linux/drivers/block/umem.c
<<
>>
Prefs
   1/*
   2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
   3 *
   4 * (C) 2001 San Mehat <nettwerk@valinux.com>
   5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
   6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
   7 *
   8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
   9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
  10 *
  11 * This driver is released to the public under the terms of the
  12 *  GNU GENERAL PUBLIC LICENSE version 2
  13 * See the file COPYING for details.
  14 *
  15 * This driver provides a standard block device interface for Micro Memory(tm)
  16 * PCI based RAM boards.
  17 * 10/05/01: Phap Nguyen - Rebuilt the driver
  18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
  20 *                       - use stand disk partitioning (so fdisk works).
  21 * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
  22 *                       - incorporate into main kernel
  23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
  24 *                       - use spin_lock_bh instead of _irq
  25 *                       - Never block on make_request.  queue
  26 *                         bh's instead.
  27 *                       - unregister umem from devfs at mod unload
  28 *                       - Change version to 2.3
  29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
  31 * 15May2002:NeilBrown   - convert to bio for 2.5
  32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
  33 *                       - a sequence of writes that cover the card, and
  34 *                       - set initialised bit then.
  35 */
  36
  37#undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
  38#include <linux/fs.h>
  39#include <linux/bio.h>
  40#include <linux/kernel.h>
  41#include <linux/mm.h>
  42#include <linux/mman.h>
  43#include <linux/ioctl.h>
  44#include <linux/module.h>
  45#include <linux/init.h>
  46#include <linux/interrupt.h>
  47#include <linux/timer.h>
  48#include <linux/pci.h>
  49#include <linux/slab.h>
  50#include <linux/dma-mapping.h>
  51
  52#include <linux/fcntl.h>        /* O_ACCMODE */
  53#include <linux/hdreg.h>  /* HDIO_GETGEO */
  54
  55#include "umem.h"
  56
  57#include <asm/uaccess.h>
  58#include <asm/io.h>
  59
  60#define MM_MAXCARDS 4
  61#define MM_RAHEAD 2      /* two sectors */
  62#define MM_BLKSIZE 1024  /* 1k blocks */
  63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
  64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
  65
  66/*
  67 * Version Information
  68 */
  69
  70#define DRIVER_NAME     "umem"
  71#define DRIVER_VERSION  "v2.3"
  72#define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
  73#define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
  74
  75static int debug;
  76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  77#define HW_TRACE(x)
  78
  79#define DEBUG_LED_ON_TRANSFER   0x01
  80#define DEBUG_BATTERY_POLLING   0x02
  81
  82module_param(debug, int, 0644);
  83MODULE_PARM_DESC(debug, "Debug bitmask");
  84
  85static int pci_read_cmd = 0x0C;         /* Read Multiple */
  86module_param(pci_read_cmd, int, 0);
  87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  88
  89static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
  90module_param(pci_write_cmd, int, 0);
  91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  92
  93static int pci_cmds;
  94
  95static int major_nr;
  96
  97#include <linux/blkdev.h>
  98#include <linux/blkpg.h>
  99
 100struct cardinfo {
 101        struct pci_dev  *dev;
 102
 103        unsigned char   __iomem *csr_remap;
 104        unsigned int    mm_size;  /* size in kbytes */
 105
 106        unsigned int    init_size; /* initial segment, in sectors,
 107                                    * that we know to
 108                                    * have been written
 109                                    */
 110        struct bio      *bio, *currentbio, **biotail;
 111        int             current_idx;
 112        sector_t        current_sector;
 113
 114        struct request_queue *queue;
 115
 116        struct mm_page {
 117                dma_addr_t              page_dma;
 118                struct mm_dma_desc      *desc;
 119                int                     cnt, headcnt;
 120                struct bio              *bio, **biotail;
 121                int                     idx;
 122        } mm_pages[2];
 123#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 124
 125        int  Active, Ready;
 126
 127        struct tasklet_struct   tasklet;
 128        unsigned int dma_status;
 129
 130        struct {
 131                int             good;
 132                int             warned;
 133                unsigned long   last_change;
 134        } battery[2];
 135
 136        spinlock_t      lock;
 137        int             check_batteries;
 138
 139        int             flags;
 140};
 141
 142static struct cardinfo cards[MM_MAXCARDS];
 143static struct block_device_operations mm_fops;
 144static struct timer_list battery_timer;
 145
 146static int num_cards;
 147
 148static struct gendisk *mm_gendisk[MM_MAXCARDS];
 149
 150static void check_batteries(struct cardinfo *card);
 151
 152static int get_userbit(struct cardinfo *card, int bit)
 153{
 154        unsigned char led;
 155
 156        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 157        return led & bit;
 158}
 159
 160static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 161{
 162        unsigned char led;
 163
