linux/sound/soc/soc-core.c
<<
>>
Prefs
   1/*
   2 * soc-core.c  --  ALSA SoC Audio Layer
   3 *
   4 * Copyright 2005 Wolfson Microelectronics PLC.
   5 * Copyright 2005 Openedhand Ltd.
   6 *
   7 * Author: Liam Girdwood
   8 *         liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
   9 *         with code, comments and ideas from :-
  10 *         Richard Purdie <richard@openedhand.com>
  11 *
  12 *  This program is free software; you can redistribute  it and/or modify it
  13 *  under  the terms of  the GNU General  Public License as published by the
  14 *  Free Software Foundation;  either version 2 of the  License, or (at your
  15 *  option) any later version.
  16 *
  17 *  TODO:
  18 *   o Add hw rules to enforce rates, etc.
  19 *   o More testing with other codecs/machines.
  20 *   o Add more codecs and platforms to ensure good API coverage.
  21 *   o Support TDM on PCM and I2S
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/init.h>
  27#include <linux/delay.h>
  28#include <linux/pm.h>
  29#include <linux/bitops.h>
  30#include <linux/platform_device.h>
  31#include <sound/core.h>
  32#include <sound/pcm.h>
  33#include <sound/pcm_params.h>
  34#include <sound/soc.h>
  35#include <sound/soc-dapm.h>
  36#include <sound/initval.h>
  37
  38/* debug */
  39#define SOC_DEBUG 0
  40#if SOC_DEBUG
  41#define dbg(format, arg...) printk(format, ## arg)
  42#else
  43#define dbg(format, arg...)
  44#endif
  45
  46static DEFINE_MUTEX(pcm_mutex);
  47static DEFINE_MUTEX(io_mutex);
  48static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
  49
  50/*
  51 * This is a timeout to do a DAPM powerdown after a stream is closed().
  52 * It can be used to eliminate pops between different playback streams, e.g.
  53 * between two audio tracks.
  54 */
  55static int pmdown_time = 5000;
  56module_param(pmdown_time, int, 0);
  57MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
  58
  59/*
  60 * This function forces any delayed work to be queued and run.
  61 */
  62static int run_delayed_work(struct delayed_work *dwork)
  63{
  64        int ret;
  65
  66        /* cancel any work waiting to be queued. */
  67        ret = cancel_delayed_work(dwork);
  68
  69        /* if there was any work waiting then we run it now and
  70         * wait for it's completion */
  71        if (ret) {
  72                schedule_delayed_work(dwork, 0);
  73                flush_scheduled_work();
  74        }
  75        return ret;
  76}
  77
  78#ifdef CONFIG_SND_SOC_AC97_BUS
  79/* unregister ac97 codec */
  80static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
  81{
  82        if (codec->ac97->dev.bus)
  83                device_unregister(&codec->ac97->dev);
  84        return 0;
  85}
  86
  87/* stop no dev release warning */
  88static void soc_ac97_device_release(struct device *dev){}
  89
  90/* register ac97 codec to bus */
  91static int soc_ac97_dev_register(struct snd_soc_codec *codec)
  92{
  93        int err;
  94
  95        codec->ac97->dev.bus = &ac97_bus_type;
  96        codec->ac97->dev.parent = NULL;
  97        codec->ac97->dev.release = soc_ac97_device_release;
  98
  99        snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
 100                 codec->card->number, 0, codec->name);
 101        err = device_register(&codec->ac97->dev);
 102        if (err < 0) {
 103                snd_printk(KERN_ERR "Can't register ac97 bus\n");
 104                codec->ac97->dev.bus = NULL;
 105                return err;
 106        }
 107        return 0;
 108}
 109#endif
 110
 111static inline const char *get_dai_name(int type)
 112{
 113        switch (type) {
 114        case SND_SOC_DAI_AC97_BUS:
 115        case SND_SOC_DAI_AC97:
 116                return "AC97";
 117        case SND_SOC_DAI_I2S:
 118                return "I2S";
 119        case SND_SOC_DAI_PCM:
 120                return "PCM";
 121        }
 122        return NULL;
 123}
 124
 125/*
 126 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
 127 * then initialized and any private data can be allocated. This also calls
 128 * startup for the cpu DAI, platform, machine and codec DAI.
 129 */
 130static int soc_pcm_open(struct snd_pcm_substream *substream)
 131{
 132        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 133        struct snd_soc_device *socdev = rtd->socdev;
 134        struct snd_pcm_runtime *runtime = substream->runtime;
 135        struct snd_soc_dai_link *machine = rtd->dai;
 136        struct snd_soc_platform *platform = socdev->platform;
 137        struct snd_soc_dai *cpu_dai = machine->cpu_dai;
 138        struct snd_soc_dai *codec_dai = machine->codec_dai;
 139        int ret = 0;
 140
 141        mutex_lock(&pcm_mutex);
 142
 143        /* startup the audio subsystem */
 144        if (cpu_dai->ops.startup) {
 145                ret = cpu_dai->ops.startup(substream);
 146                if (ret < 0) {
 147                        printk(KERN_ERR "asoc: can't open interface %s\n",
 148                                cpu_dai->name);
 149                        goto out;
 150                }
 151        }
 152
 153        if (platform->pcm_ops->open) {
 154                ret = platform->pcm_ops->open(substream);
 155                if (ret < 0) {
 156                        printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
 157                        goto platform_err;
 158                }
 159        }
 160
 161        if (codec_dai->ops.startup) {
 162                ret = codec_dai->ops.startup(substream);
 163                if (ret < 0) {
 164                        printk(KERN_ERR "asoc: can't open codec %s\n",
 165                                codec_dai->name);
 166                        goto codec_dai_err;
 167                }
 168        }
 169
 170        if (machine->ops && machine->ops->startup) {
 171                ret = machine->ops->startup(substream);
 172                if (ret < 0) {
 173                        printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
 174                        goto machine_err;
 175                }
 176        }
 177
 178        /* Check that the codec and cpu DAI's are compatible */
 179        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 180                runtime->hw.rate_min =
 181                        max(codec_dai->playback.rate_min,
 182                            cpu_dai->playback.rate_min);
 183                runtime->hw.rate_max =
 184                        min(codec_dai->playback.rate_max,
 185                            cpu_dai->playback.rate_max);
 186                runtime->hw.channels_min =
 187                        max(codec_dai->playback.channels_min,
 188                                cpu_dai->playback.channels_min);
 189                runtime->hw.channels_max =
 190                        min(codec_dai->playback.channels_max,
 191                                cpu_dai->playback.channels_max);
 192                runtime->hw.formats =
 193                        codec_dai->playback.formats & cpu_dai->playback.formats;
 194                runtime->hw.rates =
 195                        codec_dai->playback.rates & cpu_dai->playback.rates;
 196        } else {
 197                runtime->hw.rate_min =
 198                        max(codec_dai->capture.rate_min,
 199                            cpu_dai->capture.rate_min);
 200                runtime->hw.rate_max =
 201                        min(codec_dai->capture.rate_max,
 202                            cpu_dai->capture.rate_max);
 203                runtime->hw.channels_min =
 204                        max(codec_dai->capture.channels_min,
 205                                cpu_dai->capture.channels_min);
 206                runtime->hw.channels_max =
 207                        min(codec_dai->capture.channels_max,
 208                                cpu_dai->capture.channels_max);
 209                runtime->hw.formats =
 210                        codec_dai->capture.formats & cpu_dai->capture.formats;
 211                runtime->hw.rates =
 212                        codec_dai->capture.rates & cpu_dai->capture.rates;
 213        }
 214
 215        snd_pcm_limit_hw_rates(runtime);
 216        if (!runtime->hw.rates) {
 217                printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
 218                        codec_dai->name, cpu_dai->name);
 219                goto machine_err;
 220        }
 221        if (!runtime->hw.formats) {
 222                printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
 223                        codec_dai->name, cpu_dai->name);
 224                goto machine_err;
 225        }
 226        if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
 227                printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
 228                        codec_dai->name, cpu_dai->name);
 229                goto machine_err;
 230        }
 231
 232        dbg("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
 233        dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
 234        dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
 235                runtime->hw.channels_max);
 236        dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
 237                runtime->hw.rate_max);
 238
 239        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 240                cpu_dai->playback.active = codec_dai->playback.active = 1;
 241        else
 242                cpu_dai->capture.active = codec_dai->capture.active = 1;
 243        cpu_dai->active = codec_dai->active = 1;
 244        cpu_dai->runtime = runtime;
 245        socdev->codec->active++;
 246        mutex_unlock(&pcm_mutex);
 247        return 0;
 248
 249machine_err:
 250        if (machine->ops && machine->ops->shutdown)
 251                machine->ops->shutdown(substream);
 252
 253codec_dai_err:
 254        if (platform->pcm_ops->close)
 255                platform->pcm_ops->close(substream);
 256
 257platform_err:
 258        if (cpu_dai->ops.shutdown)
 259                cpu_dai->ops.shutdown(substream);
 260out:
 261        mutex_unlock(&pcm_mutex);
 262        return ret;
 263}
 264
 265/*
 266 * Power down the audio subsystem pmdown_time msecs after close is called.
