linux/fs/dcache.c
<<
>>
Prefs
   1/*
   2 * fs/dcache.c
   3 *
   4 * Complete reimplementation
   5 * (C) 1997 Thomas Schoebel-Theuer,
   6 * with heavy changes by Linus Torvalds
   7 */
   8
   9/*
  10 * Notes on the allocation strategy:
  11 *
  12 * The dcache is a master of the icache - whenever a dcache entry
  13 * exists, the inode will always exist. "iput()" is done either when
  14 * the dcache entry is deleted or garbage collected.
  15 */
  16
  17#include <linux/syscalls.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/fdtable.h>
  21#include <linux/fs.h>
  22#include <linux/fsnotify.h>
  23#include <linux/slab.h>
  24#include <linux/init.h>
  25#include <linux/hash.h>
  26#include <linux/cache.h>
  27#include <linux/module.h>
  28#include <linux/mount.h>
  29#include <linux/file.h>
  30#include <asm/uaccess.h>
  31#include <linux/security.h>
  32#include <linux/seqlock.h>
  33#include <linux/swap.h>
  34#include <linux/bootmem.h>
  35#include "internal.h"
  36
  37
  38int sysctl_vfs_cache_pressure __read_mostly = 100;
  39EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  40
  41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
  42__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  43
  44EXPORT_SYMBOL(dcache_lock);
  45
  46static struct kmem_cache *dentry_cache __read_mostly;
  47
  48#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
  49
  50/*
  51 * This is the single most critical data structure when it comes
  52 * to the dcache: the hashtable for lookups. Somebody should try
  53 * to make this good - I've just made it work.
  54 *
  55 * This hash-function tries to avoid losing too many bits of hash
  56 * information, yet avoid using a prime hash-size or similar.
  57 */
  58#define D_HASHBITS     d_hash_shift
  59#define D_HASHMASK     d_hash_mask
  60
  61static unsigned int d_hash_mask __read_mostly;
  62static unsigned int d_hash_shift __read_mostly;
  63static struct hlist_head *dentry_hashtable __read_mostly;
  64
  65/* Statistics gathering. */
  66struct dentry_stat_t dentry_stat = {
  67        .age_limit = 45,
  68};
  69
  70static void __d_free(struct dentry *dentry)
  71{
  72        if (dname_external(dentry))
  73                kfree(dentry->d_name.name);
  74        kmem_cache_free(dentry_cache, dentry); 
  75}
  76
  77static void d_callback(struct rcu_head *head)
  78{
  79        struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
  80        __d_free(dentry);
  81}
  82
  83/*
  84 * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
  85 * inside dcache_lock.
  86 */
  87static void d_free(struct dentry *dentry)
  88{
  89        if (dentry->d_op && dentry->d_op->d_release)
  90                dentry->d_op->d_release(dentry);
  91        /* if dentry was never inserted into hash, immediate free is OK */
  92        if (hlist_unhashed(&dentry->d_hash))
  93                __d_free(dentry);
  94        else
  95                call_rcu(&dentry->d_u.d_rcu, d_callback);
  96}
  97
  98/*
  99 * Release the dentry's inode, using the filesystem
 100 * d_iput() operation if defined.
 101 */
 102static void dentry_iput(struct dentry * dentry)
 103        __releases(dentry->d_lock)
 104        __releases(dcache_lock)
 105{
 106        struct inode *inode = dentry->d_inode;
 107        if (inode) {
 108                dentry->d_inode = NULL;
 109                list_del_init(&dentry->d_alias);
 110                spin_unlock(&dentry->d_lock);
 111                spin_unlock(&dcache_lock);
 112                if (!inode->i_nlink)
 113                        fsnotify_inoderemove(inode);
 114                if (dentry->d_op && dentry->d_op->d_iput)
 115                        dentry->d_op->d_iput(dentry, inode);
 116                else
 117                        iput(inode);
 118        } else {
 119                spin_unlock(&dentry->d_lock);
 120                spin_unlock(&dcache_lock);
 121        }
 122}
 123
 124/*
 125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
 126 */
 127static void dentry_lru_add(struct dentry *dentry)
 128{
 129        list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 130        dentry->d_sb->s_nr_dentry_unused++;
 131        dentry_stat.nr_unused++;
 132}
 133
 134static void dentry_lru_add_tail(struct dentry *dentry)
 135{
 136        list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 137        dentry->d_sb->s_nr_dentry_unused++;
 138        dentry_stat.nr_unused++;
 139}
 140
 141static void dentry_lru_del(struct dentry *dentry)
 142{
 143        if (!list_empty(&dentry->d_lru)) {
 144                list_del(&dentry->d_lru);
 145                dentry->d_sb->s_nr_dentry_unused--;
 146                dentry_stat.nr_unused--;
 147        }
 148}
 149
 150static void dentry_lru_del_init(struct dentry *dentry)
 151{
 152        if (likely(!list_empty(&dentry->d_lru))) {
 153                list_del_init(&dentry->d_lru);
 154                dentry->d_sb->s_nr_dentry_unused--;
 155                dentry_stat.nr_unused--;
 156        }
 157}
 158
 159/**
 160 * d_kill - kill dentry and return parent
 161 * @dentry: dentry to kill
 162 *
 163 * The dentry must already be unhashed and removed from the LRU.
 164 *
 165 * If this is the root of the dentry tree, return NULL.
 166 */
 167static struct dentry *d_kill(struct dentry *dentry)
 168        __releases(dentry->d_lock)
 169        __releases(dcache_lock)
 170{
 171        struct dentry *parent;
 172
 173        list_del(&dentry->d_u.d_child);
 174        dentry_stat.nr_dentry--;        /* For d_free, below */
 175        /*drops the locks, at that point nobody can reach this dentry */
 176        dentry_iput(dentry);
 177        parent = dentry->d_parent;
 178        d_free(dentry);
 179        return dentry == parent ? NULL : parent;
 180}
 181
 182/* 
 183 * This is dput
 184 *
 185 * This is complicated by the fact that we do not want to put
 186 * dentries that are no longer on any hash chain on the unused
 187 * list: we'd much rather just get rid of them immediately.
 188 *
 189 * However, that implies that we have to traverse the dentry
 190 * tree upwards to the parents which might _also_ now be
 191 * scheduled for deletion (it may have been only waiting for
 192 * its last child to go away).
 193 *
 194 * This tail recursion is done by hand as we don't want to depend
 195 * on the compiler to always get this right (gcc generally doesn't).
 196 * Real recursion would eat up our stack space.
 197 */
 198
 199/*
 200 * dput - release a dentry
 201 * @dentry: dentry to release 
 202 *
 203 * Release a dentry. This will drop the usage count and if appropriate
 204 * call the dentry unlink method as well as removing it from the queues and
 205 * releasing its resources. If the parent dentries were scheduled for release
 206 * they too may now get deleted.
 207 *
 208 * no dcache lock, please.
 209 */
 210
 211void dput(struct dentry *dentry)
 212{
 213        if (!dentry)
 214                return;
 215
 216repeat:
 217        if (atomic_read(&dentry->d_count) == 1)
 218                might_sleep();
 219        if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
 220                return;
 221
 222        spin_lock(&dentry->d_lock);
 223        if (atomic_read(&dentry->d_count)) {
 224                spin_unlock(&dentry->d_lock);
 225                spin_unlock(&dcache_lock);
 226                return;
 227        }
 228
 229        /*
 230         * AV: ->d_delete() is _NOT_ allowed to block now.
 231         */
 232        if (dentry->d_op && dentry->d_op->d_delete) {
 233                if (dentry->d_op->d_delete(dentry))
 234                        goto unhash_it;
 235        }
 236        /* Unreachable? Get rid of it */
 237        if (d_unhashed(dentry))
 238                goto kill_it;
 239        if (list_empty(&dentry->d_lru)) {
 240                dentry->d_flags |= DCACHE_REFERENCED;
 241                dentry_lru_add(dentry);
 242        }
 243        spin_unlock(&dentry->d_lock);
 244        spin_unlock(&dcache_lock);
 245        return;
 246
 247unhash_it:
 248        __d_drop(dentry);
 249kill_it:
 250        /* if dentry was on the d_lru list delete it from there */
 251        dentry_lru_del(dentry);
 252        dentry = d_kill(dentry);
 253        if (dentry)
 254                goto repeat;
 255}
 256
 257/**
 258 * d_invalidate - invalidate a dentry
 259 * @dentry: dentry to invalidate
 260 *
 261 * Try to invalidate the dentry if it turns out to be
 262 * possible. If there are other dentries that can be
 263 * reached through this one we can't delete it and we
 264 * return -EBUSY. On success we return 0.
 265 *
 266 * no dcache lock.
 267 */
 268 
 269int d_invalidate(struct dentry * dentry)
 270{
 271        /*
 272         * If it's already been dropped, return OK.
 273         */
 274        spin_lock(&dcache_lock);
 275        if (d_unhashed(dentry)) {
 276                spin_unlock(&dcache_lock);
 277                return 0;
 278        }
 279        /*
 280         * Check whether to do a partial shrink_dcache
 281         * to get rid of unused child entries.
 282         */
 283        if (!list_empty(&dentry->d_subdirs)) {
 284                spin_unlock(&dcache_lock);
 285                shrink_dcache_parent(dentry);
 286                spin_lock(&dcache_lock);
 287        }
 288
 289        /*
 290         * Somebody else still using it?
 291         *
 292         * If it's a directory, we can't drop it
 293         * for fear of somebody re-populating it
 294         * with children (even though dropping it
 295         * would make it unreachable from the root,
 296         * we might still populate it if it was a
 297         * working directory or similar).
