linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/thread_info.h>
  73#include <linux/wanrouter.h>
  74#include <linux/if_bridge.h>
  75#include <linux/if_frad.h>
  76#include <linux/if_vlan.h>
  77#include <linux/init.h>
  78#include <linux/poll.h>
  79#include <linux/cache.h>
  80#include <linux/module.h>
  81#include <linux/highmem.h>
  82#include <linux/mount.h>
  83#include <linux/security.h>
  84#include <linux/syscalls.h>
  85#include <linux/compat.h>
  86#include <linux/kmod.h>
  87#include <linux/audit.h>
  88#include <linux/wireless.h>
  89#include <linux/nsproxy.h>
  90
  91#include <asm/uaccess.h>
  92#include <asm/unistd.h>
  93
  94#include <net/compat.h>
  95#include <net/wext.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 101static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 102                         unsigned long nr_segs, loff_t pos);
 103static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 104                          unsigned long nr_segs, loff_t pos);
 105static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 106
 107static int sock_close(struct inode *inode, struct file *file);
 108static unsigned int sock_poll(struct file *file,
 109                              struct poll_table_struct *wait);
 110static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 111#ifdef CONFIG_COMPAT
 112static long compat_sock_ioctl(struct file *file,
 113                              unsigned int cmd, unsigned long arg);
 114#endif
 115static int sock_fasync(int fd, struct file *filp, int on);
 116static ssize_t sock_sendpage(struct file *file, struct page *page,
 117                             int offset, size_t size, loff_t *ppos, int more);
 118static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 119                                struct pipe_inode_info *pipe, size_t len,
 120                                unsigned int flags);
 121
 122/*
 123 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 124 *      in the operation structures but are done directly via the socketcall() multiplexor.
 125 */
 126
 127static const struct file_operations socket_file_ops = {
 128        .owner =        THIS_MODULE,
 129        .llseek =       no_llseek,
 130        .aio_read =     sock_aio_read,
 131        .aio_write =    sock_aio_write,
 132        .poll =         sock_poll,
 133        .unlocked_ioctl = sock_ioctl,
 134#ifdef CONFIG_COMPAT
 135        .compat_ioctl = compat_sock_ioctl,
 136#endif
 137        .mmap =         sock_mmap,
 138        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 139        .release =      sock_close,
 140        .fasync =       sock_fasync,
 141        .sendpage =     sock_sendpage,
 142        .splice_write = generic_splice_sendpage,
 143        .splice_read =  sock_splice_read,
 144};
 145
 146/*
 147 *      The protocol list. Each protocol is registered in here.
 148 */
 149
 150static DEFINE_SPINLOCK(net_family_lock);
 151static const struct net_proto_family *net_families[NPROTO] __read_mostly;
 152
 153/*
 154 *      Statistics counters of the socket lists
 155 */
 156
 157static DEFINE_PER_CPU(int, sockets_in_use) = 0;
 158
 159/*
 160 * Support routines.
 161 * Move socket addresses back and forth across the kernel/user
 162 * divide and look after the messy bits.
 163 */
 164
 165#define MAX_SOCK_ADDR   128             /* 108 for Unix domain -
 166                                           16 for IP, 16 for IPX,
 167                                           24 for IPv6,
 168                                           about 80 for AX.25
 169                                           must be at least one bigger than
 170                                           the AF_UNIX size (see net/unix/af_unix.c
 171                                           :unix_mkname()).
 172                                         */
 173
 174/**
 175 *      move_addr_to_kernel     -       copy a socket address into kernel space
 176 *      @uaddr: Address in user space
 177 *      @kaddr: Address in kernel space
 178 *      @ulen: Length in user space
 179 *
 180 *      The address is copied into kernel space. If the provided address is
 181 *      too long an error code of -EINVAL is returned. If the copy gives
 182 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 183 */
 184
 185int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
 186{
 187        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 188                return -EINVAL;
 189        if (ulen == 0)
 190                return 0;
 191        if (copy_from_user(kaddr, uaddr, ulen))
 192                return -EFAULT;
 193        return audit_sockaddr(ulen, kaddr);
 194}
 195
 196/**
 197 *      move_addr_to_user       -       copy an address to user space
 198 *      @kaddr: kernel space address
 199 *      @klen: length of address in kernel
 200 *      @uaddr: user space address
 201 *      @ulen: pointer to user length field
 202 *
 203 *      The value pointed to by ulen on entry is the buffer length available.
 204 *      This is overwritten with the buffer space used. -EINVAL is returned
 205 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 206 *      is returned if either the buffer or the length field are not
 207 *      accessible.
 208 *      After copying the data up to the limit the user specifies, the true
 209 *      length of the data is written over the length limit the user
 210 *      specified. Zero is returned for a success.
 211 */
 212
 213int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
 214                      int __user *ulen)
 215{
 216        int err;
 217        int len;
 218
 219        err = get_user(len, ulen);
 220        if (err)
 221                return err;
 222        if (len > klen)
 223                len = klen;
 224        if (len < 0 || len > sizeof(struct sockaddr_storage))
 225                return -EINVAL;
 226        if (len) {
 227                if (audit_sockaddr(klen, kaddr))
 228                        return -ENOMEM;
 229                if (copy_to_user(uaddr, kaddr, len))
 230                        return -EFAULT;
 231        }
 232        /*
 233         *      "fromlen shall refer to the value before truncation.."
