1
2
3
4
5
6#ifdef CONFIG_SMP
7
8static inline int rt_overloaded(struct rq *rq)
9{
10 return atomic_read(&rq->rd->rto_count);
11}
12
13static inline void rt_set_overload(struct rq *rq)
14{
15 if (!rq->online)
16 return;
17
18 cpu_set(rq->cpu, rq->rd->rto_mask);
19
20
21
22
23
24
25
26 wmb();
27 atomic_inc(&rq->rd->rto_count);
28}
29
30static inline void rt_clear_overload(struct rq *rq)
31{
32 if (!rq->online)
33 return;
34
35
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
38}
39
40static void update_rt_migration(struct rq *rq)
41{
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
50 }
51}
52#endif
53
54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55{
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
64#ifdef CONFIG_RT_GROUP_SCHED
65
66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67{
68 if (!rt_rq->tg)
69 return RUNTIME_INF;
70
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104{
105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
107
108 if (rt_rq->rt_nr_running) {
109 if (rt_se && !on_rt_rq(rt_se))
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
113 }
114}
115
116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
146#else
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
152
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155{
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
158
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
164#else
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201{
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
204}
205
206static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
207{
208}
209
210static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211{
212 return rt_rq->rt_throttled;
213}
214
215static inline cpumask_t sched_rt_period_mask(void)
216{
217 return cpu_online_map;
218}
219
220static inline
221struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222{
223 return &cpu_rq(cpu)->rt;
224}
225
226static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227{
228 return &def_rt_bandwidth;
229}
230
231#endif
232
233#ifdef CONFIG_SMP
234
235
236
237static int do_balance_runtime(struct rt_rq *rt_rq)
238{
239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 int i, weight, more = 0;
242 u64 rt_period;
243
244 weight = cpus_weight(rd->span);
245
246 spin_lock(&rt_b->rt_runtime_lock);
247 rt_period = ktime_to_ns(rt_b->rt_period);
248 for_each_cpu_mask_nr(i, rd->span) {
249 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
250 s64 diff;
251
252 if (iter == rt_rq)
253 continue;
254
255 spin_lock(&iter->rt_runtime_lock);
256
257
258
259
260
261 if (iter->rt_runtime == RUNTIME_INF)
262 goto next;
263
264
265
266
267
268 diff = iter->rt_runtime - iter->rt_time;
269 if (diff > 0) {
270 diff = div_u64((u64)diff, weight);
271 if (rt_rq->rt_runtime + diff > rt_period)
272 diff = rt_period - rt_rq->rt_runtime;
273 iter->rt_runtime -= diff;
274 rt_rq->rt_runtime += diff;
275 more = 1;
276 if (rt_rq->rt_runtime == rt_period) {
277 spin_unlock(&iter->rt_runtime_lock);
278 break;
279 }
280 }
281next:
282 spin_unlock(&iter->rt_runtime_lock);
283 }
284 spin_unlock(&rt_b->rt_runtime_lock);
285
286 return more;
287}
288
289
290
291
292static void __disable_runtime(struct rq *rq)
293{
294 struct root_domain *rd = rq->rd;
295 struct rt_rq *rt_rq;
296
297 if (unlikely(!scheduler_running))
298 return;
299
300 for_each_leaf_rt_rq(rt_rq, rq) {
301 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
302 s64 want;
303 int i;
304
