linux/drivers/block/pktcdvd.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
   3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
   4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
   5 *
   6 * May be copied or modified under the terms of the GNU General Public
   7 * License.  See linux/COPYING for more information.
   8 *
   9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  10 * DVD-RAM devices.
  11 *
  12 * Theory of operation:
  13 *
  14 * At the lowest level, there is the standard driver for the CD/DVD device,
  15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  16 * but it doesn't know anything about the special restrictions that apply to
  17 * packet writing. One restriction is that write requests must be aligned to
  18 * packet boundaries on the physical media, and the size of a write request
  19 * must be equal to the packet size. Another restriction is that a
  20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  21 * command, if the previous command was a write.
  22 *
  23 * The purpose of the packet writing driver is to hide these restrictions from
  24 * higher layers, such as file systems, and present a block device that can be
  25 * randomly read and written using 2kB-sized blocks.
  26 *
  27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
  28 * Its data is defined by the struct packet_iosched and includes two bio
  29 * queues with pending read and write requests. These queues are processed
  30 * by the pkt_iosched_process_queue() function. The write requests in this
  31 * queue are already properly aligned and sized. This layer is responsible for
  32 * issuing the flush cache commands and scheduling the I/O in a good order.
  33 *
  34 * The next layer transforms unaligned write requests to aligned writes. This
  35 * transformation requires reading missing pieces of data from the underlying
  36 * block device, assembling the pieces to full packets and queuing them to the
  37 * packet I/O scheduler.
  38 *
  39 * At the top layer there is a custom make_request_fn function that forwards
  40 * read requests directly to the iosched queue and puts write requests in the
  41 * unaligned write queue. A kernel thread performs the necessary read
  42 * gathering to convert the unaligned writes to aligned writes and then feeds
  43 * them to the packet I/O scheduler.
  44 *
  45 *************************************************************************/
  46
  47#include <linux/pktcdvd.h>
  48#include <linux/module.h>
  49#include <linux/types.h>
  50#include <linux/kernel.h>
  51#include <linux/kthread.h>
  52#include <linux/errno.h>
  53#include <linux/spinlock.h>
  54#include <linux/file.h>
  55#include <linux/proc_fs.h>
  56#include <linux/seq_file.h>
  57#include <linux/miscdevice.h>
  58#include <linux/freezer.h>
  59#include <linux/mutex.h>
  60#include <scsi/scsi_cmnd.h>
  61#include <scsi/scsi_ioctl.h>
  62#include <scsi/scsi.h>
  63#include <linux/debugfs.h>
  64#include <linux/device.h>
  65
  66#include <asm/uaccess.h>
  67
  68#define DRIVER_NAME     "pktcdvd"
  69
  70#if PACKET_DEBUG
  71#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  72#else
  73#define DPRINTK(fmt, args...)
  74#endif
  75
  76#if PACKET_DEBUG > 1
  77#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  78#else
  79#define VPRINTK(fmt, args...)
  80#endif
  81
  82#define MAX_SPEED 0xffff
  83
  84#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
  85
  86static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  87static struct proc_dir_entry *pkt_proc;
  88static int pktdev_major;
  89static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
  90static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
  91static struct mutex ctl_mutex;  /* Serialize open/close/setup/teardown */
  92static mempool_t *psd_pool;
  93
  94static struct class     *class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
  95static struct dentry    *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
  96
  97/* forward declaration */
  98static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
  99static int pkt_remove_dev(dev_t pkt_dev);
 100static int pkt_seq_show(struct seq_file *m, void *p);
 101
 102
 103
 104/*
 105 * create and register a pktcdvd kernel object.
 106 */
 107static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
 108                                        const char* name,
 109                                        struct kobject* parent,
 110                                        struct kobj_type* ktype)
 111{
 112        struct pktcdvd_kobj *p;
 113        int error;
 114
 115        p = kzalloc(sizeof(*p), GFP_KERNEL);
 116        if (!p)
 117                return NULL;
 118        p->pd = pd;
 119        error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
 120        if (error) {
 121                kobject_put(&p->kobj);
 122                return NULL;
 123        }
 124        kobject_uevent(&p->kobj, KOBJ_ADD);
 125        return p;
 126}
 127/*
 128 * remove a pktcdvd kernel object.
 129 */
 130static void pkt_kobj_remove(struct pktcdvd_kobj *p)
 131{
 132        if (p)
 133                kobject_put(&p->kobj);
 134}
 135/*
 136 * default release function for pktcdvd kernel objects.
 137 */
 138static void pkt_kobj_release(struct kobject *kobj)
 139{
 140        kfree(to_pktcdvdkobj(kobj));
 141}
 142
 143
 144/**********************************************************
 145 *
 146 * sysfs interface for pktcdvd
 147 * by (C) 2006  Thomas Maier <balagi@justmail.de>
 148 *
 149 **********************************************************/
 150
 151#define DEF_ATTR(_obj,_name,_mode) \
 152        static struct attribute _obj = { .name = _name, .mode = _mode }
 153
 154/**********************************************************
 155  /sys/class/pktcdvd/pktcdvd[0-7]/
 156                     stat/reset
 157                     stat/packets_started
 158                     stat/packets_finished
 159                     stat/kb_written
 160                     stat/kb_read
 161                     stat/kb_read_gather
 162                     write_queue/size
 163                     write_queue/congestion_off
 164                     write_queue/congestion_on
 165 **********************************************************/
 166
 167DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
 168DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
 169DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
 170DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
 171DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
 172DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
 173
 174static struct attribute *kobj_pkt_attrs_stat[] = {
 175        &kobj_pkt_attr_st1,
 176        &kobj_pkt_attr_st2,
 177        &kobj_pkt_attr_st3,
 178        &kobj_pkt_attr_st4,
 179        &kobj_pkt_attr_st5,
 180        &kobj_pkt_attr_st6,
 181        NULL
 182};
 183
 184DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
 185DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
 186DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
 187
 188static struct attribute *kobj_pkt_attrs_wqueue[] = {
 189        &kobj_pkt_attr_wq1,
 190        &kobj_pkt_attr_wq2,
 191        &kobj_pkt_attr_wq3,
 192        NULL
 193};
 194
 195static ssize_t kobj_pkt_show(struct kobject *kobj,
 196                        struct attribute *attr, char *data)
 197{
 198        struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 199        int n = 0;
 200        int v;
 201        if (strcmp(attr->name, "packets_started") == 0) {
 202                n = sprintf(data, "%lu\n", pd->stats.pkt_started);
 203
 204        } else if (strcmp(attr->name, "packets_finished") == 0) {
 205                n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
 206
 207        } else if (strcmp(attr->name, "kb_written") == 0) {
 208                n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
 209
 210        } else if (strcmp(attr->name, "kb_read") == 0) {
 211                n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
 212
 213        } else if (strcmp(attr->name, "kb_read_gather") == 0) {
 214                n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
 215
 216        } else if (strcmp(attr->name, "size") == 0) {
 217                spin_lock(&pd->lock);
 218                v = pd->bio_queue_size;
 219                spin_unlock(&pd->lock);
 220                n = sprintf(data, "%d\n", v);
 221
 222        } else if (strcmp(attr->name, "congestion_off") == 0) {
 223                spin_lock(&pd->lock);
 224                v = pd->write_congestion_off;
 225                spin_unlock(&pd->lock);
 226                n = sprintf(data, "%d\n", v);
 227
 228        } else if (strcmp(attr->name, "congestion_on") == 0) {
 229                spin_lock(&pd->lock);
 230                v = pd->write_congestion_on;
 231                spin_unlock(&pd->lock);
 232                n = sprintf(data, "%d\n", v);
 233        }
 234        return n;
 235}
 236
 237static void init_write_congestion_marks(int* lo, int* hi)
 238{
 239        if (*hi > 0) {
 240                *hi = max(*hi, 500);
 241                *hi = min(*hi, 1000000);
 242                if (*lo <= 0)
 243                        *lo = *hi - 100;
 244                else {
 245                        *lo = min(*lo, *hi - 100);
 246                        *lo = max(*lo, 100);
 247                }
 248        } else {
 249                *hi = -1;
 250                *lo = -1;
 251        }
 252}
 253
 254static ssize_t kobj_pkt_store(struct kobject *kobj,
 255                        struct attribute *attr,
 256                        const char *data, size_t len)
 257{
 258        struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 259        int val;
 260
 261        if (strcmp(attr->name, "reset") == 0 && len > 0) {
 262                pd->stats.pkt_started = 0;
 263                pd->stats.pkt_ended = 0;
 264                pd->stats.secs_w = 0;
 265                pd->stats.secs_rg = 0;
 266                pd->stats.secs_r = 0;
 267
 268        } else if (strcmp(attr->name, "congestion_off") == 0
 269                   && sscanf(data, "%d", &val) == 1) {
 270                spin_lock(&pd->lock);
 271                pd->write_congestion_off = val;
 272                init_write_congestion_marks(&pd->write_congestion_off,
 273                                        &pd->write_congestion_on);
 274                spin_unlock(&pd->lock);
 275
 276        } else if (strcmp(attr->name, "congestion_on") == 0
 277                   && sscanf(data, "%d", &val) == 1) {
 278                spin_lock(&pd->lock);
 279                pd->write_congestion_on = val;
 280                init_write_congestion_marks(&pd->write_congestion_off,
 281                                        &pd->write_congestion_on);
 282                spin_unlock(&pd->lock);
 283        }
 284        return len;
 285}
 286
 287static struct sysfs_ops kobj_pkt_ops = {
 288        .show = kobj_pkt_show,
 289        .store = kobj_pkt_store
 290};
 291static struct kobj_type kobj_pkt_type_stat = {
 292        .release = pkt_kobj_release,
 293        .sysfs_ops = &kobj_pkt_ops,
 294        .default_attrs = kobj_pkt_attrs_stat
 295};
 296static struct kobj_type kobj_pkt_type_wqueue = {
 297        .release = pkt_kobj_release,
 298        .sysfs_ops = &kobj_pkt_ops,
 299        .default_attrs = kobj_pkt_attrs_wqueue
 300};
 301
 302static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
 303{
 304        if (class_pktcdvd) {
 305                pd->dev = device_create_drvdata(class_pktcdvd, NULL,
 306                                                pd->pkt_dev, NULL,
 307                                                "%s", pd->name);
 308                if (IS_ERR(pd->dev))
 309                        pd->dev = NULL;
 310        }
 311        if (pd->dev) {
 312                pd->kobj_stat = pkt_kobj_create(pd, "stat",
 313                                        &pd->dev->kobj,
 314                                        &kobj_pkt_type_stat);
 315                pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
 316                                        &pd->dev->kobj,
 317                                        &kobj_pkt_type_wqueue);
 318        }
 319}
 320
 321static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
 322{
 323        pkt_kobj_remove(pd->kobj_stat);
 324        pkt_kobj_remove(pd->kobj_wqueue);
 325        if (class_pktcdvd)
 326                device_destroy(class_pktcdvd, pd->pkt_dev);
 327}
 328
 329
 330/********************************************************************
 331  /sys/class/pktcdvd/
 332                     add            map block device
 333                     remove         unmap packet dev
 334                     device_map     show mappings
 335 *******************************************************************/
 336
 337static void class_pktcdvd_release(struct class *cls)
 338{
 339        kfree(cls);
 340}
 341static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
 342{
 343        int n = 0;
 344        int idx;
 345        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 346        for (idx = 0; idx < MAX_WRITERS; idx++) {
 347                struct pktcdvd_device *pd = pkt_devs[idx];
 348                if (!pd)
 349                        continue;
 350                n += sprintf(data+n, "%s %u:%u %u:%u\n",
 351                        pd->name,
 352                        MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
 353                        MAJOR(pd->bdev->bd_dev),
 354                        MINOR(pd->bdev->bd_dev));
 355        }
 356        mutex_unlock(&ctl_mutex);
 357        return n;
 358}
 359
 360static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
 361                                        size_t count)
 362{
 363        unsigned int major, minor;
 364
 365        if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 366                /* pkt_setup_dev() expects caller to hold reference to self */
 367                if (!try_module_get(THIS_MODULE))
 368                        return -ENODEV;
 369
 370                pkt_setup_dev(MKDEV(major, minor), NULL);
 371
 372                module_put(THIS_MODULE);
 373
 374                return count;
 375        }
 376
 377        return -EINVAL;
 378}
 379
 380static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
 381                                        size_t count)
 382{
 383        unsigned int major, minor;
 384        if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 385                pkt_remove_dev(MKDEV(major, minor));
 386                return count;
 387        }
 388        return -EINVAL;
 389}
 390
 391static struct class_attribute class_pktcdvd_attrs[] = {
 392 __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
 393 __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
 394 __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
 395 __ATTR_NULL
 396};
 397
 398
 399static int pkt_sysfs_init(void)
 400{
 401        int ret = 0;
 402
 403        /*
 404         * create control files in sysfs
 405         * /sys/class/pktcdvd/...
