linux/block/as-iosched.c
<<
>>
Prefs
   1/*
   2 *  Anticipatory & deadline i/o scheduler.
   3 *
   4 *  Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
   5 *                     Nick Piggin <nickpiggin@yahoo.com.au>
   6 *
   7 */
   8#include <linux/kernel.h>
   9#include <linux/fs.h>
  10#include <linux/blkdev.h>
  11#include <linux/elevator.h>
  12#include <linux/bio.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/compiler.h>
  17#include <linux/rbtree.h>
  18#include <linux/interrupt.h>
  19
  20#define REQ_SYNC        1
  21#define REQ_ASYNC       0
  22
  23/*
  24 * See Documentation/block/as-iosched.txt
  25 */
  26
  27/*
  28 * max time before a read is submitted.
  29 */
  30#define default_read_expire (HZ / 8)
  31
  32/*
  33 * ditto for writes, these limits are not hard, even
  34 * if the disk is capable of satisfying them.
  35 */
  36#define default_write_expire (HZ / 4)
  37
  38/*
  39 * read_batch_expire describes how long we will allow a stream of reads to
  40 * persist before looking to see whether it is time to switch over to writes.
  41 */
  42#define default_read_batch_expire (HZ / 2)
  43
  44/*
  45 * write_batch_expire describes how long we want a stream of writes to run for.
  46 * This is not a hard limit, but a target we set for the auto-tuning thingy.
  47 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
  48 * a short amount of time...
  49 */
  50#define default_write_batch_expire (HZ / 8)
  51
  52/*
  53 * max time we may wait to anticipate a read (default around 6ms)
  54 */
  55#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
  56
  57/*
  58 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
  59 * however huge values tend to interfere and not decay fast enough. A program
  60 * might be in a non-io phase of operation. Waiting on user input for example,
  61 * or doing a lengthy computation. A small penalty can be justified there, and
  62 * will still catch out those processes that constantly have large thinktimes.
  63 */
  64#define MAX_THINKTIME (HZ/50UL)
  65
  66/* Bits in as_io_context.state */
  67enum as_io_states {
  68        AS_TASK_RUNNING=0,      /* Process has not exited */
  69        AS_TASK_IOSTARTED,      /* Process has started some IO */
  70        AS_TASK_IORUNNING,      /* Process has completed some IO */
  71};
  72
  73enum anticipation_status {
  74        ANTIC_OFF=0,            /* Not anticipating (normal operation)  */
  75        ANTIC_WAIT_REQ,         /* The last read has not yet completed  */
  76        ANTIC_WAIT_NEXT,        /* Currently anticipating a request vs
  77                                   last read (which has completed) */
  78        ANTIC_FINISHED,         /* Anticipating but have found a candidate
  79                                 * or timed out */
  80};
  81
  82struct as_data {
  83        /*
  84         * run time data
  85         */
  86
  87        struct request_queue *q;        /* the "owner" queue */
  88
  89        /*
  90         * requests (as_rq s) are present on both sort_list and fifo_list
  91         */
  92        struct rb_root sort_list[2];
  93        struct list_head fifo_list[2];
  94
  95        struct request *next_rq[2];     /* next in sort order */
  96        sector_t last_sector[2];        /* last REQ_SYNC & REQ_ASYNC sectors */
  97
  98        unsigned long exit_prob;        /* probability a task will exit while
  99                                           being waited on */
 100        unsigned long exit_no_coop;     /* probablility an exited task will
 101                                           not be part of a later cooperating
 102                                           request */
 103        unsigned long new_ttime_total;  /* mean thinktime on new proc */
 104        unsigned long new_ttime_mean;
 105        u64 new_seek_total;             /* mean seek on new proc */
 106        sector_t new_seek_mean;
 107
 108        unsigned long current_batch_expires;
 109        unsigned long last_check_fifo[2];
 110        int changed_batch;              /* 1: waiting for old batch to end */
 111        int new_batch;                  /* 1: waiting on first read complete */
 112        int batch_data_dir;             /* current batch REQ_SYNC / REQ_ASYNC */
 113        int write_batch_count;          /* max # of reqs in a write batch */
 114        int current_write_count;        /* how many requests left this batch */
 115        int write_batch_idled;          /* has the write batch gone idle? */
 116
 117        enum anticipation_status antic_status;
 118        unsigned long antic_start;      /* jiffies: when it started */
 119        struct timer_list antic_timer;  /* anticipatory scheduling timer */
 120        struct work_struct antic_work;  /* Deferred unplugging */
 121        struct io_context *io_context;  /* Identify the expected process */
 122        int ioc_finished; /* IO associated with io_context is finished */
 123        int nr_dispatched;
 124
 125        /*
 126         * settings that change how the i/o scheduler behaves
 127         */
 128        unsigned long fifo_expire[2];
 129        unsigned long batch_expire[2];
 130        unsigned long antic_expire;
 131};
 132
 133/*
 134 * per-request data.
 135 */
 136enum arq_state {
 137        AS_RQ_NEW=0,            /* New - not referenced and not on any lists */
 138        AS_RQ_QUEUED,           /* In the request queue. It belongs to the
 139                                   scheduler */
 140        AS_RQ_DISPATCHED,       /* On the dispatch list. It belongs to the
 141                                   driver now */
 142        AS_RQ_PRESCHED,         /* Debug poisoning for requests being used */
 143        AS_RQ_REMOVED,
 144        AS_RQ_MERGED,
 145        AS_RQ_POSTSCHED,        /* when they shouldn't be */
 146};
 147
 148#define RQ_IOC(rq)      ((struct io_context *) (rq)->elevator_private)
 149#define RQ_STATE(rq)    ((enum arq_state)(rq)->elevator_private2)
 150#define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
 151
 152static DEFINE_PER_CPU(unsigned long, ioc_count);
 153static struct completion *ioc_gone;
 154static DEFINE_SPINLOCK(ioc_gone_lock);
 155
 156static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
 157static void as_antic_stop(struct as_data *ad);
 158
 159/*
 160 * IO Context helper functions
 161 */
 162
 163/* Called to deallocate the as_io_context */
 164static void free_as_io_context(struct as_io_context *aic)
 165{
 166        kfree(aic);
 167        elv_ioc_count_dec(ioc_count);
 168        if (ioc_gone) {
 169                /*
 170                 * AS scheduler is exiting, grab exit lock and check
 171                 * the pending io context count. If it hits zero,
 172                 * complete ioc_gone and set it back to NULL.