 267 * This is to ensure there are no pops or clicks in between any music tracks
 268 * due to DAPM power cycling.
 269 */
 270static void close_delayed_work(struct work_struct *work)
 271{
 272        struct snd_soc_device *socdev =
 273                container_of(work, struct snd_soc_device, delayed_work.work);
 274        struct snd_soc_codec *codec = socdev->codec;
 275        struct snd_soc_dai *codec_dai;
 276        int i;
 277
 278        mutex_lock(&pcm_mutex);
 279        for (i = 0; i < codec->num_dai; i++) {
 280                codec_dai = &codec->dai[i];
 281
 282                dbg("pop wq checking: %s status: %s waiting: %s\n",
 283                        codec_dai->playback.stream_name,
 284                        codec_dai->playback.active ? "active" : "inactive",
 285                        codec_dai->pop_wait ? "yes" : "no");
 286
 287                /* are we waiting on this codec DAI stream */
 288                if (codec_dai->pop_wait == 1) {
 289
 290                        /* Reduce power if no longer active */
 291                        if (codec->active == 0) {
 292                                dbg("pop wq D1 %s %s\n", codec->name,
 293                                        codec_dai->playback.stream_name);
 294                                snd_soc_dapm_set_bias_level(socdev,
 295                                        SND_SOC_BIAS_PREPARE);
 296                        }
 297
 298                        codec_dai->pop_wait = 0;
 299                        snd_soc_dapm_stream_event(codec,
 300                                codec_dai->playback.stream_name,
 301                                SND_SOC_DAPM_STREAM_STOP);
 302
 303                        /* Fall into standby if no longer active */
 304                        if (codec->active == 0) {
 305                                dbg("pop wq D3 %s %s\n", codec->name,
 306                                        codec_dai->playback.stream_name);
 307                                snd_soc_dapm_set_bias_level(socdev,
 308                                        SND_SOC_BIAS_STANDBY);
 309                        }
 310                }
 311        }
 312        mutex_unlock(&pcm_mutex);
 313}
 314
 315/*
 316 * Called by ALSA when a PCM substream is closed. Private data can be
 317 * freed here. The cpu DAI, codec DAI, machine and platform are also
 318 * shutdown.
 319 */
 320static int soc_codec_close(struct snd_pcm_substream *substream)
 321{
 322        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 323        struct snd_soc_device *socdev = rtd->socdev;
 324        struct snd_soc_dai_link *machine = rtd->dai;
 325        struct snd_soc_platform *platform = socdev->platform;
 326        struct snd_soc_dai *cpu_dai = machine->cpu_dai;
 327        struct snd_soc_dai *codec_dai = machine->codec_dai;
 328        struct snd_soc_codec *codec = socdev->codec;
 329
 330        mutex_lock(&pcm_mutex);
 331
 332        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 333                cpu_dai->playback.active = codec_dai->playback.active = 0;
 334        else
 335                cpu_dai->capture.active = codec_dai->capture.active = 0;
 336
 337        if (codec_dai->playback.active == 0 &&
 338                codec_dai->capture.active == 0) {
 339                cpu_dai->active = codec_dai->active = 0;
 340        }
 341        codec->active--;
 342
 343        if (cpu_dai->ops.shutdown)
 344                cpu_dai->ops.shutdown(substream);
 345
 346        if (codec_dai->ops.shutdown)
 347                codec_dai->ops.shutdown(substream);
 348
 349        if (machine->ops && machine->ops->shutdown)
 350                machine->ops->shutdown(substream);
 351
 352        if (platform->pcm_ops->close)
 353                platform->pcm_ops->close(substream);
 354        cpu_dai->runtime = NULL;
 355
 356        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 357                /* start delayed pop wq here for playback streams */
 358                codec_dai->pop_wait = 1;
 359                schedule_delayed_work(&socdev->delayed_work,
 360                        msecs_to_jiffies(pmdown_time));
 361        } else {
 362                /* capture streams can be powered down now */
 363                snd_soc_dapm_stream_event(codec,
 364                        codec_dai->capture.stream_name,
 365                        SND_SOC_DAPM_STREAM_STOP);
 366
 367                if (codec->active == 0 && codec_dai->pop_wait == 0)
 368                        snd_soc_dapm_set_bias_level(socdev,
 369                                                SND_SOC_BIAS_STANDBY);
 370        }
 371
 372        mutex_unlock(&pcm_mutex);
 373        return 0;
 374}
 375
 376/*
 377 * Called by ALSA when the PCM substream is prepared, can set format, sample
 378 * rate, etc.  This function is non atomic and can be called multiple times,
 379 * it can refer to the runtime info.