 298         */
 299        spin_lock(&dentry->d_lock);
 300        if (atomic_read(&dentry->d_count) > 1) {
 301                if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
 302                        spin_unlock(&dentry->d_lock);
 303                        spin_unlock(&dcache_lock);
 304                        return -EBUSY;
 305                }
 306        }
 307
 308        __d_drop(dentry);
 309        spin_unlock(&dentry->d_lock);
 310        spin_unlock(&dcache_lock);
 311        return 0;
 312}
 313
 314/* This should be called _only_ with dcache_lock held */
 315
 316static inline struct dentry * __dget_locked(struct dentry *dentry)
 317{
 318        atomic_inc(&dentry->d_count);
 319        dentry_lru_del_init(dentry);
 320        return dentry;
 321}
 322
 323struct dentry * dget_locked(struct dentry *dentry)
 324{
 325        return __dget_locked(dentry);
 326}
 327
 328/**
 329 * d_find_alias - grab a hashed alias of inode
 330 * @inode: inode in question
 331 * @want_discon:  flag, used by d_splice_alias, to request
 332 *          that only a DISCONNECTED alias be returned.
 333 *
 334 * If inode has a hashed alias, or is a directory and has any alias,
 335 * acquire the reference to alias and return it. Otherwise return NULL.
 336 * Notice that if inode is a directory there can be only one alias and
 337 * it can be unhashed only if it has no children, or if it is the root
 338 * of a filesystem.
 339 *
 340 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 341 * any other hashed alias over that one unless @want_discon is set,
 342 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
 343 */
 344
 345static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
 346{
 347        struct list_head *head, *next, *tmp;
 348        struct dentry *alias, *discon_alias=NULL;
 349
 350        head = &inode->i_dentry;
 351        next = inode->i_dentry.next;
 352        while (next != head) {
 353                tmp = next;
 354                next = tmp->next;
 355                prefetch(next);
 356                alias = list_entry(tmp, struct dentry, d_alias);
 357                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 358                        if (IS_ROOT(alias) &&
 359                            (alias->d_flags & DCACHE_DISCONNECTED))
 360                                discon_alias = alias;
 361                        else if (!want_discon) {
 362                                __dget_locked(alias);
 363                                return alias;
 364                        }
 365                }
 366        }
 367        if (discon_alias)
 368                __dget_locked(discon_alias);
 369        return discon_alias;
 370}
 371
 372struct dentry * d_find_alias(struct inode *inode)
 373{
 374        struct dentry *de = NULL;
 375
 376        if (!list_empty(&inode->i_dentry)) {
 377                spin_lock(&dcache_lock);
 378                de = __d_find_alias(inode, 0);
 379                spin_unlock(&dcache_lock);
 380        }
 381        return de;
 382}
 383
 384/*
 385 *      Try to kill dentries associated with this inode.
 386 * WARNING: you must own a reference to inode.
 387 */
 388void d_prune_aliases(struct inode *inode)
 389{
 390        struct dentry *dentry;
 391restart:
 392        spin_lock(&dcache_lock);
 393        list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
 394                spin_lock(&dentry->d_lock);
 395                if (!atomic_read(&dentry->d_count)) {
 396                        __dget_locked(dentry);
 397                        __d_drop(dentry);
 398                        spin_unlock(&dentry->d_lock);
 399                        spin_unlock(&dcache_lock);
 400                        dput(dentry);
 401                        goto restart;
 402                }
 403                spin_unlock(&dentry->d_lock);
 404        }
 405        spin_unlock(&dcache_lock);
 406}
 407
 408/*
 409 * Throw away a dentry - free the inode, dput the parent.  This requires that
 410 * the LRU list has already been removed.
 411 *
 412 * Try to prune ancestors as well.  This is necessary to prevent
 413 * quadratic behavior of shrink_dcache_parent(), but is also expected
 414 * to be beneficial in reducing dentry cache fragmentation.
 415 */
 416static void prune_one_dentry(struct dentry * dentry)
 417        __releases(dentry->d_lock)
 418        __releases(dcache_lock)
 419        __acquires(dcache_lock)
 420{
 421        __d_drop(dentry);
 422        dentry = d_kill(dentry);
 423
 424        /*
 425         * Prune ancestors.  Locking is simpler than in dput(),
 426         * because dcache_lock needs to be taken anyway.
 427         */
 428        spin_lock(&dcache_lock);
 429        while (dentry) {
 430                if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
 431                        return;
 432
 433                if (dentry->d_op && dentry->d_op->d_delete)
 434                        dentry->d_op->d_delete(dentry);
 435                dentry_lru_del_init(dentry);
 436                __d_drop(dentry);
 437                dentry = d_kill(dentry);
 438                spin_lock(&dcache_lock);
 439        }
 440}
 441
 442/*
 443 * Shrink the dentry LRU on a given superblock.
 444 * @sb   : superblock to shrink dentry LRU.
 445 * @count: If count is NULL, we prune all dentries on superblock.
 446 * @flags: If flags is non-zero, we need to do special processing based on
 447 * which flags are set. This means we don't need to maintain multiple
 448 * similar copies of this loop.
 449 */
 450static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
 451{
 452        LIST_HEAD(referenced);
 453        LIST_HEAD(tmp);
 454        struct dentry *dentry;
 455        int cnt = 0;
 456
 457        BUG_ON(!sb);
 458        BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
 459        spin_lock(&dcache_lock);
 460        if (count != NULL)
 461                /* called from prune_dcache() and shrink_dcache_parent() */
 462                cnt = *count;
 463restart:
 464        if (count == NULL)
 465                list_splice_init(&sb->s_dentry_lru, &tmp);
 466        else {
 467                while (!list_empty(&sb->s_dentry_lru)) {
 468                        dentry = list_entry(sb->s_dentry_lru.prev,
 469                                        struct dentry, d_lru);
 470                        BUG_ON(dentry->d_sb != sb);
 471
 472                        spin_lock(&dentry->d_lock);
 473                        /*
 474                         * If we are honouring the DCACHE_REFERENCED flag and
 475                         * the dentry has this flag set, don't free it. Clear
 476                         * the flag and put it back on the LRU.
 477                         */
 478                        if ((flags & DCACHE_REFERENCED)
 479                                && (dentry->d_flags & DCACHE_REFERENCED)) {
 480                                dentry->d_flags &= ~DCACHE_REFERENCED;
 481                                list_move_tail(&dentry->d_lru, &referenced);
 482                                spin_unlock(&dentry->d_lock);
 483                        } else {
 484                                list_move_tail(&dentry->d_lru, &tmp);
 485                                spin_unlock(&dentry->d_lock);
 486                                cnt--;
 487                                if (!cnt)
 488                                        break;
 489                        }
 490                        cond_resched_lock(&dcache_lock);
 491                }
 492        }
 493        while (!list_empty(&tmp)) {
 494                dentry = list_entry(tmp.prev, struct dentry, d_lru);
 495                dentry_lru_del_init(dentry);
 496                spin_lock(&dentry->d_lock);
 497                /*
 498                 * We found an inuse dentry which was not removed from
 499                 * the LRU because of laziness during lookup.  Do not free
 500                 * it - just keep it off the LRU list.
 501                 */
 502                if (atomic_read(&dentry->d_count)) {
 503                        spin_unlock(&dentry->d_lock);
 504                        continue;
 505                }
 506                prune_one_dentry(dentry);
 507                /* dentry->d_lock was dropped in prune_one_dentry() */
 508                cond_resched_lock(&dcache_lock);
 509        }
 510        if (count == NULL && !list_empty(&sb->s_dentry_lru))
 511                goto restart;
 512        if (count != NULL)
 513                *count = cnt;
 514        if (!list_empty(&referenced))
 515                list_splice(&referenced, &sb->s_dentry_lru);
 516        spin_unlock(&dcache_lock);
 517}
 518
 519/**
 520 * prune_dcache - shrink the dcache
 521 * @count: number of entries to try to free
 522 *
 523 * Shrink the dcache. This is done when we need more memory, or simply when we
 524 * need to unmount something (at which point we need to unuse all dentries).
 525 *
 526 * This function may fail to free any resources if all the dentries are in use.
 527 */
 528static void prune_dcache(int count)
 529{
 530        struct super_block *sb;
 531        int w_count;
 532        int unused = dentry_stat.nr_unused;
 533        int prune_ratio;
 534        int pruned;
 535
 536        if (unused == 0 || count == 0)
 537                return;
 538        spin_lock(&dcache_lock);
 539restart:
 540        if (count >= unused)
 541                prune_ratio = 1;
 542        else
 543                prune_ratio = unused / count;
 544        spin_lock(&sb_lock);
 545        list_for_each_entry(sb, &super_blocks, s_list) {
 546                if (sb->s_nr_dentry_unused == 0)
 547                        continue;
 548                sb->s_count++;
 549                /* Now, we reclaim unused dentrins with fairness.
 550                 * We reclaim them same percentage from each superblock.
 551                 * We calculate number of dentries to scan on this sb
 552                 * as follows, but the implementation is arranged to avoid
 553                 * overflows:
 554                 * number of dentries to scan on this sb =
 555                 * count * (number of dentries on this sb /
 556                 * number of dentries in the machine)
 557                 */
 558                spin_unlock(&sb_lock);
 559                if (prune_ratio != 1)
 560                        w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
 561                else
 562                        w_count = sb->s_nr_dentry_unused;
 563                pruned = w_count;
 564                /*
 565                 * We need to be sure this filesystem isn't being unmounted,
 566                 * otherwise we could race with generic_shutdown_super(), and
 567                 * end up holding a reference to an inode while the filesystem
 568                 * is unmounted.  So we try to get s_umount, and make sure
 569                 * s_root isn't NULL.