 164        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 165        if (state)
 166                led |= bit;
 167        else
 168                led &= ~bit;
 169        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 170
 171        return 0;
 172}
 173
 174/*
 175 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 176 */
 177static void set_led(struct cardinfo *card, int shift, unsigned char state)
 178{
 179        unsigned char led;
 180
 181        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 182        if (state == LED_FLIP)
 183                led ^= (1<<shift);
 184        else {
 185                led &= ~(0x03 << shift);
 186                led |= (state << shift);
 187        }
 188        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 189
 190}
 191
 192#ifdef MM_DIAG
 193static void dump_regs(struct cardinfo *card)
 194{
 195        unsigned char *p;
 196        int i, i1;
 197
 198        p = card->csr_remap;
 199        for (i = 0; i < 8; i++) {
 200                printk(KERN_DEBUG "%p   ", p);
 201
 202                for (i1 = 0; i1 < 16; i1++)
 203                        printk("%02x ", *p++);
 204
 205                printk("\n");
 206        }
 207}
 208#endif
 209
 210static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 211{
 212        dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 213        if (dmastat & DMASCR_ANY_ERR)
 214                printk(KERN_CONT "ANY_ERR ");
 215        if (dmastat & DMASCR_MBE_ERR)
 216                printk(KERN_CONT "MBE_ERR ");
 217        if (dmastat & DMASCR_PARITY_ERR_REP)
 218                printk(KERN_CONT "PARITY_ERR_REP ");
 219        if (dmastat & DMASCR_PARITY_ERR_DET)
 220                printk(KERN_CONT "PARITY_ERR_DET ");
 221        if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 222                printk(KERN_CONT "SYSTEM_ERR_SIG ");
 223        if (dmastat & DMASCR_TARGET_ABT)
 224                printk(KERN_CONT "TARGET_ABT ");
 225        if (dmastat & DMASCR_MASTER_ABT)
 226                printk(KERN_CONT "MASTER_ABT ");
 227        if (dmastat & DMASCR_CHAIN_COMPLETE)
 228                printk(KERN_CONT "CHAIN_COMPLETE ");
 229        if (dmastat & DMASCR_DMA_COMPLETE)
 230                printk(KERN_CONT "DMA_COMPLETE ");
 231        printk("\n");
 232}
 233
 234/*
 235 * Theory of request handling
 236 *
 237 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 238 * We have two pages of mm_dma_desc, holding about 64 descriptors
 239 * each.  These are allocated at init time.
 240 * One page is "Ready" and is either full, or can have request added.
 241 * The other page might be "Active", which DMA is happening on it.
 242 *
 243 * Whenever IO on the active page completes, the Ready page is activated
 244 * and the ex-Active page is clean out and made Ready.
 245 * Otherwise the Ready page is only activated when it becomes full, or
 246 * when mm_unplug_device is called via the unplug_io_fn.
 247 *
 248 * If a request arrives while both pages a full, it is queued, and b_rdev is
 249 * overloaded to record whether it was a read or a write.
 250 *
 251 * The interrupt handler only polls the device to clear the interrupt.
 252 * The processing of the result is done in a tasklet.
 253 */
 254
 255static void mm_start_io(struct cardinfo *card)
 256{
 257        /* we have the lock, we know there is
 258         * no IO active, and we know that card->Active
 259         * is set
 260         */
 261        struct mm_dma_desc *desc;
 262        struct mm_page *page;
 263        int offset;
 264
 265        /* make the last descriptor end the chain */
 266        page = &card->mm_pages[card->Active];
 267        pr_debug("start_io: %d %d->%d\n",
 268                card->Active, page->headcnt, page->cnt - 1);
 269        desc = &page->desc[page->cnt-1];
 270
 271        desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 272        desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 273        desc->sem_control_bits = desc->control_bits;
 274
 275
 276        if (debug & DEBUG_LED_ON_TRANSFER)
 277                set_led(card, LED_REMOVE, LED_ON);
 278
 279        desc = &page->desc[page->headcnt];
 280        writel(0, card->csr_remap + DMA_PCI_ADDR);
 281        writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 282
 283        writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 284        writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 285
 286        writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 287        writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 288
 289        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 290        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 291
 292        offset = ((char *)desc) - ((char *)page->desc);
 293        writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 294               card->csr_remap + DMA_DESCRIPTOR_ADDR);
 295        /* Force the value to u64 before shifting otherwise >> 32 is undefined C
 296         * and on some ports will do nothing ! */
 297        writel(cpu_to_le32(((u64)page->page_dma)>>32),
 298               card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 299
 300        /* Go, go, go */
 301        writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 302               card->csr_remap + DMA_STATUS_CTRL);
 303}
 304
 305static int add_bio(struct cardinfo *card);
 306
 307static void activate(struct cardinfo *card)
 308{
 309        /* if No page is Active, and Ready is
 310         * not empty, then switch Ready page
 311         * to active and start IO.