 173                 */
 174                spin_lock(&ioc_gone_lock);
 175                if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
 176                        complete(ioc_gone);
 177                        ioc_gone = NULL;
 178                }
 179                spin_unlock(&ioc_gone_lock);
 180        }
 181}
 182
 183static void as_trim(struct io_context *ioc)
 184{
 185        spin_lock_irq(&ioc->lock);
 186        if (ioc->aic)
 187                free_as_io_context(ioc->aic);
 188        ioc->aic = NULL;
 189        spin_unlock_irq(&ioc->lock);
 190}
 191
 192/* Called when the task exits */
 193static void exit_as_io_context(struct as_io_context *aic)
 194{
 195        WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
 196        clear_bit(AS_TASK_RUNNING, &aic->state);
 197}
 198
 199static struct as_io_context *alloc_as_io_context(void)
 200{
 201        struct as_io_context *ret;
 202
 203        ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 204        if (ret) {
 205                ret->dtor = free_as_io_context;
 206                ret->exit = exit_as_io_context;
 207                ret->state = 1 << AS_TASK_RUNNING;
 208                atomic_set(&ret->nr_queued, 0);
 209                atomic_set(&ret->nr_dispatched, 0);
 210                spin_lock_init(&ret->lock);
 211                ret->ttime_total = 0;
 212                ret->ttime_samples = 0;
 213                ret->ttime_mean = 0;
 214                ret->seek_total = 0;
 215                ret->seek_samples = 0;
 216                ret->seek_mean = 0;
 217                elv_ioc_count_inc(ioc_count);
 218        }
 219
 220        return ret;
 221}
 222
 223/*
 224 * If the current task has no AS IO context then create one and initialise it.
 225 * Then take a ref on the task's io context and return it.
 226 */
 227static struct io_context *as_get_io_context(int node)
 228{
 229        struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
 230        if (ioc && !ioc->aic) {
 231                ioc->aic = alloc_as_io_context();
 232                if (!ioc->aic) {
 233                        put_io_context(ioc);
 234                        ioc = NULL;
 235                }
 236        }
 237        return ioc;
 238}
 239
 240static void as_put_io_context(struct request *rq)
 241{
 242        struct as_io_context *aic;
 243
 244        if (unlikely(!RQ_IOC(rq)))
 245                return;
 246
 247        aic = RQ_IOC(rq)->aic;
 248
 249        if (rq_is_sync(rq) && aic) {
 250                unsigned long flags;
 251
 252                spin_lock_irqsave(&aic->lock, flags);
 253                set_bit(AS_TASK_IORUNNING, &aic->state);
 254                aic->last_end_request = jiffies;
 255                spin_unlock_irqrestore(&aic->lock, flags);
 256        }
 257
 258        put_io_context(RQ_IOC(rq));
 259}
 260
 261/*
 262 * rb tree support functions
 263 */
 264#define RQ_RB_ROOT(ad, rq)      (&(ad)->sort_list[rq_is_sync((rq))])
 265
 266static void as_add_rq_rb(struct as_data *ad, struct request *rq)
 267{
 268        struct request *alias;
 269
 270        while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
 271                as_move_to_dispatch(ad, alias);
 272                as_antic_stop(ad);
 273        }
 274}
 275
 276static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
 277{
 278        elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
 279}
 280
 281/*
 282 * IO Scheduler proper
 283 */
 284
 285#define MAXBACK (1024 * 1024)   /*
 286                                 * Maximum distance the disk will go backward
 287                                 * for a request.
 288                                 */
 289
 290#define BACK_PENALTY    2
 291
 292/*
 293 * as_choose_req selects the preferred one of two requests of the same data_dir
 294 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
 295 */
 296static struct request *
 297as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
 298{
 299        int data_dir;
 300        sector_t last, s1, s2, d1, d2;
 301        int r1_wrap=0, r2_wrap=0;       /* requests are behind the disk head */
 302        const sector_t maxback = MAXBACK;
 303
 304        if (rq1 == NULL || rq1 == rq2)
 305                return rq2;
 306        if (rq2 == NULL)
 307                return rq1;
 308
 309        data_dir = rq_is_sync(rq1);
 310
 311        last = ad->last_sector[data_dir];
 312        s1 = rq1->sector;
 313        s2 = rq2->sector;
 314
 315        BUG_ON(data_dir != rq_is_sync(rq2));
 316
 317        /*
 318         * Strict one way elevator _except_ in the case where we allow
 319         * short backward seeks which are biased as twice the cost of a
 320         * similar forward seek.
 321         */
 322        if (s1 >= last)
 323                d1 = s1 - last;
 324        else if (s1+maxback >= last)
 325                d1 = (last - s1)*BACK_PENALTY;
 326        else {
 327                r1_wrap = 1;
 328                d1 = 0; /* shut up, gcc */
 329        }
 330
 331        if (s2 >= last)
 332                d2 = s2 - last;
 333        else if (s2+maxback >= last)
 334                d2 = (last - s2)*BACK_PENALTY;
 335        else {
 336                r2_wrap = 1;
 337                d2 = 0;
 338        }
 339
 340        /* Found required data */
 341        if (!r1_wrap && r2_wrap)
 342                return rq1;
 343        else if (!r2_wrap && r1_wrap)
 344                return rq2;
 345        else if (r1_wrap && r2_wrap) {
 346                /* both behind the head */
 347                if (s1 <= s2)
 348                        return rq1;
 349                else
 350                        return rq2;
 351        }
 352
 353        /* Both requests in front of the head */
 354        if (d1 < d2)
 355                return rq1;
 356        else if (d2 < d1)
 357                return rq2;
 358        else {
 359                if (s1 >= s2)
 360                        return rq1;
 361                else
 362                        return rq2;
 363        }
 364}
 365
 366/*
 367 * as_find_next_rq finds the next request after @prev in elevator order.