 570                 */
 571                if (down_read_trylock(&sb->s_umount)) {
 572                        if ((sb->s_root != NULL) &&
 573                            (!list_empty(&sb->s_dentry_lru))) {
 574                                spin_unlock(&dcache_lock);
 575                                __shrink_dcache_sb(sb, &w_count,
 576                                                DCACHE_REFERENCED);
 577                                pruned -= w_count;
 578                                spin_lock(&dcache_lock);
 579                        }
 580                        up_read(&sb->s_umount);
 581                }
 582                spin_lock(&sb_lock);
 583                count -= pruned;
 584                /*
 585                 * restart only when sb is no longer on the list and
 586                 * we have more work to do.
 587                 */
 588                if (__put_super_and_need_restart(sb) && count > 0) {
 589                        spin_unlock(&sb_lock);
 590                        goto restart;
 591                }
 592        }
 593        spin_unlock(&sb_lock);
 594        spin_unlock(&dcache_lock);
 595}
 596
 597/**
 598 * shrink_dcache_sb - shrink dcache for a superblock
 599 * @sb: superblock
 600 *
 601 * Shrink the dcache for the specified super block. This
 602 * is used to free the dcache before unmounting a file
 603 * system
 604 */
 605void shrink_dcache_sb(struct super_block * sb)
 606{
 607        __shrink_dcache_sb(sb, NULL, 0);
 608}
 609
 610/*
 611 * destroy a single subtree of dentries for unmount
 612 * - see the comments on shrink_dcache_for_umount() for a description of the
 613 *   locking
 614 */
 615static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
 616{
 617        struct dentry *parent;
 618        unsigned detached = 0;
 619
 620        BUG_ON(!IS_ROOT(dentry));
 621
 622        /* detach this root from the system */
 623        spin_lock(&dcache_lock);
 624        dentry_lru_del_init(dentry);
 625        __d_drop(dentry);
 626        spin_unlock(&dcache_lock);
 627
 628        for (;;) {
 629                /* descend to the first leaf in the current subtree */
 630                while (!list_empty(&dentry->d_subdirs)) {
 631                        struct dentry *loop;
 632
 633                        /* this is a branch with children - detach all of them
 634                         * from the system in one go */
 635                        spin_lock(&dcache_lock);
 636                        list_for_each_entry(loop, &dentry->d_subdirs,
 637                                            d_u.d_child) {
 638                                dentry_lru_del_init(loop);
 639                                __d_drop(loop);
 640                                cond_resched_lock(&dcache_lock);
 641                        }
 642                        spin_unlock(&dcache_lock);
 643
 644                        /* move to the first child */
 645                        dentry = list_entry(dentry->d_subdirs.next,
 646                                            struct dentry, d_u.d_child);
 647                }
 648
 649                /* consume the dentries from this leaf up through its parents
 650                 * until we find one with children or run out altogether */
 651                do {
 652                        struct inode *inode;
 653
 654                        if (atomic_read(&dentry->d_count) != 0) {
 655                                printk(KERN_ERR
 656                                       "BUG: Dentry %p{i=%lx,n=%s}"
 657                                       " still in use (%d)"
 658                                       " [unmount of %s %s]\n",
 659                                       dentry,
 660                                       dentry->d_inode ?
 661                                       dentry->d_inode->i_ino : 0UL,
 662                                       dentry->d_name.name,
 663                                       atomic_read(&dentry->d_count),
 664                                       dentry->d_sb->s_type->name,
 665                                       dentry->d_sb->s_id);
 666                                BUG();
 667                        }
 668
 669                        parent = dentry->d_parent;
 670                        if (parent == dentry)
 671                                parent = NULL;
 672                        else
 673                                atomic_dec(&parent->d_count);
 674
 675                        list_del(&dentry->d_u.d_child);
 676                        detached++;
 677
 678                        inode = dentry->d_inode;
 679                        if (inode) {
 680                                dentry->d_inode = NULL;
 681                                list_del_init(&dentry->d_alias);
 682                                if (dentry->d_op && dentry->d_op->d_iput)
 683                                        dentry->d_op->d_iput(dentry, inode);
 684                                else
 685                                        iput(inode);
 686                        }
 687
 688                        d_free(dentry);
 689
 690                        /* finished when we fall off the top of the tree,
 691                         * otherwise we ascend to the parent and move to the
 692                         * next sibling if there is one */
 693                        if (!parent)
 694                                goto out;
 695
 696                        dentry = parent;
 697
 698                } while (list_empty(&dentry->d_subdirs));
 699
 700                dentry = list_entry(dentry->d_subdirs.next,
 701                                    struct dentry, d_u.d_child);
 702        }
 703out:
 704        /* several dentries were freed, need to correct nr_dentry */
 705        spin_lock(&dcache_lock);
 706        dentry_stat.nr_dentry -= detached;
 707        spin_unlock(&dcache_lock);
 708}
 709
 710/*
 711 * destroy the dentries attached to a superblock on unmounting
 712 * - we don't need to use dentry->d_lock, and only need dcache_lock when
 713 *   removing the dentry from the system lists and hashes because:
 714 *   - the superblock is detached from all mountings and open files, so the
 715 *     dentry trees will not be rearranged by the VFS
 716 *   - s_umount is write-locked, so the memory pressure shrinker will ignore
 717 *     any dentries belonging to this superblock that it comes across
 718 *   - the filesystem itself is no longer permitted to rearrange the dentries
 719 *     in this superblock
 720 */
 721void shrink_dcache_for_umount(struct super_block *sb)
 722{
 723        struct dentry *dentry;
 724
 725        if (down_read_trylock(&sb->s_umount))
 726                BUG();
 727
 728        dentry = sb->s_root;
 729        sb->s_root = NULL;
 730        atomic_dec(&dentry->d_count);
 731        shrink_dcache_for_umount_subtree(dentry);
 732
 733        while (!hlist_empty(&sb->s_anon)) {
 734                dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
 735                shrink_dcache_for_umount_subtree(dentry);
 736        }
 737}
 738
 739/*
 740 * Search for at least 1 mount point in the dentry's subdirs.
 741 * We descend to the next level whenever the d_subdirs
 742 * list is non-empty and continue searching.
 743 */
 744 
 745/**
 746 * have_submounts - check for mounts over a dentry
 747 * @parent: dentry to check.
 748 *
 749 * Return true if the parent or its subdirectories contain
 750 * a mount point
 751 */
 752 
 753int have_submounts(struct dentry *parent)
 754{
 755        struct dentry *this_parent = parent;
 756        struct list_head *next;
 757
 758        spin_lock(&dcache_lock);
 759        if (d_mountpoint(parent))
 760                goto positive;
 761repeat:
 762        next = this_parent->d_subdirs.next;
 763resume:
 764        while (next != &this_parent->d_subdirs) {
 765                struct list_head *tmp = next;
 766                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
 767                next = tmp->next;
 768                /* Have we found a mount point ? */
 769                if (d_mountpoint(dentry))
 770                        goto positive;
 771                if (!list_empty(&dentry->d_subdirs)) {
 772                        this_parent = dentry;
 773                        goto repeat;
 774                }
 775        }
 776        /*
 777         * All done at this level ... ascend and resume the search.
 778         */
 779        if (this_parent != parent) {
 780                next = this_parent->d_u.d_child.next;
 781                this_parent = this_parent->d_parent;
 782                goto resume;
 783        }
 784        spin_unlock(&dcache_lock);
 785        return 0; /* No mount points found in tree */
 786positive:
 787        spin_unlock(&dcache_lock);
 788        return 1;
 789}
 790
 791/*
 792 * Search the dentry child list for the specified parent,
 793 * and move any unused dentries to the end of the unused
 794 * list for prune_dcache(). We descend to the next level
 795 * whenever the d_subdirs list is non-empty and continue
 796 * searching.
 797 *
 798 * It returns zero iff there are no unused children,
 799 * otherwise  it returns the number of children moved to
 800 * the end of the unused list. This may not be the total
 801 * number of unused children, because select_parent can
 802 * drop the lock and return early due to latency
 803 * constraints.
 804 */
 805static int select_parent(struct dentry * parent)
 806{
 807        struct dentry *this_parent = parent;
 808        struct list_head *next;
 809        int found = 0;
 810
 811        spin_lock(&dcache_lock);
 812repeat:
 813        next = this_parent->d_subdirs.next;
 814resume:
 815        while (next != &this_parent->d_subdirs) {
 816                struct list_head *tmp = next;
 817                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
 818                next = tmp->next;
 819
 820                dentry_lru_del_init(dentry);
 821                /* 
 822                 * move only zero ref count dentries to the end 
 823                 * of the unused list for prune_dcache
 824                 */
 825                if (!atomic_read(&dentry->d_count)) {
 826                        dentry_lru_add_tail(dentry);
 827                        found++;
 828                }
 829
 830                /*
 831                 * We can return to the caller if we have found some (this
 832                 * ensures forward progress). We'll be coming back to find
 833                 * the rest.
 834                 */
 835                if (found && need_resched())
 836                        goto out;
 837
 838                /*
 839                 * Descend a level if the d_subdirs list is non-empty.
 840                 */
 841                if (!list_empty(&dentry->d_subdirs)) {
 842                        this_parent = dentry;
 843                        goto repeat;
 844                }
 845        }
 846        /*
 847         * All done at this level ... ascend and resume the search.
 848         */
 849        if (this_parent != parent) {
 850                next = this_parent->d_u.d_child.next;
 851                this_parent = this_parent->d_parent;
 852                goto resume;
 853        }
 854out:
 855        spin_unlock(&dcache_lock);
 856        return found;
 857}
 858
 859/**
 860 * shrink_dcache_parent - prune dcache
 861 * @parent: parent of entries to prune
 862 *
 863 * Prune the dcache to remove unused children of the parent dentry.