 406         */
 407        class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
 408        if (!class_pktcdvd)
 409                return -ENOMEM;
 410        class_pktcdvd->name = DRIVER_NAME;
 411        class_pktcdvd->owner = THIS_MODULE;
 412        class_pktcdvd->class_release = class_pktcdvd_release;
 413        class_pktcdvd->class_attrs = class_pktcdvd_attrs;
 414        ret = class_register(class_pktcdvd);
 415        if (ret) {
 416                kfree(class_pktcdvd);
 417                class_pktcdvd = NULL;
 418                printk(DRIVER_NAME": failed to create class pktcdvd\n");
 419                return ret;
 420        }
 421        return 0;
 422}
 423
 424static void pkt_sysfs_cleanup(void)
 425{
 426        if (class_pktcdvd)
 427                class_destroy(class_pktcdvd);
 428        class_pktcdvd = NULL;
 429}
 430
 431/********************************************************************
 432  entries in debugfs
 433
 434  /debugfs/pktcdvd[0-7]/
 435                        info
 436
 437 *******************************************************************/
 438
 439static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
 440{
 441        return pkt_seq_show(m, p);
 442}
 443
 444static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
 445{
 446        return single_open(file, pkt_debugfs_seq_show, inode->i_private);
 447}
 448
 449static const struct file_operations debug_fops = {
 450        .open           = pkt_debugfs_fops_open,
 451        .read           = seq_read,
 452        .llseek         = seq_lseek,
 453        .release        = single_release,
 454        .owner          = THIS_MODULE,
 455};
 456
 457static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
 458{
 459        if (!pkt_debugfs_root)
 460                return;
 461        pd->dfs_f_info = NULL;
 462        pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
 463        if (IS_ERR(pd->dfs_d_root)) {
 464                pd->dfs_d_root = NULL;
 465                return;
 466        }
 467        pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
 468                                pd->dfs_d_root, pd, &debug_fops);
 469        if (IS_ERR(pd->dfs_f_info)) {
 470                pd->dfs_f_info = NULL;
 471                return;
 472        }
 473}
 474
 475static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
 476{
 477        if (!pkt_debugfs_root)
 478                return;
 479        if (pd->dfs_f_info)
 480                debugfs_remove(pd->dfs_f_info);
 481        pd->dfs_f_info = NULL;
 482        if (pd->dfs_d_root)
 483                debugfs_remove(pd->dfs_d_root);
 484        pd->dfs_d_root = NULL;
 485}
 486
 487static void pkt_debugfs_init(void)
 488{
 489        pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
 490        if (IS_ERR(pkt_debugfs_root)) {
 491                pkt_debugfs_root = NULL;
 492                return;
 493        }
 494}
 495
 496static void pkt_debugfs_cleanup(void)
 497{
 498        if (!pkt_debugfs_root)
 499                return;
 500        debugfs_remove(pkt_debugfs_root);
 501        pkt_debugfs_root = NULL;
 502}
 503
 504/* ----------------------------------------------------------*/
 505
 506
 507static void pkt_bio_finished(struct pktcdvd_device *pd)
 508{
 509        BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
 510        if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
 511                VPRINTK(DRIVER_NAME": queue empty\n");
 512                atomic_set(&pd->iosched.attention, 1);
 513                wake_up(&pd->wqueue);
 514        }
 515}
 516
 517static void pkt_bio_destructor(struct bio *bio)
 518{
 519        kfree(bio->bi_io_vec);
 520        kfree(bio);
 521}
 522
 523static struct bio *pkt_bio_alloc(int nr_iovecs)
 524{
 525        struct bio_vec *bvl = NULL;
 526        struct bio *bio;
 527
 528        bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
 529        if (!bio)
 530                goto no_bio;
 531        bio_init(bio);
 532
 533        bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
 534        if (!bvl)
 535                goto no_bvl;
 536
 537        bio->bi_max_vecs = nr_iovecs;
 538        bio->bi_io_vec = bvl;
 539        bio->bi_destructor = pkt_bio_destructor;
 540
 541        return bio;
 542
 543 no_bvl:
 544        kfree(bio);
 545 no_bio:
 546        return NULL;
 547}
 548
 549/*
 550 * Allocate a packet_data struct
 551 */
 552static struct packet_data *pkt_alloc_packet_data(int frames)
 553{
 554        int i;
 555        struct packet_data *pkt;
 556
 557        pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
 558        if (!pkt)
 559                goto no_pkt;
 560
 561        pkt->frames = frames;
 562        pkt->w_bio = pkt_bio_alloc(frames);
 563        if (!pkt->w_bio)
 564                goto no_bio;
 565
 566        for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
 567                pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
 568                if (!pkt->pages[i])
 569                        goto no_page;
 570        }
 571
 572        spin_lock_init(&pkt->lock);
 573
 574        for (i = 0; i < frames; i++) {
 575                struct bio *bio = pkt_bio_alloc(1);
 576                if (!bio)
 577                        goto no_rd_bio;
 578                pkt->r_bios[i] = bio;
 579        }
 580
 581        return pkt;
 582
 583no_rd_bio:
 584        for (i = 0; i < frames; i++) {
 585                struct bio *bio = pkt->r_bios[i];
 586                if (bio)
 587                        bio_put(bio);
 588        }
 589
 590no_page:
 591        for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
 592                if (pkt->pages[i])
 593                        __free_page(pkt->pages[i]);
 594        bio_put(pkt->w_bio);
 595no_bio:
 596        kfree(pkt);
 597no_pkt:
 598        return NULL;
 599}
 600
 601/*
 602 * Free a packet_data struct
 603 */
 604static void pkt_free_packet_data(struct packet_data *pkt)
 605{
 606        int i;
 607
 608        for (i = 0; i < pkt->frames; i++) {
 609                struct bio *bio = pkt->r_bios[i];
 610                if (bio)
 611                        bio_put(bio);
 612        }
 613        for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
 614                __free_page(pkt->pages[i]);
 615        bio_put(pkt->w_bio);
 616        kfree(pkt);
 617}
 618
 619static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
 620{
 621        struct packet_data *pkt, *next;
 622
 623        BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
 624
 625        list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
 626                pkt_free_packet_data(pkt);
 627        }
 628        INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
 629}
 630
 631static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
 632{
 633        struct packet_data *pkt;
 634
 635        BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
 636
 637        while (nr_packets > 0) {
 638                pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
 639                if (!pkt) {
 640                        pkt_shrink_pktlist(pd);
 641                        return 0;
 642                }
 643                pkt->id = nr_packets;
 644                pkt->pd = pd;
 645                list_add(&pkt->list, &pd->cdrw.pkt_free_list);
 646                nr_packets--;
 647        }
 648        return 1;
 649}
 650
 651static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
 652{
 653        struct rb_node *n = rb_next(&node->rb_node);
 654        if (!n)
 655                return NULL;
 656        return rb_entry(n, struct pkt_rb_node, rb_node);
 657}
 658
 659static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 660{
 661        rb_erase(&node->rb_node, &pd->bio_queue);
 662        mempool_free(node, pd->rb_pool);
 663        pd->bio_queue_size--;
 664        BUG_ON(pd->bio_queue_size < 0);
 665}
 666
 667/*
 668 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
 669 */
 670static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
 671{
 672        struct rb_node *n = pd->bio_queue.rb_node;
 673        struct rb_node *next;
 674        struct pkt_rb_node *tmp;
 675
 676        if (!n) {
 677                BUG_ON(pd->bio_queue_size > 0);
 678                return NULL;
 679        }
 680
 681        for (;;) {
 682                tmp = rb_entry(n, struct pkt_rb_node, rb_node);
 683                if (s <= tmp->bio->bi_sector)
 684                        next = n->rb_left;
 685                else
 686                        next = n->rb_right;
 687                if (!next)
 688                        break;
 689                n = next;
 690        }
 691
 692        if (s > tmp->bio->bi_sector) {
 693                tmp = pkt_rbtree_next(tmp);
 694                if (!tmp)
 695                        return NULL;
 696        }
 697        BUG_ON(s > tmp->bio->bi_sector);
 698        return tmp;
 699}
 700
 701/*
 702 * Insert a node into the pd->bio_queue rb tree.
 703 */
 704static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 705{
 706        struct rb_node **p = &pd->bio_queue.rb_node;
 707        struct rb_node *parent = NULL;
 708        sector_t s = node->bio->bi_sector;
 709        struct pkt_rb_node *tmp;
 710
 711        while (*p) {
 712                parent = *p;
 713                tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
 714                if (s < tmp->bio->bi_sector)
 715                        p = &(*p)->rb_left;
 716                else
 717                        p = &(*p)->rb_right;
 718        }
 719        rb_link_node(&node->rb_node, parent, p);
 720        rb_insert_color(&node->rb_node, &pd->bio_queue);
 721        pd->bio_queue_size++;
 722}
 723
 724/*
 725 * Add a bio to a single linked list defined by its head and tail pointers.
 726 */
 727static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
 728{
 729        bio->bi_next = NULL;
 730        if (*list_tail) {
 731                BUG_ON((*list_head) == NULL);
 732                (*list_tail)->bi_next = bio;
 733                (*list_tail) = bio;
 734        } else {
 735                BUG_ON((*list_head) != NULL);
 736                (*list_head) = bio;
 737                (*list_tail) = bio;
 738        }
 739}
 740
 741/*
 742 * Remove and return the first bio from a single linked list defined by its
 743 * head and tail pointers.
 744 */
 745static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
 746{
 747        struct bio *bio;
 748
 749        if (*list_head == NULL)
 750                return NULL;
 751
 752        bio = *list_head;
 753        *list_head = bio->bi_next;
 754        if (*list_head == NULL)
 755                *list_tail = NULL;
 756
 757        bio->bi_next = NULL;
 758        return bio;
 759}
 760
 761/*
 762 * Send a packet_command to the underlying block device and
 763 * wait for completion.