 234         *                      1003.1g
 235         */
 236        return __put_user(klen, ulen);
 237}
 238
 239#define SOCKFS_MAGIC 0x534F434B
 240
 241static struct kmem_cache *sock_inode_cachep __read_mostly;
 242
 243static struct inode *sock_alloc_inode(struct super_block *sb)
 244{
 245        struct socket_alloc *ei;
 246
 247        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 248        if (!ei)
 249                return NULL;
 250        init_waitqueue_head(&ei->socket.wait);
 251
 252        ei->socket.fasync_list = NULL;
 253        ei->socket.state = SS_UNCONNECTED;
 254        ei->socket.flags = 0;
 255        ei->socket.ops = NULL;
 256        ei->socket.sk = NULL;
 257        ei->socket.file = NULL;
 258
 259        return &ei->vfs_inode;
 260}
 261
 262static void sock_destroy_inode(struct inode *inode)
 263{
 264        kmem_cache_free(sock_inode_cachep,
 265                        container_of(inode, struct socket_alloc, vfs_inode));
 266}
 267
 268static void init_once(void *foo)
 269{
 270        struct socket_alloc *ei = (struct socket_alloc *)foo;
 271
 272        inode_init_once(&ei->vfs_inode);
 273}
 274
 275static int init_inodecache(void)
 276{
 277        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 278                                              sizeof(struct socket_alloc),
 279                                              0,
 280                                              (SLAB_HWCACHE_ALIGN |
 281                                               SLAB_RECLAIM_ACCOUNT |
 282                                               SLAB_MEM_SPREAD),
 283                                              init_once);
 284        if (sock_inode_cachep == NULL)
 285                return -ENOMEM;
 286        return 0;
 287}
 288
 289static struct super_operations sockfs_ops = {
 290        .alloc_inode =  sock_alloc_inode,
 291        .destroy_inode =sock_destroy_inode,
 292        .statfs =       simple_statfs,
 293};
 294
 295static int sockfs_get_sb(struct file_system_type *fs_type,
 296                         int flags, const char *dev_name, void *data,
 297                         struct vfsmount *mnt)
 298{
 299        return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
 300                             mnt);
 301}
 302
 303static struct vfsmount *sock_mnt __read_mostly;
 304
 305static struct file_system_type sock_fs_type = {
 306        .name =         "sockfs",
 307        .get_sb =       sockfs_get_sb,
 308        .kill_sb =      kill_anon_super,
 309};
 310
 311static int sockfs_delete_dentry(struct dentry *dentry)
 312{
 313        /*
 314         * At creation time, we pretended this dentry was hashed
 315         * (by clearing DCACHE_UNHASHED bit in d_flags)
 316         * At delete time, we restore the truth : not hashed.
 317         * (so that dput() can proceed correctly)
 318         */
 319        dentry->d_flags |= DCACHE_UNHASHED;
 320        return 0;
 321}
 322
 323/*
 324 * sockfs_dname() is called from d_path().
 325 */
 326static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 327{
 328        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 329                                dentry->d_inode->i_ino);
 330}
 331
 332static struct dentry_operations sockfs_dentry_operations = {
 333        .d_delete = sockfs_delete_dentry,
 334        .d_dname  = sockfs_dname,
 335};
 336
 337/*
 338 *      Obtains the first available file descriptor and sets it up for use.
 339 *
 340 *      These functions create file structures and maps them to fd space
 341 *      of the current process. On success it returns file descriptor
 342 *      and file struct implicitly stored in sock->file.
 343 *      Note that another thread may close file descriptor before we return
 344 *      from this function. We use the fact that now we do not refer
 345 *      to socket after mapping. If one day we will need it, this
 346 *      function will increment ref. count on file by 1.
 347 *
 348 *      In any case returned fd MAY BE not valid!
 349 *      This race condition is unavoidable
 350 *      with shared fd spaces, we cannot solve it inside kernel,
 351 *      but we take care of internal coherence yet.
 352 */
 353
 354static int sock_alloc_fd(struct file **filep, int flags)
 355{
 356        int fd;
 357
 358        fd = get_unused_fd_flags(flags);
 359        if (likely(fd >= 0)) {
 360                struct file *file = get_empty_filp();
 361
 362                *filep = file;
 363                if (unlikely(!file)) {
 364                        put_unused_fd(fd);
 365                        return -ENFILE;
 366                }
 367        } else
 368                *filep = NULL;
 369        return fd;
 370}
 371
 372static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
 373{
 374        struct dentry *dentry;
 375        struct qstr name = { .name = "" };
 376
 377        dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
 378        if (unlikely(!dentry))
 379                return -ENOMEM;
 380
 381        dentry->d_op = &sockfs_dentry_operations;
 382        /*
 383         * We dont want to push this dentry into global dentry hash table.
 384         * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
 385         * This permits a working /proc/$pid/fd/XXX on sockets
 386         */
 387        dentry->d_flags &= ~DCACHE_UNHASHED;
 388        d_instantiate(dentry, SOCK_INODE(sock));
 389
 390        sock->file = file;
 391        init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
 392                  &socket_file_ops);
 393        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 394        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 395        file->f_pos = 0;
 396        file->private_data = sock;
 397
 398        return 0;
 399}
 400
 401int sock_map_fd(struct socket *sock, int flags)
 402{
 403        struct file *newfile;
 404        int fd = sock_alloc_fd(&newfile, flags);
 405
 406        if (likely(fd >= 0)) {
 407                int err = sock_attach_fd(sock, newfile, flags);
 408
 409                if (unlikely(err < 0)) {
 410                        put_filp(newfile);
 411                        put_unused_fd(fd);
 412                        return err;
 413                }
 414                fd_install(fd, newfile);
 415        }
 416        return fd;
 417}
 418
 419static struct socket *sock_from_file(struct file *file, int *err)
 420{
 421        if (file->f_op == &socket_file_ops)
 422                return file->private_data;      /* set in sock_map_fd */
 423
 424        *err = -ENOTSOCK;
 425        return NULL;
 426}
 427
 428/**
 429 *      sockfd_lookup   -       Go from a file number to its socket slot
 430 *      @fd: file handle
 431 *      @err: pointer to an error code return
 432 *
 433 *      The file handle passed in is locked and the socket it is bound
 434 *      too is returned. If an error occurs the err pointer is overwritten
 435 *      with a negative errno code and NULL is returned. The function checks
 436 *      for both invalid handles and passing a handle which is not a socket.
 437 *
 438 *      On a success the socket object pointer is returned.