 864 */
 865 
 866void shrink_dcache_parent(struct dentry * parent)
 867{
 868        struct super_block *sb = parent->d_sb;
 869        int found;
 870
 871        while ((found = select_parent(parent)) != 0)
 872                __shrink_dcache_sb(sb, &found, 0);
 873}
 874
 875/*
 876 * Scan `nr' dentries and return the number which remain.
 877 *
 878 * We need to avoid reentering the filesystem if the caller is performing a
 879 * GFP_NOFS allocation attempt.  One example deadlock is:
 880 *
 881 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
 882 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
 883 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
 884 *
 885 * In this case we return -1 to tell the caller that we baled.
 886 */
 887static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
 888{
 889        if (nr) {
 890                if (!(gfp_mask & __GFP_FS))
 891                        return -1;
 892                prune_dcache(nr);
 893        }
 894        return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
 895}
 896
 897static struct shrinker dcache_shrinker = {
 898        .shrink = shrink_dcache_memory,
 899        .seeks = DEFAULT_SEEKS,
 900};
 901
 902/**
 903 * d_alloc      -       allocate a dcache entry
 904 * @parent: parent of entry to allocate
 905 * @name: qstr of the name
 906 *
 907 * Allocates a dentry. It returns %NULL if there is insufficient memory
 908 * available. On a success the dentry is returned. The name passed in is
 909 * copied and the copy passed in may be reused after this call.
 910 */
 911 
 912struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
 913{
 914        struct dentry *dentry;
 915        char *dname;
 916
 917        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
 918        if (!dentry)
 919                return NULL;
 920
 921        if (name->len > DNAME_INLINE_LEN-1) {
 922                dname = kmalloc(name->len + 1, GFP_KERNEL);
 923                if (!dname) {
 924                        kmem_cache_free(dentry_cache, dentry); 
 925                        return NULL;
 926                }
 927        } else  {
 928                dname = dentry->d_iname;
 929        }       
 930        dentry->d_name.name = dname;
 931
 932        dentry->d_name.len = name->len;
 933        dentry->d_name.hash = name->hash;
 934        memcpy(dname, name->name, name->len);
 935        dname[name->len] = 0;
 936
 937        atomic_set(&dentry->d_count, 1);
 938        dentry->d_flags = DCACHE_UNHASHED;
 939        spin_lock_init(&dentry->d_lock);
 940        dentry->d_inode = NULL;
 941        dentry->d_parent = NULL;
 942        dentry->d_sb = NULL;
 943        dentry->d_op = NULL;
 944        dentry->d_fsdata = NULL;
 945        dentry->d_mounted = 0;
 946#ifdef CONFIG_PROFILING
 947        dentry->d_cookie = NULL;
 948#endif
 949        INIT_HLIST_NODE(&dentry->d_hash);
 950        INIT_LIST_HEAD(&dentry->d_lru);
 951        INIT_LIST_HEAD(&dentry->d_subdirs);
 952        INIT_LIST_HEAD(&dentry->d_alias);
 953
 954        if (parent) {
 955                dentry->d_parent = dget(parent);
 956                dentry->d_sb = parent->d_sb;
 957        } else {
 958                INIT_LIST_HEAD(&dentry->d_u.d_child);
 959        }
 960
 961        spin_lock(&dcache_lock);
 962        if (parent)
 963                list_add(&dentry->d_u.d_child, &parent->d_subdirs);
 964        dentry_stat.nr_dentry++;
 965        spin_unlock(&dcache_lock);
 966
 967        return dentry;
 968}
 969
 970struct dentry *d_alloc_name(struct dentry *parent, const char *name)
 971{
 972        struct qstr q;
 973
 974        q.name = name;
 975        q.len = strlen(name);
 976        q.hash = full_name_hash(q.name, q.len);
 977        return d_alloc(parent, &q);
 978}
 979
 980/**
 981 * d_instantiate - fill in inode information for a dentry
 982 * @entry: dentry to complete
 983 * @inode: inode to attach to this dentry
 984 *
 985 * Fill in inode information in the entry.
 986 *
 987 * This turns negative dentries into productive full members
 988 * of society.
 989 *
 990 * NOTE! This assumes that the inode count has been incremented
 991 * (or otherwise set) by the caller to indicate that it is now
 992 * in use by the dcache.
 993 */
 994 
 995void d_instantiate(struct dentry *entry, struct inode * inode)
 996{
 997        BUG_ON(!list_empty(&entry->d_alias));
 998        spin_lock(&dcache_lock);
 999        if (inode)
1000                list_add(&entry->d_alias, &inode->i_dentry);
1001        entry->d_inode = inode;
1002        fsnotify_d_instantiate(entry, inode);
1003        spin_unlock(&dcache_lock);
1004        security_d_instantiate(entry, inode);
1005}
1006
1007/**
1008 * d_instantiate_unique - instantiate a non-aliased dentry
1009 * @entry: dentry to instantiate
1010 * @inode: inode to attach to this dentry
1011 *
1012 * Fill in inode information in the entry. On success, it returns NULL.
1013 * If an unhashed alias of "entry" already exists, then we return the
1014 * aliased dentry instead and drop one reference to inode.
1015 *
1016 * Note that in order to avoid conflicts with rename() etc, the caller
1017 * had better be holding the parent directory semaphore.
1018 *
1019 * This also assumes that the inode count has been incremented
1020 * (or otherwise set) by the caller to indicate that it is now
1021 * in use by the dcache.
1022 */
1023static struct dentry *__d_instantiate_unique(struct dentry *entry,
1024                                             struct inode *inode)
1025{
1026        struct dentry *alias;
1027        int len = entry->d_name.len;
1028        const char *name = entry->d_name.name;
1029        unsigned int hash = entry->d_name.hash;
1030
1031        if (!inode) {
1032                entry->d_inode = NULL;
1033                return NULL;
1034        }
1035
1036        list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1037                struct qstr *qstr = &alias->d_name;
1038
1039                if (qstr->hash != hash)
1040                        continue;
1041                if (alias->d_parent != entry->d_parent)
1042                        continue;
1043                if (qstr->len != len)
1044                        continue;
1045                if (memcmp(qstr->name, name, len))
1046                        continue;
1047                dget_locked(alias);
1048                return alias;
1049        }
1050
1051        list_add(&entry->d_alias, &inode->i_dentry);
1052        entry->d_inode = inode;
1053        fsnotify_d_instantiate(entry, inode);
1054        return NULL;
1055}
1056
1057struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1058{
1059        struct dentry *result;
1060
1061        BUG_ON(!list_empty(&entry->d_alias));
1062
1063        spin_lock(&dcache_lock);
1064        result = __d_instantiate_unique(entry, inode);
1065        spin_unlock(&dcache_lock);
1066
1067        if (!result) {
1068                security_d_instantiate(entry, inode);
1069                return NULL;
1070        }
1071
1072        BUG_ON(!d_unhashed(result));
1073        iput(inode);
1074        return result;
1075}
1076
1077EXPORT_SYMBOL(d_instantiate_unique);
1078
1079/**
1080 * d_alloc_root - allocate root dentry
1081 * @root_inode: inode to allocate the root for
1082 *
1083 * Allocate a root ("/") dentry for the inode given. The inode is
1084 * instantiated and returned. %NULL is returned if there is insufficient
1085 * memory or the inode passed is %NULL.
1086 */
1087 
1088struct dentry * d_alloc_root(struct inode * root_inode)
1089{
1090        struct dentry *res = NULL;
1091
1092        if (root_inode) {
1093                static const struct qstr name = { .name = "/", .len = 1 };
1094
1095                res = d_alloc(NULL, &name);
1096                if (res) {
1097                        res->d_sb = root_inode->i_sb;
1098                        res->d_parent = res;
1099                        d_instantiate(res, root_inode);
1100                }
1101        }
1102        return res;
1103}
1104
1105static inline struct hlist_head *d_hash(struct dentry *parent,
1106                                        unsigned long hash)
1107{
1108        hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1109        hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1110        return dentry_hashtable + (hash & D_HASHMASK);
1111}
1112
1113/**
1114 * d_alloc_anon - allocate an anonymous dentry
1115 * @inode: inode to allocate the dentry for
1116 *
1117 * This is similar to d_alloc_root.  It is used by filesystems when
1118 * creating a dentry for a given inode, often in the process of 
1119 * mapping a filehandle to a dentry.  The returned dentry may be
1120 * anonymous, or may have a full name (if the inode was already
1121 * in the cache).  The file system may need to make further
1122 * efforts to connect this dentry into the dcache properly.
1123 *
1124 * When called on a directory inode, we must ensure that
1125 * the inode only ever has one dentry.  If a dentry is
1126 * found, that is returned instead of allocating a new one.
1127 *
1128 * On successful return, the reference to the inode has been transferred
1129 * to the dentry.  If %NULL is returned (indicating kmalloc failure),
1130 * the reference on the inode has not been released.