 764 */
 765static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
 766{
 767        struct request_queue *q = bdev_get_queue(pd->bdev);
 768        struct request *rq;
 769        int ret = 0;
 770
 771        rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
 772                             WRITE : READ, __GFP_WAIT);
 773
 774        if (cgc->buflen) {
 775                if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
 776                        goto out;
 777        }
 778
 779        rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
 780        memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
 781
 782        rq->timeout = 60*HZ;
 783        rq->cmd_type = REQ_TYPE_BLOCK_PC;
 784        rq->cmd_flags |= REQ_HARDBARRIER;
 785        if (cgc->quiet)
 786                rq->cmd_flags |= REQ_QUIET;
 787
 788        blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
 789        if (rq->errors)
 790                ret = -EIO;
 791out:
 792        blk_put_request(rq);
 793        return ret;
 794}
 795
 796/*
 797 * A generic sense dump / resolve mechanism should be implemented across
 798 * all ATAPI + SCSI devices.
 799 */
 800static void pkt_dump_sense(struct packet_command *cgc)
 801{
 802        static char *info[9] = { "No sense", "Recovered error", "Not ready",
 803                                 "Medium error", "Hardware error", "Illegal request",
 804                                 "Unit attention", "Data protect", "Blank check" };
 805        int i;
 806        struct request_sense *sense = cgc->sense;
 807
 808        printk(DRIVER_NAME":");
 809        for (i = 0; i < CDROM_PACKET_SIZE; i++)
 810                printk(" %02x", cgc->cmd[i]);
 811        printk(" - ");
 812
 813        if (sense == NULL) {
 814                printk("no sense\n");
 815                return;
 816        }
 817
 818        printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
 819
 820        if (sense->sense_key > 8) {
 821                printk(" (INVALID)\n");
 822                return;
 823        }
 824
 825        printk(" (%s)\n", info[sense->sense_key]);
 826}
 827
 828/*
 829 * flush the drive cache to media
 830 */
 831static int pkt_flush_cache(struct pktcdvd_device *pd)
 832{
 833        struct packet_command cgc;
 834
 835        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 836        cgc.cmd[0] = GPCMD_FLUSH_CACHE;
 837        cgc.quiet = 1;
 838
 839        /*
 840         * the IMMED bit -- we default to not setting it, although that
 841         * would allow a much faster close, this is safer
 842         */
 843#if 0
 844        cgc.cmd[1] = 1 << 1;
 845#endif
 846        return pkt_generic_packet(pd, &cgc);
 847}
 848
 849/*
 850 * speed is given as the normal factor, e.g. 4 for 4x
 851 */
 852static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
 853                                unsigned write_speed, unsigned read_speed)
 854{
 855        struct packet_command cgc;
 856        struct request_sense sense;
 857        int ret;
 858
 859        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 860        cgc.sense = &sense;
 861        cgc.cmd[0] = GPCMD_SET_SPEED;
 862        cgc.cmd[2] = (read_speed >> 8) & 0xff;
 863        cgc.cmd[3] = read_speed & 0xff;
 864        cgc.cmd[4] = (write_speed >> 8) & 0xff;
 865        cgc.cmd[5] = write_speed & 0xff;
 866
 867        if ((ret = pkt_generic_packet(pd, &cgc)))
 868                pkt_dump_sense(&cgc);
 869
 870        return ret;
 871}
 872
 873/*
 874 * Queue a bio for processing by the low-level CD device. Must be called
 875 * from process context.
 876 */
 877static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
 878{
 879        spin_lock(&pd->iosched.lock);
 880        if (bio_data_dir(bio) == READ) {
 881                pkt_add_list_last(bio, &pd->iosched.read_queue,
 882                                  &pd->iosched.read_queue_tail);
 883        } else {
 884                pkt_add_list_last(bio, &pd->iosched.write_queue,
 885                                  &pd->iosched.write_queue_tail);
 886        }
 887        spin_unlock(&pd->iosched.lock);
 888
 889        atomic_set(&pd->iosched.attention, 1);
 890        wake_up(&pd->wqueue);
 891}
 892
 893/*
 894 * Process the queued read/write requests. This function handles special
 895 * requirements for CDRW drives:
 896 * - A cache flush command must be inserted before a read request if the
 897 *   previous request was a write.
 898 * - Switching between reading and writing is slow, so don't do it more often
 899 *   than necessary.
 900 * - Optimize for throughput at the expense of latency. This means that streaming
 901 *   writes will never be interrupted by a read, but if the drive has to seek
 902 *   before the next write, switch to reading instead if there are any pending
 903 *   read requests.
 904 * - Set the read speed according to current usage pattern. When only reading
 905 *   from the device, it's best to use the highest possible read speed, but
 906 *   when switching often between reading and writing, it's better to have the
 907 *   same read and write speeds.
 908 */
 909static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
 910{
 911
 912        if (atomic_read(&pd->iosched.attention) == 0)
 913                return;
 914        atomic_set(&pd->iosched.attention, 0);
 915
 916        for (;;) {
 917                struct bio *bio;
 918                int reads_queued, writes_queued;
 919
 920                spin_lock(&pd->iosched.lock);
 921                reads_queued = (pd->iosched.read_queue != NULL);
 922                writes_queued = (pd->iosched.write_queue != NULL);
 923                spin_unlock(&pd->iosched.lock);
 924
 925                if (!reads_queued && !writes_queued)
 926                        break;
 927
 928                if (pd->iosched.writing) {
 929                        int need_write_seek = 1;
 930                        spin_lock(&pd->iosched.lock);
 931                        bio = pd->iosched.write_queue;
 932                        spin_unlock(&pd->iosched.lock);
 933                        if (bio && (bio->bi_sector == pd->iosched.last_write))
 934                                need_write_seek = 0;
 935                        if (need_write_seek && reads_queued) {
 936                                if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 937                                        VPRINTK(DRIVER_NAME": write, waiting\n");
 938                                        break;
 939                                }
 940                                pkt_flush_cache(pd);
 941                                pd->iosched.writing = 0;
 942                        }
 943                } else {
 944                        if (!reads_queued && writes_queued) {
 945                                if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 946                                        VPRINTK(DRIVER_NAME": read, waiting\n");
 947                                        break;
 948                                }
 949                                pd->iosched.writing = 1;
 950                        }
 951                }
 952
 953                spin_lock(&pd->iosched.lock);
 954                if (pd->iosched.writing) {
 955                        bio = pkt_get_list_first(&pd->iosched.write_queue,
 956                                                 &pd->iosched.write_queue_tail);
 957                } else {
 958                        bio = pkt_get_list_first(&pd->iosched.read_queue,
 959                                                 &pd->iosched.read_queue_tail);
 960                }
 961                spin_unlock(&pd->iosched.lock);
 962
 963                if (!bio)
 964                        continue;
 965
 966                if (bio_data_dir(bio) == READ)
 967                        pd->iosched.successive_reads += bio->bi_size >> 10;
 968                else {
 969                        pd->iosched.successive_reads = 0;
 970                        pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
 971                }
 972                if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
 973                        if (pd->read_speed == pd->write_speed) {
 974                                pd->read_speed = MAX_SPEED;
 975                                pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 976                        }
 977                } else {
 978                        if (pd->read_speed != pd->write_speed) {
 979                                pd->read_speed = pd->write_speed;
 980                                pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 981                        }
 982                }
 983
 984                atomic_inc(&pd->cdrw.pending_bios);
 985                generic_make_request(bio);
 986        }
 987}
 988
 989/*
 990 * Special care is needed if the underlying block device has a small
 991 * max_phys_segments value.
 992 */
 993static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
 994{
 995        if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
 996                /*
 997                 * The cdrom device can handle one segment/frame
 998                 */
 999                clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1000                return 0;
1001        } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
1002                /*
1003                 * We can handle this case at the expense of some extra memory
1004                 * copies during write operations
1005                 */
1006                set_bit(PACKET_MERGE_SEGS, &pd->flags);
1007                return 0;
1008        } else {
1009                printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1010                return -EIO;
1011        }
1012}
1013
1014/*
1015 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1016 */
1017static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1018{
1019        unsigned int copy_size = CD_FRAMESIZE;
1020
1021        while (copy_size > 0) {
1022                struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1023                void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1024                        src_bvl->bv_offset + offs;
1025                void *vto = page_address(dst_page) + dst_offs;
1026                int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1027
1028                BUG_ON(len < 0);
1029                memcpy(vto, vfrom, len);
1030                kunmap_atomic(vfrom, KM_USER0);
1031
1032                seg++;
1033                offs = 0;
1034                dst_offs += len;
1035                copy_size -= len;
1036        }
1037}
1038
1039/*
1040 * Copy all data for this packet to pkt->pages[], so that
1041 * a) The number of required segments for the write bio is minimized, which
1042 *    is necessary for some scsi controllers.
1043 * b) The data can be used as cache to avoid read requests if we receive a
1044 *    new write request for the same zone.
1045 */
1046static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1047{
1048        int f, p, offs;
1049
1050        /* Copy all data to pkt->pages[] */
1051        p = 0;
1052        offs = 0;
1053        for (f = 0; f < pkt->frames; f++) {
1054                if (bvec[f].bv_page != pkt->pages[p]) {
1055                        void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1056                        void *vto = page_address(pkt->pages[p]) + offs;
1057                        memcpy(vto, vfrom, CD_FRAMESIZE);
1058                        kunmap_atomic(vfrom, KM_USER0);
1059                        bvec[f].bv_page = pkt->pages[p];
1060                        bvec[f].bv_offset = offs;
1061                } else {
1062                        BUG_ON(bvec[f].bv_offset != offs);
1063                }
1064                offs += CD_FRAMESIZE;
1065                if (offs >= PAGE_SIZE) {
1066                        offs = 0;
1067                        p++;
1068                }
1069        }
1070}
1071
1072static void pkt_end_io_read(struct bio *bio, int err)
1073{
1074        struct packet_data *pkt = bio->bi_private;
1075        struct pktcdvd_device *pd = pkt->pd;
1076        BUG_ON(!pd);
1077
1078        VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1079                (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1080
1081        if (err)
1082                atomic_inc(&pkt->io_errors);
1083        if (atomic_dec_and_test(&pkt->io_wait)) {
1084                atomic_inc(&pkt->run_sm);
1085                wake_up(&pd->wqueue);
1086        }
1087        pkt_bio_finished(pd);
1088}
1089
1090static void pkt_end_io_packet_write(struct bio *bio, int err)
1091{
1092        struct packet_data *pkt = bio->bi_private;
1093        struct pktcdvd_device *pd = pkt->pd;
1094        BUG_ON(!pd);
1095
1096        VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1097
1098        pd->stats.pkt_ended++;
1099
1100        pkt_bio_finished(pd);
1101        atomic_dec(&pkt->io_wait);
1102        atomic_inc(&pkt->run_sm);
1103        wake_up(&pd->wqueue);
1104}
1105
1106/*
1107 * Schedule reads for the holes in a packet
1108 */
1109static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1110{
1111        int frames_read = 0;
1112        struct bio *bio;
1113        int f;
1114        char written[PACKET_MAX_SIZE];
1115
1116        BUG_ON(!pkt->orig_bios);
1117
1118        atomic_set(&pkt->io_wait, 0);
1119        atomic_set(&pkt->io_errors, 0);
1120
1121        /*
1122         * Figure out which frames we need to read before we can write.
1123         */
1124        memset(written, 0, sizeof(written));
1125        spin_lock(&pkt->lock);
1126        for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1127                int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1128                int num_frames = bio->bi_size / CD_FRAMESIZE;
1129                pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1130                BUG_ON(first_frame < 0);
1131                BUG_ON(first_frame + num_frames > pkt->frames);
1132                for (f = first_frame; f < first_frame + num_frames; f++)
1133                        written[f] = 1;
1134        }
1135        spin_unlock(&pkt->lock);
1136
1137        if (pkt->cache_valid) {
1138                VPRINTK("pkt_gather_data: zone %llx cached\n",
1139                        (unsigned long long)pkt->sector);
1140                goto out_account;
1141        }
1142
1143        /*
1144         * Schedule reads for missing parts of the packet.