 312         * Then add any bh's that are available to Ready
 313         */
 314
 315        do {
 316                while (add_bio(card))
 317                        ;
 318
 319                if (card->Active == -1 &&
 320                    card->mm_pages[card->Ready].cnt > 0) {
 321                        card->Active = card->Ready;
 322                        card->Ready = 1-card->Ready;
 323                        mm_start_io(card);
 324                }
 325
 326        } while (card->Active == -1 && add_bio(card));
 327}
 328
 329static inline void reset_page(struct mm_page *page)
 330{
 331        page->cnt = 0;
 332        page->headcnt = 0;
 333        page->bio = NULL;
 334        page->biotail = &page->bio;
 335}
 336
 337static void mm_unplug_device(struct request_queue *q)
 338{
 339        struct cardinfo *card = q->queuedata;
 340        unsigned long flags;
 341
 342        spin_lock_irqsave(&card->lock, flags);
 343        if (blk_remove_plug(q))
 344                activate(card);
 345        spin_unlock_irqrestore(&card->lock, flags);
 346}
 347
 348/*
 349 * If there is room on Ready page, take
 350 * one bh off list and add it.
 351 * return 1 if there was room, else 0.
 352 */
 353static int add_bio(struct cardinfo *card)
 354{
 355        struct mm_page *p;
 356        struct mm_dma_desc *desc;
 357        dma_addr_t dma_handle;
 358        int offset;
 359        struct bio *bio;
 360        struct bio_vec *vec;
 361        int idx;
 362        int rw;
 363        int len;
 364
 365        bio = card->currentbio;
 366        if (!bio && card->bio) {
 367                card->currentbio = card->bio;
 368                card->current_idx = card->bio->bi_idx;
 369                card->current_sector = card->bio->bi_sector;
 370                card->bio = card->bio->bi_next;
 371                if (card->bio == NULL)
 372                        card->biotail = &card->bio;
 373                card->currentbio->bi_next = NULL;
 374                return 1;
 375        }
 376        if (!bio)
 377                return 0;
 378        idx = card->current_idx;
 379
 380        rw = bio_rw(bio);
 381        if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 382                return 0;
 383
 384        vec = bio_iovec_idx(bio, idx);
 385        len = vec->bv_len;
 386        dma_handle = pci_map_page(card->dev,
 387                                  vec->bv_page,
 388                                  vec->bv_offset,
 389                                  len,
 390                                  (rw == READ) ?
 391                                  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 392
 393        p = &card->mm_pages[card->Ready];
 394        desc = &p->desc[p->cnt];
 395        p->cnt++;
 396        if (p->bio == NULL)
 397                p->idx = idx;
 398        if ((p->biotail) != &bio->bi_next) {
 399                *(p->biotail) = bio;
 400                p->biotail = &(bio->bi_next);
 401                bio->bi_next = NULL;
 402        }
 403
 404        desc->data_dma_handle = dma_handle;
 405
 406        desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 407        desc->local_addr = cpu_to_le64(card->current_sector << 9);
 408        desc->transfer_size = cpu_to_le32(len);
 409        offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 410        desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 411        desc->zero1 = desc->zero2 = 0;
 412        offset = (((char *)(desc+1)) - ((char *)p->desc));
 413        desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 414        desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 415                                         DMASCR_PARITY_INT_EN|
 416                                         DMASCR_CHAIN_EN |
 417                                         DMASCR_SEM_EN |
 418                                         pci_cmds);
 419        if (rw == WRITE)
 420                desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 421        desc->sem_control_bits = desc->control_bits;
 422
 423        card->current_sector += (len >> 9);
 424        idx++;
 425        card->current_idx = idx;
 426        if (idx >= bio->bi_vcnt)
 427                card->currentbio = NULL;
 428
 429        return 1;
 430}
 431
 432static void process_page(unsigned long data)
 433{
 434        /* check if any of the requests in the page are DMA_COMPLETE,
 435         * and deal with them appropriately.
 436         * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 437         * dma must have hit an error on that descriptor, so use dma_status
 438         * instead and assume that all following descriptors must be re-tried.