 439 */
 440
 441struct socket *sockfd_lookup(int fd, int *err)
 442{
 443        struct file *file;
 444        struct socket *sock;
 445
 446        file = fget(fd);
 447        if (!file) {
 448                *err = -EBADF;
 449                return NULL;
 450        }
 451
 452        sock = sock_from_file(file, err);
 453        if (!sock)
 454                fput(file);
 455        return sock;
 456}
 457
 458static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 459{
 460        struct file *file;
 461        struct socket *sock;
 462
 463        *err = -EBADF;
 464        file = fget_light(fd, fput_needed);
 465        if (file) {
 466                sock = sock_from_file(file, err);
 467                if (sock)
 468                        return sock;
 469                fput_light(file, *fput_needed);
 470        }
 471        return NULL;
 472}
 473
 474/**
 475 *      sock_alloc      -       allocate a socket
 476 *
 477 *      Allocate a new inode and socket object. The two are bound together
 478 *      and initialised. The socket is then returned. If we are out of inodes
 479 *      NULL is returned.
 480 */
 481
 482static struct socket *sock_alloc(void)
 483{
 484        struct inode *inode;
 485        struct socket *sock;
 486
 487        inode = new_inode(sock_mnt->mnt_sb);
 488        if (!inode)
 489                return NULL;
 490
 491        sock = SOCKET_I(inode);
 492
 493        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 494        inode->i_uid = current->fsuid;
 495        inode->i_gid = current->fsgid;
 496
 497        get_cpu_var(sockets_in_use)++;
 498        put_cpu_var(sockets_in_use);
 499        return sock;
 500}
 501
 502/*
 503 *      In theory you can't get an open on this inode, but /proc provides
 504 *      a back door. Remember to keep it shut otherwise you'll let the
 505 *      creepy crawlies in.
 506 */
 507
 508static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 509{
 510        return -ENXIO;
 511}
 512
 513const struct file_operations bad_sock_fops = {
 514        .owner = THIS_MODULE,
 515        .open = sock_no_open,
 516};
 517
 518/**
 519 *      sock_release    -       close a socket
 520 *      @sock: socket to close
 521 *
 522 *      The socket is released from the protocol stack if it has a release
 523 *      callback, and the inode is then released if the socket is bound to
 524 *      an inode not a file.
 525 */
 526
 527void sock_release(struct socket *sock)
 528{
 529        if (sock->ops) {
 530                struct module *owner = sock->ops->owner;
 531
 532                sock->ops->release(sock);
 533                sock->ops = NULL;
 534                module_put(owner);
 535        }
 536
 537        if (sock->fasync_list)
 538                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 539
 540        get_cpu_var(sockets_in_use)--;
 541        put_cpu_var(sockets_in_use);
 542        if (!sock->file) {
 543                iput(SOCK_INODE(sock));
 544                return;
 545        }
 546        sock->file = NULL;
 547}
 548
 549static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 550                                 struct msghdr *msg, size_t size)
 551{
 552        struct sock_iocb *si = kiocb_to_siocb(iocb);
 553        int err;
 554
 555        si->sock = sock;
 556        si->scm = NULL;
 557        si->msg = msg;
 558        si->size = size;
 559
 560        err = security_socket_sendmsg(sock, msg, size);
 561        if (err)
 562                return err;
 563
 564        return sock->ops->sendmsg(iocb, sock, msg, size);
 565}
 566
 567int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 568{
 569        struct kiocb iocb;
 570        struct sock_iocb siocb;
 571        int ret;
 572
 573        init_sync_kiocb(&iocb, NULL);
 574        iocb.private = &siocb;
 575        ret = __sock_sendmsg(&iocb, sock, msg, size);
 576        if (-EIOCBQUEUED == ret)
 577                ret = wait_on_sync_kiocb(&iocb);
 578        return ret;
 579}
 580
 581int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 582                   struct kvec *vec, size_t num, size_t size)
 583{
 584        mm_segment_t oldfs = get_fs();
 585        int result;
 586
 587        set_fs(KERNEL_DS);
 588        /*
 589         * the following is safe, since for compiler definitions of kvec and
 590         * iovec are identical, yielding the same in-core layout and alignment
 591         */
 592        msg->msg_iov = (struct iovec *)vec;
 593        msg->msg_iovlen = num;
 594        result = sock_sendmsg(sock, msg, size);
 595        set_fs(oldfs);
 596        return result;
 597}
 598
 599/*
 600 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 601 */
 602void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 603        struct sk_buff *skb)
 604{
 605        ktime_t kt = skb->tstamp;
 606
 607        if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 608                struct timeval tv;
 609                /* Race occurred between timestamp enabling and packet
 610                   receiving.  Fill in the current time for now. */
 611                if (kt.tv64 == 0)
 612                        kt = ktime_get_real();
 613                skb->tstamp = kt;
 614                tv = ktime_to_timeval(kt);
 615                put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
 616        } else {
 617                struct timespec ts;
 618                /* Race occurred between timestamp enabling and packet
 619                   receiving.  Fill in the current time for now. */
 620                if (kt.tv64 == 0)
 621                        kt = ktime_get_real();
 622                skb->tstamp = kt;
 623                ts = ktime_to_timespec(kt);
 624                put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
 625        }
 626}
 627
 628EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 629
 630static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 631                                 struct msghdr *msg, size_t size, int flags)
 632{
 633        int err;
 634        struct sock_iocb *si = kiocb_to_siocb(iocb);
 635
 636        si->sock = sock;
 637        si->scm = NULL;
 638        si->msg = msg;
 639        si->size = size;
 640        si->flags = flags;
 641
 642        err = security_socket_recvmsg(sock, msg, size, flags);
 643        if (err)
 644                return err;
 645
 646        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 647}