1145         */
1146        for (f = 0; f < pkt->frames; f++) {
1147                struct bio_vec *vec;
1148
1149                int p, offset;
1150                if (written[f])
1151                        continue;
1152                bio = pkt->r_bios[f];
1153                vec = bio->bi_io_vec;
1154                bio_init(bio);
1155                bio->bi_max_vecs = 1;
1156                bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1157                bio->bi_bdev = pd->bdev;
1158                bio->bi_end_io = pkt_end_io_read;
1159                bio->bi_private = pkt;
1160                bio->bi_io_vec = vec;
1161                bio->bi_destructor = pkt_bio_destructor;
1162
1163                p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1164                offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1165                VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1166                        f, pkt->pages[p], offset);
1167                if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1168                        BUG();
1169
1170                atomic_inc(&pkt->io_wait);
1171                bio->bi_rw = READ;
1172                pkt_queue_bio(pd, bio);
1173                frames_read++;
1174        }
1175
1176out_account:
1177        VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1178                frames_read, (unsigned long long)pkt->sector);
1179        pd->stats.pkt_started++;
1180        pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1181}
1182
1183/*
1184 * Find a packet matching zone, or the least recently used packet if
1185 * there is no match.
1186 */
1187static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1188{
1189        struct packet_data *pkt;
1190
1191        list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1192                if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1193                        list_del_init(&pkt->list);
1194                        if (pkt->sector != zone)
1195                                pkt->cache_valid = 0;
1196                        return pkt;
1197                }
1198        }
1199        BUG();
1200        return NULL;
1201}
1202
1203static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1204{
1205        if (pkt->cache_valid) {
1206                list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1207        } else {
1208                list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1209        }
1210}
1211
1212/*
1213 * recover a failed write, query for relocation if possible
1214 *
1215 * returns 1 if recovery is possible, or 0 if not
1216 *
1217 */
1218static int pkt_start_recovery(struct packet_data *pkt)
1219{
1220        /*
1221         * FIXME. We need help from the file system to implement
1222         * recovery handling.
1223         */
1224        return 0;
1225#if 0
1226        struct request *rq = pkt->rq;
1227        struct pktcdvd_device *pd = rq->rq_disk->private_data;
1228        struct block_device *pkt_bdev;
1229        struct super_block *sb = NULL;
1230        unsigned long old_block, new_block;
1231        sector_t new_sector;
1232
1233        pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1234        if (pkt_bdev) {
1235                sb = get_super(pkt_bdev);
1236                bdput(pkt_bdev);
1237        }
1238
1239        if (!sb)
1240                return 0;
1241
1242        if (!sb->s_op || !sb->s_op->relocate_blocks)
1243                goto out;
1244
1245        old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1246        if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1247                goto out;
1248
1249        new_sector = new_block * (CD_FRAMESIZE >> 9);
1250        pkt->sector = new_sector;
1251
1252        pkt->bio->bi_sector = new_sector;
1253        pkt->bio->bi_next = NULL;
1254        pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1255        pkt->bio->bi_idx = 0;
1256
1257        BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1258        BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1259        BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1260        BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1261        BUG_ON(pkt->bio->bi_private != pkt);
1262
1263        drop_super(sb);
1264        return 1;
1265
1266out:
1267        drop_super(sb);
1268        return 0;
1269#endif
1270}
1271
1272static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1273{
1274#if PACKET_DEBUG > 1
1275        static const char *state_name[] = {
1276                "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1277        };
1278        enum packet_data_state old_state = pkt->state;
1279        VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1280                state_name[old_state], state_name[state]);
1281#endif
1282        pkt->state = state;
1283}
1284
1285/*
1286 * Scan the work queue to see if we can start a new packet.
1287 * returns non-zero if any work was done.
1288 */
1289static int pkt_handle_queue(struct pktcdvd_device *pd)
1290{
1291        struct packet_data *pkt, *p;
1292        struct bio *bio = NULL;
1293        sector_t zone = 0; /* Suppress gcc warning */
1294        struct pkt_rb_node *node, *first_node;
1295        struct rb_node *n;
1296        int wakeup;
1297
1298        VPRINTK("handle_queue\n");
1299
1300        atomic_set(&pd->scan_queue, 0);
1301
1302        if (list_empty(&pd->cdrw.pkt_free_list)) {
1303                VPRINTK("handle_queue: no pkt\n");
1304                return 0;
1305        }
1306
1307        /*
1308         * Try to find a zone we are not already working on.
1309         */
1310        spin_lock(&pd->lock);
1311        first_node = pkt_rbtree_find(pd, pd->current_sector);
1312        if (!first_node) {
1313                n = rb_first(&pd->bio_queue);
1314                if (n)
1315                        first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1316        }
1317        node = first_node;
1318        while (node) {
1319                bio = node->bio;
1320                zone = ZONE(bio->bi_sector, pd);
1321                list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1322                        if (p->sector == zone) {
1323                                bio = NULL;
1324                                goto try_next_bio;
1325                        }
1326                }
1327                break;
1328try_next_bio:
1329                node = pkt_rbtree_next(node);
1330                if (!node) {
1331                        n = rb_first(&pd->bio_queue);
1332                        if (n)
1333                                node = rb_entry(n, struct pkt_rb_node, rb_node);
1334                }
1335                if (node == first_node)
1336                        node = NULL;
1337        }
1338        spin_unlock(&pd->lock);
1339        if (!bio) {
1340                VPRINTK("handle_queue: no bio\n");
1341                return 0;
1342        }
1343
1344        pkt = pkt_get_packet_data(pd, zone);
1345
1346        pd->current_sector = zone + pd->settings.size;
1347        pkt->sector = zone;
1348        BUG_ON(pkt->frames != pd->settings.size >> 2);
1349        pkt->write_size = 0;
1350
1351        /*
1352         * Scan work queue for bios in the same zone and link them
1353         * to this packet.
1354         */
1355        spin_lock(&pd->lock);
1356        VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1357        while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1358                bio = node->bio;
1359                VPRINTK("pkt_handle_queue: found zone=%llx\n",
1360                        (unsigned long long)ZONE(bio->bi_sector, pd));
1361                if (ZONE(bio->bi_sector, pd) != zone)
1362                        break;
1363                pkt_rbtree_erase(pd, node);
1364                spin_lock(&pkt->lock);
1365                pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1366                pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1367                spin_unlock(&pkt->lock);
1368        }
1369        /* check write congestion marks, and if bio_queue_size is
1370           below, wake up any waiters */
1371        wakeup = (pd->write_congestion_on > 0
1372                        && pd->bio_queue_size <= pd->write_congestion_off);
1373        spin_unlock(&pd->lock);
1374        if (wakeup)
1375                clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1376
1377        pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1378        pkt_set_state(pkt, PACKET_WAITING_STATE);
1379        atomic_set(&pkt->run_sm, 1);
1380
1381        spin_lock(&pd->cdrw.active_list_lock);
1382        list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1383        spin_unlock(&pd->cdrw.active_list_lock);
1384
1385        return 1;
1386}
1387
1388/*
1389 * Assemble a bio to write one packet and queue the bio for processing
1390 * by the underlying block device.
1391 */
1392static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1393{
1394        struct bio *bio;
1395        int f;
1396        int frames_write;
1397        struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1398
1399        for (f = 0; f < pkt->frames; f++) {
1400                bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1401                bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1402        }
1403
1404        /*
1405         * Fill-in bvec with data from orig_bios.
1406         */
1407        frames_write = 0;
1408        spin_lock(&pkt->lock);
1409        for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1410                int segment = bio->bi_idx;
1411                int src_offs = 0;
1412                int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1413                int num_frames = bio->bi_size / CD_FRAMESIZE;
1414                BUG_ON(first_frame < 0);
1415                BUG_ON(first_frame + num_frames > pkt->frames);
1416                for (f = first_frame; f < first_frame + num_frames; f++) {
1417                        struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1418
1419                        while (src_offs >= src_bvl->bv_len) {
1420                                src_offs -= src_bvl->bv_len;
1421                                segment++;
1422                                BUG_ON(segment >= bio->bi_vcnt);
1423                                src_bvl = bio_iovec_idx(bio, segment);
1424                        }
1425
1426                        if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1427                                bvec[f].bv_page = src_bvl->bv_page;
1428                                bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1429                        } else {
1430                                pkt_copy_bio_data(bio, segment, src_offs,
1431                                                  bvec[f].bv_page, bvec[f].bv_offset);
1432                        }
1433                        src_offs += CD_FRAMESIZE;
1434                        frames_write++;
1435                }
1436        }
1437        pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1438        spin_unlock(&pkt->lock);
1439
1440        VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1441                frames_write, (unsigned long long)pkt->sector);
1442        BUG_ON(frames_write != pkt->write_size);
1443
1444        if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1445                pkt_make_local_copy(pkt, bvec);
1446                pkt->cache_valid = 1;
1447        } else {
1448                pkt->cache_valid = 0;
1449        }
1450
1451        /* Start the write request */
1452        bio_init(pkt->w_bio);
1453        pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1454        pkt->w_bio->bi_sector = pkt->sector;
1455        pkt->w_bio->bi_bdev = pd->bdev;
1456        pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1457        pkt->w_bio->bi_private = pkt;
1458        pkt->w_bio->bi_io_vec = bvec;
1459        pkt->w_bio->bi_destructor = pkt_bio_destructor;
1460        for (f = 0; f < pkt->frames; f++)
1461                if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1462                        BUG();
1463        VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1464
1465        atomic_set(&pkt->io_wait, 1);
1466        pkt->w_bio->bi_rw = WRITE;
1467        pkt_queue_bio(pd, pkt->w_bio);
1468}
1469
1470static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1471{
1472        struct bio *bio, *next;
1473
1474        if (!uptodate)
1475                pkt->cache_valid = 0;
1476
1477        /* Finish all bios corresponding to this packet */
1478        bio = pkt->orig_bios;
1479        while (bio) {
1480                next = bio->bi_next;
1481                bio->bi_next = NULL;
1482                bio_endio(bio, uptodate ? 0 : -EIO);
1483                bio = next;
1484        }
1485        pkt->orig_bios = pkt->orig_bios_tail = NULL;
1486}
1487
1488static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1489{
1490        int uptodate;
1491
1492        VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1493
1494        for (;;) {
1495                switch (pkt->state) {
1496                case PACKET_WAITING_STATE:
1497                        if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1498                                return;
1499
1500                        pkt->sleep_time = 0;
1501                        pkt_gather_data(pd, pkt);
1502                        pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1503                        break;
1504
1505                case PACKET_READ_WAIT_STATE:
1506                        if (atomic_read(&pkt->io_wait) > 0)
1507                                return;
1508
1509                        if (atomic_read(&pkt->io_errors) > 0) {
1510                                pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1511                        } else {
1512                                pkt_start_write(pd, pkt);
1513                        }
1514                        break;
1515
1516                case PACKET_WRITE_WAIT_STATE:
1517                        if (atomic_read(&pkt->io_wait) > 0)
1518                                return;
1519
1520                        if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1521                                pkt_set_state(pkt, PACKET_FINISHED_STATE);
1522                        } else {
1523                                pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1524                        }
1525                        break;
1526
1527                case PACKET_RECOVERY_STATE:
1528                        if (pkt_start_recovery(pkt)) {
1529                                pkt_start_write(pd, pkt);
1530                        } else {
1531                                VPRINTK("No recovery possible\n");
1532                                pkt_set_state(pkt, PACKET_FINISHED_STATE);
1533                        }
1534                        break;