 439         */
 440        struct mm_page *page;
 441        struct bio *return_bio = NULL;
 442        struct cardinfo *card = (struct cardinfo *)data;
 443        unsigned int dma_status = card->dma_status;
 444
 445        spin_lock_bh(&card->lock);
 446        if (card->Active < 0)
 447                goto out_unlock;
 448        page = &card->mm_pages[card->Active];
 449
 450        while (page->headcnt < page->cnt) {
 451                struct bio *bio = page->bio;
 452                struct mm_dma_desc *desc = &page->desc[page->headcnt];
 453                int control = le32_to_cpu(desc->sem_control_bits);
 454                int last = 0;
 455                int idx;
 456
 457                if (!(control & DMASCR_DMA_COMPLETE)) {
 458                        control = dma_status;
 459                        last = 1;
 460                }
 461                page->headcnt++;
 462                idx = page->idx;
 463                page->idx++;
 464                if (page->idx >= bio->bi_vcnt) {
 465                        page->bio = bio->bi_next;
 466                        if (page->bio)
 467                                page->idx = page->bio->bi_idx;
 468                }
 469
 470                pci_unmap_page(card->dev, desc->data_dma_handle,
 471                               bio_iovec_idx(bio, idx)->bv_len,
 472                                 (control & DMASCR_TRANSFER_READ) ?
 473                                PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
 474                if (control & DMASCR_HARD_ERROR) {
 475                        /* error */
 476                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
 477                        dev_printk(KERN_WARNING, &card->dev->dev,
 478                                "I/O error on sector %d/%d\n",
 479                                le32_to_cpu(desc->local_addr)>>9,
 480                                le32_to_cpu(desc->transfer_size));
 481                        dump_dmastat(card, control);
 482                } else if (test_bit(BIO_RW, &bio->bi_rw) &&
 483                           le32_to_cpu(desc->local_addr) >> 9 ==
 484                                card->init_size) {
 485                        card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 486                        if (card->init_size >> 1 >= card->mm_size) {
 487                                dev_printk(KERN_INFO, &card->dev->dev,
 488                                        "memory now initialised\n");
 489                                set_userbit(card, MEMORY_INITIALIZED, 1);
 490                        }
 491                }
 492                if (bio != page->bio) {
 493                        bio->bi_next = return_bio;
 494                        return_bio = bio;
 495                }
 496
 497                if (last)
 498                        break;
 499        }
 500
 501        if (debug & DEBUG_LED_ON_TRANSFER)
 502                set_led(card, LED_REMOVE, LED_OFF);
 503
 504        if (card->check_batteries) {
 505                card->check_batteries = 0;
 506                check_batteries(card);
 507        }
 508        if (page->headcnt >= page->cnt) {
 509                reset_page(page);
 510                card->Active = -1;
 511                activate(card);
 512        } else {
 513                /* haven't finished with this one yet */
 514                pr_debug("do some more\n");
 515                mm_start_io(card);
 516        }
 517 out_unlock:
 518        spin_unlock_bh(&card->lock);
 519
 520        while (return_bio) {
 521                struct bio *bio = return_bio;
 522
 523                return_bio = bio->bi_next;
 524                bio->bi_next = NULL;
 525                bio_endio(bio, 0);
 526        }
 527}
 528
 529static int mm_make_request(struct request_queue *q, struct bio *bio)
 530{
 531        struct cardinfo *card = q->queuedata;
 532        pr_debug("mm_make_request %llu %u\n",
 533                 (unsigned long long)bio->bi_sector, bio->bi_size);
 534
 535        spin_lock_irq(&card->lock);
 536        *card->biotail = bio;
 537        bio->bi_next = NULL;
 538        card->biotail = &bio->bi_next;
 539        blk_plug_device(q);
 540        spin_unlock_irq(&card->lock);
 541
 542        return 0;
 543}
 544
 545static irqreturn_t mm_interrupt(int irq, void *__card)
 546{
 547        struct cardinfo *card = (struct cardinfo *) __card;
 548        unsigned int dma_status;
 549        unsigned short cfg_status;
 550
 551HW_TRACE(0x30);
 552
 553        dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 554
 555        if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 556                /* interrupt wasn't for me ... */
 557                return IRQ_NONE;
 558        }
 559
 560        /* clear COMPLETION interrupts */
 561        if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 562                writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 563                       card->csr_remap + DMA_STATUS_CTRL);
 564        else
 565                writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 566                       card->csr_remap + DMA_STATUS_CTRL + 2);
 567
 568        /* log errors and clear interrupt status */
 569        if (dma_status & DMASCR_ANY_ERR) {
 570                unsigned int    data_log1, data_log2;
 571                unsigned int    addr_log1, addr_log2;
 572                unsigned char   stat, count, syndrome, check;
 573