 368 * this with as_choose_req form the basis for how the scheduler chooses
 369 * what request to process next. Anticipation works on top of this.
 370 */
 371static struct request *
 372as_find_next_rq(struct as_data *ad, struct request *last)
 373{
 374        struct rb_node *rbnext = rb_next(&last->rb_node);
 375        struct rb_node *rbprev = rb_prev(&last->rb_node);
 376        struct request *next = NULL, *prev = NULL;
 377
 378        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 379
 380        if (rbprev)
 381                prev = rb_entry_rq(rbprev);
 382
 383        if (rbnext)
 384                next = rb_entry_rq(rbnext);
 385        else {
 386                const int data_dir = rq_is_sync(last);
 387
 388                rbnext = rb_first(&ad->sort_list[data_dir]);
 389                if (rbnext && rbnext != &last->rb_node)
 390                        next = rb_entry_rq(rbnext);
 391        }
 392
 393        return as_choose_req(ad, next, prev);
 394}
 395
 396/*
 397 * anticipatory scheduling functions follow
 398 */
 399
 400/*
 401 * as_antic_expired tells us when we have anticipated too long.
 402 * The funny "absolute difference" math on the elapsed time is to handle
 403 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
 404 */
 405static int as_antic_expired(struct as_data *ad)
 406{
 407        long delta_jif;
 408
 409        delta_jif = jiffies - ad->antic_start;
 410        if (unlikely(delta_jif < 0))
 411                delta_jif = -delta_jif;
 412        if (delta_jif < ad->antic_expire)
 413                return 0;
 414
 415        return 1;
 416}
 417
 418/*
 419 * as_antic_waitnext starts anticipating that a nice request will soon be
 420 * submitted. See also as_antic_waitreq
 421 */
 422static void as_antic_waitnext(struct as_data *ad)
 423{
 424        unsigned long timeout;
 425
 426        BUG_ON(ad->antic_status != ANTIC_OFF
 427                        && ad->antic_status != ANTIC_WAIT_REQ);
 428
 429        timeout = ad->antic_start + ad->antic_expire;
 430
 431        mod_timer(&ad->antic_timer, timeout);
 432
 433        ad->antic_status = ANTIC_WAIT_NEXT;
 434}
 435
 436/*
 437 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
 438 * until the request that we're anticipating on has finished. This means we
 439 * are timing from when the candidate process wakes up hopefully.
 440 */
 441static void as_antic_waitreq(struct as_data *ad)
 442{
 443        BUG_ON(ad->antic_status == ANTIC_FINISHED);
 444        if (ad->antic_status == ANTIC_OFF) {
 445                if (!ad->io_context || ad->ioc_finished)
 446                        as_antic_waitnext(ad);
 447                else
 448                        ad->antic_status = ANTIC_WAIT_REQ;
 449        }
 450}
 451
 452/*
 453 * This is called directly by the functions in this file to stop anticipation.
 454 * We kill the timer and schedule a call to the request_fn asap.
 455 */
 456static void as_antic_stop(struct as_data *ad)
 457{
 458        int status = ad->antic_status;
 459
 460        if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
 461                if (status == ANTIC_WAIT_NEXT)
 462                        del_timer(&ad->antic_timer);
 463                ad->antic_status = ANTIC_FINISHED;
 464                /* see as_work_handler */
 465                kblockd_schedule_work(&ad->antic_work);
 466        }
 467}
 468
 469/*
 470 * as_antic_timeout is the timer function set by as_antic_waitnext.
 471 */
 472static void as_antic_timeout(unsigned long data)
 473{
 474        struct request_queue *q = (struct request_queue *)data;
 475        struct as_data *ad = q->elevator->elevator_data;
 476        unsigned long flags;
 477
 478        spin_lock_irqsave(q->queue_lock, flags);
 479        if (ad->antic_status == ANTIC_WAIT_REQ
 480                        || ad->antic_status == ANTIC_WAIT_NEXT) {
 481                struct as_io_context *aic;
 482                spin_lock(&ad->io_context->lock);
 483                aic = ad->io_context->aic;
 484
 485                ad->antic_status = ANTIC_FINISHED;
 486                kblockd_schedule_work(&ad->antic_work);
 487
 488                if (aic->ttime_samples == 0) {
 489                        /* process anticipated on has exited or timed out*/
 490                        ad->exit_prob = (7*ad->exit_prob + 256)/8;
 491                }
 492                if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
 493                        /* process not "saved" by a cooperating request */
 494                        ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
 495                }
 496                spin_unlock(&ad->io_context->lock);
 497        }
 498        spin_unlock_irqrestore(q->queue_lock, flags);
 499}
 500
 501static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
 502                                unsigned long ttime)
 503{
 504        /* fixed point: 1.0 == 1<<8 */
 505        if (aic->ttime_samples == 0) {
 506                ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
 507                ad->new_ttime_mean = ad->new_ttime_total / 256;
 508
 509                ad->exit_prob = (7*ad->exit_prob)/8;
 510        }
 511        aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
 512        aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
 513        aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
 514}
 515
 516static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
 517                                sector_t sdist)
 518{
 519        u64 total;
 520
 521        if (aic->seek_samples == 0) {
 522                ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
 523                ad->new_seek_mean = ad->new_seek_total / 256;
 524        }
 525
 526        /*
 527         * Don't allow the seek distance to get too large from the
 528         * odd fragment, pagein, etc
 529         */
 530        if (aic->seek_samples <= 60) /* second&third seek */
 531                sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
 532        else
 533                sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
 534
 535        aic->seek_samples = (7*aic->seek_samples + 256) / 8;
 536        aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
 537        total = aic->seek_total + (aic->seek_samples/2);
 538        do_div(total, aic->seek_samples);
 539        aic->seek_mean = (sector_t)total;
 540}
 541
 542/*
 543 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
 544 * updates @aic->ttime_mean based on that. It is called when a new
 545 * request is queued.