 380 */
 381static int soc_pcm_prepare(struct snd_pcm_substream *substream)
 382{
 383        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 384        struct snd_soc_device *socdev = rtd->socdev;
 385        struct snd_soc_dai_link *machine = rtd->dai;
 386        struct snd_soc_platform *platform = socdev->platform;
 387        struct snd_soc_dai *cpu_dai = machine->cpu_dai;
 388        struct snd_soc_dai *codec_dai = machine->codec_dai;
 389        struct snd_soc_codec *codec = socdev->codec;
 390        int ret = 0;
 391
 392        mutex_lock(&pcm_mutex);
 393
 394        if (machine->ops && machine->ops->prepare) {
 395                ret = machine->ops->prepare(substream);
 396                if (ret < 0) {
 397                        printk(KERN_ERR "asoc: machine prepare error\n");
 398                        goto out;
 399                }
 400        }
 401
 402        if (platform->pcm_ops->prepare) {
 403                ret = platform->pcm_ops->prepare(substream);
 404                if (ret < 0) {
 405                        printk(KERN_ERR "asoc: platform prepare error\n");
 406                        goto out;
 407                }
 408        }
 409
 410        if (codec_dai->ops.prepare) {
 411                ret = codec_dai->ops.prepare(substream);
 412                if (ret < 0) {
 413                        printk(KERN_ERR "asoc: codec DAI prepare error\n");
 414                        goto out;
 415                }
 416        }
 417
 418        if (cpu_dai->ops.prepare) {
 419                ret = cpu_dai->ops.prepare(substream);
 420                if (ret < 0) {
 421                        printk(KERN_ERR "asoc: cpu DAI prepare error\n");
 422                        goto out;
 423                }
 424        }
 425
 426        /* we only want to start a DAPM playback stream if we are not waiting
 427         * on an existing one stopping */
 428        if (codec_dai->pop_wait) {
 429                /* we are waiting for the delayed work to start */
 430                if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
 431                                snd_soc_dapm_stream_event(socdev->codec,
 432                                        codec_dai->capture.stream_name,
 433                                        SND_SOC_DAPM_STREAM_START);
 434                else {
 435                        codec_dai->pop_wait = 0;
 436                        cancel_delayed_work(&socdev->delayed_work);
 437                        snd_soc_dai_digital_mute(codec_dai, 0);
 438                }
 439        } else {
 440                /* no delayed work - do we need to power up codec */
 441                if (codec->bias_level != SND_SOC_BIAS_ON) {
 442
 443                        snd_soc_dapm_set_bias_level(socdev,
 444                                                    SND_SOC_BIAS_PREPARE);
 445
 446                        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 447                                snd_soc_dapm_stream_event(codec,
 448                                        codec_dai->playback.stream_name,
 449                                        SND_SOC_DAPM_STREAM_START);
 450                        else
 451                                snd_soc_dapm_stream_event(codec,
 452                                        codec_dai->capture.stream_name,
 453                                        SND_SOC_DAPM_STREAM_START);
 454
 455                        snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
 456                        snd_soc_dai_digital_mute(codec_dai, 0);
 457
 458                } else {
 459                        /* codec already powered - power on widgets */
 460                        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 461                                snd_soc_dapm_stream_event(codec,
 462                                        codec_dai->playback.stream_name,
 463                                        SND_SOC_DAPM_STREAM_START);
 464                        else
 465                                snd_soc_dapm_stream_event(codec,
 466                                        codec_dai->capture.stream_name,
 467                                        SND_SOC_DAPM_STREAM_START);
 468
 469                        snd_soc_dai_digital_mute(codec_dai, 0);
 470                }
 471        }
 472
 473out:
 474        mutex_unlock(&pcm_mutex);
 475        return ret;
 476}
 477
 478/*
 479 * Called by ALSA when the hardware params are set by application. This
 480 * function can also be called multiple times and can allocate buffers
 481 * (using snd_pcm_lib_* ). It's non-atomic.
 482 */
 483static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
 484                                struct snd_pcm_hw_params *params)
 485{
 486        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 487        struct snd_soc_device *socdev = rtd->socdev;
 488        struct snd_soc_dai_link *machine = rtd->dai;
 489        struct snd_soc_platform *platform = socdev->platform;
 490        struct snd_soc_dai *cpu_dai = machine->cpu_dai;
 491        struct snd_soc_dai *codec_dai = machine->codec_dai;
 492        int ret = 0;
 493
 494        mutex_lock(&pcm_mutex);
 495
 496        if (machine->ops && machine->ops->hw_params) {
 497                ret = machine->ops->hw_params(substream, params);
 498                if (ret < 0) {
 499                        printk(KERN_ERR "asoc: machine hw_params failed\n");
 500                        goto out;
 501                }
 502        }
 503
 504        if (codec_dai->ops.hw_params) {
 505                ret = codec_dai->ops.hw_params(substream, params);
 506                if (ret < 0) {
 507                        printk(KERN_ERR "asoc: can't set codec %s hw params\n",
 508                                codec_dai->name);
 509                        goto codec_err;
 510                }
 511        }
 512
 513        if (cpu_dai->ops.hw_params) {
 514                ret = cpu_dai->ops.hw_params(substream, params);
 515                if (ret < 0) {
 516                        printk(KERN_ERR "asoc: interface %s hw params failed\n",
 517                                cpu_dai->name);
 518                        goto interface_err;
 519                }
 520        }
 521
 522        if (platform->pcm_ops->hw_params) {
 523                ret = platform->pcm_ops->hw_params(substream, params);
 524                if (ret < 0) {
 525                        printk(KERN_ERR "asoc: platform %s hw params failed\n",
 526                                platform->name);
 527                        goto platform_err;
 528                }
 529        }
 530
 531out:
 532        mutex_unlock(&pcm_mutex);
 533        return ret;
 534
 535platform_err:
 536        if (cpu_dai->ops.hw_free)
 537                cpu_dai->ops.hw_free(substream);
 538
 539interface_err:
 540        if (codec_dai->ops.hw_free)
 541                codec_dai->ops.hw_free(substream);
 542
 543codec_err:
 544        if (machine->ops && machine->ops->hw_free)
 545                machine->ops->hw_free(substream);
 546
 547        mutex_unlock(&pcm_mutex);
 548        return ret;
 549}
 550
 551/*
 552 * Free's resources allocated by hw_params, can be called multiple times
 553 */
 554static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
 555{
 556        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 557        struct snd_soc_device *socdev = rtd->socdev;
 558        struct snd_soc_dai_link *machine = rtd->dai;
 559        struct snd_soc_platform *platform = socdev->platform;
 560        struct snd_soc_dai *cpu_dai = machine->cpu_dai;
 561        struct snd_soc_dai *codec_dai = machine->codec_dai;
 562        struct snd_soc_codec *codec = socdev->codec;
 563
 564        mutex_lock(&pcm_mutex);
 565
 566        /* apply codec digital mute */
 567        if (!codec->active)
 568                snd_soc_dai_digital_mute(codec_dai, 1);
 569
 570        /* free any machine hw params */
 571        if (machine->ops && machine->ops->hw_free)
 572                machine->ops->hw_free(substream);
 573
 574        /* free any DMA resources */
 575        if (platform->pcm_ops->hw_free)
 576                platform->pcm_ops->hw_free(substream);
 577
 578        /* now free hw params for the DAI's  */
 579        if (codec_dai->ops.hw_free)
 580                codec_dai->ops.hw_free(substream);
 581
 582        if (cpu_dai->ops.hw_free)
 583                cpu_dai->ops.hw_free(substream);
 584
 585        mutex_unlock(&pcm_mutex);
 586        return 0;
 587}
 588
 589static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 590{
 591        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 592        struct snd_soc_device *socdev = rtd->socdev;
 593        struct snd_soc_dai_link *machine = rtd->dai;
 594        struct snd_soc_platform *platform = socdev->platform;
 595        struct snd_soc_dai *cpu_dai = machine->cpu_dai;
 596        struct snd_soc_dai *codec_dai = machine->codec_dai;
 597        int ret;
 598
 599        if (codec_dai->ops.trigger) {
 600                ret = codec_dai->ops.trigger(substream, cmd);
 601                if (ret < 0)
 602                        return ret;
 603        }
 604
 605        if (platform->pcm_ops->trigger) {
 606                ret = platform->pcm_ops->trigger(substream, cmd);
 607                if (ret < 0)
 608                        return ret;
 609        }
 610
 611        if (cpu_dai->ops.trigger) {
 612                ret = cpu_dai->ops.trigger(substream, cmd);
 613                if (ret < 0)
 614                        return ret;
 615        }
 616        return 0;
 617}
 618
 619/* ASoC PCM operations */
 620static struct snd_pcm_ops soc_pcm_ops = {
 621        .open           = soc_pcm_open,
 622        .close          = soc_codec_close,
 623        .hw_params      = soc_pcm_hw_params,
 624        .hw_free        = soc_pcm_hw_free,
 625        .prepare        = soc_pcm_prepare,
 626        .trigger        = soc_pcm_trigger,
 627};
 628
 629#ifdef CONFIG_PM
 630/* powers down audio subsystem for suspend */
 631static int soc_suspend(struct platform_device *pdev, pm_message_t state)
 632{
 633        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
 634        struct snd_soc_machine *machine = socdev->machine;
 635        struct snd_soc_platform *platform = socdev->platform;
 636        struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
 637        struct snd_soc_codec *codec = socdev->codec;
 638        int i;
 639
 640        /* Due to the resume being scheduled into a workqueue we could
 641        * suspend before that's finished - wait for it to complete.