1131 */
1132
1133struct dentry * d_alloc_anon(struct inode *inode)
1134{
1135        static const struct qstr anonstring = { .name = "" };
1136        struct dentry *tmp;
1137        struct dentry *res;
1138
1139        if ((res = d_find_alias(inode))) {
1140                iput(inode);
1141                return res;
1142        }
1143
1144        tmp = d_alloc(NULL, &anonstring);
1145        if (!tmp)
1146                return NULL;
1147
1148        tmp->d_parent = tmp; /* make sure dput doesn't croak */
1149        
1150        spin_lock(&dcache_lock);
1151        res = __d_find_alias(inode, 0);
1152        if (!res) {
1153                /* attach a disconnected dentry */
1154                res = tmp;
1155                tmp = NULL;
1156                spin_lock(&res->d_lock);
1157                res->d_sb = inode->i_sb;
1158                res->d_parent = res;
1159                res->d_inode = inode;
1160                res->d_flags |= DCACHE_DISCONNECTED;
1161                res->d_flags &= ~DCACHE_UNHASHED;
1162                list_add(&res->d_alias, &inode->i_dentry);
1163                hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1164                spin_unlock(&res->d_lock);
1165
1166                inode = NULL; /* don't drop reference */
1167        }
1168        spin_unlock(&dcache_lock);
1169
1170        if (inode)
1171                iput(inode);
1172        if (tmp)
1173                dput(tmp);
1174        return res;
1175}
1176
1177
1178/**
1179 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1180 * @inode:  the inode which may have a disconnected dentry
1181 * @dentry: a negative dentry which we want to point to the inode.
1182 *
1183 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1184 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1185 * and return it, else simply d_add the inode to the dentry and return NULL.
1186 *
1187 * This is needed in the lookup routine of any filesystem that is exportable
1188 * (via knfsd) so that we can build dcache paths to directories effectively.
1189 *
1190 * If a dentry was found and moved, then it is returned.  Otherwise NULL
1191 * is returned.  This matches the expected return value of ->lookup.
1192 *
1193 */
1194struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1195{
1196        struct dentry *new = NULL;
1197
1198        if (inode && S_ISDIR(inode->i_mode)) {
1199                spin_lock(&dcache_lock);
1200                new = __d_find_alias(inode, 1);
1201                if (new) {
1202                        BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1203                        fsnotify_d_instantiate(new, inode);
1204                        spin_unlock(&dcache_lock);
1205                        security_d_instantiate(new, inode);
1206                        d_rehash(dentry);
1207                        d_move(new, dentry);
1208                        iput(inode);
1209                } else {
1210                        /* d_instantiate takes dcache_lock, so we do it by hand */
1211                        list_add(&dentry->d_alias, &inode->i_dentry);
1212                        dentry->d_inode = inode;
1213                        fsnotify_d_instantiate(dentry, inode);
1214                        spin_unlock(&dcache_lock);
1215                        security_d_instantiate(dentry, inode);
1216                        d_rehash(dentry);
1217                }
1218        } else
1219                d_add(dentry, inode);
1220        return new;
1221}
1222
1223/**
1224 * d_add_ci - lookup or allocate new dentry with case-exact name
1225 * @inode:  the inode case-insensitive lookup has found
1226 * @dentry: the negative dentry that was passed to the parent's lookup func
1227 * @name:   the case-exact name to be associated with the returned dentry
1228 *
1229 * This is to avoid filling the dcache with case-insensitive names to the
1230 * same inode, only the actual correct case is stored in the dcache for
1231 * case-insensitive filesystems.
1232 *
1233 * For a case-insensitive lookup match and if the the case-exact dentry
1234 * already exists in in the dcache, use it and return it.
1235 *
1236 * If no entry exists with the exact case name, allocate new dentry with
1237 * the exact case, and return the spliced entry.
1238 */
1239struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1240                        struct qstr *name)
1241{
1242        int error;
1243        struct dentry *found;
1244        struct dentry *new;
1245
1246        /* Does a dentry matching the name exist already? */
1247        found = d_hash_and_lookup(dentry->d_parent, name);
1248        /* If not, create it now and return */
1249        if (!found) {
1250                new = d_alloc(dentry->d_parent, name);
1251                if (!new) {
1252                        error = -ENOMEM;
1253                        goto err_out;
1254                }
1255                found = d_splice_alias(inode, new);
1256                if (found) {
1257                        dput(new);
1258                        return found;
1259                }
1260                return new;
1261        }
1262        /* Matching dentry exists, check if it is negative. */
1263        if (found->d_inode) {
1264                if (unlikely(found->d_inode != inode)) {
1265                        /* This can't happen because bad inodes are unhashed. */
1266                        BUG_ON(!is_bad_inode(inode));
1267                        BUG_ON(!is_bad_inode(found->d_inode));
1268                }
1269                /*
1270                 * Already have the inode and the dentry attached, decrement
1271                 * the reference count to balance the iget() done
1272                 * earlier on.  We found the dentry using d_lookup() so it
1273                 * cannot be disconnected and thus we do not need to worry
1274                 * about any NFS/disconnectedness issues here.
1275                 */
1276                iput(inode);
1277                return found;
1278        }
1279        /*
1280         * Negative dentry: instantiate it unless the inode is a directory and
1281         * has a 'disconnected' dentry (i.e. IS_ROOT and DCACHE_DISCONNECTED),
1282         * in which case d_move() that in place of the found dentry.
1283         */
1284        if (!S_ISDIR(inode->i_mode)) {
1285                /* Not a directory; everything is easy. */
1286                d_instantiate(found, inode);
1287                return found;
1288        }
1289        spin_lock(&dcache_lock);
1290        if (list_empty(&inode->i_dentry)) {
1291                /*
1292                 * Directory without a 'disconnected' dentry; we need to do
1293                 * d_instantiate() by hand because it takes dcache_lock which
1294                 * we already hold.
1295                 */
1296                list_add(&found->d_alias, &inode->i_dentry);
1297                found->d_inode = inode;
1298                spin_unlock(&dcache_lock);
1299                security_d_instantiate(found, inode);
1300                return found;
1301        }
1302        /*
1303         * Directory with a 'disconnected' dentry; get a reference to the
1304         * 'disconnected' dentry.
1305         */
1306        new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1307        dget_locked(new);
1308        spin_unlock(&dcache_lock);
1309        /* Do security vodoo. */
1310        security_d_instantiate(found, inode);
1311        /* Move new in place of found. */
1312        d_move(new, found);
1313        /* Balance the iget() we did above. */
1314        iput(inode);
1315        /* Throw away found. */
1316        dput(found);
1317        /* Use new as the actual dentry. */
1318        return new;
1319
1320err_out:
1321        iput(inode);
1322        return ERR_PTR(error);
1323}
1324
1325/**
1326 * d_lookup - search for a dentry
1327 * @parent: parent dentry
1328 * @name: qstr of name we wish to find
1329 *
1330 * Searches the children of the parent dentry for the name in question. If
1331 * the dentry is found its reference count is incremented and the dentry
1332 * is returned. The caller must use d_put to free the entry when it has
1333 * finished using it. %NULL is returned on failure.
1334 *
1335 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1336 * Memory barriers are used while updating and doing lockless traversal. 
1337 * To avoid races with d_move while rename is happening, d_lock is used.
1338 *
1339 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1340 * and name pointer in one structure pointed by d_qstr.
1341 *
1342 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1343 * lookup is going on.
1344 *
1345 * The dentry unused LRU is not updated even if lookup finds the required dentry
1346 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1347 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1348 * acquisition.
1349 *
1350 * d_lookup() is protected against the concurrent renames in some unrelated
1351 * directory using the seqlockt_t rename_lock.
1352 */
1353
1354struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1355{
1356        struct dentry * dentry = NULL;
1357        unsigned long seq;
1358
1359        do {
1360                seq = read_seqbegin(&rename_lock);
1361                dentry = __d_lookup(parent, name);
1362                if (dentry)
1363                        break;
1364        } while (read_seqretry(&rename_lock, seq));
1365        return dentry;
1366}
1367
1368struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1369{
1370        unsigned int len = name->len;
1371        unsigned int hash = name->hash;
1372        const unsigned char *str = name->name;
1373        struct hlist_head *head = d_hash(parent,hash);
1374        struct dentry *found = NULL;
1375        struct hlist_node *node;
1376        struct dentry *dentry;
1377
1378        rcu_read_lock();
1379        
1380        hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1381                struct qstr *qstr;
1382
1383                if (dentry->d_name.hash != hash)
1384                        continue;
1385                if (dentry->d_parent != parent)
1386                        continue;
1387
1388                spin_lock(&dentry->d_lock);
1389
1390                /*
1391                 * Recheck the dentry after taking the lock - d_move may have
1392                 * changed things.  Don't bother checking the hash because we're
1393                 * about to compare the whole name anyway.
1394                 */
1395                if (dentry->d_parent != parent)
1396                        goto next;
1397
1398                /* non-existing due to RCU? */
1399                if (d_unhashed(dentry))
1400                        goto next;
1401
1402                /*
1403                 * It is safe to compare names since d_move() cannot
1404                 * change the qstr (protected by d_lock).
1405                 */
1406                qstr = &dentry->d_name;
1407                if (parent->d_op && parent->d_op->d_compare) {
1408                        if (parent->d_op->d_compare(parent, qstr, name))
1409                                goto next;
1410                } else {
1411                        if (qstr->len != len)
1412                                goto next;
1413                        if (memcmp(qstr->name, str, len))
1414                                goto next;
1415                }
1416
1417                atomic_inc(&dentry->d_count);
1418                found = dentry;
1419                spin_unlock(&dentry->d_lock);
1420                break;
1421next:
1422                spin_unlock(&dentry->d_lock);
1423        }
1424        rcu_read_unlock();
1425
1426        return found;
1427}
1428
1429/**
1430 * d_hash_and_lookup - hash the qstr then search for a dentry
1431 * @dir: Directory to search in
1432 * @name: qstr of name we wish to find
1433 *
1434 * On hash failure or on lookup failure NULL is returned.
1435 */
1436struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1437{
1438        struct dentry *dentry = NULL;
1439
1440        /*
1441         * Check for a fs-specific hash function. Note that we must
1442         * calculate the standard hash first, as the d_op->d_hash()
1443         * routine may choose to leave the hash value unchanged.