 546 */
 547static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
 548                                struct request *rq)
 549{
 550        int data_dir = rq_is_sync(rq);
 551        unsigned long thinktime = 0;
 552        sector_t seek_dist;
 553
 554        if (aic == NULL)
 555                return;
 556
 557        if (data_dir == REQ_SYNC) {
 558                unsigned long in_flight = atomic_read(&aic->nr_queued)
 559                                        + atomic_read(&aic->nr_dispatched);
 560                spin_lock(&aic->lock);
 561                if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
 562                        test_bit(AS_TASK_IOSTARTED, &aic->state)) {
 563                        /* Calculate read -> read thinktime */
 564                        if (test_bit(AS_TASK_IORUNNING, &aic->state)
 565                                                        && in_flight == 0) {
 566                                thinktime = jiffies - aic->last_end_request;
 567                                thinktime = min(thinktime, MAX_THINKTIME-1);
 568                        }
 569                        as_update_thinktime(ad, aic, thinktime);
 570
 571                        /* Calculate read -> read seek distance */
 572                        if (aic->last_request_pos < rq->sector)
 573                                seek_dist = rq->sector - aic->last_request_pos;
 574                        else
 575                                seek_dist = aic->last_request_pos - rq->sector;
 576                        as_update_seekdist(ad, aic, seek_dist);
 577                }
 578                aic->last_request_pos = rq->sector + rq->nr_sectors;
 579                set_bit(AS_TASK_IOSTARTED, &aic->state);
 580                spin_unlock(&aic->lock);
 581        }
 582}
 583
 584/*
 585 * as_close_req decides if one request is considered "close" to the
 586 * previous one issued.
 587 */
 588static int as_close_req(struct as_data *ad, struct as_io_context *aic,
 589                        struct request *rq)
 590{
 591        unsigned long delay;    /* jiffies */
 592        sector_t last = ad->last_sector[ad->batch_data_dir];
 593        sector_t next = rq->sector;
 594        sector_t delta; /* acceptable close offset (in sectors) */
 595        sector_t s;
 596
 597        if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
 598                delay = 0;
 599        else
 600                delay = jiffies - ad->antic_start;
 601
 602        if (delay == 0)
 603                delta = 8192;
 604        else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire)
 605                delta = 8192 << delay;
 606        else
 607                return 1;
 608
 609        if ((last <= next + (delta>>1)) && (next <= last + delta))
 610                return 1;
 611
 612        if (last < next)
 613                s = next - last;
 614        else
 615                s = last - next;
 616
 617        if (aic->seek_samples == 0) {
 618                /*
 619                 * Process has just started IO. Use past statistics to
 620                 * gauge success possibility
 621                 */
 622                if (ad->new_seek_mean > s) {
 623                        /* this request is better than what we're expecting */
 624                        return 1;
 625                }
 626
 627        } else {
 628                if (aic->seek_mean > s) {
 629                        /* this request is better than what we're expecting */
 630                        return 1;
 631                }
 632        }
 633
 634        return 0;
 635}
 636
 637/*
 638 * as_can_break_anticipation returns true if we have been anticipating this
 639 * request.
 640 *
 641 * It also returns true if the process against which we are anticipating
 642 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
 643 * dispatch it ASAP, because we know that application will not be submitting
 644 * any new reads.
 645 *
 646 * If the task which has submitted the request has exited, break anticipation.
 647 *
 648 * If this task has queued some other IO, do not enter enticipation.
 649 */
 650static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
 651{
 652        struct io_context *ioc;
 653        struct as_io_context *aic;
 654
 655        ioc = ad->io_context;
 656        BUG_ON(!ioc);
 657        spin_lock(&ioc->lock);
 658
 659        if (rq && ioc == RQ_IOC(rq)) {
 660                /* request from same process */
 661                spin_unlock(&ioc->lock);
 662                return 1;
 663        }
 664
 665        if (ad->ioc_finished && as_antic_expired(ad)) {
 666                /*
 667                 * In this situation status should really be FINISHED,
 668                 * however the timer hasn't had the chance to run yet.
 669                 */
 670                spin_unlock(&ioc->lock);
 671                return 1;
 672        }
 673
 674        aic = ioc->aic;
 675        if (!aic) {
 676                spin_unlock(&ioc->lock);
 677                return 0;
 678        }
 679
 680        if (atomic_read(&aic->nr_queued) > 0) {
 681                /* process has more requests queued */
 682                spin_unlock(&ioc->lock);
 683                return 1;
 684        }
 685
 686        if (atomic_read(&aic->nr_dispatched) > 0) {
 687                /* process has more requests dispatched */
 688                spin_unlock(&ioc->lock);
 689                return 1;
 690        }
 691
 692        if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
 693                /*
 694                 * Found a close request that is not one of ours.
 695                 *
 696                 * This makes close requests from another process update
 697                 * our IO history. Is generally useful when there are
 698                 * two or more cooperating processes working in the same
 699                 * area.
 700                 */
 701                if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
 702                        if (aic->ttime_samples == 0)
 703                                ad->exit_prob = (7*ad->exit_prob + 256)/8;
 704
 705                        ad->exit_no_coop = (7*ad->exit_no_coop)/8;
 706                }
 707
 708                as_update_iohist(ad, aic, rq);
 709                spin_unlock(&ioc->lock);
 710                return 1;
 711        }
 712
 713        if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
 714                /* process anticipated on has exited */
 715                if (aic->ttime_samples == 0)
 716                        ad->exit_prob = (7*ad->exit_prob + 256)/8;
 717
 718                if (ad->exit_no_coop > 128) {
 719                        spin_unlock(&ioc->lock);
 720                        return 1;
 721                }
 722        }
 723
 724        if (aic->ttime_samples == 0) {
 725                if (ad->new_ttime_mean > ad->antic_expire) {
 726                        spin_unlock(&ioc->lock);
 727                        return 1;
 728                }
 729                if (ad->exit_prob * ad->exit_no_coop > 128*256) {
 730                        spin_unlock(&ioc->lock);
 731                        return 1;
 732                }
 733        } else if (aic->ttime_mean > ad->antic_expire) {
 734                /* the process thinks too much between requests */
 735                spin_unlock(&ioc->lock);
 736                return 1;
 737        }
 738        spin_unlock(&ioc->lock);
 739        return 0;
 740}
 741
 742/*
 743 * as_can_anticipate indicates whether we should either run rq
 744 * or keep anticipating a better request.