 642         */
 643        snd_power_lock(codec->card);
 644        snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
 645        snd_power_unlock(codec->card);
 646
 647        /* we're going to block userspace touching us until resume completes */
 648        snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
 649
 650        /* mute any active DAC's */
 651        for (i = 0; i < machine->num_links; i++) {
 652                struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
 653                if (dai->dai_ops.digital_mute && dai->playback.active)
 654                        dai->dai_ops.digital_mute(dai, 1);
 655        }
 656
 657        /* suspend all pcms */
 658        for (i = 0; i < machine->num_links; i++)
 659                snd_pcm_suspend_all(machine->dai_link[i].pcm);
 660
 661        if (machine->suspend_pre)
 662                machine->suspend_pre(pdev, state);
 663
 664        for (i = 0; i < machine->num_links; i++) {
 665                struct snd_soc_dai  *cpu_dai = machine->dai_link[i].cpu_dai;
 666                if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
 667                        cpu_dai->suspend(pdev, cpu_dai);
 668                if (platform->suspend)
 669                        platform->suspend(pdev, cpu_dai);
 670        }
 671
 672        /* close any waiting streams and save state */
 673        run_delayed_work(&socdev->delayed_work);
 674        codec->suspend_bias_level = codec->bias_level;
 675
 676        for (i = 0; i < codec->num_dai; i++) {
 677                char *stream = codec->dai[i].playback.stream_name;
 678                if (stream != NULL)
 679                        snd_soc_dapm_stream_event(codec, stream,
 680                                SND_SOC_DAPM_STREAM_SUSPEND);
 681                stream = codec->dai[i].capture.stream_name;
 682                if (stream != NULL)
 683                        snd_soc_dapm_stream_event(codec, stream,
 684                                SND_SOC_DAPM_STREAM_SUSPEND);
 685        }
 686
 687        if (codec_dev->suspend)
 688                codec_dev->suspend(pdev, state);
 689
 690        for (i = 0; i < machine->num_links; i++) {
 691                struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
 692                if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
 693                        cpu_dai->suspend(pdev, cpu_dai);
 694        }
 695
 696        if (machine->suspend_post)
 697                machine->suspend_post(pdev, state);
 698
 699        return 0;
 700}
 701
 702/* deferred resume work, so resume can complete before we finished
 703 * setting our codec back up, which can be very slow on I2C
 704 */
 705static void soc_resume_deferred(struct work_struct *work)
 706{
 707        struct snd_soc_device *socdev = container_of(work,
 708                                                     struct snd_soc_device,
 709                                                     deferred_resume_work);
 710        struct snd_soc_machine *machine = socdev->machine;
 711        struct snd_soc_platform *platform = socdev->platform;
 712        struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
 713        struct snd_soc_codec *codec = socdev->codec;
 714        struct platform_device *pdev = to_platform_device(socdev->dev);
 715        int i;
 716
 717        /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
 718         * so userspace apps are blocked from touching us
 719         */
 720
 721        dev_info(socdev->dev, "starting resume work\n");
 722
 723        if (machine->resume_pre)
 724                machine->resume_pre(pdev);
 725
 726        for (i = 0; i < machine->num_links; i++) {
 727                struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
 728                if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
 729                        cpu_dai->resume(pdev, cpu_dai);
 730        }
 731
 732        if (codec_dev->resume)
 733                codec_dev->resume(pdev);
 734
 735        for (i = 0; i < codec->num_dai; i++) {
 736                char *stream = codec->dai[i].playback.stream_name;
 737                if (stream != NULL)
 738                        snd_soc_dapm_stream_event(codec, stream,
 739                                SND_SOC_DAPM_STREAM_RESUME);
 740                stream = codec->dai[i].capture.stream_name;
 741                if (stream != NULL)
 742                        snd_soc_dapm_stream_event(codec, stream,
 743                                SND_SOC_DAPM_STREAM_RESUME);
 744        }
 745
 746        /* unmute any active DACs */
 747        for (i = 0; i < machine->num_links; i++) {
 748                struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
 749                if (dai->dai_ops.digital_mute && dai->playback.active)
 750                        dai->dai_ops.digital_mute(dai, 0);
 751        }
 752
 753        for (i = 0; i < machine->num_links; i++) {
 754                struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
 755                if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
 756                        cpu_dai->resume(pdev, cpu_dai);
 757                if (platform->resume)
 758                        platform->resume(pdev, cpu_dai);
 759        }
 760
 761        if (machine->resume_post)
 762                machine->resume_post(pdev);
 763
 764        dev_info(socdev->dev, "resume work completed\n");
 765
 766        /* userspace can access us now we are back as we were before */
 767        snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
 768}
 769
 770/* powers up audio subsystem after a suspend */
 771static int soc_resume(struct platform_device *pdev)
 772{
 773        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
 774
 775        dev_info(socdev->dev, "scheduling resume work\n");
 776
 777        if (!schedule_work(&socdev->deferred_resume_work))
 778                dev_err(socdev->dev, "work item may be lost\n");
 779
 780        return 0;
 781}
 782
 783#else
 784#define soc_suspend     NULL
 785#define soc_resume      NULL
 786#endif
 787
 788/* probes a new socdev */
 789static int soc_probe(struct platform_device *pdev)
 790{
 791        int ret = 0, i;
 792        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
 793        struct snd_soc_machine *machine = socdev->machine;
 794        struct snd_soc_platform *platform = socdev->platform;
 795        struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
 796
 797        if (machine->probe) {
 798                ret = machine->probe(pdev);
 799                if (ret < 0)
 800                        return ret;
 801        }
 802
 803        for (i = 0; i < machine->num_links; i++) {
 804                struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
 805                if (cpu_dai->probe) {
 806                        ret = cpu_dai->probe(pdev, cpu_dai);
 807                        if (ret < 0)
 808                                goto cpu_dai_err;
 809                }
 810        }
 811
 812        if (codec_dev->probe) {
 813                ret = codec_dev->probe(pdev);
 814                if (ret < 0)
 815                        goto cpu_dai_err;
 816        }
 817
 818        if (platform->probe) {
 819                ret = platform->probe(pdev);
 820                if (ret < 0)
 821                        goto platform_err;
 822        }
 823
 824        /* DAPM stream work */
 825        INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
 826#ifdef CONFIG_PM
 827        /* deferred resume work */
 828        INIT_WORK(&socdev->deferred_resume_work, soc_resume_deferred);
 829#endif
 830
 831        return 0;
 832
 833platform_err:
 834        if (codec_dev->remove)
 835                codec_dev->remove(pdev);
 836
 837cpu_dai_err:
 838        for (i--; i >= 0; i--) {
 839                struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
 840                if (cpu_dai->remove)
 841                        cpu_dai->remove(pdev, cpu_dai);
 842        }
 843
 844        if (machine->remove)
 845                machine->remove(pdev);
 846
 847        return ret;
 848}
 849
 850/* removes a socdev */
 851static int soc_remove(struct platform_device *pdev)
 852{
 853        int i;
 854        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
 855        struct snd_soc_machine *machine = socdev->machine;
 856        struct snd_soc_platform *platform = socdev->platform;
 857        struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
 858
 859        run_delayed_work(&socdev->delayed_work);
 860
 861        if (platform->remove)
 862                platform->remove(pdev);
 863
 864        if (codec_dev->remove)
 865                codec_dev->remove(pdev);
 866
 867        for (i = 0; i < machine->num_links; i++) {
 868                struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
 869                if (cpu_dai->remove)
 870                        cpu_dai->remove(pdev, cpu_dai);
 871        }
 872
 873        if (machine->remove)
 874                machine->remove(pdev);