305 spin_lock(&rt_b->rt_runtime_lock);
306 spin_lock(&rt_rq->rt_runtime_lock);
307
308
309
310
311
312 if (rt_rq->rt_runtime == RUNTIME_INF ||
313 rt_rq->rt_runtime == rt_b->rt_runtime)
314 goto balanced;
315 spin_unlock(&rt_rq->rt_runtime_lock);
316
317
318
319
320
321
322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
323
324
325
326
327 for_each_cpu_mask(i, rd->span) {
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329 s64 diff;
330
331
332
333
334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
335 continue;
336
337 spin_lock(&iter->rt_runtime_lock);
338 if (want > 0) {
339 diff = min_t(s64, iter->rt_runtime, want);
340 iter->rt_runtime -= diff;
341 want -= diff;
342 } else {
343 iter->rt_runtime -= want;
344 want -= want;
345 }
346 spin_unlock(&iter->rt_runtime_lock);
347
348 if (!want)
349 break;
350 }
351
352 spin_lock(&rt_rq->rt_runtime_lock);
353
354
355
356
357 BUG_ON(want);
358balanced:
359
360
361
362
363 rt_rq->rt_runtime = RUNTIME_INF;
364 spin_unlock(&rt_rq->rt_runtime_lock);
365 spin_unlock(&rt_b->rt_runtime_lock);
366 }
367}
368
369static void disable_runtime(struct rq *rq)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(&rq->lock, flags);
374 __disable_runtime(rq);
375 spin_unlock_irqrestore(&rq->lock, flags);
376}
377
378static void __enable_runtime(struct rq *rq)
379{
380 struct rt_rq *rt_rq;
381
382 if (unlikely(!scheduler_running))
383 return;
384
385
386
387
388 for_each_leaf_rt_rq(rt_rq, rq) {
389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
390
391 spin_lock(&rt_b->rt_runtime_lock);
392 spin_lock(&rt_rq->rt_runtime_lock);
393 rt_rq->rt_runtime = rt_b->rt_runtime;
394 rt_rq->rt_time = 0;
395 rt_rq->rt_throttled = 0;
396 spin_unlock(&rt_rq->rt_runtime_lock);
397 spin_unlock(&rt_b->rt_runtime_lock);
398 }
399}
400
401static void enable_runtime(struct rq *rq)
402{
403 unsigned long flags;
404
405 spin_lock_irqsave(&rq->lock, flags);
406 __enable_runtime(rq);
407 spin_unlock_irqrestore(&rq->lock, flags);
408}
409
410static int balance_runtime(struct rt_rq *rt_rq)
411{
412 int more = 0;
413
414 if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 more = do_balance_runtime(rt_rq);
417 spin_lock(&rt_rq->rt_runtime_lock);
418 }
419
420 return more;
421}
422#else
423static inline int balance_runtime(struct rt_rq *rt_rq)
424{
425 return 0;
426}
427#endif
428
429static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
430{
431 int i, idle = 1;
432 cpumask_t span;
433
434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
435 return 1;
436
437 span = sched_rt_period_mask();
438 for_each_cpu_mask(i, span) {
439 int enqueue = 0;
440 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 struct rq *rq = rq_of_rt_rq(rt_rq);
442
443 spin_lock(&rq->lock);
444 if (rt_rq->rt_time) {
445 u64 runtime;
446
447 spin_lock(&rt_rq->rt_runtime_lock);
448 if (rt_rq->rt_throttled)
449 balance_runtime(rt_rq);
450 runtime = rt_rq->rt_runtime;
451 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 rt_rq->rt_throttled = 0;
454 enqueue = 1;
455 }
456 if (rt_rq->rt_time || rt_rq->rt_nr_running)
457 idle = 0;
458 spin_unlock(&rt_rq->rt_runtime_lock);
459 } else if (rt_rq->rt_nr_running)
460 idle = 0;
461
462 if (enqueue)
463 sched_rt_rq_enqueue(rt_rq);
464 spin_unlock(&rq->lock);
465 }
466
467 return idle;
468}
469
470static inline int rt_se_prio(struct sched_rt_entity *rt_se)
471{
472#ifdef CONFIG_RT_GROUP_SCHED
473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
474
475 if (rt_rq)
476 return rt_rq->highest_prio;