1535
1536                case PACKET_FINISHED_STATE:
1537                        uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1538                        pkt_finish_packet(pkt, uptodate);
1539                        return;
1540
1541                default:
1542                        BUG();
1543                        break;
1544                }
1545        }
1546}
1547
1548static void pkt_handle_packets(struct pktcdvd_device *pd)
1549{
1550        struct packet_data *pkt, *next;
1551
1552        VPRINTK("pkt_handle_packets\n");
1553
1554        /*
1555         * Run state machine for active packets
1556         */
1557        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1558                if (atomic_read(&pkt->run_sm) > 0) {
1559                        atomic_set(&pkt->run_sm, 0);
1560                        pkt_run_state_machine(pd, pkt);
1561                }
1562        }
1563
1564        /*
1565         * Move no longer active packets to the free list
1566         */
1567        spin_lock(&pd->cdrw.active_list_lock);
1568        list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1569                if (pkt->state == PACKET_FINISHED_STATE) {
1570                        list_del(&pkt->list);
1571                        pkt_put_packet_data(pd, pkt);
1572                        pkt_set_state(pkt, PACKET_IDLE_STATE);
1573                        atomic_set(&pd->scan_queue, 1);
1574                }
1575        }
1576        spin_unlock(&pd->cdrw.active_list_lock);
1577}
1578
1579static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1580{
1581        struct packet_data *pkt;
1582        int i;
1583
1584        for (i = 0; i < PACKET_NUM_STATES; i++)
1585                states[i] = 0;
1586
1587        spin_lock(&pd->cdrw.active_list_lock);
1588        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1589                states[pkt->state]++;
1590        }
1591        spin_unlock(&pd->cdrw.active_list_lock);
1592}
1593
1594/*
1595 * kcdrwd is woken up when writes have been queued for one of our
1596 * registered devices
1597 */
1598static int kcdrwd(void *foobar)
1599{
1600        struct pktcdvd_device *pd = foobar;
1601        struct packet_data *pkt;
1602        long min_sleep_time, residue;
1603
1604        set_user_nice(current, -20);
1605        set_freezable();
1606
1607        for (;;) {
1608                DECLARE_WAITQUEUE(wait, current);
1609
1610                /*
1611                 * Wait until there is something to do
1612                 */
1613                add_wait_queue(&pd->wqueue, &wait);
1614                for (;;) {
1615                        set_current_state(TASK_INTERRUPTIBLE);
1616
1617                        /* Check if we need to run pkt_handle_queue */
1618                        if (atomic_read(&pd->scan_queue) > 0)
1619                                goto work_to_do;
1620
1621                        /* Check if we need to run the state machine for some packet */
1622                        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1623                                if (atomic_read(&pkt->run_sm) > 0)
1624                                        goto work_to_do;
1625                        }
1626
1627                        /* Check if we need to process the iosched queues */
1628                        if (atomic_read(&pd->iosched.attention) != 0)
1629                                goto work_to_do;
1630
1631                        /* Otherwise, go to sleep */
1632                        if (PACKET_DEBUG > 1) {
1633                                int states[PACKET_NUM_STATES];
1634                                pkt_count_states(pd, states);
1635                                VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1636                                        states[0], states[1], states[2], states[3],
1637                                        states[4], states[5]);
1638                        }
1639
1640                        min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1641                        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1642                                if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1643                                        min_sleep_time = pkt->sleep_time;
1644                        }
1645
1646                        generic_unplug_device(bdev_get_queue(pd->bdev));
1647
1648                        VPRINTK("kcdrwd: sleeping\n");
1649                        residue = schedule_timeout(min_sleep_time);
1650                        VPRINTK("kcdrwd: wake up\n");
1651
1652                        /* make swsusp happy with our thread */
1653                        try_to_freeze();
1654
1655                        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1656                                if (!pkt->sleep_time)
1657                                        continue;
1658                                pkt->sleep_time -= min_sleep_time - residue;
1659                                if (pkt->sleep_time <= 0) {
1660                                        pkt->sleep_time = 0;
1661                                        atomic_inc(&pkt->run_sm);
1662                                }
1663                        }
1664
1665                        if (kthread_should_stop())
1666                                break;
1667                }
1668work_to_do:
1669                set_current_state(TASK_RUNNING);
1670                remove_wait_queue(&pd->wqueue, &wait);
1671
1672                if (kthread_should_stop())
1673                        break;
1674
1675                /*
1676                 * if pkt_handle_queue returns true, we can queue
1677                 * another request.
1678                 */
1679                while (pkt_handle_queue(pd))
1680                        ;
1681
1682                /*
1683                 * Handle packet state machine
1684                 */
1685                pkt_handle_packets(pd);
1686
1687                /*
1688                 * Handle iosched queues
1689                 */
1690                pkt_iosched_process_queue(pd);
1691        }
1692
1693        return 0;
1694}
1695
1696static void pkt_print_settings(struct pktcdvd_device *pd)
1697{
1698        printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1699        printk("%u blocks, ", pd->settings.size >> 2);
1700        printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1701}
1702
1703static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1704{
1705        memset(cgc->cmd, 0, sizeof(cgc->cmd));
1706
1707        cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1708        cgc->cmd[2] = page_code | (page_control << 6);
1709        cgc->cmd[7] = cgc->buflen >> 8;
1710        cgc->cmd[8] = cgc->buflen & 0xff;
1711        cgc->data_direction = CGC_DATA_READ;
1712        return pkt_generic_packet(pd, cgc);
1713}
1714
1715static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1716{
1717        memset(cgc->cmd, 0, sizeof(cgc->cmd));
1718        memset(cgc->buffer, 0, 2);
1719        cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1720        cgc->cmd[1] = 0x10;             /* PF */
1721        cgc->cmd[7] = cgc->buflen >> 8;
1722        cgc->cmd[8] = cgc->buflen & 0xff;
1723        cgc->data_direction = CGC_DATA_WRITE;
1724        return pkt_generic_packet(pd, cgc);
1725}
1726
1727static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1728{
1729        struct packet_command cgc;
1730        int ret;
1731
1732        /* set up command and get the disc info */
1733        init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1734        cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1735        cgc.cmd[8] = cgc.buflen = 2;
1736        cgc.quiet = 1;
1737
1738        if ((ret = pkt_generic_packet(pd, &cgc)))
1739                return ret;
1740
1741        /* not all drives have the same disc_info length, so requeue
1742         * packet with the length the drive tells us it can supply
1743         */
1744        cgc.buflen = be16_to_cpu(di->disc_information_length) +
1745                     sizeof(di->disc_information_length);
1746
1747        if (cgc.buflen > sizeof(disc_information))
1748                cgc.buflen = sizeof(disc_information);
1749
1750        cgc.cmd[8] = cgc.buflen;
1751        return pkt_generic_packet(pd, &cgc);
1752}
1753
1754static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1755{
1756        struct packet_command cgc;
1757        int ret;
1758
1759        init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1760        cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1761        cgc.cmd[1] = type & 3;
1762        cgc.cmd[4] = (track & 0xff00) >> 8;
1763        cgc.cmd[5] = track & 0xff;
1764        cgc.cmd[8] = 8;
1765        cgc.quiet = 1;
1766
1767        if ((ret = pkt_generic_packet(pd, &cgc)))
1768                return ret;
1769
1770        cgc.buflen = be16_to_cpu(ti->track_information_length) +
1771                     sizeof(ti->track_information_length);
1772
1773        if (cgc.buflen > sizeof(track_information))
1774                cgc.buflen = sizeof(track_information);
1775
1776        cgc.cmd[8] = cgc.buflen;
1777        return pkt_generic_packet(pd, &cgc);
1778}
1779
1780static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1781                                                long *last_written)
1782{
1783        disc_information di;
1784        track_information ti;
1785        __u32 last_track;
1786        int ret = -1;
1787
1788        if ((ret = pkt_get_disc_info(pd, &di)))
1789                return ret;
1790
1791        last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1792        if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1793                return ret;
1794
1795        /* if this track is blank, try the previous. */
1796        if (ti.blank) {
1797                last_track--;
1798                if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1799                        return ret;
1800        }
1801
1802        /* if last recorded field is valid, return it. */
1803        if (ti.lra_v) {
1804                *last_written = be32_to_cpu(ti.last_rec_address);
1805        } else {
1806                /* make it up instead */
1807                *last_written = be32_to_cpu(ti.track_start) +
1808                                be32_to_cpu(ti.track_size);
1809                if (ti.free_blocks)
1810                        *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1811        }
1812        return 0;
1813}
1814
1815/*
1816 * write mode select package based on pd->settings
1817 */
1818static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1819{
1820        struct packet_command cgc;
1821        struct request_sense sense;
1822        write_param_page *wp;
1823        char buffer[128];
1824        int ret, size;
1825
1826        /* doesn't apply to DVD+RW or DVD-RAM */
1827        if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1828                return 0;
1829
1830        memset(buffer, 0, sizeof(buffer));
1831        init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1832        cgc.sense = &sense;
1833        if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1834                pkt_dump_sense(&cgc);
1835                return ret;
1836        }
1837
1838        size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1839        pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1840        if (size > sizeof(buffer))
1841                size = sizeof(buffer);
1842
1843        /*
1844         * now get it all
1845         */
1846        init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1847        cgc.sense = &sense;
1848        if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1849                pkt_dump_sense(&cgc);
1850                return ret;
1851        }
1852
1853        /*
1854         * write page is offset header + block descriptor length
1855         */
1856        wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1857
1858        wp->fp = pd->settings.fp;
1859        wp->track_mode = pd->settings.track_mode;
1860        wp->write_type = pd->settings.write_type;
1861        wp->data_block_type = pd->settings.block_mode;
1862
1863        wp->multi_session = 0;
1864
1865#ifdef PACKET_USE_LS
1866        wp->link_size = 7;
1867        wp->ls_v = 1;
1868#endif
1869
1870        if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1871                wp->session_format = 0;
1872                wp->subhdr2 = 0x20;
1873        } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1874                wp->session_format = 0x20;
1875                wp->subhdr2 = 8;
1876#if 0
1877                wp->mcn[0] = 0x80;
1878                memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1879#endif
1880        } else {
1881                /*
1882                 * paranoia
1883                 */
1884                printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1885                return 1;
1886        }
1887        wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1888
1889        cgc.buflen = cgc.cmd[8] = size;
1890        if ((ret = pkt_mode_select(pd, &cgc))) {
1891                pkt_dump_sense(&cgc);
1892                return ret;
1893        }
1894
1895        pkt_print_settings(pd);
1896        return 0;
1897}
1898
1899/*
1900 * 1 -- we can write to this track, 0 -- we can't
1901 */
1902static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1903{
1904        switch (pd->mmc3_profile) {
1905                case 0x1a: /* DVD+RW */
1906                case 0x12: /* DVD-RAM */
1907                        /* The track is always writable on DVD+RW/DVD-RAM */
1908                        return 1;
1909                default:
1910                        break;
1911        }
1912
1913        if (!ti->packet || !ti->fp)
1914                return 0;
1915
1916        /*
1917         * "good" settings as per Mt Fuji.
1918         */
1919        if (ti->rt == 0 && ti->blank == 0)
1920                return 1;
1921
1922        if (ti->rt == 0 && ti->blank == 1)
1923                return 1;
1924
1925        if (ti->rt == 1 && ti->blank == 0)
1926                return 1;
1927
1928        printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1929        return 0;
1930}
1931
1932/*
1933 * 1 -- we can write to this disc, 0 -- we can't
1934 */
1935static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1936{
1937        switch (pd->mmc3_profile) {
1938                case 0x0a: /* CD-RW */
1939                case 0xffff: /* MMC3 not supported */
1940                        break;
1941                case 0x1a: /* DVD+RW */
1942                case 0x13: /* DVD-RW */
1943                case 0x12: /* DVD-RAM */
1944                        return 1;
1945                default:
1946                        VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1947                        return 0;
1948        }
1949
1950        /*
1951         * for disc type 0xff we should probably reserve a new track.