 745 */
 746static int as_can_anticipate(struct as_data *ad, struct request *rq)
 747{
 748        if (!ad->io_context)
 749                /*
 750                 * Last request submitted was a write
 751                 */
 752                return 0;
 753
 754        if (ad->antic_status == ANTIC_FINISHED)
 755                /*
 756                 * Don't restart if we have just finished. Run the next request
 757                 */
 758                return 0;
 759
 760        if (as_can_break_anticipation(ad, rq))
 761                /*
 762                 * This request is a good candidate. Don't keep anticipating,
 763                 * run it.
 764                 */
 765                return 0;
 766
 767        /*
 768         * OK from here, we haven't finished, and don't have a decent request!
 769         * Status is either ANTIC_OFF so start waiting,
 770         * ANTIC_WAIT_REQ so continue waiting for request to finish
 771         * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
 772         */
 773
 774        return 1;
 775}
 776
 777/*
 778 * as_update_rq must be called whenever a request (rq) is added to
 779 * the sort_list. This function keeps caches up to date, and checks if the
 780 * request might be one we are "anticipating"
 781 */
 782static void as_update_rq(struct as_data *ad, struct request *rq)
 783{
 784        const int data_dir = rq_is_sync(rq);
 785
 786        /* keep the next_rq cache up to date */
 787        ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
 788
 789        /*
 790         * have we been anticipating this request?
 791         * or does it come from the same process as the one we are anticipating
 792         * for?
 793         */
 794        if (ad->antic_status == ANTIC_WAIT_REQ
 795                        || ad->antic_status == ANTIC_WAIT_NEXT) {
 796                if (as_can_break_anticipation(ad, rq))
 797                        as_antic_stop(ad);
 798        }
 799}
 800
 801/*
 802 * Gathers timings and resizes the write batch automatically
 803 */
 804static void update_write_batch(struct as_data *ad)
 805{
 806        unsigned long batch = ad->batch_expire[REQ_ASYNC];
 807        long write_time;
 808
 809        write_time = (jiffies - ad->current_batch_expires) + batch;
 810        if (write_time < 0)
 811                write_time = 0;
 812
 813        if (write_time > batch && !ad->write_batch_idled) {
 814                if (write_time > batch * 3)
 815                        ad->write_batch_count /= 2;
 816                else
 817                        ad->write_batch_count--;
 818        } else if (write_time < batch && ad->current_write_count == 0) {
 819                if (batch > write_time * 3)
 820                        ad->write_batch_count *= 2;
 821                else
 822                        ad->write_batch_count++;
 823        }
 824
 825        if (ad->write_batch_count < 1)
 826                ad->write_batch_count = 1;
 827}
 828
 829/*
 830 * as_completed_request is to be called when a request has completed and
 831 * returned something to the requesting process, be it an error or data.
 832 */
 833static void as_completed_request(struct request_queue *q, struct request *rq)
 834{
 835        struct as_data *ad = q->elevator->elevator_data;
 836
 837        WARN_ON(!list_empty(&rq->queuelist));
 838
 839        if (RQ_STATE(rq) != AS_RQ_REMOVED) {
 840                WARN(1, "rq->state %d\n", RQ_STATE(rq));
 841                goto out;
 842        }
 843
 844        if (ad->changed_batch && ad->nr_dispatched == 1) {
 845                ad->current_batch_expires = jiffies +
 846                                        ad->batch_expire[ad->batch_data_dir];
 847                kblockd_schedule_work(&ad->antic_work);
 848                ad->changed_batch = 0;
 849
 850                if (ad->batch_data_dir == REQ_SYNC)
 851                        ad->new_batch = 1;
 852        }
 853        WARN_ON(ad->nr_dispatched == 0);
 854        ad->nr_dispatched--;
 855
 856        /*
 857         * Start counting the batch from when a request of that direction is
 858         * actually serviced. This should help devices with big TCQ windows
 859         * and writeback caches
 860         */
 861        if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
 862                update_write_batch(ad);
 863                ad->current_batch_expires = jiffies +
 864                                ad->batch_expire[REQ_SYNC];
 865                ad->new_batch = 0;
 866        }
 867
 868        if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
 869                ad->antic_start = jiffies;
 870                ad->ioc_finished = 1;
 871                if (ad->antic_status == ANTIC_WAIT_REQ) {
 872                        /*
 873                         * We were waiting on this request, now anticipate
 874                         * the next one
 875                         */
 876                        as_antic_waitnext(ad);
 877                }
 878        }
 879
 880        as_put_io_context(rq);
 881out:
 882        RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
 883}
 884
 885/*
 886 * as_remove_queued_request removes a request from the pre dispatch queue
 887 * without updating refcounts. It is expected the caller will drop the
 888 * reference unless it replaces the request at somepart of the elevator
 889 * (ie. the dispatch queue)
 890 */
 891static void as_remove_queued_request(struct request_queue *q,
 892                                     struct request *rq)
 893{
 894        const int data_dir = rq_is_sync(rq);
 895        struct as_data *ad = q->elevator->elevator_data;
 896        struct io_context *ioc;
 897
 898        WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
 899
 900        ioc = RQ_IOC(rq);
 901        if (ioc && ioc->aic) {
 902                BUG_ON(!atomic_read(&ioc->aic->nr_queued));
 903                atomic_dec(&ioc->aic->nr_queued);
 904        }
 905
 906        /*
 907         * Update the "next_rq" cache if we are about to remove its
 908         * entry
 909         */
 910        if (ad->next_rq[data_dir] == rq)
 911                ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
 912
 913        rq_fifo_clear(rq);
 914        as_del_rq_rb(ad, rq);
 915}
 916
 917/*
 918 * as_fifo_expired returns 0 if there are no expired requests on the fifo,
 919 * 1 otherwise.  It is ratelimited so that we only perform the check once per
 920 * `fifo_expire' interval.  Otherwise a large number of expired requests
 921 * would create a hopeless seekstorm.
 922 *
 923 * See as_antic_expired comment.