477#endif
478
479 return rt_task_of(rt_se)->prio;
480}
481
482static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
483{
484 u64 runtime = sched_rt_runtime(rt_rq);
485
486 if (rt_rq->rt_throttled)
487 return rt_rq_throttled(rt_rq);
488
489 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
490 return 0;
491
492 balance_runtime(rt_rq);
493 runtime = sched_rt_runtime(rt_rq);
494 if (runtime == RUNTIME_INF)
495 return 0;
496
497 if (rt_rq->rt_time > runtime) {
498 rt_rq->rt_throttled = 1;
499 if (rt_rq_throttled(rt_rq)) {
500 sched_rt_rq_dequeue(rt_rq);
501 return 1;
502 }
503 }
504
505 return 0;
506}
507
508
509
510
511
512static void update_curr_rt(struct rq *rq)
513{
514 struct task_struct *curr = rq->curr;
515 struct sched_rt_entity *rt_se = &curr->rt;
516 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
517 u64 delta_exec;
518
519 if (!task_has_rt_policy(curr))
520 return;
521
522 delta_exec = rq->clock - curr->se.exec_start;
523 if (unlikely((s64)delta_exec < 0))
524 delta_exec = 0;
525
526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
527
528 curr->se.sum_exec_runtime += delta_exec;
529 account_group_exec_runtime(curr, delta_exec);
530
531 curr->se.exec_start = rq->clock;
532 cpuacct_charge(curr, delta_exec);
533
534 if (!rt_bandwidth_enabled())
535 return;
536
537 for_each_sched_rt_entity(rt_se) {
538 rt_rq = rt_rq_of_se(rt_se);
539
540 spin_lock(&rt_rq->rt_runtime_lock);
541 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
542 rt_rq->rt_time += delta_exec;
543 if (sched_rt_runtime_exceeded(rt_rq))
544 resched_task(curr);
545 }
546 spin_unlock(&rt_rq->rt_runtime_lock);
547 }
548}
549
550static inline
551void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
552{
553 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
554 rt_rq->rt_nr_running++;
555#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
556 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
557#ifdef CONFIG_SMP
558 struct rq *rq = rq_of_rt_rq(rt_rq);
559#endif
560
561 rt_rq->highest_prio = rt_se_prio(rt_se);
562#ifdef CONFIG_SMP
563 if (rq->online)
564 cpupri_set(&rq->rd->cpupri, rq->cpu,
565 rt_se_prio(rt_se));
566#endif
567 }
568#endif
569#ifdef CONFIG_SMP
570 if (rt_se->nr_cpus_allowed > 1) {
571 struct rq *rq = rq_of_rt_rq(rt_rq);
572
573 rq->rt.rt_nr_migratory++;
574 }
575
576 update_rt_migration(rq_of_rt_rq(rt_rq));
577#endif
578#ifdef CONFIG_RT_GROUP_SCHED
579 if (rt_se_boosted(rt_se))
580 rt_rq->rt_nr_boosted++;
581
582 if (rt_rq->tg)
583 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
584#else
585 start_rt_bandwidth(&def_rt_bandwidth);
586#endif
587}
588
589static inline
590void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
591{
592#ifdef CONFIG_SMP
593 int highest_prio = rt_rq->highest_prio;
594#endif
595
596 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
597 WARN_ON(!rt_rq->rt_nr_running);
598 rt_rq->rt_nr_running--;
599#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600 if (rt_rq->rt_nr_running) {
601 struct rt_prio_array *array;
602
603 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
604 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
605
606 array = &rt_rq->active;
607 rt_rq->highest_prio =
608 sched_find_first_bit(array->bitmap);
609 }
610 } else
611 rt_rq->highest_prio = MAX_RT_PRIO;
612#endif
613#ifdef CONFIG_SMP
614 if (rt_se->nr_cpus_allowed > 1) {
615 struct rq *rq = rq_of_rt_rq(rt_rq);
616 rq->rt.rt_nr_migratory--;
617 }
618
619 if (rt_rq->highest_prio != highest_prio) {