1444         */
1445        name->hash = full_name_hash(name->name, name->len);
1446        if (dir->d_op && dir->d_op->d_hash) {
1447                if (dir->d_op->d_hash(dir, name) < 0)
1448                        goto out;
1449        }
1450        dentry = d_lookup(dir, name);
1451out:
1452        return dentry;
1453}
1454
1455/**
1456 * d_validate - verify dentry provided from insecure source
1457 * @dentry: The dentry alleged to be valid child of @dparent
1458 * @dparent: The parent dentry (known to be valid)
1459 * @hash: Hash of the dentry
1460 * @len: Length of the name
1461 *
1462 * An insecure source has sent us a dentry, here we verify it and dget() it.
1463 * This is used by ncpfs in its readdir implementation.
1464 * Zero is returned in the dentry is invalid.
1465 */
1466 
1467int d_validate(struct dentry *dentry, struct dentry *dparent)
1468{
1469        struct hlist_head *base;
1470        struct hlist_node *lhp;
1471
1472        /* Check whether the ptr might be valid at all.. */
1473        if (!kmem_ptr_validate(dentry_cache, dentry))
1474                goto out;
1475
1476        if (dentry->d_parent != dparent)
1477                goto out;
1478
1479        spin_lock(&dcache_lock);
1480        base = d_hash(dparent, dentry->d_name.hash);
1481        hlist_for_each(lhp,base) { 
1482                /* hlist_for_each_entry_rcu() not required for d_hash list
1483                 * as it is parsed under dcache_lock
1484                 */
1485                if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1486                        __dget_locked(dentry);
1487                        spin_unlock(&dcache_lock);
1488                        return 1;
1489                }
1490        }
1491        spin_unlock(&dcache_lock);
1492out:
1493        return 0;
1494}
1495
1496/*
1497 * When a file is deleted, we have two options:
1498 * - turn this dentry into a negative dentry
1499 * - unhash this dentry and free it.
1500 *
1501 * Usually, we want to just turn this into
1502 * a negative dentry, but if anybody else is
1503 * currently using the dentry or the inode
1504 * we can't do that and we fall back on removing
1505 * it from the hash queues and waiting for
1506 * it to be deleted later when it has no users
1507 */
1508 
1509/**
1510 * d_delete - delete a dentry
1511 * @dentry: The dentry to delete
1512 *
1513 * Turn the dentry into a negative dentry if possible, otherwise
1514 * remove it from the hash queues so it can be deleted later
1515 */
1516 
1517void d_delete(struct dentry * dentry)
1518{
1519        int isdir = 0;
1520        /*
1521         * Are we the only user?
1522         */
1523        spin_lock(&dcache_lock);
1524        spin_lock(&dentry->d_lock);
1525        isdir = S_ISDIR(dentry->d_inode->i_mode);
1526        if (atomic_read(&dentry->d_count) == 1) {
1527                dentry_iput(dentry);
1528                fsnotify_nameremove(dentry, isdir);
1529                return;
1530        }
1531
1532        if (!d_unhashed(dentry))
1533                __d_drop(dentry);
1534
1535        spin_unlock(&dentry->d_lock);
1536        spin_unlock(&dcache_lock);
1537
1538        fsnotify_nameremove(dentry, isdir);
1539}
1540
1541static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1542{
1543
1544        entry->d_flags &= ~DCACHE_UNHASHED;
1545        hlist_add_head_rcu(&entry->d_hash, list);
1546}
1547
1548static void _d_rehash(struct dentry * entry)
1549{
1550        __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1551}
1552
1553/**
1554 * d_rehash     - add an entry back to the hash
1555 * @entry: dentry to add to the hash
1556 *
1557 * Adds a dentry to the hash according to its name.
1558 */
1559 
1560void d_rehash(struct dentry * entry)
1561{
1562        spin_lock(&dcache_lock);
1563        spin_lock(&entry->d_lock);
1564        _d_rehash(entry);
1565        spin_unlock(&entry->d_lock);
1566        spin_unlock(&dcache_lock);
1567}
1568
1569#define do_switch(x,y) do { \
1570        __typeof__ (x) __tmp = x; \
1571        x = y; y = __tmp; } while (0)
1572
1573/*
1574 * When switching names, the actual string doesn't strictly have to
1575 * be preserved in the target - because we're dropping the target
1576 * anyway. As such, we can just do a simple memcpy() to copy over
1577 * the new name before we switch.
1578 *
1579 * Note that we have to be a lot more careful about getting the hash
1580 * switched - we have to switch the hash value properly even if it
1581 * then no longer matches the actual (corrupted) string of the target.
1582 * The hash value has to match the hash queue that the dentry is on..
1583 */
1584static void switch_names(struct dentry *dentry, struct dentry *target)
1585{
1586        if (dname_external(target)) {
1587                if (dname_external(dentry)) {
1588                        /*
1589                         * Both external: swap the pointers
1590                         */
1591                        do_switch(target->d_name.name, dentry->d_name.name);
1592                } else {
1593                        /*
1594                         * dentry:internal, target:external.  Steal target's
1595                         * storage and make target internal.
1596                         */
1597                        memcpy(target->d_iname, dentry->d_name.name,
1598                                        dentry->d_name.len + 1);
1599                        dentry->d_name.name = target->d_name.name;
1600                        target->d_name.name = target->d_iname;
1601                }
1602        } else {
1603                if (dname_external(dentry)) {
1604                        /*
1605                         * dentry:external, target:internal.  Give dentry's
1606                         * storage to target and make dentry internal
1607                         */
1608                        memcpy(dentry->d_iname, target->d_name.name,
1609                                        target->d_name.len + 1);
1610                        target->d_name.name = dentry->d_name.name;
1611                        dentry->d_name.name = dentry->d_iname;
1612                } else {
1613                        /*
1614                         * Both are internal.  Just copy target to dentry
1615                         */
1616                        memcpy(dentry->d_iname, target->d_name.name,
1617                                        target->d_name.len + 1);
1618                        dentry->d_name.len = target->d_name.len;
1619                        return;
1620                }
1621        }
1622        do_switch(dentry->d_name.len, target->d_name.len);
1623}
1624
1625/*
1626 * We cannibalize "target" when moving dentry on top of it,
1627 * because it's going to be thrown away anyway. We could be more
1628 * polite about it, though.
1629 *
1630 * This forceful removal will result in ugly /proc output if
1631 * somebody holds a file open that got deleted due to a rename.
1632 * We could be nicer about the deleted file, and let it show
1633 * up under the name it had before it was deleted rather than
1634 * under the original name of the file that was moved on top of it.
1635 */
1636 
1637/*
1638 * d_move_locked - move a dentry
1639 * @dentry: entry to move
1640 * @target: new dentry
1641 *
1642 * Update the dcache to reflect the move of a file name. Negative
1643 * dcache entries should not be moved in this way.
1644 */
1645static void d_move_locked(struct dentry * dentry, struct dentry * target)
1646{
1647        struct hlist_head *list;
1648
1649        if (!dentry->d_inode)
1650                printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1651
1652        write_seqlock(&rename_lock);
1653        /*
1654         * XXXX: do we really need to take target->d_lock?
1655         */
1656        if (target < dentry) {
1657                spin_lock(&target->d_lock);
1658                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1659        } else {
1660                spin_lock(&dentry->d_lock);
1661                spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1662        }
1663
1664        /* Move the dentry to the target hash queue, if on different bucket */
1665        if (d_unhashed(dentry))
1666                goto already_unhashed;
1667
1668        hlist_del_rcu(&dentry->d_hash);
1669
1670already_unhashed:
1671        list = d_hash(target->d_parent, target->d_name.hash);
1672        __d_rehash(dentry, list);
1673
1674        /* Unhash the target: dput() will then get rid of it */
1675        __d_drop(target);
1676
1677        list_del(&dentry->d_u.d_child);
1678        list_del(&target->d_u.d_child);
1679
1680        /* Switch the names.. */
1681        switch_names(dentry, target);
1682        do_switch(dentry->d_name.hash, target->d_name.hash);
1683
1684        /* ... and switch the parents */
1685        if (IS_ROOT(dentry)) {
1686                dentry->d_parent = target->d_parent;
1687                target->d_parent = target;
1688                INIT_LIST_HEAD(&target->d_u.d_child);
1689        } else {
1690                do_switch(dentry->d_parent, target->d_parent);
1691
1692                /* And add them back to the (new) parent lists */
1693                list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1694        }
1695
1696        list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1697        spin_unlock(&target->d_lock);
1698        fsnotify_d_move(dentry);
1699        spin_unlock(&dentry->d_lock);
1700        write_sequnlock(&rename_lock);
1701}
1702
1703/**
1704 * d_move - move a dentry
1705 * @dentry: entry to move
1706 * @target: new dentry
1707 *
1708 * Update the dcache to reflect the move of a file name. Negative
1709 * dcache entries should not be moved in this way.
1710 */
1711
1712void d_move(struct dentry * dentry, struct dentry * target)
1713{
1714        spin_lock(&dcache_lock);
1715        d_move_locked(dentry, target);
1716        spin_unlock(&dcache_lock);
1717}
1718
1719/*
1720 * Helper that returns 1 if p1 is a parent of p2, else 0
1721 */
1722static int d_isparent(struct dentry *p1, struct dentry *p2)
1723{
1724        struct dentry *p;
1725
1726        for (p = p2; p->d_parent != p; p = p->d_parent) {
1727                if (p->d_parent == p1)
1728                        return 1;
1729        }
1730        return 0;
1731}
1732
1733/*
1734 * This helper attempts to cope with remotely renamed directories
1735 *
1736 * It assumes that the caller is already holding
1737 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1738 *
1739 * Note: If ever the locking in lock_rename() changes, then please
1740 * remember to update this too...