1952         * but i'm not sure, should we leave this to user apps? probably.
1953         */
1954        if (di->disc_type == 0xff) {
1955                printk(DRIVER_NAME": Unknown disc. No track?\n");
1956                return 0;
1957        }
1958
1959        if (di->disc_type != 0x20 && di->disc_type != 0) {
1960                printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1961                return 0;
1962        }
1963
1964        if (di->erasable == 0) {
1965                printk(DRIVER_NAME": Disc not erasable\n");
1966                return 0;
1967        }
1968
1969        if (di->border_status == PACKET_SESSION_RESERVED) {
1970                printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1971                return 0;
1972        }
1973
1974        return 1;
1975}
1976
1977static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1978{
1979        struct packet_command cgc;
1980        unsigned char buf[12];
1981        disc_information di;
1982        track_information ti;
1983        int ret, track;
1984
1985        init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1986        cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1987        cgc.cmd[8] = 8;
1988        ret = pkt_generic_packet(pd, &cgc);
1989        pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1990
1991        memset(&di, 0, sizeof(disc_information));
1992        memset(&ti, 0, sizeof(track_information));
1993
1994        if ((ret = pkt_get_disc_info(pd, &di))) {
1995                printk("failed get_disc\n");
1996                return ret;
1997        }
1998
1999        if (!pkt_writable_disc(pd, &di))
2000                return -EROFS;
2001
2002        pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2003
2004        track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2005        if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2006                printk(DRIVER_NAME": failed get_track\n");
2007                return ret;
2008        }
2009
2010        if (!pkt_writable_track(pd, &ti)) {
2011                printk(DRIVER_NAME": can't write to this track\n");
2012                return -EROFS;
2013        }
2014
2015        /*
2016         * we keep packet size in 512 byte units, makes it easier to
2017         * deal with request calculations.
2018         */
2019        pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2020        if (pd->settings.size == 0) {
2021                printk(DRIVER_NAME": detected zero packet size!\n");
2022                return -ENXIO;
2023        }
2024        if (pd->settings.size > PACKET_MAX_SECTORS) {
2025                printk(DRIVER_NAME": packet size is too big\n");
2026                return -EROFS;
2027        }
2028        pd->settings.fp = ti.fp;
2029        pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2030
2031        if (ti.nwa_v) {
2032                pd->nwa = be32_to_cpu(ti.next_writable);
2033                set_bit(PACKET_NWA_VALID, &pd->flags);
2034        }
2035
2036        /*
2037         * in theory we could use lra on -RW media as well and just zero
2038         * blocks that haven't been written yet, but in practice that
2039         * is just a no-go. we'll use that for -R, naturally.
2040         */
2041        if (ti.lra_v) {
2042                pd->lra = be32_to_cpu(ti.last_rec_address);
2043                set_bit(PACKET_LRA_VALID, &pd->flags);
2044        } else {
2045                pd->lra = 0xffffffff;
2046                set_bit(PACKET_LRA_VALID, &pd->flags);
2047        }
2048
2049        /*
2050         * fine for now
2051         */
2052        pd->settings.link_loss = 7;
2053        pd->settings.write_type = 0;    /* packet */
2054        pd->settings.track_mode = ti.track_mode;
2055
2056        /*
2057         * mode1 or mode2 disc
2058         */
2059        switch (ti.data_mode) {
2060                case PACKET_MODE1:
2061                        pd->settings.block_mode = PACKET_BLOCK_MODE1;
2062                        break;
2063                case PACKET_MODE2:
2064                        pd->settings.block_mode = PACKET_BLOCK_MODE2;
2065                        break;
2066                default:
2067                        printk(DRIVER_NAME": unknown data mode\n");
2068                        return -EROFS;
2069        }
2070        return 0;
2071}
2072
2073/*
2074 * enable/disable write caching on drive
2075 */
2076static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2077                                                int set)
2078{
2079        struct packet_command cgc;
2080        struct request_sense sense;
2081        unsigned char buf[64];
2082        int ret;
2083
2084        init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2085        cgc.sense = &sense;
2086        cgc.buflen = pd->mode_offset + 12;
2087
2088        /*
2089         * caching mode page might not be there, so quiet this command
2090         */
2091        cgc.quiet = 1;
2092
2093        if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2094                return ret;
2095
2096        buf[pd->mode_offset + 10] |= (!!set << 2);
2097
2098        cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2099        ret = pkt_mode_select(pd, &cgc);
2100        if (ret) {
2101                printk(DRIVER_NAME": write caching control failed\n");
2102                pkt_dump_sense(&cgc);
2103        } else if (!ret && set)
2104                printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2105        return ret;
2106}
2107
2108static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2109{
2110        struct packet_command cgc;
2111
2112        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2113        cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2114        cgc.cmd[4] = lockflag ? 1 : 0;
2115        return pkt_generic_packet(pd, &cgc);
2116}
2117
2118/*
2119 * Returns drive maximum write speed
2120 */
2121static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2122                                                unsigned *write_speed)
2123{
2124        struct packet_command cgc;
2125        struct request_sense sense;
2126        unsigned char buf[256+18];
2127        unsigned char *cap_buf;
2128        int ret, offset;
2129
2130        cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2131        init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2132        cgc.sense = &sense;
2133
2134        ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2135        if (ret) {
2136                cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2137                             sizeof(struct mode_page_header);
2138                ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2139                if (ret) {
2140                        pkt_dump_sense(&cgc);
2141                        return ret;
2142                }
2143        }
2144
2145        offset = 20;                        /* Obsoleted field, used by older drives */
2146        if (cap_buf[1] >= 28)
2147                offset = 28;                /* Current write speed selected */
2148        if (cap_buf[1] >= 30) {
2149                /* If the drive reports at least one "Logical Unit Write
2150                 * Speed Performance Descriptor Block", use the information
2151                 * in the first block. (contains the highest speed)
2152                 */
2153                int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2154                if (num_spdb > 0)
2155                        offset = 34;
2156        }
2157
2158        *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2159        return 0;
2160}
2161
2162/* These tables from cdrecord - I don't have orange book */
2163/* standard speed CD-RW (1-4x) */
2164static char clv_to_speed[16] = {
2165        /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2166           0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2167};
2168/* high speed CD-RW (-10x) */
2169static char hs_clv_to_speed[16] = {
2170        /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2171           0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2172};
2173/* ultra high speed CD-RW */
2174static char us_clv_to_speed[16] = {
2175        /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2176           0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2177};
2178
2179/*
2180 * reads the maximum media speed from ATIP
2181 */
2182static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2183                                                unsigned *speed)
2184{
2185        struct packet_command cgc;
2186        struct request_sense sense;
2187        unsigned char buf[64];
2188        unsigned int size, st, sp;
2189        int ret;
2190
2191        init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2192        cgc.sense = &sense;
2193        cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2194        cgc.cmd[1] = 2;
2195        cgc.cmd[2] = 4; /* READ ATIP */
2196        cgc.cmd[8] = 2;
2197        ret = pkt_generic_packet(pd, &cgc);
2198        if (ret) {
2199                pkt_dump_sense(&cgc);
2200                return ret;
2201        }
2202        size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2203        if (size > sizeof(buf))
2204                size = sizeof(buf);
2205
2206        init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2207        cgc.sense = &sense;
2208        cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2209        cgc.cmd[1] = 2;
2210        cgc.cmd[2] = 4;
2211        cgc.cmd[8] = size;
2212        ret = pkt_generic_packet(pd, &cgc);
2213        if (ret) {
2214                pkt_dump_sense(&cgc);
2215                return ret;
2216        }
2217
2218        if (!(buf[6] & 0x40)) {
2219                printk(DRIVER_NAME": Disc type is not CD-RW\n");
2220                return 1;
2221        }
2222        if (!(buf[6] & 0x4)) {
2223                printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2224                return 1;
2225        }
2226
2227        st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2228
2229        sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2230
2231        /* Info from cdrecord */
2232        switch (st) {
2233                case 0: /* standard speed */
2234                        *speed = clv_to_speed[sp];
2235                        break;
2236                case 1: /* high speed */
2237                        *speed = hs_clv_to_speed[sp];
2238                        break;
2239                case 2: /* ultra high speed */
2240                        *speed = us_clv_to_speed[sp];
2241                        break;
2242                default:
2243                        printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2244                        return 1;
2245        }
2246        if (*speed) {
2247                printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2248                return 0;
2249        } else {
2250                printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2251                return 1;
2252        }
2253}
2254
2255static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2256{
2257        struct packet_command cgc;
2258        struct request_sense sense;
2259        int ret;
2260
2261        VPRINTK(DRIVER_NAME": Performing OPC\n");
2262
2263        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2264        cgc.sense = &sense;
2265        cgc.timeout = 60*HZ;
2266        cgc.cmd[0] = GPCMD_SEND_OPC;
2267        cgc.cmd[1] = 1;
2268        if ((ret = pkt_generic_packet(pd, &cgc)))
2269                pkt_dump_sense(&cgc);
2270        return ret;
2271}
2272
2273static int pkt_open_write(struct pktcdvd_device *pd)
2274{
2275        int ret;
2276        unsigned int write_speed, media_write_speed, read_speed;
2277
2278        if ((ret = pkt_probe_settings(pd))) {
2279                VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2280                return ret;
2281        }
2282
2283        if ((ret = pkt_set_write_settings(pd))) {
2284                DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2285                return -EIO;
2286        }
2287
2288        pkt_write_caching(pd, USE_WCACHING);
2289
2290        if ((ret = pkt_get_max_speed(pd, &write_speed)))
2291                write_speed = 16 * 177;
2292        switch (pd->mmc3_profile) {
2293                case 0x13: /* DVD-RW */
2294                case 0x1a: /* DVD+RW */
2295                case 0x12: /* DVD-RAM */
2296                        DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2297                        break;
2298                default:
2299                        if ((ret = pkt_media_speed(pd, &media_write_speed)))
2300                                media_write_speed = 16;
2301                        write_speed = min(write_speed, media_write_speed * 177);
2302                        DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2303                        break;
2304        }
2305        read_speed = write_speed;
2306
2307        if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2308                DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2309                return -EIO;
2310        }
2311        pd->write_speed = write_speed;
2312        pd->read_speed = read_speed;
2313
2314        if ((ret = pkt_perform_opc(pd))) {
2315                DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2316        }
2317
2318        return 0;
2319}
2320
2321/*
2322 * called at open time.
2323 */
2324static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2325{
2326        int ret;
2327        long lba;
2328        struct request_queue *q;
2329
2330        /*
2331         * We need to re-open the cdrom device without O_NONBLOCK to be able
2332         * to read/write from/to it. It is already opened in O_NONBLOCK mode
2333         * so bdget() can't fail.
2334         */
2335        bdget(pd->bdev->bd_dev);
2336        if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2337                goto out;
2338
2339        if ((ret = bd_claim(pd->bdev, pd)))
2340                goto out_putdev;
2341
2342        if ((ret = pkt_get_last_written(pd, &lba))) {
2343                printk(DRIVER_NAME": pkt_get_last_written failed\n");
2344                goto out_unclaim;
2345        }
2346
2347        set_capacity(pd->disk, lba << 2);
2348        set_capacity(pd->bdev->bd_disk, lba << 2);
2349        bd_set_size(pd->bdev, (loff_t)lba << 11);
2350
2351        q = bdev_get_queue(pd->bdev);
2352        if (write) {
2353                if ((ret = pkt_open_write(pd)))
2354                        goto out_unclaim;
2355                /*
2356                 * Some CDRW drives can not handle writes larger than one packet,
2357                 * even if the size is a multiple of the packet size.