620 struct rq *rq = rq_of_rt_rq(rt_rq);
621
622 if (rq->online)
623 cpupri_set(&rq->rd->cpupri, rq->cpu,
624 rt_rq->highest_prio);
625 }
626
627 update_rt_migration(rq_of_rt_rq(rt_rq));
628#endif
629#ifdef CONFIG_RT_GROUP_SCHED
630 if (rt_se_boosted(rt_se))
631 rt_rq->rt_nr_boosted--;
632
633 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
634#endif
635}
636
637static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
638{
639 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
640 struct rt_prio_array *array = &rt_rq->active;
641 struct rt_rq *group_rq = group_rt_rq(rt_se);
642 struct list_head *queue = array->queue + rt_se_prio(rt_se);
643
644
645
646
647
648
649
650 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
651 return;
652
653 list_add_tail(&rt_se->run_list, queue);
654 __set_bit(rt_se_prio(rt_se), array->bitmap);
655
656 inc_rt_tasks(rt_se, rt_rq);
657}
658
659static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
660{
661 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
662 struct rt_prio_array *array = &rt_rq->active;
663
664 list_del_init(&rt_se->run_list);
665 if (list_empty(array->queue + rt_se_prio(rt_se)))
666 __clear_bit(rt_se_prio(rt_se), array->bitmap);
667
668 dec_rt_tasks(rt_se, rt_rq);
669}
670
671
672
673
674
675static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
676{
677 struct sched_rt_entity *back = NULL;
678
679 for_each_sched_rt_entity(rt_se) {
680 rt_se->back = back;
681 back = rt_se;
682 }
683
684 for (rt_se = back; rt_se; rt_se = rt_se->back) {
685 if (on_rt_rq(rt_se))
686 __dequeue_rt_entity(rt_se);
687 }
688}
689
690static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
691{
692 dequeue_rt_stack(rt_se);
693 for_each_sched_rt_entity(rt_se)
694 __enqueue_rt_entity(rt_se);
695}
696
697static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
698{
699 dequeue_rt_stack(rt_se);
700
701 for_each_sched_rt_entity(rt_se) {
702 struct rt_rq *rt_rq = group_rt_rq(rt_se);
703
704 if (rt_rq && rt_rq->rt_nr_running)
705 __enqueue_rt_entity(rt_se);
706 }
707}
708
709
710
711
712static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
713{
714 struct sched_rt_entity *rt_se = &p->rt;
715
716 if (wakeup)
717 rt_se->timeout = 0;
718
719 enqueue_rt_entity(rt_se);
720
721 inc_cpu_load(rq, p->se.load.weight);
722}
723
724static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
725{
726 struct sched_rt_entity *rt_se = &p->rt;
727
728 update_curr_rt(rq);
729 dequeue_rt_entity(rt_se);
730
731 dec_cpu_load(rq, p->se.load.weight);
732}
733
734
735
736
737
738static void
739requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
740{
741 if (on_rt_rq(rt_se)) {
742 struct rt_prio_array *array = &rt_rq->active;
743 struct list_head *queue = array->queue + rt_se_prio(rt_se);
744
745 if (head)
746 list_move(&rt_se->run_list, queue);
747 else
748 list_move_tail(&rt_se->run_list, queue);
749 }
750}
751
752static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
753{
754 struct sched_rt_entity *rt_se = &p->rt;
755 struct rt_rq *rt_rq;
756
757 for_each_sched_rt_entity(rt_se) {
758 rt_rq = rt_rq_of_se(rt_se);
759 requeue_rt_entity(rt_rq, rt_se, head);
760 }
761}
762
763static void yield_task_rt(struct rq *rq)
764{
765 requeue_task_rt(rq, rq->curr, 0);
766}
767
768#ifdef CONFIG_SMP
769static int find_lowest_rq(struct task_struct *task);
770
771static int select_task_rq_rt(struct task_struct *p, int sync)
772{
773 struct rq *rq = task_rq(p);
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792 if (unlikely(rt_task(rq->curr)) &&