 924 */
 925static int as_fifo_expired(struct as_data *ad, int adir)
 926{
 927        struct request *rq;
 928        long delta_jif;
 929
 930        delta_jif = jiffies - ad->last_check_fifo[adir];
 931        if (unlikely(delta_jif < 0))
 932                delta_jif = -delta_jif;
 933        if (delta_jif < ad->fifo_expire[adir])
 934                return 0;
 935
 936        ad->last_check_fifo[adir] = jiffies;
 937
 938        if (list_empty(&ad->fifo_list[adir]))
 939                return 0;
 940
 941        rq = rq_entry_fifo(ad->fifo_list[adir].next);
 942
 943        return time_after(jiffies, rq_fifo_time(rq));
 944}
 945
 946/*
 947 * as_batch_expired returns true if the current batch has expired. A batch
 948 * is a set of reads or a set of writes.
 949 */
 950static inline int as_batch_expired(struct as_data *ad)
 951{
 952        if (ad->changed_batch || ad->new_batch)
 953                return 0;
 954
 955        if (ad->batch_data_dir == REQ_SYNC)
 956                /* TODO! add a check so a complete fifo gets written? */
 957                return time_after(jiffies, ad->current_batch_expires);
 958
 959        return time_after(jiffies, ad->current_batch_expires)
 960                || ad->current_write_count == 0;
 961}
 962
 963/*
 964 * move an entry to dispatch queue
 965 */
 966static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
 967{
 968        const int data_dir = rq_is_sync(rq);
 969
 970        BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
 971
 972        as_antic_stop(ad);
 973        ad->antic_status = ANTIC_OFF;
 974
 975        /*
 976         * This has to be set in order to be correctly updated by
 977         * as_find_next_rq
 978         */
 979        ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
 980
 981        if (data_dir == REQ_SYNC) {
 982                struct io_context *ioc = RQ_IOC(rq);
 983                /* In case we have to anticipate after this */
 984                copy_io_context(&ad->io_context, &ioc);
 985        } else {
 986                if (ad->io_context) {
 987                        put_io_context(ad->io_context);
 988                        ad->io_context = NULL;
 989                }
 990
 991                if (ad->current_write_count != 0)
 992                        ad->current_write_count--;
 993        }
 994        ad->ioc_finished = 0;
 995
 996        ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
 997
 998        /*
 999         * take it off the sort and fifo list, add to dispatch queue
1000         */
1001        as_remove_queued_request(ad->q, rq);
1002        WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
1003
1004        elv_dispatch_sort(ad->q, rq);
1005
1006        RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1007        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1008                atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1009        ad->nr_dispatched++;
1010}
1011
1012/*
1013 * as_dispatch_request selects the best request according to
1014 * read/write expire, batch expire, etc, and moves it to the dispatch
1015 * queue. Returns 1 if a request was found, 0 otherwise.
1016 */
1017static int as_dispatch_request(struct request_queue *q, int force)
1018{
1019        struct as_data *ad = q->elevator->elevator_data;
1020        const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1021        const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1022        struct request *rq;
1023
1024        if (unlikely(force)) {
1025                /*
1026                 * Forced dispatch, accounting is useless.  Reset
1027                 * accounting states and dump fifo_lists.  Note that
1028                 * batch_data_dir is reset to REQ_SYNC to avoid
1029                 * screwing write batch accounting as write batch
1030                 * accounting occurs on W->R transition.
1031                 */
1032                int dispatched = 0;
1033
1034                ad->batch_data_dir = REQ_SYNC;
1035                ad->changed_batch = 0;
1036                ad->new_batch = 0;
1037
1038                while (ad->next_rq[REQ_SYNC]) {
1039                        as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]);
1040                        dispatched++;
1041                }
1042                ad->last_check_fifo[REQ_SYNC] = jiffies;
1043
1044                while (ad->next_rq[REQ_ASYNC]) {
1045                        as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]);
1046                        dispatched++;
1047                }
1048                ad->last_check_fifo[REQ_ASYNC] = jiffies;
1049
1050                return dispatched;
1051        }
1052
1053        /* Signal that the write batch was uncontended, so we can't time it */
1054        if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1055                if (ad->current_write_count == 0 || !writes)
1056                        ad->write_batch_idled = 1;
1057        }
1058
1059        if (!(reads || writes)
1060                || ad->antic_status == ANTIC_WAIT_REQ
1061                || ad->antic_status == ANTIC_WAIT_NEXT
1062                || ad->changed_batch)
1063                return 0;
1064
1065        if (!(reads && writes && as_batch_expired(ad))) {
1066                /*
1067                 * batch is still running or no reads or no writes
1068                 */
1069                rq = ad->next_rq[ad->batch_data_dir];
1070
1071                if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1072                        if (as_fifo_expired(ad, REQ_SYNC))
1073                                goto fifo_expired;
1074
1075                        if (as_can_anticipate(ad, rq)) {
1076                                as_antic_waitreq(ad);
1077                                return 0;
1078                        }
1079                }
1080
1081                if (rq) {
1082                        /* we have a "next request" */
1083                        if (reads && !writes)
1084                                ad->current_batch_expires =
1085                                        jiffies + ad->batch_expire[REQ_SYNC];
1086                        goto dispatch_request;
1087                }
1088        }
1089
1090        /*
1091         * at this point we are not running a batch. select the appropriate
1092         * data direction (read / write)
1093         */
1094
1095        if (reads) {
1096                BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
1097
1098                if (writes && ad->batch_data_dir == REQ_SYNC)
1099                        /*
1100                         * Last batch was a read, switch to writes
1101                         */
1102                        goto dispatch_writes;
1103
1104                if (ad->batch_data_dir == REQ_ASYNC) {
1105                        WARN_ON(ad->new_batch);
1106                        ad->changed_batch = 1;
1107                }
1108                ad->batch_data_dir = REQ_SYNC;
1109                rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next);
1110                ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1111                goto dispatch_request;
1112        }
1113
1114        /*
1115         * the last batch was a read
1116         */
1117
1118        if (writes) {
1119dispatch_writes:
1120                BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
1121
1122                if (ad->batch_data_dir == REQ_SYNC) {
1123                        ad->changed_batch = 1;
1124
1125                        /*
1126                         * new_batch might be 1 when the queue runs out of
1127                         * reads. A subsequent submission of a write might
1128                         * cause a change of batch before the read is finished.
