linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    akpm@zip.com.au
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h>
  36#include <linux/pagevec.h>
  37
  38/*
  39 * The maximum number of pages to writeout in a single bdflush/kupdate
  40 * operation.  We do this so we don't hold I_SYNC against an inode for
  41 * enormous amounts of time, which would block a userspace task which has
  42 * been forced to throttle against that inode.  Also, the code reevaluates
  43 * the dirty each time it has written this many pages.
  44 */
  45#define MAX_WRITEBACK_PAGES     1024
  46
  47/*
  48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  49 * will look to see if it needs to force writeback or throttling.
  50 */
  51static long ratelimit_pages = 32;
  52
  53/*
  54 * When balance_dirty_pages decides that the caller needs to perform some
  55 * non-background writeback, this is how many pages it will attempt to write.
  56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  57 * large amounts of I/O are submitted.
  58 */
  59static inline long sync_writeback_pages(void)
  60{
  61        return ratelimit_pages + ratelimit_pages / 2;
  62}
  63
  64/* The following parameters are exported via /proc/sys/vm */
  65
  66/*
  67 * Start background writeback (via pdflush) at this percentage
  68 */
  69int dirty_background_ratio = 5;
  70
  71/*
  72 * free highmem will not be subtracted from the total free memory
  73 * for calculating free ratios if vm_highmem_is_dirtyable is true
  74 */
  75int vm_highmem_is_dirtyable;
  76
  77/*
  78 * The generator of dirty data starts writeback at this percentage
  79 */
  80int vm_dirty_ratio = 10;
  81
  82/*
  83 * The interval between `kupdate'-style writebacks, in jiffies
  84 */
  85int dirty_writeback_interval = 5 * HZ;
  86
  87/*
  88 * The longest number of jiffies for which data is allowed to remain dirty
  89 */
  90int dirty_expire_interval = 30 * HZ;
  91
  92/*
  93 * Flag that makes the machine dump writes/reads and block dirtyings.
  94 */
  95int block_dump;
  96
  97/*
  98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  99 * a full sync is triggered after this time elapses without any disk activity.
 100 */
 101int laptop_mode;
 102
 103EXPORT_SYMBOL(laptop_mode);
 104
 105/* End of sysctl-exported parameters */
 106
 107
 108static void background_writeout(unsigned long _min_pages);
 109
 110/*
 111 * Scale the writeback cache size proportional to the relative writeout speeds.
 112 *
 113 * We do this by keeping a floating proportion between BDIs, based on page
 114 * writeback completions [end_page_writeback()]. Those devices that write out
 115 * pages fastest will get the larger share, while the slower will get a smaller
 116 * share.
 117 *
 118 * We use page writeout completions because we are interested in getting rid of
 119 * dirty pages. Having them written out is the primary goal.
 120 *
 121 * We introduce a concept of time, a period over which we measure these events,
 122 * because demand can/will vary over time. The length of this period itself is
 123 * measured in page writeback completions.
 124 *
 125 */
 126static struct prop_descriptor vm_completions;
 127static struct prop_descriptor vm_dirties;
 128
 129/*
 130 * couple the period to the dirty_ratio:
 131 *
 132 *   period/2 ~ roundup_pow_of_two(dirty limit)
 133 */
 134static int calc_period_shift(void)
 135{
 136        unsigned long dirty_total;
 137
 138        dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
 139        return 2 + ilog2(dirty_total - 1);
 140}
 141
 142/*
 143 * update the period when the dirty ratio changes.
 144 */
 145int dirty_ratio_handler(struct ctl_table *table, int write,
 146                struct file *filp, void __user *buffer, size_t *lenp,
 147                loff_t *ppos)
 148{
 149        int old_ratio = vm_dirty_ratio;
 150        int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
 151        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 152                int shift = calc_period_shift();
 153                prop_change_shift(&vm_completions, shift);
 154                prop_change_shift(&vm_dirties, shift);
 155        }
 156        return ret;
 157}
 158
 159/*
 160 * Increment the BDI's writeout completion count and the global writeout
 161 * completion count. Called from test_clear_page_writeback().
 162 */
 163static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 164{
 165        __prop_inc_percpu_max(&vm_completions, &bdi->completions,
 166                              bdi->max_prop_frac);
 167}
 168
 169void bdi_writeout_inc(struct backing_dev_info *bdi)
 170{
 171        unsigned long flags;
 172
 173        local_irq_save(flags);
 174        __bdi_writeout_inc(bdi);
 175        local_irq_restore(flags);
 176}
 177EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 178
 179static inline void task_dirty_inc(struct task_struct *tsk)
 180{
 181        prop_inc_single(&vm_dirties, &tsk->dirties);
 182}
 183
 184/*
 185 * Obtain an accurate fraction of the BDI's portion.
 186 */
 187static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 188                long *numerator, long *denominator)
 189{
 190        if (bdi_cap_writeback_dirty(bdi)) {
 191                prop_fraction_percpu(&vm_completions, &bdi->completions,
 192                                numerator, denominator);
 193        } else {
 194                *numerator = 0;
 195                *denominator = 1;
 196        }
 197}
 198
 199/*
 200 * Clip the earned share of dirty pages to that which is actually available.
 201 * This avoids exceeding the total dirty_limit when the floating averages
 202 * fluctuate too quickly.