 875
 876        return 0;
 877}
 878
 879/* ASoC platform driver */
 880static struct platform_driver soc_driver = {
 881        .driver         = {
 882                .name           = "soc-audio",
 883                .owner          = THIS_MODULE,
 884        },
 885        .probe          = soc_probe,
 886        .remove         = soc_remove,
 887        .suspend        = soc_suspend,
 888        .resume         = soc_resume,
 889};
 890
 891/* create a new pcm */
 892static int soc_new_pcm(struct snd_soc_device *socdev,
 893        struct snd_soc_dai_link *dai_link, int num)
 894{
 895        struct snd_soc_codec *codec = socdev->codec;
 896        struct snd_soc_dai *codec_dai = dai_link->codec_dai;
 897        struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
 898        struct snd_soc_pcm_runtime *rtd;
 899        struct snd_pcm *pcm;
 900        char new_name[64];
 901        int ret = 0, playback = 0, capture = 0;
 902
 903        rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
 904        if (rtd == NULL)
 905                return -ENOMEM;
 906
 907        rtd->dai = dai_link;
 908        rtd->socdev = socdev;
 909        codec_dai->codec = socdev->codec;
 910
 911        /* check client and interface hw capabilities */
 912        sprintf(new_name, "%s %s-%s-%d", dai_link->stream_name, codec_dai->name,
 913                get_dai_name(cpu_dai->type), num);
 914
 915        if (codec_dai->playback.channels_min)
 916                playback = 1;
 917        if (codec_dai->capture.channels_min)
 918                capture = 1;
 919
 920        ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
 921                capture, &pcm);
 922        if (ret < 0) {
 923                printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
 924                        codec->name);
 925                kfree(rtd);
 926                return ret;
 927        }
 928
 929        dai_link->pcm = pcm;
 930        pcm->private_data = rtd;
 931        soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
 932        soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
 933        soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
 934        soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
 935        soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
 936        soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
 937        soc_pcm_ops.page = socdev->platform->pcm_ops->page;
 938
 939        if (playback)
 940                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
 941
 942        if (capture)
 943                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
 944
 945        ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
 946        if (ret < 0) {
 947                printk(KERN_ERR "asoc: platform pcm constructor failed\n");
 948                kfree(rtd);
 949                return ret;
 950        }
 951
 952        pcm->private_free = socdev->platform->pcm_free;
 953        printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
 954                cpu_dai->name);
 955        return ret;
 956}
 957
 958/* codec register dump */
 959static ssize_t codec_reg_show(struct device *dev,
 960        struct device_attribute *attr, char *buf)
 961{
 962        struct snd_soc_device *devdata = dev_get_drvdata(dev);
 963        struct snd_soc_codec *codec = devdata->codec;
 964        int i, step = 1, count = 0;
 965
 966        if (!codec->reg_cache_size)
 967                return 0;
 968
 969        if (codec->reg_cache_step)
 970                step = codec->reg_cache_step;
 971
 972        count += sprintf(buf, "%s registers\n", codec->name);
 973        for (i = 0; i < codec->reg_cache_size; i += step)
 974                count += sprintf(buf + count, "%2x: %4x\n", i,
 975                        codec->read(codec, i));
 976
 977        return count;
 978}
 979static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
 980
 981/**
 982 * snd_soc_new_ac97_codec - initailise AC97 device
 983 * @codec: audio codec
 984 * @ops: AC97 bus operations
 985 * @num: AC97 codec number
 986 *
 987 * Initialises AC97 codec resources for use by ad-hoc devices only.
 988 */
 989int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
 990        struct snd_ac97_bus_ops *ops, int num)
 991{
 992        mutex_lock(&codec->mutex);
 993
 994        codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
 995        if (codec->ac97 == NULL) {
 996                mutex_unlock(&codec->mutex);
 997                return -ENOMEM;
 998        }
 999
1000        codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1001        if (codec->ac97->bus == NULL) {
1002                kfree(codec->ac97);
1003                codec->ac97 = NULL;
1004                mutex_unlock(&codec->mutex);
1005                return -ENOMEM;
1006        }
1007
1008        codec->ac97->bus->ops = ops;
1009        codec->ac97->num = num;
1010        mutex_unlock(&codec->mutex);
1011        return 0;
1012}
1013EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1014
1015/**
1016 * snd_soc_free_ac97_codec - free AC97 codec device
1017 * @codec: audio codec
1018 *
1019 * Frees AC97 codec device resources.
1020 */
1021void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1022{
1023        mutex_lock(&codec->mutex);
1024        kfree(codec->ac97->bus);
1025        kfree(codec->ac97);
1026        codec->ac97 = NULL;
1027        mutex_unlock(&codec->mutex);
1028}
1029EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1030
1031/**
1032 * snd_soc_update_bits - update codec register bits
1033 * @codec: audio codec
1034 * @reg: codec register
1035 * @mask: register mask
1036 * @value: new value
1037 *
1038 * Writes new register value.
1039 *
1040 * Returns 1 for change else 0.
1041 */
1042int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1043                                unsigned short mask, unsigned short value)
1044{
1045        int change;
1046        unsigned short old, new;
1047
1048        mutex_lock(&io_mutex);
1049        old = snd_soc_read(codec, reg);
1050        new = (old & ~mask) | value;
1051        change = old != new;
1052        if (change)
1053                snd_soc_write(codec, reg, new);
1054
1055        mutex_unlock(&io_mutex);
1056        return change;
1057}
1058EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1059
1060/**
1061 * snd_soc_test_bits - test register for change
1062 * @codec: audio codec
1063 * @reg: codec register
1064 * @mask: register mask
1065 * @value: new value
1066 *
1067 * Tests a register with a new value and checks if the new value is
1068 * different from the old value.
1069 *
1070 * Returns 1 for change else 0.
1071 */
1072int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1073                                unsigned short mask, unsigned short value)
1074{
1075        int change;
1076        unsigned short old, new;
1077
1078        mutex_lock(&io_mutex);
1079        old = snd_soc_read(codec, reg);
1080        new = (old & ~mask) | value;
1081        change = old != new;
1082        mutex_unlock(&io_mutex);
1083
1084        return change;
1085}
1086EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1087
1088/**
1089 * snd_soc_new_pcms - create new sound card and pcms
1090 * @socdev: the SoC audio device
1091 *
1092 * Create a new sound card based upon the codec and interface pcms.
1093 *
1094 * Returns 0 for success, else error.
1095 */
1096int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1097{
1098        struct snd_soc_codec *codec = socdev->codec;
1099        struct snd_soc_machine *machine = socdev->machine;
1100        int ret = 0, i;
1101
1102        mutex_lock(&codec->mutex);
1103
1104        /* register a sound card */
1105        codec->card = snd_card_new(idx, xid, codec->owner, 0);
1106        if (!codec->card) {
1107                printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1108                        codec->name);
1109                mutex_unlock(&codec->mutex);
1110                return -ENODEV;
1111        }
1112
1113        codec->card->dev = socdev->dev;
1114        codec->card->private_data = codec;
1115        strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1116
1117        /* create the pcms */
1118        for (i = 0; i < machine->num_links; i++) {
1119                ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1120                if (ret < 0) {
1121                        printk(KERN_ERR "asoc: can't create pcm %s\n",
1122                                machine->dai_link[i].stream_name);
1123                        mutex_unlock(&codec->mutex);
1124                        return ret;
1125                }
1126        }
1127
1128        mutex_unlock(&codec->mutex);
1129        return ret;
1130}
1131EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1132
1133/**
1134 * snd_soc_register_card - register sound card
1135 * @socdev: the SoC audio device
1136 *
1137 * Register a SoC sound card. Also registers an AC97 device if the
1138 * codec is AC97 for ad hoc devices.