 648
 649int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 650                 size_t size, int flags)
 651{
 652        struct kiocb iocb;
 653        struct sock_iocb siocb;
 654        int ret;
 655
 656        init_sync_kiocb(&iocb, NULL);
 657        iocb.private = &siocb;
 658        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 659        if (-EIOCBQUEUED == ret)
 660                ret = wait_on_sync_kiocb(&iocb);
 661        return ret;
 662}
 663
 664int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 665                   struct kvec *vec, size_t num, size_t size, int flags)
 666{
 667        mm_segment_t oldfs = get_fs();
 668        int result;
 669
 670        set_fs(KERNEL_DS);
 671        /*
 672         * the following is safe, since for compiler definitions of kvec and
 673         * iovec are identical, yielding the same in-core layout and alignment
 674         */
 675        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 676        result = sock_recvmsg(sock, msg, size, flags);
 677        set_fs(oldfs);
 678        return result;
 679}
 680
 681static void sock_aio_dtor(struct kiocb *iocb)
 682{
 683        kfree(iocb->private);
 684}
 685
 686static ssize_t sock_sendpage(struct file *file, struct page *page,
 687                             int offset, size_t size, loff_t *ppos, int more)
 688{
 689        struct socket *sock;
 690        int flags;
 691
 692        sock = file->private_data;
 693
 694        flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
 695        if (more)
 696                flags |= MSG_MORE;
 697
 698        return kernel_sendpage(sock, page, offset, size, flags);
 699}
 700
 701static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 702                                struct pipe_inode_info *pipe, size_t len,
 703                                unsigned int flags)
 704{
 705        struct socket *sock = file->private_data;
 706
 707        if (unlikely(!sock->ops->splice_read))
 708                return -EINVAL;
 709
 710        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 711}
 712
 713static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 714                                         struct sock_iocb *siocb)
 715{
 716        if (!is_sync_kiocb(iocb)) {
 717                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 718                if (!siocb)
 719                        return NULL;
 720                iocb->ki_dtor = sock_aio_dtor;
 721        }
 722
 723        siocb->kiocb = iocb;
 724        iocb->private = siocb;
 725        return siocb;
 726}
 727
 728static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 729                struct file *file, const struct iovec *iov,
 730                unsigned long nr_segs)
 731{
 732        struct socket *sock = file->private_data;
 733        size_t size = 0;
 734        int i;
 735
 736        for (i = 0; i < nr_segs; i++)
 737                size += iov[i].iov_len;
 738
 739        msg->msg_name = NULL;
 740        msg->msg_namelen = 0;
 741        msg->msg_control = NULL;
 742        msg->msg_controllen = 0;
 743        msg->msg_iov = (struct iovec *)iov;
 744        msg->msg_iovlen = nr_segs;
 745        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 746
 747        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 748}
 749
 750static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 751                                unsigned long nr_segs, loff_t pos)
 752{
 753        struct sock_iocb siocb, *x;
 754
 755        if (pos != 0)
 756                return -ESPIPE;
 757
 758        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 759                return 0;
 760
 761
 762        x = alloc_sock_iocb(iocb, &siocb);
 763        if (!x)
 764                return -ENOMEM;
 765        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 766}
 767
 768static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 769                        struct file *file, const struct iovec *iov,
 770                        unsigned long nr_segs)
 771{
 772        struct socket *sock = file->private_data;
 773        size_t size = 0;
 774        int i;
 775
 776        for (i = 0; i < nr_segs; i++)
 777                size += iov[i].iov_len;
 778
 779        msg->msg_name = NULL;
 780        msg->msg_namelen = 0;
 781        msg->msg_control = NULL;
 782        msg->msg_controllen = 0;
 783        msg->msg_iov = (struct iovec *)iov;
 784        msg->msg_iovlen = nr_segs;
 785        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 786        if (sock->type == SOCK_SEQPACKET)
 787                msg->msg_flags |= MSG_EOR;
 788
 789        return __sock_sendmsg(iocb, sock, msg, size);
 790}
 791
 792static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 793                          unsigned long nr_segs, loff_t pos)
 794{
 795        struct sock_iocb siocb, *x;
 796
 797        if (pos != 0)
 798                return -ESPIPE;
 799
 800        x = alloc_sock_iocb(iocb, &siocb);
 801        if (!x)
 802                return -ENOMEM;
 803
 804        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 805}
 806
 807/*
 808 * Atomic setting of ioctl hooks to avoid race
 809 * with module unload.
 810 */
 811
 812static DEFINE_MUTEX(br_ioctl_mutex);
 813static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
 814
 815void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 816{
 817        mutex_lock(&br_ioctl_mutex);
 818        br_ioctl_hook = hook;
 819        mutex_unlock(&br_ioctl_mutex);
 820}
 821
 822EXPORT_SYMBOL(brioctl_set);
 823
 824static DEFINE_MUTEX(vlan_ioctl_mutex);
 825static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 826
 827void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 828{
 829        mutex_lock(&vlan_ioctl_mutex);
 830        vlan_ioctl_hook = hook;
 831        mutex_unlock(&vlan_ioctl_mutex);
 832}
 833
 834EXPORT_SYMBOL(vlan_ioctl_set);
 835
 836static DEFINE_MUTEX(dlci_ioctl_mutex);
 837static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 838
 839void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 840{
 841        mutex_lock(&dlci_ioctl_mutex);
 842        dlci_ioctl_hook = hook;
 843        mutex_unlock(&dlci_ioctl_mutex);
 844}
 845
 846EXPORT_SYMBOL(dlci_ioctl_set);
 847
 848/*
 849 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 850 *      what to do with it - that's up to the protocol still.