 203 */
 204static void
 205clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
 206{
 207        long avail_dirty;
 208
 209        avail_dirty = dirty -
 210                (global_page_state(NR_FILE_DIRTY) +
 211                 global_page_state(NR_WRITEBACK) +
 212                 global_page_state(NR_UNSTABLE_NFS) +
 213                 global_page_state(NR_WRITEBACK_TEMP));
 214
 215        if (avail_dirty < 0)
 216                avail_dirty = 0;
 217
 218        avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
 219                bdi_stat(bdi, BDI_WRITEBACK);
 220
 221        *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
 222}
 223
 224static inline void task_dirties_fraction(struct task_struct *tsk,
 225                long *numerator, long *denominator)
 226{
 227        prop_fraction_single(&vm_dirties, &tsk->dirties,
 228                                numerator, denominator);
 229}
 230
 231/*
 232 * scale the dirty limit
 233 *
 234 * task specific dirty limit:
 235 *
 236 *   dirty -= (dirty/8) * p_{t}
 237 */
 238static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
 239{
 240        long numerator, denominator;
 241        long dirty = *pdirty;
 242        u64 inv = dirty >> 3;
 243
 244        task_dirties_fraction(tsk, &numerator, &denominator);
 245        inv *= numerator;
 246        do_div(inv, denominator);
 247
 248        dirty -= inv;
 249        if (dirty < *pdirty/2)
 250                dirty = *pdirty/2;
 251
 252        *pdirty = dirty;
 253}
 254
 255/*
 256 *
 257 */
 258static DEFINE_SPINLOCK(bdi_lock);
 259static unsigned int bdi_min_ratio;
 260
 261int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 262{
 263        int ret = 0;
 264        unsigned long flags;
 265
 266        spin_lock_irqsave(&bdi_lock, flags);
 267        if (min_ratio > bdi->max_ratio) {
 268                ret = -EINVAL;
 269        } else {
 270                min_ratio -= bdi->min_ratio;
 271                if (bdi_min_ratio + min_ratio < 100) {
 272                        bdi_min_ratio += min_ratio;
 273                        bdi->min_ratio += min_ratio;
 274                } else {
 275                        ret = -EINVAL;
 276                }
 277        }
 278        spin_unlock_irqrestore(&bdi_lock, flags);
 279
 280        return ret;
 281}
 282
 283int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 284{
 285        unsigned long flags;
 286        int ret = 0;
 287
 288        if (max_ratio > 100)
 289                return -EINVAL;
 290
 291        spin_lock_irqsave(&bdi_lock, flags);
 292        if (bdi->min_ratio > max_ratio) {
 293                ret = -EINVAL;
 294        } else {
 295                bdi->max_ratio = max_ratio;
 296                bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 297        }
 298        spin_unlock_irqrestore(&bdi_lock, flags);
 299
 300        return ret;
 301}
 302EXPORT_SYMBOL(bdi_set_max_ratio);
 303
 304/*
 305 * Work out the current dirty-memory clamping and background writeout
 306 * thresholds.
 307 *
 308 * The main aim here is to lower them aggressively if there is a lot of mapped
 309 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 310 * pages.  It is better to clamp down on writers than to start swapping, and
 311 * performing lots of scanning.
 312 *
 313 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 314 *
 315 * We don't permit the clamping level to fall below 5% - that is getting rather
 316 * excessive.
 317 *
 318 * We make sure that the background writeout level is below the adjusted
 319 * clamping level.
 320 */
 321
 322static unsigned long highmem_dirtyable_memory(unsigned long total)
 323{
 324#ifdef CONFIG_HIGHMEM
 325        int node;
 326        unsigned long x = 0;
 327
 328        for_each_node_state(node, N_HIGH_MEMORY) {
 329                struct zone *z =
 330                        &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 331
 332                x += zone_page_state(z, NR_FREE_PAGES)
 333                        + zone_page_state(z, NR_INACTIVE)
 334                        + zone_page_state(z, NR_ACTIVE);
 335        }
 336        /*
 337         * Make sure that the number of highmem pages is never larger
 338         * than the number of the total dirtyable memory. This can only
 339         * occur in very strange VM situations but we want to make sure
 340         * that this does not occur.
 341         */
 342        return min(x, total);
 343#else
 344        return 0;
 345#endif
 346}
 347
 348/**
 349 * determine_dirtyable_memory - amount of memory that may be used
 350 *
 351 * Returns the numebr of pages that can currently be freed and used
 352 * by the kernel for direct mappings.
 353 */
 354unsigned long determine_dirtyable_memory(void)
 355{
 356        unsigned long x;
 357
 358        x = global_page_state(NR_FREE_PAGES)
 359                + global_page_state(NR_INACTIVE)
 360                + global_page_state(NR_ACTIVE);
 361
 362        if (!vm_highmem_is_dirtyable)
 363                x -= highmem_dirtyable_memory(x);
 364
 365        return x + 1;   /* Ensure that we never return 0 */
 366}
 367
 368void
 369get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
 370                 struct backing_dev_info *bdi)
 371{
 372        int background_ratio;           /* Percentages */
 373        int dirty_ratio;
 374        long background;
 375        long dirty;
 376        unsigned long available_memory = determine_dirtyable_memory();
 377        struct task_struct *tsk;
 378
 379        dirty_ratio = vm_dirty_ratio;
 380        if (dirty_ratio < 5)
 381                dirty_ratio = 5;
 382
 383        background_ratio = dirty_background_ratio;
 384        if (background_ratio >= dirty_ratio)
 385                background_ratio = dirty_ratio / 2;
 386
 387        background = (background_ratio * available_memory) / 100;
 388        dirty = (dirty_ratio * available_memory) / 100;
 389        tsk = current;
 390        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 391                background += background / 4;
 392                dirty += dirty / 4;
 393        }
 394        *pbackground = background;
 395        *pdirty = dirty;
 396
 397        if (bdi) {
 398                u64 bdi_dirty;
 399                long numerator, denominator;
 400
 401                /*
 402                 * Calculate this BDI's share of the dirty ratio.