2358                 */
2359                spin_lock_irq(q->queue_lock);
2360                blk_queue_max_sectors(q, pd->settings.size);
2361                spin_unlock_irq(q->queue_lock);
2362                set_bit(PACKET_WRITABLE, &pd->flags);
2363        } else {
2364                pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2365                clear_bit(PACKET_WRITABLE, &pd->flags);
2366        }
2367
2368        if ((ret = pkt_set_segment_merging(pd, q)))
2369                goto out_unclaim;
2370
2371        if (write) {
2372                if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2373                        printk(DRIVER_NAME": not enough memory for buffers\n");
2374                        ret = -ENOMEM;
2375                        goto out_unclaim;
2376                }
2377                printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2378        }
2379
2380        return 0;
2381
2382out_unclaim:
2383        bd_release(pd->bdev);
2384out_putdev:
2385        blkdev_put(pd->bdev);
2386out:
2387        return ret;
2388}
2389
2390/*
2391 * called when the device is closed. makes sure that the device flushes
2392 * the internal cache before we close.
2393 */
2394static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2395{
2396        if (flush && pkt_flush_cache(pd))
2397                DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2398
2399        pkt_lock_door(pd, 0);
2400
2401        pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2402        bd_release(pd->bdev);
2403        blkdev_put(pd->bdev);
2404
2405        pkt_shrink_pktlist(pd);
2406}
2407
2408static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2409{
2410        if (dev_minor >= MAX_WRITERS)
2411                return NULL;
2412        return pkt_devs[dev_minor];
2413}
2414
2415static int pkt_open(struct inode *inode, struct file *file)
2416{
2417        struct pktcdvd_device *pd = NULL;
2418        int ret;
2419
2420        VPRINTK(DRIVER_NAME": entering open\n");
2421
2422        mutex_lock(&ctl_mutex);
2423        pd = pkt_find_dev_from_minor(iminor(inode));
2424        if (!pd) {
2425                ret = -ENODEV;
2426                goto out;
2427        }
2428        BUG_ON(pd->refcnt < 0);
2429
2430        pd->refcnt++;
2431        if (pd->refcnt > 1) {
2432                if ((file->f_mode & FMODE_WRITE) &&
2433                    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2434                        ret = -EBUSY;
2435                        goto out_dec;
2436                }
2437        } else {
2438                ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2439                if (ret)
2440                        goto out_dec;
2441                /*
2442                 * needed here as well, since ext2 (among others) may change
2443                 * the blocksize at mount time
2444                 */
2445                set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2446        }
2447
2448        mutex_unlock(&ctl_mutex);
2449        return 0;
2450
2451out_dec:
2452        pd->refcnt--;
2453out:
2454        VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2455        mutex_unlock(&ctl_mutex);
2456        return ret;
2457}
2458
2459static int pkt_close(struct inode *inode, struct file *file)
2460{
2461        struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2462        int ret = 0;
2463
2464        mutex_lock(&ctl_mutex);
2465        pd->refcnt--;
2466        BUG_ON(pd->refcnt < 0);
2467        if (pd->refcnt == 0) {
2468                int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2469                pkt_release_dev(pd, flush);
2470        }
2471        mutex_unlock(&ctl_mutex);
2472        return ret;
2473}
2474
2475
2476static void pkt_end_io_read_cloned(struct bio *bio, int err)
2477{
2478        struct packet_stacked_data *psd = bio->bi_private;
2479        struct pktcdvd_device *pd = psd->pd;
2480
2481        bio_put(bio);
2482        bio_endio(psd->bio, err);
2483        mempool_free(psd, psd_pool);
2484        pkt_bio_finished(pd);
2485}
2486
2487static int pkt_make_request(struct request_queue *q, struct bio *bio)
2488{
2489        struct pktcdvd_device *pd;
2490        char b[BDEVNAME_SIZE];
2491        sector_t zone;
2492        struct packet_data *pkt;
2493        int was_empty, blocked_bio;
2494        struct pkt_rb_node *node;
2495
2496        pd = q->queuedata;
2497        if (!pd) {
2498                printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2499                goto end_io;
2500        }
2501
2502        /*
2503         * Clone READ bios so we can have our own bi_end_io callback.
2504         */
2505        if (bio_data_dir(bio) == READ) {
2506                struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2507                struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2508
2509                psd->pd = pd;
2510                psd->bio = bio;
2511                cloned_bio->bi_bdev = pd->bdev;
2512                cloned_bio->bi_private = psd;
2513                cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2514                pd->stats.secs_r += bio->bi_size >> 9;
2515                pkt_queue_bio(pd, cloned_bio);
2516                return 0;
2517        }
2518
2519        if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2520                printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2521                        pd->name, (unsigned long long)bio->bi_sector);
2522                goto end_io;
2523        }
2524
2525        if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2526                printk(DRIVER_NAME": wrong bio size\n");
2527                goto end_io;
2528        }
2529
2530        blk_queue_bounce(q, &bio);
2531
2532        zone = ZONE(bio->bi_sector, pd);
2533        VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2534                (unsigned long long)bio->bi_sector,
2535                (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2536
2537        /* Check if we have to split the bio */
2538        {
2539                struct bio_pair *bp;
2540                sector_t last_zone;
2541                int first_sectors;
2542
2543                last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2544                if (last_zone != zone) {
2545                        BUG_ON(last_zone != zone + pd->settings.size);
2546                        first_sectors = last_zone - bio->bi_sector;
2547                        bp = bio_split(bio, bio_split_pool, first_sectors);
2548                        BUG_ON(!bp);
2549                        pkt_make_request(q, &bp->bio1);
2550                        pkt_make_request(q, &bp->bio2);
2551                        bio_pair_release(bp);
2552                        return 0;
2553                }
2554        }
2555
2556        /*
2557         * If we find a matching packet in state WAITING or READ_WAIT, we can
2558         * just append this bio to that packet.
2559         */
2560        spin_lock(&pd->cdrw.active_list_lock);
2561        blocked_bio = 0;
2562        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2563                if (pkt->sector == zone) {
2564                        spin_lock(&pkt->lock);
2565                        if ((pkt->state == PACKET_WAITING_STATE) ||
2566                            (pkt->state == PACKET_READ_WAIT_STATE)) {
2567                                pkt_add_list_last(bio, &pkt->orig_bios,
2568                                                  &pkt->orig_bios_tail);
2569                                pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2570                                if ((pkt->write_size >= pkt->frames) &&
2571                                    (pkt->state == PACKET_WAITING_STATE)) {
2572                                        atomic_inc(&pkt->run_sm);
2573                                        wake_up(&pd->wqueue);
2574                                }
2575                                spin_unlock(&pkt->lock);
2576                                spin_unlock(&pd->cdrw.active_list_lock);
2577                                return 0;
2578                        } else {
2579                                blocked_bio = 1;
2580                        }
2581                        spin_unlock(&pkt->lock);
2582                }
2583        }
2584        spin_unlock(&pd->cdrw.active_list_lock);
2585
2586        /*
2587         * Test if there is enough room left in the bio work queue
2588         * (queue size >= congestion on mark).
2589         * If not, wait till the work queue size is below the congestion off mark.
2590         */
2591        spin_lock(&pd->lock);
2592        if (pd->write_congestion_on > 0
2593            && pd->bio_queue_size >= pd->write_congestion_on) {
2594                set_bdi_congested(&q->backing_dev_info, WRITE);
2595                do {
2596                        spin_unlock(&pd->lock);
2597                        congestion_wait(WRITE, HZ);
2598                        spin_lock(&pd->lock);
2599                } while(pd->bio_queue_size > pd->write_congestion_off);
2600        }
2601        spin_unlock(&pd->lock);
2602
2603        /*
2604         * No matching packet found. Store the bio in the work queue.
2605         */
2606        node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2607        node->bio = bio;
2608        spin_lock(&pd->lock);
2609        BUG_ON(pd->bio_queue_size < 0);
2610        was_empty = (pd->bio_queue_size == 0);
2611        pkt_rbtree_insert(pd, node);
2612        spin_unlock(&pd->lock);
2613
2614        /*
2615         * Wake up the worker thread.
2616         */
2617        atomic_set(&pd->scan_queue, 1);
2618        if (was_empty) {
2619                /* This wake_up is required for correct operation */
2620                wake_up(&pd->wqueue);
2621        } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2622                /*
2623                 * This wake up is not required for correct operation,
2624                 * but improves performance in some cases.
2625                 */
2626                wake_up(&pd->wqueue);
2627        }
2628        return 0;
2629end_io:
2630        bio_io_error(bio);
2631        return 0;
2632}
2633
2634
2635
2636static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2637                          struct bio_vec *bvec)
2638{
2639        struct pktcdvd_device *pd = q->queuedata;
2640        sector_t zone = ZONE(bmd->bi_sector, pd);
2641        int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2642        int remaining = (pd->settings.size << 9) - used;
2643        int remaining2;
2644
2645        /*
2646         * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2647         * boundary, pkt_make_request() will split the bio.