1129                         */
1130                        ad->new_batch = 0;
1131                }
1132                ad->batch_data_dir = REQ_ASYNC;
1133                ad->current_write_count = ad->write_batch_count;
1134                ad->write_batch_idled = 0;
1135                rq = rq_entry_fifo(ad->fifo_list[REQ_ASYNC].next);
1136                ad->last_check_fifo[REQ_ASYNC] = jiffies;
1137                goto dispatch_request;
1138        }
1139
1140        BUG();
1141        return 0;
1142
1143dispatch_request:
1144        /*
1145         * If a request has expired, service it.
1146         */
1147
1148        if (as_fifo_expired(ad, ad->batch_data_dir)) {
1149fifo_expired:
1150                rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1151        }
1152
1153        if (ad->changed_batch) {
1154                WARN_ON(ad->new_batch);
1155
1156                if (ad->nr_dispatched)
1157                        return 0;
1158
1159                if (ad->batch_data_dir == REQ_ASYNC)
1160                        ad->current_batch_expires = jiffies +
1161                                        ad->batch_expire[REQ_ASYNC];
1162                else
1163                        ad->new_batch = 1;
1164
1165                ad->changed_batch = 0;
1166        }
1167
1168        /*
1169         * rq is the selected appropriate request.
1170         */
1171        as_move_to_dispatch(ad, rq);
1172
1173        return 1;
1174}
1175
1176/*
1177 * add rq to rbtree and fifo
1178 */
1179static void as_add_request(struct request_queue *q, struct request *rq)
1180{
1181        struct as_data *ad = q->elevator->elevator_data;
1182        int data_dir;
1183
1184        RQ_SET_STATE(rq, AS_RQ_NEW);
1185
1186        data_dir = rq_is_sync(rq);
1187
1188        rq->elevator_private = as_get_io_context(q->node);
1189
1190        if (RQ_IOC(rq)) {
1191                as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
1192                atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
1193        }
1194
1195        as_add_rq_rb(ad, rq);
1196
1197        /*
1198         * set expire time and add to fifo list
1199         */
1200        rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
1201        list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
1202
1203        as_update_rq(ad, rq); /* keep state machine up to date */
1204        RQ_SET_STATE(rq, AS_RQ_QUEUED);
1205}
1206
1207static void as_activate_request(struct request_queue *q, struct request *rq)
1208{
1209        WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
1210        RQ_SET_STATE(rq, AS_RQ_REMOVED);
1211        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1212                atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
1213}
1214
1215static void as_deactivate_request(struct request_queue *q, struct request *rq)
1216{
1217        WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
1218        RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1219        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1220                atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1221}
1222
1223/*
1224 * as_queue_empty tells us if there are requests left in the device. It may
1225 * not be the case that a driver can get the next request even if the queue
1226 * is not empty - it is used in the block layer to check for plugging and
1227 * merging opportunities
1228 */
1229static int as_queue_empty(struct request_queue *q)
1230{
1231        struct as_data *ad = q->elevator->elevator_data;
1232
1233        return list_empty(&ad->fifo_list[REQ_ASYNC])
1234                && list_empty(&ad->fifo_list[REQ_SYNC]);
1235}
1236
1237static int
1238as_merge(struct request_queue *q, struct request **req, struct bio *bio)
1239{
1240        struct as_data *ad = q->elevator->elevator_data;
1241        sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1242        struct request *__rq;
1243
1244        /*
1245         * check for front merge
1246         */
1247        __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
1248        if (__rq && elv_rq_merge_ok(__rq, bio)) {
1249                *req = __rq;
1250                return ELEVATOR_FRONT_MERGE;
1251        }
1252
1253        return ELEVATOR_NO_MERGE;
1254}
1255
1256static void as_merged_request(struct request_queue *q, struct request *req,
1257                              int type)
1258{
1259        struct as_data *ad = q->elevator->elevator_data;
1260
1261        /*
1262         * if the merge was a front merge, we need to reposition request
1263         */
1264        if (type == ELEVATOR_FRONT_MERGE) {
1265                as_del_rq_rb(ad, req);
1266                as_add_rq_rb(ad, req);
1267                /*
1268                 * Note! At this stage of this and the next function, our next
1269                 * request may not be optimal - eg the request may have "grown"
1270                 * behind the disk head. We currently don't bother adjusting.
1271                 */
1272        }
1273}
1274
1275static void as_merged_requests(struct request_queue *q, struct request *req,
1276                                struct request *next)
1277{
1278        /*
1279         * if next expires before rq, assign its expire time to arq
1280         * and move into next position (next will be deleted) in fifo
1281         */
1282        if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
1283                if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
1284                        list_move(&req->queuelist, &next->queuelist);
1285                        rq_set_fifo_time(req, rq_fifo_time(next));
1286                }
1287        }
1288
1289        /*
1290         * kill knowledge of next, this one is a goner
1291         */
1292        as_remove_queued_request(q, next);
1293        as_put_io_context(next);
1294
1295        RQ_SET_STATE(next, AS_RQ_MERGED);
1296}
1297
1298/*
1299 * This is executed in a "deferred" process context, by kblockd. It calls the
1300 * driver's request_fn so the driver can submit that request.
1301 *
1302 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1303 * state before calling, and don't rely on any state over calls.
1304 *
1305 * FIXME! dispatch queue is not a queue at all!
1306 */
1307static void as_work_handler(struct work_struct *work)
1308{
1309        struct as_data *ad = container_of(work, struct as_data, antic_work);
1310        struct request_queue *q = ad->q;
1311        unsigned long flags;
1312
1313        spin_lock_irqsave(q->queue_lock, flags);
1314        blk_start_queueing(q);
1315        spin_unlock_irqrestore(q->queue_lock, flags);
1316}
1317
1318static int as_may_queue(struct request_queue *q, int rw)
1319{
1320        int ret = ELV_MQUEUE_MAY;
1321        struct as_data *ad = q->elevator->elevator_data;
1322        struct io_context *ioc;
1323        if (ad->antic_status == ANTIC_WAIT_REQ ||
1324                        ad->antic_status == ANTIC_WAIT_NEXT) {
1325                ioc = as_get_io_context(q->node);
1326                if (ad->io_context == ioc)
1327                        ret = ELV_MQUEUE_MUST;
1328                put_io_context(ioc);
1329        }
1330
1331        return ret;
1332}
1333
1334static void as_exit_queue(elevator_t *e)
1335{
1336        struct as_data *ad = e->elevator_data;
1337
1338        del_timer_sync(&ad->antic_timer);
1339        kblockd_flush_work(&ad->antic_work);
1340
1341        BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1342        BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1343
1344        put_io_context(ad->io_context);
1345        kfree(ad);
1346}
1347
1348/*
1349 * initialize elevator private data (as_data).