 403                 */
 404                bdi_writeout_fraction(bdi, &numerator, &denominator);
 405
 406                bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 407                bdi_dirty *= numerator;
 408                do_div(bdi_dirty, denominator);
 409                bdi_dirty += (dirty * bdi->min_ratio) / 100;
 410                if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 411                        bdi_dirty = dirty * bdi->max_ratio / 100;
 412
 413                *pbdi_dirty = bdi_dirty;
 414                clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
 415                task_dirty_limit(current, pbdi_dirty);
 416        }
 417}
 418
 419/*
 420 * balance_dirty_pages() must be called by processes which are generating dirty
 421 * data.  It looks at the number of dirty pages in the machine and will force
 422 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 423 * If we're over `background_thresh' then pdflush is woken to perform some
 424 * writeout.
 425 */
 426static void balance_dirty_pages(struct address_space *mapping)
 427{
 428        long nr_reclaimable, bdi_nr_reclaimable;
 429        long nr_writeback, bdi_nr_writeback;
 430        long background_thresh;
 431        long dirty_thresh;
 432        long bdi_thresh;
 433        unsigned long pages_written = 0;
 434        unsigned long write_chunk = sync_writeback_pages();
 435
 436        struct backing_dev_info *bdi = mapping->backing_dev_info;
 437
 438        for (;;) {
 439                struct writeback_control wbc = {
 440                        .bdi            = bdi,
 441                        .sync_mode      = WB_SYNC_NONE,
 442                        .older_than_this = NULL,
 443                        .nr_to_write    = write_chunk,
 444                        .range_cyclic   = 1,
 445                };
 446
 447                get_dirty_limits(&background_thresh, &dirty_thresh,
 448                                &bdi_thresh, bdi);
 449
 450                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 451                                        global_page_state(NR_UNSTABLE_NFS);
 452                nr_writeback = global_page_state(NR_WRITEBACK);
 453
 454                bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 455                bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 456
 457                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 458                        break;
 459
 460                /*
 461                 * Throttle it only when the background writeback cannot
 462                 * catch-up. This avoids (excessively) small writeouts
 463                 * when the bdi limits are ramping up.
 464                 */
 465                if (nr_reclaimable + nr_writeback <
 466                                (background_thresh + dirty_thresh) / 2)
 467                        break;
 468
 469                if (!bdi->dirty_exceeded)
 470                        bdi->dirty_exceeded = 1;
 471
 472                /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
 473                 * Unstable writes are a feature of certain networked
 474                 * filesystems (i.e. NFS) in which data may have been
 475                 * written to the server's write cache, but has not yet
 476                 * been flushed to permanent storage.
 477                 */
 478                if (bdi_nr_reclaimable) {
 479                        writeback_inodes(&wbc);
 480                        pages_written += write_chunk - wbc.nr_to_write;
 481                        get_dirty_limits(&background_thresh, &dirty_thresh,
 482                                       &bdi_thresh, bdi);
 483                }
 484
 485                /*
 486                 * In order to avoid the stacked BDI deadlock we need
 487                 * to ensure we accurately count the 'dirty' pages when
 488                 * the threshold is low.
 489                 *
 490                 * Otherwise it would be possible to get thresh+n pages
 491                 * reported dirty, even though there are thresh-m pages
 492                 * actually dirty; with m+n sitting in the percpu
 493                 * deltas.
 494                 */
 495                if (bdi_thresh < 2*bdi_stat_error(bdi)) {
 496                        bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
 497                        bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
 498                } else if (bdi_nr_reclaimable) {
 499                        bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 500                        bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 501                }
 502
 503                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 504                        break;
 505                if (pages_written >= write_chunk)
 506                        break;          /* We've done our duty */
 507
 508                congestion_wait(WRITE, HZ/10);
 509        }
 510
 511        if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
 512                        bdi->dirty_exceeded)
 513                bdi->dirty_exceeded = 0;
 514
 515        if (writeback_in_progress(bdi))
 516                return;         /* pdflush is already working this queue */
 517
 518        /*
 519         * In laptop mode, we wait until hitting the higher threshold before
 520         * starting background writeout, and then write out all the way down
 521         * to the lower threshold.  So slow writers cause minimal disk activity.
 522         *
 523         * In normal mode, we start background writeout at the lower
 524         * background_thresh, to keep the amount of dirty memory low.
 525         */
 526        if ((laptop_mode && pages_written) ||
 527                        (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
 528                                          + global_page_state(NR_UNSTABLE_NFS)
 529                                          > background_thresh)))
 530                pdflush_operation(background_writeout, 0);
 531}
 532
 533void set_page_dirty_balance(struct page *page, int page_mkwrite)
 534{
 535        if (set_page_dirty(page) || page_mkwrite) {
 536                struct address_space *mapping = page_mapping(page);
 537
 538                if (mapping)
 539                        balance_dirty_pages_ratelimited(mapping);
 540        }
 541}
 542
 543/**
 544 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 545 * @mapping: address_space which was dirtied
 546 * @nr_pages_dirtied: number of pages which the caller has just dirtied
 547 *
 548 * Processes which are dirtying memory should call in here once for each page
 549 * which was newly dirtied.  The function will periodically check the system's
 550 * dirty state and will initiate writeback if needed.
