
4003        up_read(&vcpu->kvm->slots_lock);
4004        free_page((unsigned long)vcpu->arch.pio_data);
4005}
4006
4007struct  kvm *kvm_arch_create_vm(void)
4008{
4009        struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4010
4011        if (!kvm)
4012                return ERR_PTR(-ENOMEM);
4013
4014        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4015        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4016
4017        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4018        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4019
4020        return kvm;
4021}
4022
4023static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4024{
4025        vcpu_load(vcpu);
4026        kvm_mmu_unload(vcpu);
4027        vcpu_put(vcpu);
4028}
4029
4030static void kvm_free_vcpus(struct kvm *kvm)
4031{
4032        unsigned int i;
4033
4034        /*
4035         * Unpin any mmu pages first.
4036         */
4037        for (i = 0; i < KVM_MAX_VCPUS; ++i)
4038                if (kvm->vcpus[i])
4039                        kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4040        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4041                if (kvm->vcpus[i]) {
4042                        kvm_arch_vcpu_free(kvm->vcpus[i]);
4043                        kvm->vcpus[i] = NULL;
4044                }
4045        }
4046
4047}
4048
4049void kvm_arch_destroy_vm(struct kvm *kvm)
4050{
4051        kvm_iommu_unmap_guest(kvm);
4052        kvm_free_all_assigned_devices(kvm);
4053        kvm_free_pit(kvm);
4054        kfree(kvm->arch.vpic);
4055        kfree(kvm->arch.vioapic);
4056        kvm_free_vcpus(kvm);
4057        kvm_free_physmem(kvm);
4058        if (kvm->arch.apic_access_page)
4059                put_page(kvm->arch.apic_access_page);
4060        if (kvm->arch.ept_identity_pagetable)
4061                put_page(kvm->arch.ept_identity_pagetable);
4062        kfree(kvm);
4063}
4064
4065int kvm_arch_set_memory_region(struct kvm *kvm,
4066                                struct kvm_userspace_memory_region *mem,
4067                                struct kvm_memory_slot old,
4068                                int user_alloc)
4069{
4070        int npages = mem->memory_size >> PAGE_SHIFT;
4071        struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4072
4073        /*To keep backward compatibility with older userspace,
4074         *x86 needs to hanlde !user_alloc case.
4075         */
4076        if (!user_alloc) {
4077                if (npages && !old.rmap) {
4078                        unsigned long userspace_addr;
4079
4080                        down_write(&current->mm->mmap_sem);
4081                        userspace_addr = do_mmap(NULL, 0,
4082                                                 npages * PAGE_SIZE,
4083                                                 PROT_READ | PROT_WRITE,
4084                                                 MAP_PRIVATE | MAP_ANONYMOUS,
4085                                                 0);
4086                        up_write(&current->mm->mmap_sem);
4087
4088                        if (IS_ERR((void *)userspace_addr))
4089                                return PTR_ERR((void *)userspace_addr);
4090
4091                        /* set userspace_addr atomically for kvm_hva_to_rmapp */
4092                        spin_lock(&kvm->mmu_lock);
4093                        memslot->userspace_addr = userspace_addr;
4094                        spin_unlock(&kvm->mmu_lock);
4095                } else {
4096                        if (!old.user_alloc && old.rmap) {
4097                                int ret;
4098
4099                                down_write(&current->mm->mmap_sem);
4100                                ret = do_munmap(current->mm, old.userspace_addr,
4101                                                old.npages * PAGE_SIZE);
4102                                up_write(&current->mm->mmap_sem);
4103                                if (ret < 0)
4104                                        printk(KERN_WARNING
4105                                       "kvm_vm_ioctl_set_memory_region: "
4106                                       "failed to munmap memory\n");
4107                        }
4108                }
4109        }
4110
4111        if (!kvm->arch.n_requested_mmu_pages) {
4112                unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4113                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4114        }
4115
4116        kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4117        kvm_flush_remote_tlbs(kvm);
4118
4119        return 0;
4120}
4121
4122void kvm_arch_flush_shadow(struct kvm *kvm)
4123{
4124        kvm_mmu_zap_all(kvm);
4125}
4126
4127int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4128{
4129        return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4130               || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4131}
4132
4133static void vcpu_kick_intr(void *info)
4134{
4135#ifdef DEBUG
4136        struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4137        printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4138#endif
4139}
4140
4141void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4142{
4143        int ipi_pcpu = vcpu->cpu;
4144        int cpu = get_cpu();
4145
4146        if (waitqueue_active(&vcpu->wq)) {
4147                wake_up_interruptible(&vcpu->wq);
4148                ++vcpu->stat.halt_wakeup;
4149        }
4150        /*
4151         * We may be called synchronously with irqs disabled in guest mode,
4152         * So need not to call smp_call_function_single() in that case.
4153         */
4154        if (vcpu->guest_mode && vcpu->cpu != cpu)
4155                smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4156        put_cpu();
4157}
4158