1139 *
1140 * Returns 0 for success, else error.
1141 */
1142int snd_soc_register_card(struct snd_soc_device *socdev)
1143{
1144        struct snd_soc_codec *codec = socdev->codec;
1145        struct snd_soc_machine *machine = socdev->machine;
1146        int ret = 0, i, ac97 = 0, err = 0;
1147
1148        for (i = 0; i < machine->num_links; i++) {
1149                if (socdev->machine->dai_link[i].init) {
1150                        err = socdev->machine->dai_link[i].init(codec);
1151                        if (err < 0) {
1152                                printk(KERN_ERR "asoc: failed to init %s\n",
1153                                        socdev->machine->dai_link[i].stream_name);
1154                                continue;
1155                        }
1156                }
1157                if (socdev->machine->dai_link[i].codec_dai->type ==
1158                        SND_SOC_DAI_AC97_BUS)
1159                        ac97 = 1;
1160        }
1161        snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1162                 "%s", machine->name);
1163        snprintf(codec->card->longname, sizeof(codec->card->longname),
1164                 "%s (%s)", machine->name, codec->name);
1165
1166        ret = snd_card_register(codec->card);
1167        if (ret < 0) {
1168                printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1169                                codec->name);
1170                goto out;
1171        }
1172
1173        mutex_lock(&codec->mutex);
1174#ifdef CONFIG_SND_SOC_AC97_BUS
1175        if (ac97) {
1176                ret = soc_ac97_dev_register(codec);
1177                if (ret < 0) {
1178                        printk(KERN_ERR "asoc: AC97 device register failed\n");
1179                        snd_card_free(codec->card);
1180                        mutex_unlock(&codec->mutex);
1181                        goto out;
1182                }
1183        }
1184#endif
1185
1186        err = snd_soc_dapm_sys_add(socdev->dev);
1187        if (err < 0)
1188                printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1189
1190        err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1191        if (err < 0)
1192                printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1193
1194        mutex_unlock(&codec->mutex);
1195
1196out:
1197        return ret;
1198}
1199EXPORT_SYMBOL_GPL(snd_soc_register_card);
1200
1201/**
1202 * snd_soc_free_pcms - free sound card and pcms
1203 * @socdev: the SoC audio device
1204 *
1205 * Frees sound card and pcms associated with the socdev.
1206 * Also unregister the codec if it is an AC97 device.
1207 */
1208void snd_soc_free_pcms(struct snd_soc_device *socdev)
1209{
1210        struct snd_soc_codec *codec = socdev->codec;
1211#ifdef CONFIG_SND_SOC_AC97_BUS
1212        struct snd_soc_dai *codec_dai;
1213        int i;
1214#endif
1215
1216        mutex_lock(&codec->mutex);
1217#ifdef CONFIG_SND_SOC_AC97_BUS
1218        for (i = 0; i < codec->num_dai; i++) {
1219                codec_dai = &codec->dai[i];
1220                if (codec_dai->type == SND_SOC_DAI_AC97_BUS && codec->ac97) {
1221                        soc_ac97_dev_unregister(codec);
1222                        goto free_card;
1223                }
1224        }
1225free_card:
1226#endif
1227
1228        if (codec->card)
1229                snd_card_free(codec->card);
1230        device_remove_file(socdev->dev, &dev_attr_codec_reg);
1231        mutex_unlock(&codec->mutex);
1232}
1233EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1234
1235/**
1236 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1237 * @substream: the pcm substream
1238 * @hw: the hardware parameters
1239 *
1240 * Sets the substream runtime hardware parameters.
1241 */
1242int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1243        const struct snd_pcm_hardware *hw)
1244{
1245        struct snd_pcm_runtime *runtime = substream->runtime;
1246        runtime->hw.info = hw->info;
1247        runtime->hw.formats = hw->formats;
1248        runtime->hw.period_bytes_min = hw->period_bytes_min;
1249        runtime->hw.period_bytes_max = hw->period_bytes_max;
1250        runtime->hw.periods_min = hw->periods_min;
1251        runtime->hw.periods_max = hw->periods_max;
1252        runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1253        runtime->hw.fifo_size = hw->fifo_size;
1254        return 0;
1255}
1256EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1257
1258/**
1259 * snd_soc_cnew - create new control
1260 * @_template: control template
1261 * @data: control private data
1262 * @lnng_name: control long name
1263 *
1264 * Create a new mixer control from a template control.
1265 *
1266 * Returns 0 for success, else error.
1267 */
1268struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1269        void *data, char *long_name)
1270{
1271        struct snd_kcontrol_new template;
1272
1273        memcpy(&template, _template, sizeof(template));
1274        if (long_name)
1275                template.name = long_name;
1276        template.index = 0;
1277
1278        return snd_ctl_new1(&template, data);
1279}
1280EXPORT_SYMBOL_GPL(snd_soc_cnew);
1281
1282/**
1283 * snd_soc_info_enum_double - enumerated double mixer info callback
1284 * @kcontrol: mixer control
1285 * @uinfo: control element information
1286 *
1287 * Callback to provide information about a double enumerated
1288 * mixer control.
1289 *
1290 * Returns 0 for success.
1291 */
1292int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1293        struct snd_ctl_elem_info *uinfo)
1294{
1295        struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1296
1297        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1298        uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1299        uinfo->value.enumerated.items = e->mask;
1300
1301        if (uinfo->value.enumerated.item > e->mask - 1)
1302                uinfo->value.enumerated.item = e->mask - 1;
1303        strcpy(uinfo->value.enumerated.name,
1304                e->texts[uinfo->value.enumerated.item]);
1305        return 0;
1306}
1307EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1308
1309/**
1310 * snd_soc_get_enum_double - enumerated double mixer get callback
1311 * @kcontrol: mixer control
1312 * @uinfo: control element information
1313 *
1314 * Callback to get the value of a double enumerated mixer.
1315 *
1316 * Returns 0 for success.
1317 */
1318int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1319        struct snd_ctl_elem_value *ucontrol)
1320{
1321        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1322        struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1323        unsigned short val, bitmask;
1324
1325        for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1326                ;
1327        val = snd_soc_read(codec, e->reg);
1328        ucontrol->value.enumerated.item[0]
1329                = (val >> e->shift_l) & (bitmask - 1);
1330        if (e->shift_l != e->shift_r)
1331                ucontrol->value.enumerated.item[1] =
1332                        (val >> e->shift_r) & (bitmask - 1);
1333
1334        return 0;
1335}
1336EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1337
1338/**
1339 * snd_soc_put_enum_double - enumerated double mixer put callback
1340 * @kcontrol: mixer control
1341 * @uinfo: control element information
1342 *
1343 * Callback to set the value of a double enumerated mixer.
1344 *
1345 * Returns 0 for success.