 851 */
 852
 853static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 854{
 855        struct socket *sock;
 856        struct sock *sk;
 857        void __user *argp = (void __user *)arg;
 858        int pid, err;
 859        struct net *net;
 860
 861        sock = file->private_data;
 862        sk = sock->sk;
 863        net = sock_net(sk);
 864        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 865                err = dev_ioctl(net, cmd, argp);
 866        } else
 867#ifdef CONFIG_WIRELESS_EXT
 868        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 869                err = dev_ioctl(net, cmd, argp);
 870        } else
 871#endif                          /* CONFIG_WIRELESS_EXT */
 872                switch (cmd) {
 873                case FIOSETOWN:
 874                case SIOCSPGRP:
 875                        err = -EFAULT;
 876                        if (get_user(pid, (int __user *)argp))
 877                                break;
 878                        err = f_setown(sock->file, pid, 1);
 879                        break;
 880                case FIOGETOWN:
 881                case SIOCGPGRP:
 882                        err = put_user(f_getown(sock->file),
 883                                       (int __user *)argp);
 884                        break;
 885                case SIOCGIFBR:
 886                case SIOCSIFBR:
 887                case SIOCBRADDBR:
 888                case SIOCBRDELBR:
 889                        err = -ENOPKG;
 890                        if (!br_ioctl_hook)
 891                                request_module("bridge");
 892
 893                        mutex_lock(&br_ioctl_mutex);
 894                        if (br_ioctl_hook)
 895                                err = br_ioctl_hook(net, cmd, argp);
 896                        mutex_unlock(&br_ioctl_mutex);
 897                        break;
 898                case SIOCGIFVLAN:
 899                case SIOCSIFVLAN:
 900                        err = -ENOPKG;
 901                        if (!vlan_ioctl_hook)
 902                                request_module("8021q");
 903
 904                        mutex_lock(&vlan_ioctl_mutex);
 905                        if (vlan_ioctl_hook)
 906                                err = vlan_ioctl_hook(net, argp);
 907                        mutex_unlock(&vlan_ioctl_mutex);
 908                        break;
 909                case SIOCADDDLCI:
 910                case SIOCDELDLCI:
 911                        err = -ENOPKG;
 912                        if (!dlci_ioctl_hook)
 913                                request_module("dlci");
 914
 915                        mutex_lock(&dlci_ioctl_mutex);
 916                        if (dlci_ioctl_hook)
 917                                err = dlci_ioctl_hook(cmd, argp);
 918                        mutex_unlock(&dlci_ioctl_mutex);
 919                        break;
 920                default:
 921                        err = sock->ops->ioctl(sock, cmd, arg);
 922
 923                        /*
 924                         * If this ioctl is unknown try to hand it down
 925                         * to the NIC driver.
 926                         */
 927                        if (err == -ENOIOCTLCMD)
 928                                err = dev_ioctl(net, cmd, argp);
 929                        break;
 930                }
 931        return err;
 932}
 933
 934int sock_create_lite(int family, int type, int protocol, struct socket **res)
 935{
 936        int err;
 937        struct socket *sock = NULL;
 938
 939        err = security_socket_create(family, type, protocol, 1);
 940        if (err)
 941                goto out;
 942
 943        sock = sock_alloc();
 944        if (!sock) {
 945                err = -ENOMEM;
 946                goto out;
 947        }
 948
 949        sock->type = type;
 950        err = security_socket_post_create(sock, family, type, protocol, 1);
 951        if (err)
 952                goto out_release;
 953
 954out:
 955        *res = sock;
 956        return err;
 957out_release:
 958        sock_release(sock);
 959        sock = NULL;
 960        goto out;
 961}
 962
 963/* No kernel lock held - perfect */
 964static unsigned int sock_poll(struct file *file, poll_table *wait)
 965{
 966        struct socket *sock;
 967
 968        /*
 969         *      We can't return errors to poll, so it's either yes or no.
 970         */
 971        sock = file->private_data;
 972        return sock->ops->poll(file, sock, wait);
 973}
 974
 975static int sock_mmap(struct file *file, struct vm_area_struct *vma)
 976{
 977        struct socket *sock = file->private_data;
 978
 979        return sock->ops->mmap(file, sock, vma);
 980}
 981
 982static int sock_close(struct inode *inode, struct file *filp)
 983{
 984        /*
 985         *      It was possible the inode is NULL we were
 986         *      closing an unfinished socket.
 987         */
 988
 989        if (!inode) {
 990                printk(KERN_DEBUG "sock_close: NULL inode\n");
 991                return 0;
 992        }
 993        sock_fasync(-1, filp, 0);
 994        sock_release(SOCKET_I(inode));
 995        return 0;
 996}
 997
 998/*
 999 *      Update the socket async list
1000 *
1001 *      Fasync_list locking strategy.
1002 *
1003 *      1. fasync_list is modified only under process context socket lock
1004 *         i.e. under semaphore.
1005 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1006 *         or under socket lock.
1007 *      3. fasync_list can be used from softirq context, so that
1008 *         modification under socket lock have to be enhanced with
1009 *         write_lock_bh(&sk->sk_callback_lock).
1010 *                                                      --ANK (990710)
1011 */
1012
1013static int sock_fasync(int fd, struct file *filp, int on)
1014{
1015        struct fasync_struct *fa, *fna = NULL, **prev;
1016        struct socket *sock;
1017        struct sock *sk;
1018
1019        if (on) {
1020                fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1021                if (fna == NULL)
1022                        return -ENOMEM;
1023        }
1024
1025        sock = filp->private_data;
1026
1027        sk = sock->sk;
1028        if (sk == NULL) {
1029                kfree(fna);
1030                return -EINVAL;
1031        }
1032
1033        lock_sock(sk);
1034
1035        prev = &(sock->fasync_list);
1036
1037        for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1038                if (fa->fa_file == filp)
1039                        break;
1040
1041        if (on) {
1042                if (fa != NULL) {
1043                        write_lock_bh(&sk->sk_callback_lock);
1044                        fa->fa_fd = fd;
1045                        write_unlock_bh(&sk->sk_callback_lock);
1046
1047                        kfree(fna);
1048                        goto out;
1049                }
1050                fna->fa_file = filp;
1051                fna->fa_fd = fd;
1052                fna->magic = FASYNC_MAGIC;
1053                fna->fa_next = sock->fasync_list;
1054                write_lock_bh(&sk->sk_callback_lock);
1055                sock->fasync_list = fna;
1056                write_unlock_bh(&sk->sk_callback_lock);
1057        } else {
1058                if (fa != NULL) {
1059                        write_lock_bh(&sk->sk_callback_lock);
1060                        *prev = fa->fa_next;
1061                        write_unlock_bh(&sk->sk_callback_lock);
1062                        kfree(fa);
1063                }
1064        }
1065
1066out:
1067        release_sock(sock->sk);
1068        return 0;
1069}
1070
1071/* This function may be called only under socket lock or callback_lock */
1072
1073int sock_wake_async(struct socket *sock, int how, int band)
1074{
1075        if (!sock || !sock->fasync_list)
1076                return -1;
1077        switch (how) {
1078        case SOCK_WAKE_WAITD:
1079                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1080                        break;
1081                goto call_kill;
1082        case SOCK_WAKE_SPACE:
1083                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1084                        break;
1085                /* fall through */
1086        case SOCK_WAKE_IO:
1087call_kill:
1088                __kill_fasync(sock->fasync_list, SIGIO, band);
1089                break;
1090        case SOCK_WAKE_URG:
1091                __kill_fasync(sock->fasync_list, SIGURG, band);
1092        }
1093        return 0;
1094}
1095
1096static int __sock_create(struct net *net, int family, int type, int protocol,
1097                         struct socket **res, int kern)
1098{
1099        int err;
1100        struct socket *sock;
1101        const struct net_proto_family *pf;
1102
1103        /*
1104         *      Check protocol is in range
1105         */
1106        if (family < 0 || family >= NPROTO)
1107                return -EAFNOSUPPORT;
1108        if (type < 0 || type >= SOCK_MAX)
1109                return -EINVAL;
1110
1111        /* Compatibility.