 551 *
 552 * On really big machines, get_writeback_state is expensive, so try to avoid
 553 * calling it too often (ratelimiting).  But once we're over the dirty memory
 554 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 555 * from overshooting the limit by (ratelimit_pages) each.
 556 */
 557void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
 558                                        unsigned long nr_pages_dirtied)
 559{
 560        static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
 561        unsigned long ratelimit;
 562        unsigned long *p;
 563
 564        ratelimit = ratelimit_pages;
 565        if (mapping->backing_dev_info->dirty_exceeded)
 566                ratelimit = 8;
 567
 568        /*
 569         * Check the rate limiting. Also, we do not want to throttle real-time
 570         * tasks in balance_dirty_pages(). Period.
 571         */
 572        preempt_disable();
 573        p =  &__get_cpu_var(ratelimits);
 574        *p += nr_pages_dirtied;
 575        if (unlikely(*p >= ratelimit)) {
 576                *p = 0;
 577                preempt_enable();
 578                balance_dirty_pages(mapping);
 579                return;
 580        }
 581        preempt_enable();
 582}
 583EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 584
 585void throttle_vm_writeout(gfp_t gfp_mask)
 586{
 587        long background_thresh;
 588        long dirty_thresh;
 589
 590        for ( ; ; ) {
 591                get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
 592
 593                /*
 594                 * Boost the allowable dirty threshold a bit for page
 595                 * allocators so they don't get DoS'ed by heavy writers
 596                 */
 597                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 598
 599                if (global_page_state(NR_UNSTABLE_NFS) +
 600                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
 601                                break;
 602                congestion_wait(WRITE, HZ/10);
 603
 604                /*
 605                 * The caller might hold locks which can prevent IO completion
 606                 * or progress in the filesystem.  So we cannot just sit here
 607                 * waiting for IO to complete.
 608                 */
 609                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
 610                        break;
 611        }
 612}
 613
 614/*
 615 * writeback at least _min_pages, and keep writing until the amount of dirty
 616 * memory is less than the background threshold, or until we're all clean.
 617 */
 618static void background_writeout(unsigned long _min_pages)
 619{
 620        long min_pages = _min_pages;
 621        struct writeback_control wbc = {
 622                .bdi            = NULL,
 623                .sync_mode      = WB_SYNC_NONE,
 624                .older_than_this = NULL,
 625                .nr_to_write    = 0,
 626                .nonblocking    = 1,
 627                .range_cyclic   = 1,
 628        };
 629
 630        for ( ; ; ) {
 631                long background_thresh;
 632                long dirty_thresh;
 633
 634                get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
 635                if (global_page_state(NR_FILE_DIRTY) +
 636                        global_page_state(NR_UNSTABLE_NFS) < background_thresh
 637                                && min_pages <= 0)
 638                        break;
 639                wbc.more_io = 0;
 640                wbc.encountered_congestion = 0;
 641                wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 642                wbc.pages_skipped = 0;
 643                writeback_inodes(&wbc);
 644                min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 645                if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
 646                        /* Wrote less than expected */
 647                        if (wbc.encountered_congestion || wbc.more_io)
 648                                congestion_wait(WRITE, HZ/10);
 649                        else
 650                                break;
 651                }
 652        }
 653}
 654
 655/*
 656 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 657 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
 658 * -1 if all pdflush threads were busy.
 659 */
 660int wakeup_pdflush(long nr_pages)
 661{
 662        if (nr_pages == 0)
 663                nr_pages = global_page_state(NR_FILE_DIRTY) +
 664                                global_page_state(NR_UNSTABLE_NFS);
 665        return pdflush_operation(background_writeout, nr_pages);
 666}
 667
 668static void wb_timer_fn(unsigned long unused);
 669static void laptop_timer_fn(unsigned long unused);
 670
 671static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
 672static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
 673
 674/*
 675 * Periodic writeback of "old" data.
 676 *
 677 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 678 * dirtying-time in the inode's address_space.  So this periodic writeback code
 679 * just walks the superblock inode list, writing back any inodes which are
 680 * older than a specific point in time.
 681 *
 682 * Try to run once per dirty_writeback_interval.  But if a writeback event
 683 * takes longer than a dirty_writeback_interval interval, then leave a
 684 * one-second gap.
 685 *
 686 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 687 * all dirty pages if they are all attached to "old" mappings.