793 (p->rt.nr_cpus_allowed > 1)) {
794 int cpu = find_lowest_rq(p);
795
796 return (cpu == -1) ? task_cpu(p) : cpu;
797 }
798
799
800
801
802
803 return task_cpu(p);
804}
805
806static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
807{
808 cpumask_t mask;
809
810 if (rq->curr->rt.nr_cpus_allowed == 1)
811 return;
812
813 if (p->rt.nr_cpus_allowed != 1
814 && cpupri_find(&rq->rd->cpupri, p, &mask))
815 return;
816
817 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
818 return;
819
820
821
822
823
824
825 requeue_task_rt(rq, p, 1);
826 resched_task(rq->curr);
827}
828
829#endif
830
831
832
833
834static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
835{
836 if (p->prio < rq->curr->prio) {
837 resched_task(rq->curr);
838 return;
839 }
840
841#ifdef CONFIG_SMP
842
843
844
845
846
847
848
849
850
851
852
853
854 if (p->prio == rq->curr->prio && !need_resched())
855 check_preempt_equal_prio(rq, p);
856#endif
857}
858
859static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
860 struct rt_rq *rt_rq)
861{
862 struct rt_prio_array *array = &rt_rq->active;
863 struct sched_rt_entity *next = NULL;
864 struct list_head *queue;
865 int idx;
866
867 idx = sched_find_first_bit(array->bitmap);
868 BUG_ON(idx >= MAX_RT_PRIO);
869
870 queue = array->queue + idx;
871 next = list_entry(queue->next, struct sched_rt_entity, run_list);
872
873 return next;
874}
875
876static struct task_struct *pick_next_task_rt(struct rq *rq)
877{
878 struct sched_rt_entity *rt_se;
879 struct task_struct *p;
880 struct rt_rq *rt_rq;
881
882 rt_rq = &rq->rt;
883
884 if (unlikely(!rt_rq->rt_nr_running))
885 return NULL;
886
887 if (rt_rq_throttled(rt_rq))
888 return NULL;
889
890 do {
891 rt_se = pick_next_rt_entity(rq, rt_rq);
892 BUG_ON(!rt_se);
893 rt_rq = group_rt_rq(rt_se);
894 } while (rt_rq);
895
896 p = rt_task_of(rt_se);
897 p->se.exec_start = rq->clock;
898 return p;
899}
900
901static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
902{
903 update_curr_rt(rq);
904 p->se.exec_start = 0;
905}
906
907#ifdef CONFIG_SMP
908
909
910#define RT_MAX_TRIES 3
911
912static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
913static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
914
915static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
916
917static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
918{
919 if (!task_running(rq, p) &&
920 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
921 (p->rt.nr_cpus_allowed > 1))
922 return 1;
923 return 0;
924}
925
926
927static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
928{
929 struct task_struct *next = NULL;
930 struct sched_rt_entity *rt_se;
931 struct rt_prio_array *array;
932 struct rt_rq *rt_rq;
933 int idx;
934
935 for_each_leaf_rt_rq(rt_rq, rq) {
936 array = &rt_rq->active;
937 idx = sched_find_first_bit(array->bitmap);
938 next_idx:
939 if (idx >= MAX_RT_PRIO)
940 continue;
941 if (next && next->prio < idx)
942 continue;
943 list_for_each_entry(rt_se, array->queue + idx, run_list) {
944 struct task_struct *p = rt_task_of(rt_se);
945 if (pick_rt_task(rq, p, cpu)) {
946 next = p;
947 break;
948 }
949 }
950 if (!next) {
951 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
952 goto next_idx;
953 }
954 }
955
956 return next;
957}
958
959static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
960
961static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
962{
963 int first;
964
965
966 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