2648         */
2649        remaining2 = PAGE_SIZE - bmd->bi_size;
2650        remaining = max(remaining, remaining2);
2651
2652        BUG_ON(remaining < 0);
2653        return remaining;
2654}
2655
2656static void pkt_init_queue(struct pktcdvd_device *pd)
2657{
2658        struct request_queue *q = pd->disk->queue;
2659
2660        blk_queue_make_request(q, pkt_make_request);
2661        blk_queue_hardsect_size(q, CD_FRAMESIZE);
2662        blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2663        blk_queue_merge_bvec(q, pkt_merge_bvec);
2664        q->queuedata = pd;
2665}
2666
2667static int pkt_seq_show(struct seq_file *m, void *p)
2668{
2669        struct pktcdvd_device *pd = m->private;
2670        char *msg;
2671        char bdev_buf[BDEVNAME_SIZE];
2672        int states[PACKET_NUM_STATES];
2673
2674        seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2675                   bdevname(pd->bdev, bdev_buf));
2676
2677        seq_printf(m, "\nSettings:\n");
2678        seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2679
2680        if (pd->settings.write_type == 0)
2681                msg = "Packet";
2682        else
2683                msg = "Unknown";
2684        seq_printf(m, "\twrite type:\t\t%s\n", msg);
2685
2686        seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2687        seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2688
2689        seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2690
2691        if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2692                msg = "Mode 1";
2693        else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2694                msg = "Mode 2";
2695        else
2696                msg = "Unknown";
2697        seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2698
2699        seq_printf(m, "\nStatistics:\n");
2700        seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2701        seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2702        seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2703        seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2704        seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2705
2706        seq_printf(m, "\nMisc:\n");
2707        seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2708        seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2709        seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2710        seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2711        seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2712        seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2713
2714        seq_printf(m, "\nQueue state:\n");
2715        seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2716        seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2717        seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2718
2719        pkt_count_states(pd, states);
2720        seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2721                   states[0], states[1], states[2], states[3], states[4], states[5]);
2722
2723        seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2724                        pd->write_congestion_off,
2725                        pd->write_congestion_on);
2726        return 0;
2727}
2728
2729static int pkt_seq_open(struct inode *inode, struct file *file)
2730{
2731        return single_open(file, pkt_seq_show, PDE(inode)->data);
2732}
2733
2734static const struct file_operations pkt_proc_fops = {
2735        .open   = pkt_seq_open,
2736        .read   = seq_read,
2737        .llseek = seq_lseek,
2738        .release = single_release
2739};
2740
2741static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2742{
2743        int i;
2744        int ret = 0;
2745        char b[BDEVNAME_SIZE];
2746        struct block_device *bdev;
2747
2748        if (pd->pkt_dev == dev) {
2749                printk(DRIVER_NAME": Recursive setup not allowed\n");
2750                return -EBUSY;
2751        }
2752        for (i = 0; i < MAX_WRITERS; i++) {
2753                struct pktcdvd_device *pd2 = pkt_devs[i];
2754                if (!pd2)
2755                        continue;
2756                if (pd2->bdev->bd_dev == dev) {
2757                        printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2758                        return -EBUSY;
2759                }
2760                if (pd2->pkt_dev == dev) {
2761                        printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2762                        return -EBUSY;
2763                }
2764        }
2765
2766        bdev = bdget(dev);
2767        if (!bdev)
2768                return -ENOMEM;
2769        ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2770        if (ret)
2771                return ret;
2772
2773        /* This is safe, since we have a reference from open(). */
2774        __module_get(THIS_MODULE);
2775
2776        pd->bdev = bdev;
2777        set_blocksize(bdev, CD_FRAMESIZE);
2778
2779        pkt_init_queue(pd);
2780
2781        atomic_set(&pd->cdrw.pending_bios, 0);
2782        pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2783        if (IS_ERR(pd->cdrw.thread)) {
2784                printk(DRIVER_NAME": can't start kernel thread\n");
2785                ret = -ENOMEM;
2786                goto out_mem;
2787        }
2788
2789        proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2790        DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2791        return 0;
2792
2793out_mem:
2794        blkdev_put(bdev);
2795        /* This is safe: open() is still holding a reference. */
2796        module_put(THIS_MODULE);
2797        return ret;
2798}
2799
2800static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2801{
2802        struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2803
2804        VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2805
2806        switch (cmd) {
2807        /*
2808         * forward selected CDROM ioctls to CD-ROM, for UDF
2809         */
2810        case CDROMMULTISESSION:
2811        case CDROMREADTOCENTRY:
2812        case CDROM_LAST_WRITTEN:
2813        case CDROM_SEND_PACKET:
2814        case SCSI_IOCTL_SEND_COMMAND:
2815                return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2816
2817        case CDROMEJECT:
2818                /*
2819                 * The door gets locked when the device is opened, so we
2820                 * have to unlock it or else the eject command fails.
2821                 */
2822                if (pd->refcnt == 1)
2823                        pkt_lock_door(pd, 0);
2824                return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2825
2826        default:
2827                VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2828                return -ENOTTY;
2829        }
2830
2831        return 0;
2832}
2833
2834static int pkt_media_changed(struct gendisk *disk)
2835{
2836        struct pktcdvd_device *pd = disk->private_data;
2837        struct gendisk *attached_disk;
2838
2839        if (!pd)
2840                return 0;
2841        if (!pd->bdev)
2842                return 0;
2843        attached_disk = pd->bdev->bd_disk;
2844        if (!attached_disk)
2845                return 0;
2846        return attached_disk->fops->media_changed(attached_disk);
2847}
2848
2849static struct block_device_operations pktcdvd_ops = {
2850        .owner =                THIS_MODULE,
2851        .open =                 pkt_open,
2852        .release =              pkt_close,
2853        .ioctl =                pkt_ioctl,
2854        .media_changed =        pkt_media_changed,
2855};
2856
2857/*
2858 * Set up mapping from pktcdvd device to CD-ROM device.
2859 */
2860static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2861{
2862        int idx;
2863        int ret = -ENOMEM;
2864        struct pktcdvd_device *pd;
2865        struct gendisk *disk;
2866
2867        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2868
2869        for (idx = 0; idx < MAX_WRITERS; idx++)
2870                if (!pkt_devs[idx])
2871                        break;
2872        if (idx == MAX_WRITERS) {
2873                printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2874                ret = -EBUSY;
2875                goto out_mutex;
2876        }
2877
2878        pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2879        if (!pd)
2880                goto out_mutex;
2881
2882        pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2883                                                  sizeof(struct pkt_rb_node));
2884        if (!pd->rb_pool)
2885                goto out_mem;
2886
2887        INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2888        INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2889        spin_lock_init(&pd->cdrw.active_list_lock);
2890
2891        spin_lock_init(&pd->lock);
2892        spin_lock_init(&pd->iosched.lock);
2893        sprintf(pd->name, DRIVER_NAME"%d", idx);
2894        init_waitqueue_head(&pd->wqueue);
2895        pd->bio_queue = RB_ROOT;
2896
2897        pd->write_congestion_on  = write_congestion_on;
2898        pd->write_congestion_off = write_congestion_off;
2899
2900        disk = alloc_disk(1);
2901        if (!disk)
2902                goto out_mem;
2903        pd->disk = disk;
2904        disk->major = pktdev_major;
2905        disk->first_minor = idx;
2906        disk->fops = &pktcdvd_ops;
2907        disk->flags = GENHD_FL_REMOVABLE;
2908        strcpy(disk->disk_name, pd->name);
2909        disk->private_data = pd;
2910        disk->queue = blk_alloc_queue(GFP_KERNEL);
2911        if (!disk->queue)
2912                goto out_mem2;
2913
2914        pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2915        ret = pkt_new_dev(pd, dev);
2916        if (ret)
2917                goto out_new_dev;
2918
2919        add_disk(disk);
2920
2921        pkt_sysfs_dev_new(pd);
2922        pkt_debugfs_dev_new(pd);
2923
2924        pkt_devs[idx] = pd;
2925        if (pkt_dev)
2926                *pkt_dev = pd->pkt_dev;
2927
2928        mutex_unlock(&ctl_mutex);
2929        return 0;
2930
2931out_new_dev:
2932        blk_cleanup_queue(disk->queue);
2933out_mem2:
2934        put_disk(disk);
2935out_mem:
2936        if (pd->rb_pool)
2937                mempool_destroy(pd->rb_pool);
2938        kfree(pd);
2939out_mutex:
2940        mutex_unlock(&ctl_mutex);
2941        printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2942        return ret;
2943}
2944
2945/*
2946 * Tear down mapping from pktcdvd device to CD-ROM device.
2947 */
2948static int pkt_remove_dev(dev_t pkt_dev)
2949{
2950        struct pktcdvd_device *pd;
2951        int idx;
2952        int ret = 0;
2953
2954        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2955
2956        for (idx = 0; idx < MAX_WRITERS; idx++) {
2957                pd = pkt_devs[idx];
2958                if (pd && (pd->pkt_dev == pkt_dev))
2959                        break;
2960        }
2961        if (idx == MAX_WRITERS) {
2962                DPRINTK(DRIVER_NAME": dev not setup\n");
2963                ret = -ENXIO;
2964                goto out;
2965        }
2966
2967        if (pd->refcnt > 0) {
2968                ret = -EBUSY;
2969                goto out;
2970        }
2971        if (!IS_ERR(pd->cdrw.thread))
2972                kthread_stop(pd->cdrw.thread);
2973
2974        pkt_devs[idx] = NULL;
2975
2976        pkt_debugfs_dev_remove(pd);
2977        pkt_sysfs_dev_remove(pd);
2978
2979        blkdev_put(pd->bdev);
2980
2981        remove_proc_entry(pd->name, pkt_proc);
2982        DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2983
2984        del_gendisk(pd->disk);
2985        blk_cleanup_queue(pd->disk->queue);
2986        put_disk(pd->disk);
2987
2988        mempool_destroy(pd->rb_pool);
2989        kfree(pd);
2990
2991        /* This is safe: open() is still holding a reference. */
2992        module_put(THIS_MODULE);
2993
2994out:
2995        mutex_unlock(&ctl_mutex);
2996        return ret;
2997}
2998
2999static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3000{
3001        struct pktcdvd_device *pd;
3002
3003        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3004
3005        pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3006        if (pd) {
3007                ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3008                ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3009        } else {
3010                ctrl_cmd->dev = 0;
3011                ctrl_cmd->pkt_dev = 0;
3012        }
3013        ctrl_cmd->num_devices = MAX_WRITERS;
3014
3015        mutex_unlock(&ctl_mutex);
3016}
3017
3018static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3019{
3020        void __user *argp = (void __user *)arg;
3021        struct pkt_ctrl_command ctrl_cmd;
3022        int ret = 0;
3023        dev_t pkt_dev = 0;
3024
3025        if (cmd != PACKET_CTRL_CMD)
3026                return -ENOTTY;
3027
3028        if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3029                return -EFAULT;
3030
3031        switch (ctrl_cmd.command) {
3032        case PKT_CTRL_CMD_SETUP:
3033                if (!capable(CAP_SYS_ADMIN))
3034                        return -EPERM;
3035                ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3036                ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3037                break;
3038        case PKT_CTRL_CMD_TEARDOWN:
3039                if (!capable(CAP_SYS_ADMIN))
3040                        return -EPERM;
3041                ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3042                break;
3043        case PKT_CTRL_CMD_STATUS:
3044                pkt_get_status(&ctrl_cmd);
3045                break;
3046        default:
3047                return -ENOTTY;
3048        }
3049
3050        if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3051                return -EFAULT;
3052        return ret;
3053}
3054
3055
3056static const struct file_operations pkt_ctl_fops = {
3057        .ioctl   = pkt_ctl_ioctl,
3058        .owner   = THIS_MODULE,
3059};
3060
3061static struct miscdevice pkt_misc = {
3062        .minor          = MISC_DYNAMIC_MINOR,
3063        .name           = DRIVER_NAME,
3064        .fops           = &pkt_ctl_fops
3065};
3066
3067static int __init pkt_init(void)
3068{
3069        int ret;
3070
3071        mutex_init(&ctl_mutex);
3072
3073        psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3074                                        sizeof(struct packet_stacked_data));
3075        if (!psd_pool)
3076                return -ENOMEM;
3077
3078        ret = register_blkdev(pktdev_major, DRIVER_NAME);
3079        if (ret < 0) {
3080                printk(DRIVER_NAME": Unable to register block device\n");
3081                goto out2;
3082        }
3083        if (!pktdev_major)
3084                pktdev_major = ret;
3085
3086        ret = pkt_sysfs_init();
3087        if (ret)
3088                goto out;
3089
3090        pkt_debugfs_init();
3091
3092        ret = misc_register(&pkt_misc);
3093        if (ret) {
3094                printk(DRIVER_NAME": Unable to register misc device\n");
3095                goto out_misc;
3096        }
3097
3098        pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3099
3100        return 0;
3101
3102out_misc:
3103        pkt_debugfs_cleanup();
3104        pkt_sysfs_cleanup();
3105out:
3106        unregister_blkdev(pktdev_major, DRIVER_NAME);
3107out2:
3108        mempool_destroy(psd_pool);
3109        return ret;
3110}
3111
3112static void __exit pkt_exit(void)
3113{
3114        remove_proc_entry("driver/"DRIVER_NAME, NULL);
3115        misc_deregister(&pkt_misc);
3116
3117        pkt_debugfs_cleanup();
3118        pkt_sysfs_cleanup();
3119
3120        unregister_blkdev(pktdev_major, DRIVER_NAME);
3121        mempool_destroy(psd_pool);
3122}
3123
3124MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3125MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3126MODULE_LICENSE("GPL");
3127
3128module_init(pkt_init);
3129module_exit(pkt_exit);
3130