 688 */
 689static void wb_kupdate(unsigned long arg)
 690{
 691        unsigned long oldest_jif;
 692        unsigned long start_jif;
 693        unsigned long next_jif;
 694        long nr_to_write;
 695        struct writeback_control wbc = {
 696                .bdi            = NULL,
 697                .sync_mode      = WB_SYNC_NONE,
 698                .older_than_this = &oldest_jif,
 699                .nr_to_write    = 0,
 700                .nonblocking    = 1,
 701                .for_kupdate    = 1,
 702                .range_cyclic   = 1,
 703        };
 704
 705        sync_supers();
 706
 707        oldest_jif = jiffies - dirty_expire_interval;
 708        start_jif = jiffies;
 709        next_jif = start_jif + dirty_writeback_interval;
 710        nr_to_write = global_page_state(NR_FILE_DIRTY) +
 711                        global_page_state(NR_UNSTABLE_NFS) +
 712                        (inodes_stat.nr_inodes - inodes_stat.nr_unused);
 713        while (nr_to_write > 0) {
 714                wbc.more_io = 0;
 715                wbc.encountered_congestion = 0;
 716                wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 717                writeback_inodes(&wbc);
 718                if (wbc.nr_to_write > 0) {
 719                        if (wbc.encountered_congestion || wbc.more_io)
 720                                congestion_wait(WRITE, HZ/10);
 721                        else
 722                                break;  /* All the old data is written */
 723                }
 724                nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 725        }
 726        if (time_before(next_jif, jiffies + HZ))
 727                next_jif = jiffies + HZ;
 728        if (dirty_writeback_interval)
 729                mod_timer(&wb_timer, next_jif);
 730}
 731
 732/*
 733 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 734 */
 735int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 736        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 737{
 738        proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
 739        if (dirty_writeback_interval)
 740                mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
 741        else
 742                del_timer(&wb_timer);
 743        return 0;
 744}
 745
 746static void wb_timer_fn(unsigned long unused)
 747{
 748        if (pdflush_operation(wb_kupdate, 0) < 0)
 749                mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
 750}
 751
 752static void laptop_flush(unsigned long unused)
 753{
 754        sys_sync();
 755}
 756
 757static void laptop_timer_fn(unsigned long unused)
 758{
 759        pdflush_operation(laptop_flush, 0);
 760}
 761
 762/*
 763 * We've spun up the disk and we're in laptop mode: schedule writeback
 764 * of all dirty data a few seconds from now.  If the flush is already scheduled
 765 * then push it back - the user is still using the disk.
 766 */
 767void laptop_io_completion(void)
 768{
 769        mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
 770}
 771
 772/*
 773 * We're in laptop mode and we've just synced. The sync's writes will have
 774 * caused another writeback to be scheduled by laptop_io_completion.
 775 * Nothing needs to be written back anymore, so we unschedule the writeback.
 776 */
 777void laptop_sync_completion(void)
 778{
 779        del_timer(&laptop_mode_wb_timer);
 780}
 781
 782/*
 783 * If ratelimit_pages is too high then we can get into dirty-data overload
 784 * if a large number of processes all perform writes at the same time.
 785 * If it is too low then SMP machines will call the (expensive)
 786 * get_writeback_state too often.
 787 *
 788 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 789 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 790 * thresholds before writeback cuts in.
 791 *
 792 * But the limit should not be set too high.  Because it also controls the
 793 * amount of memory which the balance_dirty_pages() caller has to write back.
 794 * If this is too large then the caller will block on the IO queue all the
 795 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 796 * will write six megabyte chunks, max.
 797 */
 798
 799void writeback_set_ratelimit(void)
 800{
 801        ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
 802        if (ratelimit_pages < 16)
 803                ratelimit_pages = 16;
 804        if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
 805                ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 806}
 807
 808static int __cpuinit
 809ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
 810{
 811        writeback_set_ratelimit();
 812        return NOTIFY_DONE;
 813}
 814
 815static struct notifier_block __cpuinitdata ratelimit_nb = {
 816        .notifier_call  = ratelimit_handler,
 817        .next           = NULL,
 818};
 819
 820/*
 821 * Called early on to tune the page writeback dirty limits.
 822 *
 823 * We used to scale dirty pages according to how total memory
 824 * related to pages that could be allocated for buffers (by
 825 * comparing nr_free_buffer_pages() to vm_total_pages.
 826 *
 827 * However, that was when we used "dirty_ratio" to scale with
 828 * all memory, and we don't do that any more. "dirty_ratio"
 829 * is now applied to total non-HIGHPAGE memory (by subtracting
 830 * totalhigh_pages from vm_total_pages), and as such we can't
 831 * get into the old insane situation any more where we had
 832 * large amounts of dirty pages compared to a small amount of
 833 * non-HIGHMEM memory.
 834 *
 835 * But we might still want to scale the dirty_ratio by how
 836 * much memory the box has..
 837 */
 838void __init page_writeback_init(void)
 839{
 840        int shift;
 841
 842        mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
 843        writeback_set_ratelimit();
 844        register_cpu_notifier(&ratelimit_nb);
 845
 846        shift = calc_period_shift();
 847        prop_descriptor_init(&vm_completions, shift);
 848        prop_descriptor_init(&vm_dirties, shift);
 849}
 850
 851/**
 852 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 853 * @mapping: address space structure to write
 854 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 855 * @writepage: function called for each page
 856 * @data: data passed to writepage function
 857 *
 858 * If a page is already under I/O, write_cache_pages() skips it, even
 859 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 860 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 861 * and msync() need to guarantee that all the data which was dirty at the time
 862 * the call was made get new I/O started against them.  If wbc->sync_mode is
 863 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 864 * existing IO to complete.
 865 */
 866int write_cache_pages(struct address_space *mapping,
 867                      struct writeback_control *wbc, writepage_t writepage,
 868                      void *data)
 869{
 870        struct backing_dev_info *bdi = mapping->backing_dev_info;
 871        int ret = 0;
 872        int done = 0;
 873        struct pagevec pvec;
 874        int nr_pages;
 875        pgoff_t uninitialized_var(writeback_index);
 876        pgoff_t index;
 877        pgoff_t end;            /* Inclusive */
 878        pgoff_t done_index;
 879        int cycled;
 880        int range_whole = 0;
 881
 882        if (wbc->nonblocking && bdi_write_congested(bdi)) {
 883                wbc->encountered_congestion = 1;
 884                return 0;
 885        }
 886
 887        pagevec_init(&pvec, 0);
 888        if (wbc->range_cyclic) {
 889                writeback_index = mapping->writeback_index; /* prev offset */
 890                index = writeback_index;
 891                if (index == 0)
 892                        cycled = 1;
 893                else
 894                        cycled = 0;
 895                end = -1;
 896        } else {
 897                index = wbc->range_start >> PAGE_CACHE_SHIFT;
 898                end = wbc->range_end >> PAGE_CACHE_SHIFT;
 899                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 900                        range_whole = 1;
 901                cycled = 1; /* ignore range_cyclic tests */
 902        }
 903retry:
 904        done_index = index;
 905        while (!done && (index <= end)) {
 906                int i;
 907
 908                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 909                              PAGECACHE_TAG_DIRTY,
 910                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 911                if (nr_pages == 0)
 912                        break;
 913
 914                for (i = 0; i < nr_pages; i++) {
 915                        struct page *page = pvec.pages[i];
 916
 917                        /*
 918                         * At this point, the page may be truncated or
 919                         * invalidated (changing page->mapping to NULL), or
 920                         * even swizzled back from swapper_space to tmpfs file
 921                         * mapping. However, page->index will not change
 922                         * because we have a reference on the page.
