linux/kernel/sched_clock.c
<<
>>
Prefs
   1/*
   2 * sched_clock for unstable cpu clocks
   3 *
   4 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   5 *
   6 *  Updates and enhancements:
   7 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
   8 *
   9 * Based on code by:
  10 *   Ingo Molnar <mingo@redhat.com>
  11 *   Guillaume Chazarain <guichaz@gmail.com>
  12 *
  13 * Create a semi stable clock from a mixture of other events, including:
  14 *  - gtod
  15 *  - sched_clock()
  16 *  - explicit idle events
  17 *
  18 * We use gtod as base and the unstable clock deltas. The deltas are filtered,
  19 * making it monotonic and keeping it within an expected window.
  20 *
  21 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  22 * that is otherwise invisible (TSC gets stopped).
  23 *
  24 * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
  25 * consistent between cpus (never more than 2 jiffies difference).
  26 */
  27#include <linux/sched.h>
  28#include <linux/percpu.h>
  29#include <linux/spinlock.h>
  30#include <linux/ktime.h>
  31#include <linux/module.h>
  32
  33/*
  34 * Scheduler clock - returns current time in nanosec units.
  35 * This is default implementation.
  36 * Architectures and sub-architectures can override this.
  37 */
  38unsigned long long __attribute__((weak)) sched_clock(void)
  39{
  40        return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  41}
  42
  43static __read_mostly int sched_clock_running;
  44
  45#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  46
  47struct sched_clock_data {
  48        /*
  49         * Raw spinlock - this is a special case: this might be called
  50         * from within instrumentation code so we dont want to do any
  51         * instrumentation ourselves.
  52         */
  53        raw_spinlock_t          lock;
  54
  55        u64                     tick_raw;
  56        u64                     tick_gtod;
  57        u64                     clock;
  58};
  59
  60static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  61
  62static inline struct sched_clock_data *this_scd(void)
  63{
  64        return &__get_cpu_var(sched_clock_data);
  65}
  66
  67static inline struct sched_clock_data *cpu_sdc(int cpu)
  68{
  69        return &per_cpu(sched_clock_data, cpu);
  70}
  71
  72void sched_clock_init(void)
  73{
  74        u64 ktime_now = ktime_to_ns(ktime_get());
  75        int cpu;
  76
  77        for_each_possible_cpu(cpu) {
  78                struct sched_clock_data *scd = cpu_sdc(cpu);
  79
  80                scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  81                scd->tick_raw = 0;
  82                scd->tick_gtod = ktime_now;
  83                scd->clock = ktime_now;
  84        }
  85
  86        sched_clock_running = 1;
  87}
  88
  89/*
  90 * min,max except they take wrapping into account
  91 */
  92
  93static inline u64 wrap_min(u64 x, u64 y)
  94{
  95        return (s64)(x - y) < 0 ? x : y;
  96}
  97
  98static inline u64 wrap_max(u64 x, u64 y)
  99{
 100        return (s64)(x - y) > 0 ? x : y;
 101}
 102
 103/*
 104 * update the percpu scd from the raw @now value
 105 *
 106 *  - filter out backward motion
 107 *  - use the GTOD tick value to create a window to filter crazy TSC values
 108 */
 109static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
 110{
 111        s64 delta = now - scd->tick_raw;
 112        u64 clock, min_clock, max_clock;
 113
 114        WARN_ON_ONCE(!irqs_disabled());
 115
 116        if (unlikely(delta < 0))
 117                delta = 0;
 118
 119        /*
 120         * scd->clock = clamp(scd->tick_gtod + delta,
 121         *                    max(scd->tick_gtod, scd->clock),
 122         *                    scd->tick_gtod + TICK_NSEC);
 123         */
 124
 125        clock = scd->tick_gtod + delta;
 126        min_clock = wrap_max(scd->tick_gtod, scd->clock);
 127        max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
 128
 129        clock = wrap_max(clock, min_clock);