 574                stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 575
 576                data_log1 = le32_to_cpu(readl(card->csr_remap +
 577                                                ERROR_DATA_LOG));
 578                data_log2 = le32_to_cpu(readl(card->csr_remap +
 579                                                ERROR_DATA_LOG + 4));
 580                addr_log1 = le32_to_cpu(readl(card->csr_remap +
 581                                                ERROR_ADDR_LOG));
 582                addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 583
 584                count = readb(card->csr_remap + ERROR_COUNT);
 585                syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 586                check = readb(card->csr_remap + ERROR_CHECK);
 587
 588                dump_dmastat(card, dma_status);
 589
 590                if (stat & 0x01)
 591                        dev_printk(KERN_ERR, &card->dev->dev,
 592                                "Memory access error detected (err count %d)\n",
 593                                count);
 594                if (stat & 0x02)
 595                        dev_printk(KERN_ERR, &card->dev->dev,
 596                                "Multi-bit EDC error\n");
 597
 598                dev_printk(KERN_ERR, &card->dev->dev,
 599                        "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 600                        addr_log2, addr_log1, data_log2, data_log1);
 601                dev_printk(KERN_ERR, &card->dev->dev,
 602                        "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 603                        check, syndrome);
 604
 605                writeb(0, card->csr_remap + ERROR_COUNT);
 606        }
 607
 608        if (dma_status & DMASCR_PARITY_ERR_REP) {
 609                dev_printk(KERN_ERR, &card->dev->dev,
 610                        "PARITY ERROR REPORTED\n");
 611                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 612                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 613        }
 614
 615        if (dma_status & DMASCR_PARITY_ERR_DET) {
 616                dev_printk(KERN_ERR, &card->dev->dev,
 617                        "PARITY ERROR DETECTED\n");
 618                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 619                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 620        }
 621
 622        if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 623                dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 624                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 625                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 626        }
 627
 628        if (dma_status & DMASCR_TARGET_ABT) {
 629                dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 630                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 631                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 632        }
 633
 634        if (dma_status & DMASCR_MASTER_ABT) {
 635                dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 636                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 637                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 638        }
 639
 640        /* and process the DMA descriptors */
 641        card->dma_status = dma_status;
 642        tasklet_schedule(&card->tasklet);
 643
 644HW_TRACE(0x36);
 645
 646        return IRQ_HANDLED;
 647}
 648
 649/*
 650 * If both batteries are good, no LED
 651 * If either battery has been warned, solid LED
 652 * If both batteries are bad, flash the LED quickly
 653 * If either battery is bad, flash the LED semi quickly
 654 */
 655static void set_fault_to_battery_status(struct cardinfo *card)
 656{
 657        if (card->battery[0].good && card->battery[1].good)
 658                set_led(card, LED_FAULT, LED_OFF);
 659        else if (card->battery[0].warned || card->battery[1].warned)
 660                set_led(card, LED_FAULT, LED_ON);
 661        else if (!card->battery[0].good && !card->battery[1].good)
 662                set_led(card, LED_FAULT, LED_FLASH_7_0);
 663        else
 664                set_led(card, LED_FAULT, LED_FLASH_3_5);
 665}
 666
 667static void init_battery_timer(void);
 668
 669static int check_battery(struct cardinfo *card, int battery, int status)
 670{
 671        if (status != card->battery[battery].good) {
 672                card->battery[battery].good = !card->battery[battery].good;
 673                card->battery[battery].last_change = jiffies;
 674
 675                if (card->battery[battery].good) {
 676                        dev_printk(KERN_ERR, &card->dev->dev,
 677                                "Battery %d now good\n", battery + 1);
 678                        card->battery[battery].warned = 0;
 679                } else
 680                        dev_printk(KERN_ERR, &card->dev->dev,
 681                                "Battery %d now FAILED\n", battery + 1);
 682
 683                return 1;
 684        } else if (!card->battery[battery].good &&
 685                   !card->battery[battery].warned &&
 686                   time_after_eq(jiffies, card->battery[battery].last_change +
 687                                 (HZ * 60 * 60 * 5))) {
 688                dev_printk(KERN_ERR, &card->dev->dev,
 689                        "Battery %d still FAILED after 5 hours\n", battery + 1);
 690                card->battery[battery].warned = 1;
 691
 692                return 1;
 693        }
 694