1741 */
1742static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1743        __releases(dcache_lock)
1744{
1745        struct mutex *m1 = NULL, *m2 = NULL;
1746        struct dentry *ret;
1747
1748        /* If alias and dentry share a parent, then no extra locks required */
1749        if (alias->d_parent == dentry->d_parent)
1750                goto out_unalias;
1751
1752        /* Check for loops */
1753        ret = ERR_PTR(-ELOOP);
1754        if (d_isparent(alias, dentry))
1755                goto out_err;
1756
1757        /* See lock_rename() */
1758        ret = ERR_PTR(-EBUSY);
1759        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1760                goto out_err;
1761        m1 = &dentry->d_sb->s_vfs_rename_mutex;
1762        if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1763                goto out_err;
1764        m2 = &alias->d_parent->d_inode->i_mutex;
1765out_unalias:
1766        d_move_locked(alias, dentry);
1767        ret = alias;
1768out_err:
1769        spin_unlock(&dcache_lock);
1770        if (m2)
1771                mutex_unlock(m2);
1772        if (m1)
1773                mutex_unlock(m1);
1774        return ret;
1775}
1776
1777/*
1778 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1779 * named dentry in place of the dentry to be replaced.
1780 */
1781static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1782{
1783        struct dentry *dparent, *aparent;
1784
1785        switch_names(dentry, anon);
1786        do_switch(dentry->d_name.hash, anon->d_name.hash);
1787
1788        dparent = dentry->d_parent;
1789        aparent = anon->d_parent;
1790
1791        dentry->d_parent = (aparent == anon) ? dentry : aparent;
1792        list_del(&dentry->d_u.d_child);
1793        if (!IS_ROOT(dentry))
1794                list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1795        else
1796                INIT_LIST_HEAD(&dentry->d_u.d_child);
1797
1798        anon->d_parent = (dparent == dentry) ? anon : dparent;
1799        list_del(&anon->d_u.d_child);
1800        if (!IS_ROOT(anon))
1801                list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1802        else
1803                INIT_LIST_HEAD(&anon->d_u.d_child);
1804
1805        anon->d_flags &= ~DCACHE_DISCONNECTED;
1806}
1807
1808/**
1809 * d_materialise_unique - introduce an inode into the tree
1810 * @dentry: candidate dentry
1811 * @inode: inode to bind to the dentry, to which aliases may be attached
1812 *
1813 * Introduces an dentry into the tree, substituting an extant disconnected
1814 * root directory alias in its place if there is one
1815 */
1816struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1817{
1818        struct dentry *actual;
1819
1820        BUG_ON(!d_unhashed(dentry));
1821
1822        spin_lock(&dcache_lock);
1823
1824        if (!inode) {
1825                actual = dentry;
1826                dentry->d_inode = NULL;
1827                goto found_lock;
1828        }
1829
1830        if (S_ISDIR(inode->i_mode)) {
1831                struct dentry *alias;
1832
1833                /* Does an aliased dentry already exist? */
1834                alias = __d_find_alias(inode, 0);
1835                if (alias) {
1836                        actual = alias;
1837                        /* Is this an anonymous mountpoint that we could splice
1838                         * into our tree? */
1839                        if (IS_ROOT(alias)) {
1840                                spin_lock(&alias->d_lock);
1841                                __d_materialise_dentry(dentry, alias);
1842                                __d_drop(alias);
1843                                goto found;
1844                        }
1845                        /* Nope, but we must(!) avoid directory aliasing */
1846                        actual = __d_unalias(dentry, alias);
1847                        if (IS_ERR(actual))
1848                                dput(alias);
1849                        goto out_nolock;
1850                }
1851        }
1852
1853        /* Add a unique reference */
1854        actual = __d_instantiate_unique(dentry, inode);
1855        if (!actual)
1856                actual = dentry;
1857        else if (unlikely(!d_unhashed(actual)))
1858                goto shouldnt_be_hashed;
1859
1860found_lock:
1861        spin_lock(&actual->d_lock);
1862found:
1863        _d_rehash(actual);
1864        spin_unlock(&actual->d_lock);
1865        spin_unlock(&dcache_lock);
1866out_nolock:
1867        if (actual == dentry) {
1868                security_d_instantiate(dentry, inode);
1869                return NULL;
1870        }
1871
1872        iput(inode);
1873        return actual;
1874
1875shouldnt_be_hashed:
1876        spin_unlock(&dcache_lock);
1877        BUG();
1878}
1879
1880static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1881{
1882        *buflen -= namelen;
1883        if (*buflen < 0)
1884                return -ENAMETOOLONG;
1885        *buffer -= namelen;
1886        memcpy(*buffer, str, namelen);
1887        return 0;
1888}
1889
1890static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1891{
1892        return prepend(buffer, buflen, name->name, name->len);
1893}
1894
1895/**
1896 * __d_path - return the path of a dentry
1897 * @path: the dentry/vfsmount to report
1898 * @root: root vfsmnt/dentry (may be modified by this function)
1899 * @buffer: buffer to return value in
1900 * @buflen: buffer length
1901 *
1902 * Convert a dentry into an ASCII path name. If the entry has been deleted
1903 * the string " (deleted)" is appended. Note that this is ambiguous.
1904 *
1905 * Returns the buffer or an error code if the path was too long.
1906 *
1907 * "buflen" should be positive. Caller holds the dcache_lock.
1908 *
1909 * If path is not reachable from the supplied root, then the value of
1910 * root is changed (without modifying refcounts).
1911 */
1912char *__d_path(const struct path *path, struct path *root,
1913               char *buffer, int buflen)
1914{
1915        struct dentry *dentry = path->dentry;
1916        struct vfsmount *vfsmnt = path->mnt;
1917        char *end = buffer + buflen;
1918        char *retval;
1919
1920        spin_lock(&vfsmount_lock);
1921        prepend(&end, &buflen, "\0", 1);
1922        if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1923                (prepend(&end, &buflen, " (deleted)", 10) != 0))
1924                        goto Elong;
1925
1926        if (buflen < 1)
1927                goto Elong;
1928        /* Get '/' right */
1929        retval = end-1;
1930        *retval = '/';
1931
1932        for (;;) {
1933                struct dentry * parent;
1934
1935                if (dentry == root->dentry && vfsmnt == root->mnt)
1936                        break;
1937                if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1938                        /* Global root? */
1939                        if (vfsmnt->mnt_parent == vfsmnt) {
1940                                goto global_root;
1941                        }
1942                        dentry = vfsmnt->mnt_mountpoint;
1943                        vfsmnt = vfsmnt->mnt_parent;
1944                        continue;
1945                }
1946                parent = dentry->d_parent;
1947                prefetch(parent);
1948                if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1949                    (prepend(&end, &buflen, "/", 1) != 0))
1950                        goto Elong;
1951                retval = end;
1952                dentry = parent;
1953        }
1954
1955out:
1956        spin_unlock(&vfsmount_lock);
1957        return retval;
1958
1959global_root:
1960        retval += 1;    /* hit the slash */
1961        if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1962                goto Elong;
1963        root->mnt = vfsmnt;
1964        root->dentry = dentry;
1965        goto out;
1966
1967Elong:
1968        retval = ERR_PTR(-ENAMETOOLONG);
1969        goto out;
1970}
1971
1972/**
1973 * d_path - return the path of a dentry
1974 * @path: path to report
1975 * @buf: buffer to return value in
1976 * @buflen: buffer length
1977 *
1978 * Convert a dentry into an ASCII path name. If the entry has been deleted
1979 * the string " (deleted)" is appended. Note that this is ambiguous.
1980 *
1981 * Returns the buffer or an error code if the path was too long.
1982 *
1983 * "buflen" should be positive.
1984 */
1985char *d_path(const struct path *path, char *buf, int buflen)
1986{
1987        char *res;
1988        struct path root;
1989        struct path tmp;
1990
1991        /*
1992         * We have various synthetic filesystems that never get mounted.  On
1993         * these filesystems dentries are never used for lookup purposes, and
1994         * thus don't need to be hashed.  They also don't need a name until a
1995         * user wants to identify the object in /proc/pid/fd/.  The little hack
1996         * below allows us to generate a name for these objects on demand:
1997         */
1998        if (path->dentry->d_op && path->dentry->d_op->d_dname)
1999                return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2000
2001        read_lock(&current->fs->lock);
2002        root = current->fs->root;
2003        path_get(&root);
2004        read_unlock(&current->fs->lock);
2005        spin_lock(&dcache_lock);
2006        tmp = root;
2007        res = __d_path(path, &tmp, buf, buflen);
2008        spin_unlock(&dcache_lock);
2009        path_put(&root);
2010        return res;
2011}
2012
2013/*
2014 * Helper function for dentry_operations.d_dname() members
2015 */
2016char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2017                        const char *fmt, ...)
2018{
2019        va_list args;
2020        char temp[64];
2021        int sz;
2022
2023        va_start(args, fmt);
2024        sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2025        va_end(args);
2026
2027        if (sz > sizeof(temp) || sz > buflen)
2028                return ERR_PTR(-ENAMETOOLONG);
2029
2030        buffer += buflen - sz;
2031        return memcpy(buffer, temp, sz);
2032}
2033
2034/*
2035 * Write full pathname from the root of the filesystem into the buffer.