967 return this_cpu;
968
969 first = first_cpu(*mask);
970 if (first != NR_CPUS)
971 return first;
972
973 return -1;
974}
975
976static int find_lowest_rq(struct task_struct *task)
977{
978 struct sched_domain *sd;
979 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
980 int this_cpu = smp_processor_id();
981 int cpu = task_cpu(task);
982
983 if (task->rt.nr_cpus_allowed == 1)
984 return -1;
985
986 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
987 return -1;
988
989
990
991
992
993
994 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
995
996
997
998
999
1000
1001
1002
1003
1004 if (cpu_isset(cpu, *lowest_mask))
1005 return cpu;
1006
1007
1008
1009
1010
1011 if (this_cpu == cpu)
1012 this_cpu = -1;
1013
1014 for_each_domain(cpu, sd) {
1015 if (sd->flags & SD_WAKE_AFFINE) {
1016 cpumask_t domain_mask;
1017 int best_cpu;
1018
1019 cpus_and(domain_mask, sd->span, *lowest_mask);
1020
1021 best_cpu = pick_optimal_cpu(this_cpu,
1022 &domain_mask);
1023 if (best_cpu != -1)
1024 return best_cpu;
1025 }
1026 }
1027
1028
1029
1030
1031
1032
1033 return pick_optimal_cpu(this_cpu, lowest_mask);
1034}
1035
1036
1037static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1038{
1039 struct rq *lowest_rq = NULL;
1040 int tries;
1041 int cpu;
1042
1043 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1044 cpu = find_lowest_rq(task);
1045
1046 if ((cpu == -1) || (cpu == rq->cpu))
1047 break;
1048
1049 lowest_rq = cpu_rq(cpu);
1050
1051
1052 if (double_lock_balance(rq, lowest_rq)) {
1053
1054
1055
1056
1057
1058
1059 if (unlikely(task_rq(task) != rq ||
1060 !cpu_isset(lowest_rq->cpu,
1061 task->cpus_allowed) ||
1062 task_running(rq, task) ||
1063 !task->se.on_rq)) {
1064
1065 spin_unlock(&lowest_rq->lock);
1066 lowest_rq = NULL;
1067 break;
1068 }
1069 }
1070
1071
1072 if (lowest_rq->rt.highest_prio > task->prio)
1073 break;
1074
1075
1076 double_unlock_balance(rq, lowest_rq);
1077 lowest_rq = NULL;
1078 }
1079
1080 return lowest_rq;
1081}
1082
1083
1084
1085
1086
1087
1088static int push_rt_task(struct rq *rq)
1089{
1090 struct task_struct *next_task;
1091 struct rq *lowest_rq;
1092 int ret = 0;
1093 int paranoid = RT_MAX_TRIES;
1094
1095 if (!rq->rt.overloaded)
1096 return 0;
1097
1098 next_task = pick_next_highest_task_rt(rq, -1);
1099 if (!next_task)
1100 return 0;
1101
1102 retry:
1103 if (unlikely(next_task == rq->curr)) {
1104 WARN_ON(1);
1105 return 0;
1106 }
1107
1108
1109
1110
1111
1112
1113 if (unlikely(next_task->prio < rq->curr->prio)) {
1114 resched_task(rq->curr);
1115 return 0;
1116 }
1117
1118
1119 get_task_struct(next_task);
1120
1121
1122 lowest_rq = find_lock_lowest_rq(next_task, rq);
1123 if (!lowest_rq) {
1124 struct task_struct *task;
1125
1126
1127
1128
1129
1130 task = pick_next_highest_task_rt(rq, -1);
1131 if (unlikely(task != next_task) && task && paranoid--) {
1132 put_task_struct(next_task);
1133 next_task = task;
1134 goto retry;
1135 }
1136 goto out;
1137 }
1138
1139 deactivate_task(rq, next_task, 0);
1140 set_task_cpu(next_task, lowest_rq->cpu);
1141 activate_task(lowest_rq, next_task, 0);
1142
1143 resched_task(lowest_rq->curr);
1144
1145 double_unlock_balance(rq, lowest_rq);
1146
1147 ret = 1;
1148out:
1149 put_task_struct(next_task);
1150
1151 return ret;
1152}
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164static void push_rt_tasks(struct rq *rq)
1165{
1166
1167 while (push_rt_task(rq))
1168 ;
1169}
1170
1171static int pull_rt_task(struct rq *this_rq)
1172{