1346 */
1347int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1348        struct snd_ctl_elem_value *ucontrol)
1349{
1350        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1351        struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1352        unsigned short val;
1353        unsigned short mask, bitmask;
1354
1355        for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1356                ;
1357        if (ucontrol->value.enumerated.item[0] > e->mask - 1)
1358                return -EINVAL;
1359        val = ucontrol->value.enumerated.item[0] << e->shift_l;
1360        mask = (bitmask - 1) << e->shift_l;
1361        if (e->shift_l != e->shift_r) {
1362                if (ucontrol->value.enumerated.item[1] > e->mask - 1)
1363                        return -EINVAL;
1364                val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1365                mask |= (bitmask - 1) << e->shift_r;
1366        }
1367
1368        return snd_soc_update_bits(codec, e->reg, mask, val);
1369}
1370EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1371
1372/**
1373 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1374 * @kcontrol: mixer control
1375 * @uinfo: control element information
1376 *
1377 * Callback to provide information about an external enumerated
1378 * single mixer.
1379 *
1380 * Returns 0 for success.
1381 */
1382int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1383        struct snd_ctl_elem_info *uinfo)
1384{
1385        struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1386
1387        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1388        uinfo->count = 1;
1389        uinfo->value.enumerated.items = e->mask;
1390
1391        if (uinfo->value.enumerated.item > e->mask - 1)
1392                uinfo->value.enumerated.item = e->mask - 1;
1393        strcpy(uinfo->value.enumerated.name,
1394                e->texts[uinfo->value.enumerated.item]);
1395        return 0;
1396}
1397EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1398
1399/**
1400 * snd_soc_info_volsw_ext - external single mixer info callback
1401 * @kcontrol: mixer control
1402 * @uinfo: control element information
1403 *
1404 * Callback to provide information about a single external mixer control.
1405 *
1406 * Returns 0 for success.
1407 */
1408int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1409        struct snd_ctl_elem_info *uinfo)
1410{
1411        int max = kcontrol->private_value;
1412
1413        if (max == 1)
1414                uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1415        else
1416                uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1417
1418        uinfo->count = 1;
1419        uinfo->value.integer.min = 0;
1420        uinfo->value.integer.max = max;
1421        return 0;
1422}
1423EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1424
1425/**
1426 * snd_soc_info_volsw - single mixer info callback
1427 * @kcontrol: mixer control
1428 * @uinfo: control element information
1429 *
1430 * Callback to provide information about a single mixer control.
1431 *
1432 * Returns 0 for success.
1433 */
1434int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1435        struct snd_ctl_elem_info *uinfo)
1436{
1437        int max = (kcontrol->private_value >> 16) & 0xff;
1438        int shift = (kcontrol->private_value >> 8) & 0x0f;
1439        int rshift = (kcontrol->private_value >> 12) & 0x0f;
1440
1441        if (max == 1)
1442                uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1443        else
1444                uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1445
1446        uinfo->count = shift == rshift ? 1 : 2;
1447        uinfo->value.integer.min = 0;
1448        uinfo->value.integer.max = max;
1449        return 0;
1450}
1451EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1452
1453/**
1454 * snd_soc_get_volsw - single mixer get callback
1455 * @kcontrol: mixer control
1456 * @uinfo: control element information
1457 *
1458 * Callback to get the value of a single mixer control.
1459 *
1460 * Returns 0 for success.
1461 */
1462int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1463        struct snd_ctl_elem_value *ucontrol)
1464{
1465        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1466        int reg = kcontrol->private_value & 0xff;
1467        int shift = (kcontrol->private_value >> 8) & 0x0f;
1468        int rshift = (kcontrol->private_value >> 12) & 0x0f;
1469        int max = (kcontrol->private_value >> 16) & 0xff;
1470        int mask = (1 << fls(max)) - 1;
1471        int invert = (kcontrol->private_value >> 24) & 0x01;
1472
1473        ucontrol->value.integer.value[0] =
1474                (snd_soc_read(codec, reg) >> shift) & mask;
1475        if (shift != rshift)
1476                ucontrol->value.integer.value[1] =
1477                        (snd_soc_read(codec, reg) >> rshift) & mask;
1478        if (invert) {
1479                ucontrol->value.integer.value[0] =
1480                        max - ucontrol->value.integer.value[0];
1481                if (shift != rshift)
1482                        ucontrol->value.integer.value[1] =
1483                                max - ucontrol->value.integer.value[1];
1484        }
1485
1486        return 0;
1487}
1488EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1489
1490/**
1491 * snd_soc_put_volsw - single mixer put callback
1492 * @kcontrol: mixer control
1493 * @uinfo: control element information
1494 *
1495 * Callback to set the value of a single mixer control.
1496 *
1497 * Returns 0 for success.
1498 */
1499int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1500        struct snd_ctl_elem_value *ucontrol)
1501{
1502        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1503        int reg = kcontrol->private_value & 0xff;
1504        int shift = (kcontrol->private_value >> 8) & 0x0f;
1505        int rshift = (kcontrol->private_value >> 12) & 0x0f;
1506        int max = (kcontrol->private_value >> 16) & 0xff;
1507        int mask = (1 << fls(max)) - 1;
1508        int invert = (kcontrol->private_value >> 24) & 0x01;
1509        unsigned short val, val2, val_mask;
1510
1511        val = (ucontrol->value.integer.value[0] & mask);
1512        if (invert)
1513                val = max - val;
1514        val_mask = mask << shift;
1515        val = val << shift;
1516        if (shift != rshift) {
1517                val2 = (ucontrol->value.integer.value[1] & mask);
1518                if (invert)
1519                        val2 = max - val2;
1520                val_mask |= mask << rshift;
1521                val |= val2 << rshift;
1522        }
1523        return snd_soc_update_bits(codec, reg, val_mask, val);
1524}
1525EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1526
1527/**
1528 * snd_soc_info_volsw_2r - double mixer info callback
1529 * @kcontrol: mixer control
1530 * @uinfo: control element information
1531 *
1532 * Callback to provide information about a double mixer control that
1533 * spans 2 codec registers.
1534 *
1535 * Returns 0 for success.
1536 */
1537int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1538        struct snd_ctl_elem_info *uinfo)
1539{
1540        int max = (kcontrol->private_value >> 12) & 0xff;
1541
1542        if (max == 1)
1543                uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1544        else
1545                uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1546
1547        uinfo->count = 2;
1548        uinfo->value.integer.min = 0;
1549        uinfo->value.integer.max = max;
1550        return 0;
1551}
1552EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1553
1554/**
1555 * snd_soc_get_volsw_2r - double mixer get callback
1556 * @kcontrol: mixer control
1557 * @uinfo: control element information
1558 *
1559 * Callback to get the value of a double mixer control that spans 2 registers.
1560 *
1561 * Returns 0 for success.
1562 */
1563int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1564        struct snd_ctl_elem_value *ucontrol)
1565{
1566        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1567        int reg = kcontrol->private_value & 0xff;
1568        int reg2 = (kcontrol->private_value >> 24) & 0xff;
1569        int shift = (kcontrol->private_value >> 8) & 0x0f;
1570        int max = (kcontrol->private_value >> 12) & 0xff;
1571        int mask = (1<<fls(max))-1;
1572        int invert = (kcontrol->private_value >> 20) & 0x01;
1573
1574        ucontrol->value.integer.value[0] =
1575                (snd_soc_read(codec, reg) >> shift) & mask;
1576        ucontrol->value.integer.value[1] =
1577                (snd_soc_read(codec, reg2) >> shift) & mask;
1578        if (invert) {
1579                ucontrol->value.integer.value[0] =
1580                        max - ucontrol->value.integer.value[0];
1581                ucontrol->value.integer.value[1] =
1582                        max - ucontrol->value.integer.value[1];
1583        }
1584
1585        return 0;
1586}
1587EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1588
1589/**
1590 * snd_soc_put_volsw_2r - double mixer set callback
1591 * @kcontrol: mixer control
1592 * @uinfo: control element information
1593 *
1594 * Callback to set the value of a double mixer control that spans 2 registers.