1112
1113           This uglymoron is moved from INET layer to here to avoid
1114           deadlock in module load.
1115         */
1116        if (family == PF_INET && type == SOCK_PACKET) {
1117                static int warned;
1118                if (!warned) {
1119                        warned = 1;
1120                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1121                               current->comm);
1122                }
1123                family = PF_PACKET;
1124        }
1125
1126        err = security_socket_create(family, type, protocol, kern);
1127        if (err)
1128                return err;
1129
1130        /*
1131         *      Allocate the socket and allow the family to set things up. if
1132         *      the protocol is 0, the family is instructed to select an appropriate
1133         *      default.
1134         */
1135        sock = sock_alloc();
1136        if (!sock) {
1137                if (net_ratelimit())
1138                        printk(KERN_WARNING "socket: no more sockets\n");
1139                return -ENFILE; /* Not exactly a match, but its the
1140                                   closest posix thing */
1141        }
1142
1143        sock->type = type;
1144
1145#if defined(CONFIG_KMOD)
1146        /* Attempt to load a protocol module if the find failed.
1147         *
1148         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149         * requested real, full-featured networking support upon configuration.
1150         * Otherwise module support will break!
1151         */
1152        if (net_families[family] == NULL)
1153                request_module("net-pf-%d", family);
1154#endif
1155
1156        rcu_read_lock();
1157        pf = rcu_dereference(net_families[family]);
1158        err = -EAFNOSUPPORT;
1159        if (!pf)
1160                goto out_release;
1161
1162        /*
1163         * We will call the ->create function, that possibly is in a loadable
1164         * module, so we have to bump that loadable module refcnt first.
1165         */
1166        if (!try_module_get(pf->owner))
1167                goto out_release;
1168
1169        /* Now protected by module ref count */
1170        rcu_read_unlock();
1171
1172        err = pf->create(net, sock, protocol);
1173        if (err < 0)
1174                goto out_module_put;
1175
1176        /*
1177         * Now to bump the refcnt of the [loadable] module that owns this
1178         * socket at sock_release time we decrement its refcnt.
1179         */
1180        if (!try_module_get(sock->ops->owner))
1181                goto out_module_busy;
1182
1183        /*
1184         * Now that we're done with the ->create function, the [loadable]
1185         * module can have its refcnt decremented
1186         */
1187        module_put(pf->owner);
1188        err = security_socket_post_create(sock, family, type, protocol, kern);
1189        if (err)
1190                goto out_sock_release;
1191        *res = sock;
1192
1193        return 0;
1194
1195out_module_busy:
1196        err = -EAFNOSUPPORT;
1197out_module_put:
1198        sock->ops = NULL;
1199        module_put(pf->owner);
1200out_sock_release:
1201        sock_release(sock);
1202        return err;
1203
1204out_release:
1205        rcu_read_unlock();
1206        goto out_sock_release;
1207}
1208
1209int sock_create(int family, int type, int protocol, struct socket **res)
1210{
1211        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1212}
1213
1214int sock_create_kern(int family, int type, int protocol, struct socket **res)
1215{
1216        return __sock_create(&init_net, family, type, protocol, res, 1);
1217}
1218
1219SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1220{
1221        int retval;
1222        struct socket *sock;
1223        int flags;
1224
1225        /* Check the SOCK_* constants for consistency.  */
1226        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1227        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1228        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1229        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1230
1231        flags = type & ~SOCK_TYPE_MASK;
1232        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1233                return -EINVAL;
1234        type &= SOCK_TYPE_MASK;
1235
1236        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1237                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1238
1239        retval = sock_create(family, type, protocol, &sock);
1240        if (retval < 0)
1241                goto out;
1242
1243        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1244        if (retval < 0)
1245                goto out_release;
1246
1247out:
1248        /* It may be already another descriptor 8) Not kernel problem. */
1249        return retval;
1250
1251out_release:
1252        sock_release(sock);
1253        return retval;
1254}
1255
1256/*
1257 *      Create a pair of connected sockets.
1258 */
1259
1260SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1261                int __user *, usockvec)
1262{
1263        struct socket *sock1, *sock2;
1264        int fd1, fd2, err;
1265        struct file *newfile1, *newfile2;
1266        int flags;
1267
1268        flags = type & ~SOCK_TYPE_MASK;
1269        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1270                return -EINVAL;
1271        type &= SOCK_TYPE_MASK;
1272
1273        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1274                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1275
1276        /*
1277         * Obtain the first socket and check if the underlying protocol
1278         * supports the socketpair call.