2036 */
2037char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2038{
2039        char *end = buf + buflen;
2040        char *retval;
2041
2042        spin_lock(&dcache_lock);
2043        prepend(&end, &buflen, "\0", 1);
2044        if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
2045                (prepend(&end, &buflen, "//deleted", 9) != 0))
2046                        goto Elong;
2047        if (buflen < 1)
2048                goto Elong;
2049        /* Get '/' right */
2050        retval = end-1;
2051        *retval = '/';
2052
2053        while (!IS_ROOT(dentry)) {
2054                struct dentry *parent = dentry->d_parent;
2055
2056                prefetch(parent);
2057                if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2058                    (prepend(&end, &buflen, "/", 1) != 0))
2059                        goto Elong;
2060
2061                retval = end;
2062                dentry = parent;
2063        }
2064        spin_unlock(&dcache_lock);
2065        return retval;
2066Elong:
2067        spin_unlock(&dcache_lock);
2068        return ERR_PTR(-ENAMETOOLONG);
2069}
2070
2071/*
2072 * NOTE! The user-level library version returns a
2073 * character pointer. The kernel system call just
2074 * returns the length of the buffer filled (which
2075 * includes the ending '\0' character), or a negative
2076 * error value. So libc would do something like
2077 *
2078 *      char *getcwd(char * buf, size_t size)
2079 *      {
2080 *              int retval;
2081 *
2082 *              retval = sys_getcwd(buf, size);
2083 *              if (retval >= 0)
2084 *                      return buf;
2085 *              errno = -retval;
2086 *              return NULL;
2087 *      }
2088 */
2089SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2090{
2091        int error;
2092        struct path pwd, root;
2093        char *page = (char *) __get_free_page(GFP_USER);
2094
2095        if (!page)
2096                return -ENOMEM;
2097
2098        read_lock(&current->fs->lock);
2099        pwd = current->fs->pwd;
2100        path_get(&pwd);
2101        root = current->fs->root;
2102        path_get(&root);
2103        read_unlock(&current->fs->lock);
2104
2105        error = -ENOENT;
2106        /* Has the current directory has been unlinked? */
2107        spin_lock(&dcache_lock);
2108        if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2109                unsigned long len;
2110                struct path tmp = root;
2111                char * cwd;
2112
2113                cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2114                spin_unlock(&dcache_lock);
2115
2116                error = PTR_ERR(cwd);
2117                if (IS_ERR(cwd))
2118                        goto out;
2119
2120                error = -ERANGE;
2121                len = PAGE_SIZE + page - cwd;
2122                if (len <= size) {
2123                        error = len;
2124                        if (copy_to_user(buf, cwd, len))
2125                                error = -EFAULT;
2126                }
2127        } else
2128                spin_unlock(&dcache_lock);
2129
2130out:
2131        path_put(&pwd);
2132        path_put(&root);
2133        free_page((unsigned long) page);
2134        return error;
2135}
2136
2137/*
2138 * Test whether new_dentry is a subdirectory of old_dentry.
2139 *
2140 * Trivially implemented using the dcache structure
2141 */
2142
2143/**
2144 * is_subdir - is new dentry a subdirectory of old_dentry
2145 * @new_dentry: new dentry
2146 * @old_dentry: old dentry
2147 *
2148 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2149 * Returns 0 otherwise.
2150 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2151 */
2152  
2153int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2154{
2155        int result;
2156        struct dentry * saved = new_dentry;
2157        unsigned long seq;
2158
2159        /* need rcu_readlock to protect against the d_parent trashing due to
2160         * d_move
2161         */
2162        rcu_read_lock();
2163        do {
2164                /* for restarting inner loop in case of seq retry */
2165                new_dentry = saved;
2166                result = 0;
2167                seq = read_seqbegin(&rename_lock);
2168                for (;;) {
2169                        if (new_dentry != old_dentry) {
2170                                struct dentry * parent = new_dentry->d_parent;
2171                                if (parent == new_dentry)
2172                                        break;
2173                                new_dentry = parent;
2174                                continue;
2175                        }
2176                        result = 1;
2177                        break;
2178                }
2179        } while (read_seqretry(&rename_lock, seq));
2180        rcu_read_unlock();
2181
2182        return result;
2183}
2184
2185void d_genocide(struct dentry *root)
2186{
2187        struct dentry *this_parent = root;
2188        struct list_head *next;
2189
2190        spin_lock(&dcache_lock);
2191repeat:
2192        next = this_parent->d_subdirs.next;
2193resume:
2194        while (next != &this_parent->d_subdirs) {
2195                struct list_head *tmp = next;
2196                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2197                next = tmp->next;
2198                if (d_unhashed(dentry)||!dentry->d_inode)
2199                        continue;
2200                if (!list_empty(&dentry->d_subdirs)) {
2201                        this_parent = dentry;
2202                        goto repeat;
2203                }
2204                atomic_dec(&dentry->d_count);
2205        }
2206        if (this_parent != root) {
2207                next = this_parent->d_u.d_child.next;
2208                atomic_dec(&this_parent->d_count);
2209                this_parent = this_parent->d_parent;
2210                goto resume;
2211        }
2212        spin_unlock(&dcache_lock);
2213}
2214
2215/**
2216 * find_inode_number - check for dentry with name
2217 * @dir: directory to check
2218 * @name: Name to find.
2219 *
2220 * Check whether a dentry already exists for the given name,
2221 * and return the inode number if it has an inode. Otherwise
2222 * 0 is returned.
2223 *
2224 * This routine is used to post-process directory listings for
2225 * filesystems using synthetic inode numbers, and is necessary
2226 * to keep getcwd() working.
2227 */
2228 
2229ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2230{
2231        struct dentry * dentry;
2232        ino_t ino = 0;
2233
2234        dentry = d_hash_and_lookup(dir, name);
2235        if (dentry) {
2236                if (dentry->d_inode)
2237                        ino = dentry->d_inode->i_ino;
2238                dput(dentry);
2239        }
2240        return ino;
2241}
2242
2243static __initdata unsigned long dhash_entries;
2244static int __init set_dhash_entries(char *str)
2245{
2246        if (!str)
2247                return 0;
2248        dhash_entries = simple_strtoul(str, &str, 0);
2249        return 1;
2250}
2251__setup("dhash_entries=", set_dhash_entries);
2252
2253static void __init dcache_init_early(void)
2254{
2255        int loop;
2256
2257        /* If hashes are distributed across NUMA nodes, defer
2258         * hash allocation until vmalloc space is available.
2259         */
2260        if (hashdist)
2261                return;
2262
2263        dentry_hashtable =
2264                alloc_large_system_hash("Dentry cache",
2265                                        sizeof(struct hlist_head),
2266                                        dhash_entries,
2267                                        13,
2268                                        HASH_EARLY,
2269                                        &d_hash_shift,
2270                                        &d_hash_mask,
2271                                        0);
2272
2273        for (loop = 0; loop < (1 << d_hash_shift); loop++)
2274                INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2275}
2276
2277static void __init dcache_init(void)
2278{
2279        int loop;
2280
2281        /* 
2282         * A constructor could be added for stable state like the lists,
2283         * but it is probably not worth it because of the cache nature
2284         * of the dcache. 
2285         */
2286        dentry_cache = KMEM_CACHE(dentry,
2287                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2288        
2289        register_shrinker(&dcache_shrinker);
2290
2291        /* Hash may have been set up in dcache_init_early */
2292        if (!hashdist)
2293                return;
2294
2295        dentry_hashtable =
2296                alloc_large_system_hash("Dentry cache",
2297                                        sizeof(struct hlist_head),
2298                                        dhash_entries,
2299                                        13,
2300                                        0,
2301                                        &d_hash_shift,
2302                                        &d_hash_mask,
2303                                        0);
2304
2305        for (loop = 0; loop < (1 << d_hash_shift); loop++)
2306                INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2307}
2308
2309/* SLAB cache for __getname() consumers */
2310struct kmem_cache *names_cachep __read_mostly;
2311
2312/* SLAB cache for file structures */
2313struct kmem_cache *filp_cachep __read_mostly;
2314
2315EXPORT_SYMBOL(d_genocide);
2316
2317void __init vfs_caches_init_early(void)
2318{
2319        dcache_init_early();
2320        inode_init_early();
2321}
2322
2323void __init vfs_caches_init(unsigned long mempages)
2324{
2325        unsigned long reserve;
2326
2327        /* Base hash sizes on available memory, with a reserve equal to
2328           150% of current kernel size */
2329
2330        reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2331        mempages -= reserve;
2332
2333        names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2334                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2335
2336        filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2337                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2338
2339        dcache_init();
2340        inode_init();
2341        files_init(mempages);
2342        mnt_init();
2343        bdev_cache_init();
2344        chrdev_init();
2345}
2346
2347EXPORT_SYMBOL(d_alloc);
2348EXPORT_SYMBOL(d_alloc_anon);
2349EXPORT_SYMBOL(d_alloc_root);
2350EXPORT_SYMBOL(d_delete);
2351EXPORT_SYMBOL(d_find_alias);
2352EXPORT_SYMBOL(d_instantiate);
2353EXPORT_SYMBOL(d_invalidate);
2354EXPORT_SYMBOL(d_lookup);
2355EXPORT_SYMBOL(d_move);
2356EXPORT_SYMBOL_GPL(d_materialise_unique);
2357EXPORT_SYMBOL(d_path);
2358EXPORT_SYMBOL(d_prune_aliases);
2359EXPORT_SYMBOL(d_rehash);
2360EXPORT_SYMBOL(d_splice_alias);
2361EXPORT_SYMBOL(d_add_ci);
2362EXPORT_SYMBOL(d_validate);
2363EXPORT_SYMBOL(dget_locked);
2364EXPORT_SYMBOL(dput);
2365EXPORT_SYMBOL(find_inode_number);
2366EXPORT_SYMBOL(have_submounts);
2367EXPORT_SYMBOL(names_cachep);
2368EXPORT_SYMBOL(shrink_dcache_parent);
2369EXPORT_SYMBOL(shrink_dcache_sb);
2370