 695        return 0;
 696}
 697
 698static void check_batteries(struct cardinfo *card)
 699{
 700        /* NOTE: this must *never* be called while the card
 701         * is doing (bus-to-card) DMA, or you will need the
 702         * reset switch
 703         */
 704        unsigned char status;
 705        int ret1, ret2;
 706
 707        status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 708        if (debug & DEBUG_BATTERY_POLLING)
 709                dev_printk(KERN_DEBUG, &card->dev->dev,
 710                        "checking battery status, 1 = %s, 2 = %s\n",
 711                       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 712                       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 713
 714        ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 715        ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 716
 717        if (ret1 || ret2)
 718                set_fault_to_battery_status(card);
 719}
 720
 721static void check_all_batteries(unsigned long ptr)
 722{
 723        int i;
 724
 725        for (i = 0; i < num_cards; i++)
 726                if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 727                        struct cardinfo *card = &cards[i];
 728                        spin_lock_bh(&card->lock);
 729                        if (card->Active >= 0)
 730                                card->check_batteries = 1;
 731                        else
 732                                check_batteries(card);
 733                        spin_unlock_bh(&card->lock);
 734                }
 735
 736        init_battery_timer();
 737}
 738
 739static void init_battery_timer(void)
 740{
 741        init_timer(&battery_timer);
 742        battery_timer.function = check_all_batteries;
 743        battery_timer.expires = jiffies + (HZ * 60);
 744        add_timer(&battery_timer);
 745}
 746
 747static void del_battery_timer(void)
 748{
 749        del_timer(&battery_timer);
 750}
 751
 752/*
 753 * Note no locks taken out here.  In a worst case scenario, we could drop
 754 * a chunk of system memory.  But that should never happen, since validation
 755 * happens at open or mount time, when locks are held.
 756 *
 757 *      That's crap, since doing that while some partitions are opened
 758 * or mounted will give you really nasty results.
 759 */
 760static int mm_revalidate(struct gendisk *disk)
 761{
 762        struct cardinfo *card = disk->private_data;
 763        set_capacity(disk, card->mm_size << 1);
 764        return 0;
 765}
 766
 767static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 768{
 769        struct cardinfo *card = bdev->bd_disk->private_data;
 770        int size = card->mm_size * (1024 / MM_HARDSECT);
 771
 772        /*
 773         * get geometry: we have to fake one...  trim the size to a
 774         * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 775         * whatever cylinders.
 776         */
 777        geo->heads     = 64;
 778        geo->sectors   = 32;
 779        geo->cylinders = size / (geo->heads * geo->sectors);
 780        return 0;
 781}
 782
 783/*
 784 * Future support for removable devices
 785 */
 786static int mm_check_change(struct gendisk *disk)
 787{
 788/*  struct cardinfo *dev = disk->private_data; */
 789        return 0;
 790}
 791
 792static struct block_device_operations mm_fops = {
 793        .owner          = THIS_MODULE,
 794        .getgeo         = mm_getgeo,
 795        .revalidate_disk = mm_revalidate,
 796        .media_changed  = mm_check_change,
 797};
 798
 799static int __devinit mm_pci_probe(struct pci_dev *dev,
 800                                const struct pci_device_id *id)
 801{
 802        int ret = -ENODEV;
 803        struct cardinfo *card = &cards[num_cards];
 804        unsigned char   mem_present;
 805        unsigned char   batt_status;
 806        unsigned int    saved_bar, data;
 807        unsigned long   csr_base;
 808        unsigned long   csr_len;
 809        int             magic_number;
 810        static int      printed_version;
 811
 812        if (!printed_version++)
 813                printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 814
 815        ret = pci_enable_device(dev);
 816        if (ret)
 817                return ret;
 818
 819        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 820        pci_set_master(dev);
 821
 822        card->dev         = dev;
 823
 824        csr_base = pci_resource_start(dev, 0);
 825        csr_len  = pci_resource_len(dev, 0);
 826        if (!csr_base || !csr_len)
 827                return -ENODEV;
 828
 829        dev_printk(KERN_INFO, &dev->dev,
 830          "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 831
 832        if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
 833            pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
 834                dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 835                return  -ENOMEM;
 836        }
 837
 838        ret = pci_request_regions(dev, DRIVER_NAME);
 839        if (ret) {
 840                dev_printk(KERN_ERR, &card->dev->dev,
 841                        "Unable to request memory region\n");
 842                goto failed_req_csr;
 843        }
 844
 845        card->csr_remap = ioremap_nocache(csr_base, csr_len);
 846        if (!card->csr_remap) {
 847                dev_printk(KERN_ERR, &card->dev->dev,
 848                        "Unable to remap memory region\n");
 849                ret = -ENOMEM;
 850