 923                         */
 924                        if (page->index > end) {
 925                                /*
 926                                 * can't be range_cyclic (1st pass) because
 927                                 * end == -1 in that case.
 928                                 */
 929                                done = 1;
 930                                break;
 931                        }
 932
 933                        done_index = page->index + 1;
 934
 935                        lock_page(page);
 936
 937                        /*
 938                         * Page truncated or invalidated. We can freely skip it
 939                         * then, even for data integrity operations: the page
 940                         * has disappeared concurrently, so there could be no
 941                         * real expectation of this data interity operation
 942                         * even if there is now a new, dirty page at the same
 943                         * pagecache address.
 944                         */
 945                        if (unlikely(page->mapping != mapping)) {
 946continue_unlock:
 947                                unlock_page(page);
 948                                continue;
 949                        }
 950
 951                        if (!PageDirty(page)) {
 952                                /* someone wrote it for us */
 953                                goto continue_unlock;
 954                        }
 955
 956                        if (PageWriteback(page)) {
 957                                if (wbc->sync_mode != WB_SYNC_NONE)
 958                                        wait_on_page_writeback(page);
 959                                else
 960                                        goto continue_unlock;
 961                        }
 962
 963                        BUG_ON(PageWriteback(page));
 964                        if (!clear_page_dirty_for_io(page))
 965                                goto continue_unlock;
 966
 967                        ret = (*writepage)(page, wbc, data);
 968
 969                        if (unlikely(ret)) {
 970                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
 971                                        unlock_page(page);
 972                                        ret = 0;
 973                                } else {
 974                                        /*
 975                                         * done_index is set past this page,
 976                                         * so media errors will not choke
 977                                         * background writeout for the entire
 978                                         * file. This has consequences for
 979                                         * range_cyclic semantics (ie. it may
 980                                         * not be suitable for data integrity
 981                                         * writeout).
 982                                         */
 983                                        done = 1;
 984                                        break;
 985                                }
 986                        }
 987
 988                        if (wbc->nr_to_write > 0) {
 989                                wbc->nr_to_write--;
 990                                if (wbc->nr_to_write == 0 &&
 991                                    wbc->sync_mode == WB_SYNC_NONE) {
 992                                        /*
 993                                         * We stop writing back only if we are
 994                                         * not doing integrity sync. In case of
 995                                         * integrity sync we have to keep going
 996                                         * because someone may be concurrently
 997                                         * dirtying pages, and we might have
 998                                         * synced a lot of newly appeared dirty
 999                                         * pages, but have not synced all of the
1000                                         * old dirty pages.
1001                                         */
1002                                        done = 1;
1003                                        break;
1004                                }
1005                        }
1006
1007                        if (wbc->nonblocking && bdi_write_congested(bdi)) {
1008                                wbc->encountered_congestion = 1;
1009                                done = 1;
1010                                break;
1011                        }
1012                }
1013                pagevec_release(&pvec);
1014                cond_resched();
1015        }
1016        if (!cycled && !done) {
1017                /*
1018                 * range_cyclic:
1019                 * We hit the last page and there is more work to be done: wrap
1020                 * back to the start of the file
1021                 */
1022                cycled = 1;
1023                index = 0;
1024                end = writeback_index - 1;
1025                goto retry;
1026        }
1027        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1028                mapping->writeback_index = done_index;
1029
1030        return ret;
1031}
1032EXPORT_SYMBOL(write_cache_pages);
1033
1034/*
1035 * Function used by generic_writepages to call the real writepage
1036 * function and set the mapping flags on error
1037 */
1038static int __writepage(struct page *page, struct writeback_control *wbc,
1039                       void *data)
1040{
1041        struct address_space *mapping = data;
1042        int ret = mapping->a_ops->writepage(page, wbc);
1043        mapping_set_error(mapping, ret);
1044        return ret;
1045}
1046
1047/**
1048 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1049 * @mapping: address space structure to write
1050 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1051 *
1052 * This is a library function, which implements the writepages()
1053 * address_space_operation.
1054 */
1055int generic_writepages(struct address_space *mapping,
1056                       struct writeback_control *wbc)
1057{
1058        /* deal with chardevs and other special file */
1059        if (!mapping->a_ops->writepage)
1060                return 0;
1061
1062        return write_cache_pages(mapping, wbc, __writepage, mapping);
1063}
1064
1065EXPORT_SYMBOL(generic_writepages);
1066
1067int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1068{
1069        int ret;
1070
1071        if (wbc->nr_to_write <= 0)
1072                return 0;
1073        wbc->for_writepages = 1;
1074        if (mapping->a_ops->writepages)
1075                ret = mapping->a_ops->writepages(mapping, wbc);
1076        else
1077                ret = generic_writepages(mapping, wbc);
1078        wbc->for_writepages = 0;
1079        return ret;
1080}
1081
1082/**
1083 * write_one_page - write out a single page and optionally wait on I/O
1084 * @page: the page to write
1085 * @wait: if true, wait on writeout
1086 *
1087 * The page must be locked by the caller and will be unlocked upon return.