1279         */
1280
1281        err = sock_create(family, type, protocol, &sock1);
1282        if (err < 0)
1283                goto out;
1284
1285        err = sock_create(family, type, protocol, &sock2);
1286        if (err < 0)
1287                goto out_release_1;
1288
1289        err = sock1->ops->socketpair(sock1, sock2);
1290        if (err < 0)
1291                goto out_release_both;
1292
1293        fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1294        if (unlikely(fd1 < 0)) {
1295                err = fd1;
1296                goto out_release_both;
1297        }
1298
1299        fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1300        if (unlikely(fd2 < 0)) {
1301                err = fd2;
1302                put_filp(newfile1);
1303                put_unused_fd(fd1);
1304                goto out_release_both;
1305        }
1306
1307        err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1308        if (unlikely(err < 0)) {
1309                goto out_fd2;
1310        }
1311
1312        err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1313        if (unlikely(err < 0)) {
1314                fput(newfile1);
1315                goto out_fd1;
1316        }
1317
1318        err = audit_fd_pair(fd1, fd2);
1319        if (err < 0) {
1320                fput(newfile1);
1321                fput(newfile2);
1322                goto out_fd;
1323        }
1324
1325        fd_install(fd1, newfile1);
1326        fd_install(fd2, newfile2);
1327        /* fd1 and fd2 may be already another descriptors.
1328         * Not kernel problem.
1329         */
1330
1331        err = put_user(fd1, &usockvec[0]);
1332        if (!err)
1333                err = put_user(fd2, &usockvec[1]);
1334        if (!err)
1335                return 0;
1336
1337        sys_close(fd2);
1338        sys_close(fd1);
1339        return err;
1340
1341out_release_both:
1342        sock_release(sock2);
1343out_release_1:
1344        sock_release(sock1);
1345out:
1346        return err;
1347
1348out_fd2:
1349        put_filp(newfile1);
1350        sock_release(sock1);
1351out_fd1:
1352        put_filp(newfile2);
1353        sock_release(sock2);
1354out_fd:
1355        put_unused_fd(fd1);
1356        put_unused_fd(fd2);
1357        goto out;
1358}
1359
1360/*
1361 *      Bind a name to a socket. Nothing much to do here since it's
1362 *      the protocol's responsibility to handle the local address.
1363 *
1364 *      We move the socket address to kernel space before we call
1365 *      the protocol layer (having also checked the address is ok).
1366 */
1367
1368SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1369{
1370        struct socket *sock;
1371        struct sockaddr_storage address;
1372        int err, fput_needed;
1373
1374        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1375        if (sock) {
1376                err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1377                if (err >= 0) {
1378                        err = security_socket_bind(sock,
1379                                                   (struct sockaddr *)&address,
1380                                                   addrlen);
1381                        if (!err)
1382                                err = sock->ops->bind(sock,
1383                                                      (struct sockaddr *)
1384                                                      &address, addrlen);
1385                }
1386                fput_light(sock->file, fput_needed);
1387        }
1388        return err;
1389}
1390
1391/*
1392 *      Perform a listen. Basically, we allow the protocol to do anything
1393 *      necessary for a listen, and if that works, we mark the socket as
1394 *      ready for listening.
1395 */
1396
1397SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1398{
1399        struct socket *sock;
1400        int err, fput_needed;
1401        int somaxconn;
1402
1403        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404        if (sock) {
1405                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1406                if ((unsigned)backlog > somaxconn)
1407                        backlog = somaxconn;
1408
1409                err = security_socket_listen(sock, backlog);
1410                if (!err)
1411                        err = sock->ops->listen(sock, backlog);
1412
1413                fput_light(sock->file, fput_needed);
1414        }
1415        return err;
1416}
1417
1418/*
1419 *      For accept, we attempt to create a new socket, set up the link
1420 *      with the client, wake up the client, then return the new
1421 *      connected fd. We collect the address of the connector in kernel
1422 *      space and move it to user at the very end. This is unclean because
1423 *      we open the socket then return an error.
1424 *
1425 *      1003.1g adds the ability to recvmsg() to query connection pending
1426 *      status to recvmsg. We need to add that support in a way thats
1427 *      clean when we restucture accept also.
1428 */
1429
1430long do_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1431               int __user *upeer_addrlen, int flags)
1432{
1433        struct socket *sock, *newsock;
1434        struct file *newfile;
1435        int err, len, newfd, fput_needed;
1436        struct sockaddr_storage address;
1437
1438        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1439                return -EINVAL;
1440
1441        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1442                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1443
1444        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1445        if (!sock)
1446                goto out;
1447
1448        err = -ENFILE;
1449        if (!(newsock = sock_alloc()))
1450                goto out_put;
1451
1452        newsock->type = sock->type;
1453        newsock->ops = sock->ops;
1454
1455        /*
1456         * We don't need try_module_get here, as the listening socket (sock)
1457         * has the protocol module (sock->ops->owner) held.
1458         */
1459        __module_get(newsock->ops->owner);
1460
1461        newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1462        if (unlikely(newfd < 0)) {
1463                err = newfd;
1464                sock_release(newsock);
1465                goto out_put;
1466        }
1467
1468        err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1469        if (err < 0)
1470                goto out_fd_simple;
1471
1472        err = security_socket_accept(sock, newsock);
1473        if (err)
1474                goto out_fd;
1475
1476        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1477        if (err < 0)
1478                goto out_fd;
1479
1480        if (upeer_sockaddr) {
1481                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1482                                          &len, 2) < 0) {
1483                        err = -ECONNABORTED;
1484                        goto out_fd;
1485                }
1486                err = move_addr_to_user((struct sockaddr *)&address,
1487                                        len, upeer_sockaddr, upeer_addrlen);
1488                if (err < 0)
1489                        goto out_fd;
1490        }
1491
1492        /* File flags are not inherited via accept() unlike another OSes. */
1493
1494        fd_install(newfd, newfile);
1495        err = newfd;
1496
1497        security_socket_post_accept(sock, newsock);
1498
1499out_put:
1500        fput_light(sock->file, fput_needed);
1501out:
1502        return err;
1503out_fd_simple:
1504        sock_release(newsock);
1505        put_filp(newfile);
1506        put_unused_fd(newfd);
1507        goto out_put;
1508out_fd:
1509        fput(newfile);
1510        put_unused_fd(newfd);
1511        goto out_put;
1512}
1513
1514#if 0
1515#ifdef HAVE_SET_RESTORE_SIGMASK
1516asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1517                            int __user *upeer_addrlen,
1518                            const sigset_t __user *sigmask,
1519                            size_t sigsetsize, int flags)
1520{
1521        sigset_t ksigmask, sigsaved;
1522        int ret;
1523
1524        if (sigmask) {
1525                /* XXX: Don't preclude handling different sized sigset_t's.  */
1526                if (sigsetsize != sizeof(sigset_t))
1527                        return -EINVAL;
1528                if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1529                        return -EFAULT;
1530
1531                sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
1532                sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1533        }
1534
1535        ret = do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1536
1537        if (ret < 0 && signal_pending(current)) {
1538                /*
1539                 * Don't restore the signal mask yet. Let do_signal() deliver
1540                 * the signal on the way back to userspace, before the signal
1541                 * mask is restored.