 851                goto failed_remap_csr;
 852        }
 853
 854        dev_printk(KERN_INFO, &card->dev->dev,
 855                "CSR 0x%08lx -> 0x%p (0x%lx)\n",
 856               csr_base, card->csr_remap, csr_len);
 857
 858        switch (card->dev->device) {
 859        case 0x5415:
 860                card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 861                magic_number = 0x59;
 862                break;
 863
 864        case 0x5425:
 865                card->flags |= UM_FLAG_NO_BYTE_STATUS;
 866                magic_number = 0x5C;
 867                break;
 868
 869        case 0x6155:
 870                card->flags |= UM_FLAG_NO_BYTE_STATUS |
 871                                UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 872                magic_number = 0x99;
 873                break;
 874
 875        default:
 876                magic_number = 0x100;
 877                break;
 878        }
 879
 880        if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 881                dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 882                ret = -ENOMEM;
 883                goto failed_magic;
 884        }
 885
 886        card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
 887                                                PAGE_SIZE * 2,
 888                                                &card->mm_pages[0].page_dma);
 889        card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
 890                                                PAGE_SIZE * 2,
 891                                                &card->mm_pages[1].page_dma);
 892        if (card->mm_pages[0].desc == NULL ||
 893            card->mm_pages[1].desc == NULL) {
 894                dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 895                goto failed_alloc;
 896        }
 897        reset_page(&card->mm_pages[0]);
 898        reset_page(&card->mm_pages[1]);
 899        card->Ready = 0;        /* page 0 is ready */
 900        card->Active = -1;      /* no page is active */
 901        card->bio = NULL;
 902        card->biotail = &card->bio;
 903
 904        card->queue = blk_alloc_queue(GFP_KERNEL);
 905        if (!card->queue)
 906                goto failed_alloc;
 907
 908        blk_queue_make_request(card->queue, mm_make_request);
 909        card->queue->queuedata = card;
 910        card->queue->unplug_fn = mm_unplug_device;
 911
 912        tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 913
 914        card->check_batteries = 0;
 915
 916        mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 917        switch (mem_present) {
 918        case MEM_128_MB:
 919                card->mm_size = 1024 * 128;
 920                break;
 921        case MEM_256_MB:
 922                card->mm_size = 1024 * 256;
 923                break;
 924        case MEM_512_MB:
 925                card->mm_size = 1024 * 512;
 926                break;
 927        case MEM_1_GB:
 928                card->mm_size = 1024 * 1024;
 929                break;
 930        case MEM_2_GB:
 931                card->mm_size = 1024 * 2048;
 932                break;
 933        default:
 934                card->mm_size = 0;
 935                break;
 936        }
 937
 938        /* Clear the LED's we control */
 939        set_led(card, LED_REMOVE, LED_OFF);
 940        set_led(card, LED_FAULT, LED_OFF);
 941
 942        batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 943
 944        card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 945        card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 946        card->battery[0].last_change = card->battery[1].last_change = jiffies;
 947
 948        if (card->flags & UM_FLAG_NO_BATT)
 949                dev_printk(KERN_INFO, &card->dev->dev,
 950                        "Size %d KB\n", card->mm_size);
 951        else {
 952                dev_printk(KERN_INFO, &card->dev->dev,
 953                        "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 954                       card->mm_size,
 955                       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 956                       card->battery[0].good ? "OK" : "FAILURE",
 957                       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 958                       card->battery[1].good ? "OK" : "FAILURE");
 959
 960                set_fault_to_battery_status(card);
 961        }
 962
 963        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 964        data = 0xffffffff;
 965        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 966        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 967        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 968        data &= 0xfffffff0;
 969        data = ~data;
 970        data += 1;
 971
 972        if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 973                        card)) {
 974                dev_printk(KERN_ERR, &card->dev->dev,
 975                        "Unable to allocate IRQ\n");
 976                ret = -ENODEV;
 977                goto failed_req_irq;
 978        }
 979
 980        dev_printk(KERN_INFO, &card->dev->dev,
 981                "Window size %d bytes, IRQ %d\n", data, dev->irq);
 982
 983        spin_lock_init(&card->lock);
 984
 985        pci_set_drvdata(dev, card);
 986
 987        if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
 988                pci_write_cmd = 0x07;   /* then Memory Write command */
 989