1173 int this_cpu = this_rq->cpu, ret = 0, cpu;
1174 struct task_struct *p, *next;
1175 struct rq *src_rq;
1176
1177 if (likely(!rt_overloaded(this_rq)))
1178 return 0;
1179
1180 next = pick_next_task_rt(this_rq);
1181
1182 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1183 if (this_cpu == cpu)
1184 continue;
1185
1186 src_rq = cpu_rq(cpu);
1187
1188
1189
1190
1191
1192
1193
1194 if (double_lock_balance(this_rq, src_rq)) {
1195 struct task_struct *old_next = next;
1196
1197 next = pick_next_task_rt(this_rq);
1198 if (next != old_next)
1199 ret = 1;
1200 }
1201
1202
1203
1204
1205 if (src_rq->rt.rt_nr_running <= 1)
1206 goto skip;
1207
1208 p = pick_next_highest_task_rt(src_rq, this_cpu);
1209
1210
1211
1212
1213
1214 if (p && (!next || (p->prio < next->prio))) {
1215 WARN_ON(p == src_rq->curr);
1216 WARN_ON(!p->se.on_rq);
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228 if (p->prio < src_rq->curr->prio ||
1229 (next && next->prio < src_rq->curr->prio))
1230 goto skip;
1231
1232 ret = 1;
1233
1234 deactivate_task(src_rq, p, 0);
1235 set_task_cpu(p, this_cpu);
1236 activate_task(this_rq, p, 0);
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247 next = p;
1248
1249 }
1250 skip:
1251 double_unlock_balance(this_rq, src_rq);
1252 }
1253
1254 return ret;
1255}
1256
1257static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1258{
1259
1260 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1261 pull_rt_task(rq);
1262}
1263
1264static void post_schedule_rt(struct rq *rq)
1265{
1266
1267
1268
1269
1270
1271
1272
1273 if (unlikely(rq->rt.overloaded)) {
1274 spin_lock_irq(&rq->lock);
1275 push_rt_tasks(rq);
1276 spin_unlock_irq(&rq->lock);
1277 }
1278}
1279
1280
1281
1282
1283
1284static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1285{
1286 if (!task_running(rq, p) &&
1287 !test_tsk_need_resched(rq->curr) &&
1288 rq->rt.overloaded)
1289 push_rt_tasks(rq);
1290}
1291
1292static unsigned long
1293load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1294 unsigned long max_load_move,
1295 struct sched_domain *sd, enum cpu_idle_type idle,
1296 int *all_pinned, int *this_best_prio)
1297{
1298
1299 return 0;
1300}
1301
1302static int
1303move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1304 struct sched_domain *sd, enum cpu_idle_type idle)
1305{
1306
1307 return 0;
1308}
1309
1310static void set_cpus_allowed_rt(struct task_struct *p,
1311 const cpumask_t *new_mask)
1312{
1313 int weight = cpus_weight(*new_mask);
1314
1315 BUG_ON(!rt_task(p));
1316
1317
1318
1319
1320
1321 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1322 struct rq *rq = task_rq(p);
1323
1324 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1325 rq->rt.rt_nr_migratory++;
1326 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1327 BUG_ON(!rq->rt.rt_nr_migratory);
1328 rq->rt.rt_nr_migratory--;
1329 }
1330
1331 update_rt_migration(rq);
1332 }
1333
1334 p->cpus_allowed = *new_mask;
1335 p->rt.nr_cpus_allowed = weight;
1336}
1337
1338
1339static void rq_online_rt(struct rq *rq)
1340{
1341 if (rq->rt.overloaded)
1342 rt_set_overload(rq);
1343
1344 __enable_runtime(rq);
1345
1346 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1347}
1348
1349
1350static void rq_offline_rt(struct rq *rq)
1351{
1352 if (rq->rt.overloaded)
1353 rt_clear_overload(rq);
1354
1355 __disable_runtime(rq);
1356
1357 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1358}
1359
1360
1361
1362
1363
1364static void switched_from_rt(struct rq *rq, struct task_struct *p,