1350 */
1351static void *as_init_queue(struct request_queue *q)
1352{
1353        struct as_data *ad;
1354
1355        ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node);
1356        if (!ad)
1357                return NULL;
1358
1359        ad->q = q; /* Identify what queue the data belongs to */
1360
1361        /* anticipatory scheduling helpers */
1362        ad->antic_timer.function = as_antic_timeout;
1363        ad->antic_timer.data = (unsigned long)q;
1364        init_timer(&ad->antic_timer);
1365        INIT_WORK(&ad->antic_work, as_work_handler);
1366
1367        INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1368        INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1369        ad->sort_list[REQ_SYNC] = RB_ROOT;
1370        ad->sort_list[REQ_ASYNC] = RB_ROOT;
1371        ad->fifo_expire[REQ_SYNC] = default_read_expire;
1372        ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1373        ad->antic_expire = default_antic_expire;
1374        ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1375        ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1376
1377        ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1378        ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1379        if (ad->write_batch_count < 2)
1380                ad->write_batch_count = 2;
1381
1382        return ad;
1383}
1384
1385/*
1386 * sysfs parts below
1387 */
1388
1389static ssize_t
1390as_var_show(unsigned int var, char *page)
1391{
1392        return sprintf(page, "%d\n", var);
1393}
1394
1395static ssize_t
1396as_var_store(unsigned long *var, const char *page, size_t count)
1397{
1398        char *p = (char *) page;
1399
1400        *var = simple_strtoul(p, &p, 10);
1401        return count;
1402}
1403
1404static ssize_t est_time_show(elevator_t *e, char *page)
1405{
1406        struct as_data *ad = e->elevator_data;
1407        int pos = 0;
1408
1409        pos += sprintf(page+pos, "%lu %% exit probability\n",
1410                                100*ad->exit_prob/256);
1411        pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1412                                "cooperating process submitting IO\n",
1413                                100*ad->exit_no_coop/256);
1414        pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1415        pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1416                                (unsigned long long)ad->new_seek_mean);
1417
1418        return pos;
1419}
1420
1421#define SHOW_FUNCTION(__FUNC, __VAR)                            \
1422static ssize_t __FUNC(elevator_t *e, char *page)                \
1423{                                                               \
1424        struct as_data *ad = e->elevator_data;                  \
1425        return as_var_show(jiffies_to_msecs((__VAR)), (page));  \
1426}
1427SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1428SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1429SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1430SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1431SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1432#undef SHOW_FUNCTION
1433
1434#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)                         \
1435static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
1436{                                                                       \
1437        struct as_data *ad = e->elevator_data;                          \
1438        int ret = as_var_store(__PTR, (page), count);                   \
1439        if (*(__PTR) < (MIN))                                           \
1440                *(__PTR) = (MIN);                                       \
1441        else if (*(__PTR) > (MAX))                                      \
1442                *(__PTR) = (MAX);                                       \
1443        *(__PTR) = msecs_to_jiffies(*(__PTR));                          \
1444        return ret;                                                     \
1445}
1446STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1447STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1448STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1449STORE_FUNCTION(as_read_batch_expire_store,
1450                        &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1451STORE_FUNCTION(as_write_batch_expire_store,
1452                        &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1453#undef STORE_FUNCTION
1454
1455#define AS_ATTR(name) \
1456        __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1457
1458static struct elv_fs_entry as_attrs[] = {
1459        __ATTR_RO(est_time),
1460        AS_ATTR(read_expire),
1461        AS_ATTR(write_expire),
1462        AS_ATTR(antic_expire),
1463        AS_ATTR(read_batch_expire),
1464        AS_ATTR(write_batch_expire),
1465        __ATTR_NULL
1466};
1467
1468static struct elevator_type iosched_as = {
1469        .ops = {
1470                .elevator_merge_fn =            as_merge,
1471                .elevator_merged_fn =           as_merged_request,
1472                .elevator_merge_req_fn =        as_merged_requests,
1473                .elevator_dispatch_fn =         as_dispatch_request,
1474                .elevator_add_req_fn =          as_add_request,
1475                .elevator_activate_req_fn =     as_activate_request,
1476                .elevator_deactivate_req_fn =   as_deactivate_request,
1477                .elevator_queue_empty_fn =      as_queue_empty,
1478                .elevator_completed_req_fn =    as_completed_request,
1479                .elevator_former_req_fn =       elv_rb_former_request,
1480                .elevator_latter_req_fn =       elv_rb_latter_request,
1481                .elevator_may_queue_fn =        as_may_queue,
1482                .elevator_init_fn =             as_init_queue,
1483                .elevator_exit_fn =             as_exit_queue,
1484                .trim =                         as_trim,
1485        },
1486
1487        .elevator_attrs = as_attrs,
1488        .elevator_name = "anticipatory",
1489        .elevator_owner = THIS_MODULE,
1490};
1491
1492static int __init as_init(void)
1493{
1494        elv_register(&iosched_as);
1495
1496        return 0;
1497}
1498
1499static void __exit as_exit(void)
1500{
1501        DECLARE_COMPLETION_ONSTACK(all_gone);
1502        elv_unregister(&iosched_as);
1503        ioc_gone = &all_gone;
1504        /* ioc_gone's update must be visible before reading ioc_count */
1505        smp_wmb();
1506        if (elv_ioc_count_read(ioc_count))
1507                wait_for_completion(&all_gone);
1508        synchronize_rcu();
1509}
1510
1511module_init(as_init);
1512module_exit(as_exit);
1513
1514MODULE_AUTHOR("Nick Piggin");
1515MODULE_LICENSE("GPL");
1516MODULE_DESCRIPTION("anticipatory IO scheduler");
1517