1088 *
1089 * write_one_page() returns a negative error code if I/O failed.
1090 */
1091int write_one_page(struct page *page, int wait)
1092{
1093        struct address_space *mapping = page->mapping;
1094        int ret = 0;
1095        struct writeback_control wbc = {
1096                .sync_mode = WB_SYNC_ALL,
1097                .nr_to_write = 1,
1098        };
1099
1100        BUG_ON(!PageLocked(page));
1101
1102        if (wait)
1103                wait_on_page_writeback(page);
1104
1105        if (clear_page_dirty_for_io(page)) {
1106                page_cache_get(page);
1107                ret = mapping->a_ops->writepage(page, &wbc);
1108                if (ret == 0 && wait) {
1109                        wait_on_page_writeback(page);
1110                        if (PageError(page))
1111                                ret = -EIO;
1112                }
1113                page_cache_release(page);
1114        } else {
1115                unlock_page(page);
1116        }
1117        return ret;
1118}
1119EXPORT_SYMBOL(write_one_page);
1120
1121/*
1122 * For address_spaces which do not use buffers nor write back.
1123 */
1124int __set_page_dirty_no_writeback(struct page *page)
1125{
1126        if (!PageDirty(page))
1127                SetPageDirty(page);
1128        return 0;
1129}
1130
1131/*
1132 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1133 * its radix tree.
1134 *
1135 * This is also used when a single buffer is being dirtied: we want to set the
1136 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1137 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1138 *
1139 * Most callers have locked the page, which pins the address_space in memory.
1140 * But zap_pte_range() does not lock the page, however in that case the
1141 * mapping is pinned by the vma's ->vm_file reference.
1142 *
1143 * We take care to handle the case where the page was truncated from the
1144 * mapping by re-checking page_mapping() inside tree_lock.
1145 */
1146int __set_page_dirty_nobuffers(struct page *page)
1147{
1148        if (!TestSetPageDirty(page)) {
1149                struct address_space *mapping = page_mapping(page);
1150                struct address_space *mapping2;
1151
1152                if (!mapping)
1153                        return 1;
1154
1155                spin_lock_irq(&mapping->tree_lock);
1156                mapping2 = page_mapping(page);
1157                if (mapping2) { /* Race with truncate? */
1158                        BUG_ON(mapping2 != mapping);
1159                        WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1160                        if (mapping_cap_account_dirty(mapping)) {
1161                                __inc_zone_page_state(page, NR_FILE_DIRTY);
1162                                __inc_bdi_stat(mapping->backing_dev_info,
1163                                                BDI_RECLAIMABLE);
1164                                task_io_account_write(PAGE_CACHE_SIZE);
1165                        }
1166                        radix_tree_tag_set(&mapping->page_tree,
1167                                page_index(page), PAGECACHE_TAG_DIRTY);
1168                }
1169                spin_unlock_irq(&mapping->tree_lock);
1170                if (mapping->host) {
1171                        /* !PageAnon && !swapper_space */
1172                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1173                }
1174                return 1;
1175        }
1176        return 0;
1177}
1178EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1179
1180/*
1181 * When a writepage implementation decides that it doesn't want to write this
1182 * page for some reason, it should redirty the locked page via
1183 * redirty_page_for_writepage() and it should then unlock the page and return 0
1184 */
1185int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1186{
1187        wbc->pages_skipped++;
1188        return __set_page_dirty_nobuffers(page);
1189}
1190EXPORT_SYMBOL(redirty_page_for_writepage);
1191
1192/*
1193 * If the mapping doesn't provide a set_page_dirty a_op, then
1194 * just fall through and assume that it wants buffer_heads.
1195 */
1196static int __set_page_dirty(struct page *page)
1197{
1198        struct address_space *mapping = page_mapping(page);
1199
1200        if (likely(mapping)) {
1201                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1202#ifdef CONFIG_BLOCK
1203                if (!spd)
1204                        spd = __set_page_dirty_buffers;
1205#endif
1206                return (*spd)(page);
1207        }
1208        if (!PageDirty(page)) {
1209                if (!TestSetPageDirty(page))
1210                        return 1;
1211        }
1212        return 0;
1213}
1214
1215int set_page_dirty(struct page *page)
1216{
1217        int ret = __set_page_dirty(page);
1218        if (ret)
1219                task_dirty_inc(current);
1220        return ret;
1221}
1222EXPORT_SYMBOL(set_page_dirty);
1223
1224/*
1225 * set_page_dirty() is racy if the caller has no reference against
1226 * page->mapping->host, and if the page is unlocked.  This is because another
1227 * CPU could truncate the page off the mapping and then free the mapping.
1228 *
1229 * Usually, the page _is_ locked, or the caller is a user-space process which
1230 * holds a reference on the inode by having an open file.
1231 *
1232 * In other cases, the page should be locked before running set_page_dirty().
1233 */
1234int set_page_dirty_lock(struct page *page)
1235{
1236        int ret;
1237
1238        lock_page_nosync(page);
1239        ret = set_page_dirty(page);
1240        unlock_page(page);
1241        return ret;
1242}
1243EXPORT_SYMBOL(set_page_dirty_lock);
1244
1245/*
1246 * Clear a page's dirty flag, while caring for dirty memory accounting.