1365 int running)
1366{
1367
1368
1369
1370
1371
1372
1373
1374 if (!rq->rt.rt_nr_running)
1375 pull_rt_task(rq);
1376}
1377#endif
1378
1379
1380
1381
1382
1383
1384static void switched_to_rt(struct rq *rq, struct task_struct *p,
1385 int running)
1386{
1387 int check_resched = 1;
1388
1389
1390
1391
1392
1393
1394
1395
1396 if (!running) {
1397#ifdef CONFIG_SMP
1398 if (rq->rt.overloaded && push_rt_task(rq) &&
1399
1400 rq != task_rq(p))
1401 check_resched = 0;
1402#endif
1403 if (check_resched && p->prio < rq->curr->prio)
1404 resched_task(rq->curr);
1405 }
1406}
1407
1408
1409
1410
1411
1412static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1413 int oldprio, int running)
1414{
1415 if (running) {
1416#ifdef CONFIG_SMP
1417
1418
1419
1420
1421 if (oldprio < p->prio)
1422 pull_rt_task(rq);
1423
1424
1425
1426
1427
1428
1429 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1430 resched_task(p);
1431#else
1432
1433 if (oldprio < p->prio)
1434 resched_task(p);
1435#endif
1436 } else {
1437
1438
1439
1440
1441
1442 if (p->prio < rq->curr->prio)
1443 resched_task(rq->curr);
1444 }
1445}
1446
1447static void watchdog(struct rq *rq, struct task_struct *p)
1448{
1449 unsigned long soft, hard;
1450
1451 if (!p->signal)
1452 return;
1453
1454 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1455 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1456
1457 if (soft != RLIM_INFINITY) {
1458 unsigned long next;
1459
1460 p->rt.timeout++;
1461 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1462 if (p->rt.timeout > next)
1463 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1464 }
1465}
1466
1467static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1468{
1469 update_curr_rt(rq);
1470
1471 watchdog(rq, p);
1472
1473
1474
1475
1476
1477 if (p->policy != SCHED_RR)
1478 return;
1479
1480 if (--p->rt.time_slice)
1481 return;
1482
1483 p->rt.time_slice = DEF_TIMESLICE;
1484
1485
1486
1487
1488
1489 if (p->rt.run_list.prev != p->rt.run_list.next) {
1490 requeue_task_rt(rq, p, 0);
1491 set_tsk_need_resched(p);
1492 }
1493}
1494
1495static void set_curr_task_rt(struct rq *rq)
1496{
1497 struct task_struct *p = rq->curr;
1498
1499 p->se.exec_start = rq->clock;
1500}
1501
1502static const struct sched_class rt_sched_class = {
1503 .next = &fair_sched_class,
1504 .enqueue_task = enqueue_task_rt,
1505 .dequeue_task = dequeue_task_rt,
1506 .yield_task = yield_task_rt,
1507
1508 .check_preempt_curr = check_preempt_curr_rt,
1509
1510 .pick_next_task = pick_next_task_rt,
1511 .put_prev_task = put_prev_task_rt,
1512
1513#ifdef CONFIG_SMP
1514 .select_task_rq = select_task_rq_rt,
1515
1516 .load_balance = load_balance_rt,
1517 .move_one_task = move_one_task_rt,
1518 .set_cpus_allowed = set_cpus_allowed_rt,
1519 .rq_online = rq_online_rt,
1520 .rq_offline = rq_offline_rt,
1521 .pre_schedule = pre_schedule_rt,
1522 .post_schedule = post_schedule_rt,
1523 .task_wake_up = task_wake_up_rt,
1524 .switched_from = switched_from_rt,
1525#endif
1526
1527 .set_curr_task = set_curr_task_rt,
1528 .task_tick = task_tick_rt,
1529
1530 .prio_changed = prio_changed_rt,
1531 .switched_to = switched_to_rt,
1532};
1533
1534#ifdef CONFIG_SCHED_DEBUG
1535extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1536
1537static void print_rt_stats(struct seq_file *m, int cpu)
1538{
1539 struct rt_rq *rt_rq;
1540
1541 rcu_read_lock();
1542 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1543 print_rt_rq(m, cpu, rt_rq);
1544 rcu_read_unlock();
1545}
1546#endif
1547