 130        clock = wrap_min(clock, max_clock);
 131
 132        scd->clock = clock;
 133
 134        return scd->clock;
 135}
 136
 137static void lock_double_clock(struct sched_clock_data *data1,
 138                                struct sched_clock_data *data2)
 139{
 140        if (data1 < data2) {
 141                __raw_spin_lock(&data1->lock);
 142                __raw_spin_lock(&data2->lock);
 143        } else {
 144                __raw_spin_lock(&data2->lock);
 145                __raw_spin_lock(&data1->lock);
 146        }
 147}
 148
 149u64 sched_clock_cpu(int cpu)
 150{
 151        struct sched_clock_data *scd = cpu_sdc(cpu);
 152        u64 now, clock, this_clock, remote_clock;
 153
 154        if (unlikely(!sched_clock_running))
 155                return 0ull;
 156
 157        WARN_ON_ONCE(!irqs_disabled());
 158        now = sched_clock();
 159
 160        if (cpu != raw_smp_processor_id()) {
 161                struct sched_clock_data *my_scd = this_scd();
 162
 163                lock_double_clock(scd, my_scd);
 164
 165                this_clock = __update_sched_clock(my_scd, now);
 166                remote_clock = scd->clock;
 167
 168                /*
 169                 * Use the opportunity that we have both locks
 170                 * taken to couple the two clocks: we take the
 171                 * larger time as the latest time for both
 172                 * runqueues. (this creates monotonic movement)
 173                 */
 174                if (likely((s64)(remote_clock - this_clock) < 0)) {
 175                        clock = this_clock;
 176                        scd->clock = clock;
 177                } else {
 178                        /*
 179                         * Should be rare, but possible:
 180                         */
 181                        clock = remote_clock;
 182                        my_scd->clock = remote_clock;
 183                }
 184
 185                __raw_spin_unlock(&my_scd->lock);
 186        } else {
 187                __raw_spin_lock(&scd->lock);
 188                clock = __update_sched_clock(scd, now);
 189        }
 190
 191        __raw_spin_unlock(&scd->lock);
 192
 193        return clock;
 194}
 195
 196void sched_clock_tick(void)
 197{
 198        struct sched_clock_data *scd = this_scd();
 199        u64 now, now_gtod;
 200
 201        if (unlikely(!sched_clock_running))
 202                return;
 203
 204        WARN_ON_ONCE(!irqs_disabled());
 205
 206        now_gtod = ktime_to_ns(ktime_get());
 207        now = sched_clock();
 208
 209        __raw_spin_lock(&scd->lock);
 210        scd->tick_raw = now;
 211        scd->tick_gtod = now_gtod;
 212        __update_sched_clock(scd, now);
 213        __raw_spin_unlock(&scd->lock);
 214}
 215
 216/*
 217 * We are going deep-idle (irqs are disabled):
 218 */
 219void sched_clock_idle_sleep_event(void)
 220{
 221        sched_clock_cpu(smp_processor_id());
 222}
 223EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 224
 225/*
 226 * We just idled delta nanoseconds (called with irqs disabled):
 227 */
 228void sched_clock_idle_wakeup_event(u64 delta_ns)
 229{
 230        if (timekeeping_suspended)
 231                return;
 232
 233        sched_clock_tick();
 234        touch_softlockup_watchdog();
 235}
 236EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 237
 238#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 239
 240void sched_clock_init(void)
 241{
 242        sched_clock_running = 1;
 243}
 244
 245u64 sched_clock_cpu(int cpu)
 246{
 247        if (unlikely(!sched_clock_running))
 248                return 0;
 249
 250        return sched_clock();
 251}
 252
 253#endif
 254
 255unsigned long long cpu_clock(int cpu)
 256{
 257        unsigned long long clock;
 258        unsigned long flags;
 259
 260        local_irq_save(flags);
 261        clock = sched_clock_cpu(cpu);
 262        local_irq_restore(flags);
 263
 264        return clock;
 265}
 266EXPORT_SYMBOL_GPL(cpu_clock);
 267