1247 * Returns true if the page was previously dirty.
1248 *
1249 * This is for preparing to put the page under writeout.  We leave the page
1250 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1251 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1252 * implementation will run either set_page_writeback() or set_page_dirty(),
1253 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1254 * back into sync.
1255 *
1256 * This incoherency between the page's dirty flag and radix-tree tag is
1257 * unfortunate, but it only exists while the page is locked.
1258 */
1259int clear_page_dirty_for_io(struct page *page)
1260{
1261        struct address_space *mapping = page_mapping(page);
1262
1263        BUG_ON(!PageLocked(page));
1264
1265        ClearPageReclaim(page);
1266        if (mapping && mapping_cap_account_dirty(mapping)) {
1267                /*
1268                 * Yes, Virginia, this is indeed insane.
1269                 *
1270                 * We use this sequence to make sure that
1271                 *  (a) we account for dirty stats properly
1272                 *  (b) we tell the low-level filesystem to
1273                 *      mark the whole page dirty if it was
1274                 *      dirty in a pagetable. Only to then
1275                 *  (c) clean the page again and return 1 to
1276                 *      cause the writeback.
1277                 *
1278                 * This way we avoid all nasty races with the
1279                 * dirty bit in multiple places and clearing
1280                 * them concurrently from different threads.
1281                 *
1282                 * Note! Normally the "set_page_dirty(page)"
1283                 * has no effect on the actual dirty bit - since
1284                 * that will already usually be set. But we
1285                 * need the side effects, and it can help us
1286                 * avoid races.
1287                 *
1288                 * We basically use the page "master dirty bit"
1289                 * as a serialization point for all the different
1290                 * threads doing their things.
1291                 */
1292                if (page_mkclean(page))
1293                        set_page_dirty(page);
1294                /*
1295                 * We carefully synchronise fault handlers against
1296                 * installing a dirty pte and marking the page dirty
1297                 * at this point. We do this by having them hold the
1298                 * page lock at some point after installing their
1299                 * pte, but before marking the page dirty.
1300                 * Pages are always locked coming in here, so we get
1301                 * the desired exclusion. See mm/memory.c:do_wp_page()
1302                 * for more comments.
1303                 */
1304                if (TestClearPageDirty(page)) {
1305                        dec_zone_page_state(page, NR_FILE_DIRTY);
1306                        dec_bdi_stat(mapping->backing_dev_info,
1307                                        BDI_RECLAIMABLE);
1308                        return 1;
1309                }
1310                return 0;
1311        }
1312        return TestClearPageDirty(page);
1313}
1314EXPORT_SYMBOL(clear_page_dirty_for_io);
1315
1316int test_clear_page_writeback(struct page *page)
1317{
1318        struct address_space *mapping = page_mapping(page);
1319        int ret;
1320
1321        if (mapping) {
1322                struct backing_dev_info *bdi = mapping->backing_dev_info;
1323                unsigned long flags;
1324
1325                spin_lock_irqsave(&mapping->tree_lock, flags);
1326                ret = TestClearPageWriteback(page);
1327                if (ret) {
1328                        radix_tree_tag_clear(&mapping->page_tree,
1329                                                page_index(page),
1330                                                PAGECACHE_TAG_WRITEBACK);
1331                        if (bdi_cap_account_writeback(bdi)) {
1332                                __dec_bdi_stat(bdi, BDI_WRITEBACK);
1333                                __bdi_writeout_inc(bdi);
1334                        }
1335                }
1336                spin_unlock_irqrestore(&mapping->tree_lock, flags);
1337        } else {
1338                ret = TestClearPageWriteback(page);
1339        }
1340        if (ret)
1341                dec_zone_page_state(page, NR_WRITEBACK);
1342        return ret;
1343}
1344
1345int test_set_page_writeback(struct page *page)
1346{
1347        struct address_space *mapping = page_mapping(page);
1348        int ret;
1349
1350        if (mapping) {
1351                struct backing_dev_info *bdi = mapping->backing_dev_info;
1352                unsigned long flags;
1353
1354                spin_lock_irqsave(&mapping->tree_lock, flags);
1355                ret = TestSetPageWriteback(page);
1356                if (!ret) {
1357                        radix_tree_tag_set(&mapping->page_tree,
1358                                                page_index(page),
1359                                                PAGECACHE_TAG_WRITEBACK);
1360                        if (bdi_cap_account_writeback(bdi))
1361                                __inc_bdi_stat(bdi, BDI_WRITEBACK);
1362                }
1363                if (!PageDirty(page))
1364                        radix_tree_tag_clear(&mapping->page_tree,
1365                                                page_index(page),
1366                                                PAGECACHE_TAG_DIRTY);
1367                spin_unlock_irqrestore(&mapping->tree_lock, flags);
1368        } else {
1369                ret = TestSetPageWriteback(page);
1370        }
1371        if (!ret)
1372                inc_zone_page_state(page, NR_WRITEBACK);
1373        return ret;
1374
1375}
1376EXPORT_SYMBOL(test_set_page_writeback);
1377
1378/*
1379 * Return true if any of the pages in the mapping are marked with the
1380 * passed tag.
1381 */
1382int mapping_tagged(struct address_space *mapping, int tag)
1383{
1384        int ret;
1385        rcu_read_lock();
1386        ret = radix_tree_tagged(&mapping->page_tree, tag);
1387        rcu_read_unlock();
1388        return ret;
1389}
1390EXPORT_SYMBOL(mapping_tagged);
1391