 990        if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
 991                unsigned short cfg_command;
 992                pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
 993                cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
 994                pci_write_config_word(dev, PCI_COMMAND, cfg_command);
 995        }
 996        pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 997
 998        num_cards++;
 999
1000        if (!get_userbit(card, MEMORY_INITIALIZED)) {
1001                dev_printk(KERN_INFO, &card->dev->dev,
1002                  "memory NOT initialized. Consider over-writing whole device.\n");
1003                card->init_size = 0;
1004        } else {
1005                dev_printk(KERN_INFO, &card->dev->dev,
1006                        "memory already initialized\n");
1007                card->init_size = card->mm_size;
1008        }
1009
1010        /* Enable ECC */
1011        writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1012
1013        return 0;
1014
1015 failed_req_irq:
1016 failed_alloc:
1017        if (card->mm_pages[0].desc)
1018                pci_free_consistent(card->dev, PAGE_SIZE*2,
1019                                    card->mm_pages[0].desc,
1020                                    card->mm_pages[0].page_dma);
1021        if (card->mm_pages[1].desc)
1022                pci_free_consistent(card->dev, PAGE_SIZE*2,
1023                                    card->mm_pages[1].desc,
1024                                    card->mm_pages[1].page_dma);
1025 failed_magic:
1026        iounmap(card->csr_remap);
1027 failed_remap_csr:
1028        pci_release_regions(dev);
1029 failed_req_csr:
1030
1031        return ret;
1032}
1033
1034static void mm_pci_remove(struct pci_dev *dev)
1035{
1036        struct cardinfo *card = pci_get_drvdata(dev);
1037
1038        tasklet_kill(&card->tasklet);
1039        free_irq(dev->irq, card);
1040        iounmap(card->csr_remap);
1041
1042        if (card->mm_pages[0].desc)
1043                pci_free_consistent(card->dev, PAGE_SIZE*2,
1044                                    card->mm_pages[0].desc,
1045                                    card->mm_pages[0].page_dma);
1046        if (card->mm_pages[1].desc)
1047                pci_free_consistent(card->dev, PAGE_SIZE*2,
1048                                    card->mm_pages[1].desc,
1049                                    card->mm_pages[1].page_dma);
1050        blk_cleanup_queue(card->queue);
1051
1052        pci_release_regions(dev);
1053        pci_disable_device(dev);
1054}
1055
1056static const struct pci_device_id mm_pci_ids[] = {
1057    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1058    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1059    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1060    {
1061        .vendor =       0x8086,
1062        .device =       0xB555,
1063        .subvendor =    0x1332,
1064        .subdevice =    0x5460,
1065        .class =        0x050000,
1066        .class_mask =   0,
1067    }, { /* end: all zeroes */ }
1068};
1069
1070MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1071
1072static struct pci_driver mm_pci_driver = {
1073        .name           = DRIVER_NAME,
1074        .id_table       = mm_pci_ids,
1075        .probe          = mm_pci_probe,
1076        .remove         = mm_pci_remove,
1077};
1078
1079static int __init mm_init(void)
1080{
1081        int retval, i;
1082        int err;
1083
1084        retval = pci_register_driver(&mm_pci_driver);
1085        if (retval)
1086                return -ENOMEM;
1087
1088        err = major_nr = register_blkdev(0, DRIVER_NAME);
1089        if (err < 0) {
1090                pci_unregister_driver(&mm_pci_driver);
1091                return -EIO;
1092        }
1093
1094        for (i = 0; i < num_cards; i++) {
1095                mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1096                if (!mm_gendisk[i])
1097                        goto out;
1098        }
1099
1100        for (i = 0; i < num_cards; i++) {
1101                struct gendisk *disk = mm_gendisk[i];
1102                sprintf(disk->disk_name, "umem%c", 'a'+i);
1103                spin_lock_init(&cards[i].lock);
1104                disk->major = major_nr;
1105                disk->first_minor  = i << MM_SHIFT;
1106                disk->fops = &mm_fops;
1107                disk->private_data = &cards[i];
1108                disk->queue = cards[i].queue;
1109                set_capacity(disk, cards[i].mm_size << 1);
1110                add_disk(disk);
1111        }
1112
1113        init_battery_timer();
1114        printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1115/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1116        return 0;
1117
1118out:
1119        pci_unregister_driver(&mm_pci_driver);
1120        unregister_blkdev(major_nr, DRIVER_NAME);
1121        while (i--)
1122                put_disk(mm_gendisk[i]);
1123        return -ENOMEM;
1124}
1125
1126static void __exit mm_cleanup(void)
1127{
1128        int i;
1129
1130        del_battery_timer();
1131
1132        for (i = 0; i < num_cards ; i++) {
1133                del_gendisk(mm_gendisk[i]);
1134                put_disk(mm_gendisk[i]);
1135        }
1136
1137        pci_unregister_driver(&mm_pci_driver);
1138
1139        unregister_blkdev(major_nr, DRIVER_NAME);
1140}
1141
1142module_init(mm_init);
1143module_exit(mm_cleanup);
1144
1145MODULE_AUTHOR(DRIVER_AUTHOR);
1146MODULE_DESCRIPTION(DRIVER_DESC);
1147MODULE_LICENSE("GPL");
1148