1595 *
1596 * Returns 0 for success.
1597 */
1598int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1599        struct snd_ctl_elem_value *ucontrol)
1600{
1601        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1602        int reg = kcontrol->private_value & 0xff;
1603        int reg2 = (kcontrol->private_value >> 24) & 0xff;
1604        int shift = (kcontrol->private_value >> 8) & 0x0f;
1605        int max = (kcontrol->private_value >> 12) & 0xff;
1606        int mask = (1 << fls(max)) - 1;
1607        int invert = (kcontrol->private_value >> 20) & 0x01;
1608        int err;
1609        unsigned short val, val2, val_mask;
1610
1611        val_mask = mask << shift;
1612        val = (ucontrol->value.integer.value[0] & mask);
1613        val2 = (ucontrol->value.integer.value[1] & mask);
1614
1615        if (invert) {
1616                val = max - val;
1617                val2 = max - val2;
1618        }
1619
1620        val = val << shift;
1621        val2 = val2 << shift;
1622
1623        err = snd_soc_update_bits(codec, reg, val_mask, val);
1624        if (err < 0)
1625                return err;
1626
1627        err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1628        return err;
1629}
1630EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1631
1632/**
1633 * snd_soc_info_volsw_s8 - signed mixer info callback
1634 * @kcontrol: mixer control
1635 * @uinfo: control element information
1636 *
1637 * Callback to provide information about a signed mixer control.
1638 *
1639 * Returns 0 for success.
1640 */
1641int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1642        struct snd_ctl_elem_info *uinfo)
1643{
1644        int max = (signed char)((kcontrol->private_value >> 16) & 0xff);
1645        int min = (signed char)((kcontrol->private_value >> 24) & 0xff);
1646
1647        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1648        uinfo->count = 2;
1649        uinfo->value.integer.min = 0;
1650        uinfo->value.integer.max = max-min;
1651        return 0;
1652}
1653EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1654
1655/**
1656 * snd_soc_get_volsw_s8 - signed mixer get callback
1657 * @kcontrol: mixer control
1658 * @uinfo: control element information
1659 *
1660 * Callback to get the value of a signed mixer control.
1661 *
1662 * Returns 0 for success.
1663 */
1664int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1665        struct snd_ctl_elem_value *ucontrol)
1666{
1667        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1668        int reg = kcontrol->private_value & 0xff;
1669        int min = (signed char)((kcontrol->private_value >> 24) & 0xff);
1670        int val = snd_soc_read(codec, reg);
1671
1672        ucontrol->value.integer.value[0] =
1673                ((signed char)(val & 0xff))-min;
1674        ucontrol->value.integer.value[1] =
1675                ((signed char)((val >> 8) & 0xff))-min;
1676        return 0;
1677}
1678EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
1679
1680/**
1681 * snd_soc_put_volsw_sgn - signed mixer put callback
1682 * @kcontrol: mixer control
1683 * @uinfo: control element information
1684 *
1685 * Callback to set the value of a signed mixer control.
1686 *
1687 * Returns 0 for success.
1688 */
1689int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
1690        struct snd_ctl_elem_value *ucontrol)
1691{
1692        struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1693        int reg = kcontrol->private_value & 0xff;
1694        int min = (signed char)((kcontrol->private_value >> 24) & 0xff);
1695        unsigned short val;
1696
1697        val = (ucontrol->value.integer.value[0]+min) & 0xff;
1698        val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
1699
1700        return snd_soc_update_bits(codec, reg, 0xffff, val);
1701}
1702EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
1703
1704/**
1705 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
1706 * @dai: DAI
1707 * @clk_id: DAI specific clock ID
1708 * @freq: new clock frequency in Hz
1709 * @dir: new clock direction - input/output.
1710 *
1711 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
1712 */
1713int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
1714        unsigned int freq, int dir)
1715{
1716        if (dai->dai_ops.set_sysclk)
1717                return dai->dai_ops.set_sysclk(dai, clk_id, freq, dir);
1718        else
1719                return -EINVAL;
1720}
1721EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
1722
1723/**
1724 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
1725 * @dai: DAI
1726 * @clk_id: DAI specific clock divider ID
1727 * @div: new clock divisor.
1728 *
1729 * Configures the clock dividers. This is used to derive the best DAI bit and
1730 * frame clocks from the system or master clock. It's best to set the DAI bit
1731 * and frame clocks as low as possible to save system power.
1732 */
1733int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
1734        int div_id, int div)
1735{
1736        if (dai->dai_ops.set_clkdiv)
1737                return dai->dai_ops.set_clkdiv(dai, div_id, div);
1738        else
1739                return -EINVAL;
1740}
1741EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
1742
1743/**
1744 * snd_soc_dai_set_pll - configure DAI PLL.
1745 * @dai: DAI
1746 * @pll_id: DAI specific PLL ID
1747 * @freq_in: PLL input clock frequency in Hz
1748 * @freq_out: requested PLL output clock frequency in Hz
1749 *
1750 * Configures and enables PLL to generate output clock based on input clock.
1751 */
1752int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
1753        int pll_id, unsigned int freq_in, unsigned int freq_out)
1754{
1755        if (dai->dai_ops.set_pll)
1756                return dai->dai_ops.set_pll(dai, pll_id, freq_in, freq_out);
1757        else
1758                return -EINVAL;
1759}
1760EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
1761
1762/**
1763 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
1764 * @dai: DAI
1765 * @clk_id: DAI specific clock ID
1766 * @fmt: SND_SOC_DAIFMT_ format value.
1767 *
1768 * Configures the DAI hardware format and clocking.
1769 */
1770int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1771{
1772        if (dai->dai_ops.set_fmt)
1773                return dai->dai_ops.set_fmt(dai, fmt);
1774        else
1775                return -EINVAL;
1776}
1777EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
1778
1779/**
1780 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
1781 * @dai: DAI
1782 * @mask: DAI specific mask representing used slots.
1783 * @slots: Number of slots in use.
1784 *
1785 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
1786 * specific.
1787 */
1788int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
1789        unsigned int mask, int slots)
1790{
1791        if (dai->dai_ops.set_sysclk)
1792                return dai->dai_ops.set_tdm_slot(dai, mask, slots);
1793        else
1794                return -EINVAL;
1795}
1796EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
1797
1798/**
1799 * snd_soc_dai_set_tristate - configure DAI system or master clock.
1800 * @dai: DAI
1801 * @tristate: tristate enable
1802 *
1803 * Tristates the DAI so that others can use it.
1804 */
1805int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
1806{
1807        if (dai->dai_ops.set_sysclk)
1808                return dai->dai_ops.set_tristate(dai, tristate);
1809        else
1810                return -EINVAL;
1811}
1812EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
1813
1814/**
1815 * snd_soc_dai_digital_mute - configure DAI system or master clock.
1816 * @dai: DAI
1817 * @mute: mute enable
1818 *
1819 * Mutes the DAI DAC.
1820 */
1821int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
1822{
1823        if (dai->dai_ops.digital_mute)
1824                return dai->dai_ops.digital_mute(dai, mute);
1825        else
1826                return -EINVAL;
1827}
1828EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
1829
1830static int __devinit snd_soc_init(void)
1831{
1832        printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
1833        return platform_driver_register(&soc_driver);
1834}
1835
1836static void snd_soc_exit(void)
1837{
1838        platform_driver_unregister(&soc_driver);
1839}
1840
1841module_init(snd_soc_init);
1842module_exit(snd_soc_exit);
1843
1844/* Module information */
1845MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1846MODULE_DESCRIPTION("ALSA SoC Core");
1847MODULE_LICENSE("GPL");
1848MODULE_ALIAS("platform:soc-audio");
1849