1542                 */
1543                if (sigmask) {
1544                        memcpy(&current->saved_sigmask, &sigsaved,
1545                               sizeof(sigsaved));
1546                        set_restore_sigmask();
1547                }
1548        } else if (sigmask)
1549                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1550
1551        return ret;
1552}
1553#else
1554asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1555                            int __user *upeer_addrlen,
1556                            const sigset_t __user *sigmask,
1557                            size_t sigsetsize, int flags)
1558{
1559        /* The platform does not support restoring the signal mask in the
1560         * return path.  So we do not allow using paccept() with a signal
1561         * mask.  */
1562        if (sigmask)
1563                return -EINVAL;
1564
1565        return do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1566}
1567#endif
1568#endif
1569
1570SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1571                int __user *, upeer_addrlen)
1572{
1573        return do_accept(fd, upeer_sockaddr, upeer_addrlen, 0);
1574}
1575
1576/*
1577 *      Attempt to connect to a socket with the server address.  The address
1578 *      is in user space so we verify it is OK and move it to kernel space.
1579 *
1580 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1581 *      break bindings
1582 *
1583 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1584 *      other SEQPACKET protocols that take time to connect() as it doesn't
1585 *      include the -EINPROGRESS status for such sockets.
1586 */
1587
1588SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1589                int, addrlen)
1590{
1591        struct socket *sock;
1592        struct sockaddr_storage address;
1593        int err, fput_needed;
1594
1595        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596        if (!sock)
1597                goto out;
1598        err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1599        if (err < 0)
1600                goto out_put;
1601
1602        err =
1603            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1604        if (err)
1605                goto out_put;
1606
1607        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1608                                 sock->file->f_flags);
1609out_put:
1610        fput_light(sock->file, fput_needed);
1611out:
1612        return err;
1613}
1614
1615/*
1616 *      Get the local address ('name') of a socket object. Move the obtained
1617 *      name to user space.
1618 */
1619
1620SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1621                int __user *, usockaddr_len)
1622{
1623        struct socket *sock;
1624        struct sockaddr_storage address;
1625        int len, err, fput_needed;
1626
1627        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628        if (!sock)
1629                goto out;
1630
1631        err = security_socket_getsockname(sock);
1632        if (err)
1633                goto out_put;
1634
1635        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1636        if (err)
1637                goto out_put;
1638        err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1639
1640out_put:
1641        fput_light(sock->file, fput_needed);
1642out:
1643        return err;
1644}
1645
1646/*
1647 *      Get the remote address ('name') of a socket object. Move the obtained
1648 *      name to user space.
1649 */
1650
1651SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1652                int __user *, usockaddr_len)
1653{
1654        struct socket *sock;
1655        struct sockaddr_storage address;
1656        int len, err, fput_needed;
1657
1658        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1659        if (sock != NULL) {
1660                err = security_socket_getpeername(sock);
1661                if (err) {
1662                        fput_light(sock->file, fput_needed);
1663                        return err;
1664                }
1665
1666                err =
1667                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1668                                       1);
1669                if (!err)
1670                        err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1671                                                usockaddr_len);
1672                fput_light(sock->file, fput_needed);
1673        }
1674        return err;
1675}
1676
1677/*
1678 *      Send a datagram to a given address. We move the address into kernel
1679 *      space and check the user space data area is readable before invoking
1680 *      the protocol.
1681 */
1682
1683SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1684                unsigned, flags, struct sockaddr __user *, addr,
1685                int, addr_len)
1686{
1687        struct socket *sock;
1688        struct sockaddr_storage address;
1689        int err;
1690        struct msghdr msg;
1691        struct iovec iov;
1692        int fput_needed;
1693
1694        if (len > INT_MAX)
1695                len = INT_MAX;
1696        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1697        if (!sock)
1698                goto out;
1699
1700        iov.iov_base = buff;
1701        iov.iov_len = len;
1702        msg.msg_name = NULL;
1703        msg.msg_iov = &iov;
1704        msg.msg_iovlen = 1;
1705        msg.msg_control = NULL;
1706        msg.msg_controllen = 0;
1707        msg.msg_namelen = 0;
1708        if (addr) {
1709                err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1710                if (err < 0)
1711                        goto out_put;
1712                msg.msg_name = (struct sockaddr *)&address;
1713                msg.msg_namelen = addr_len;
1714        }
1715        if (sock->file->f_flags & O_NONBLOCK)
1716                flags |= MSG_DONTWAIT;
1717        msg.msg_flags = flags;
1718        err = sock_sendmsg(sock, &msg, len);
1719
1720out_put:
1721        fput_light(sock->file, fput_needed);
1722out:
1723        return err;
1724}
1725
1726/*
1727 *      Send a datagram down a socket.
1728 */
1729
1730SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1731                unsigned, flags)
1732{
1733        return sys_sendto(fd, buff, len, flags, NULL, 0);
1734}
1735
1736/*
1737 *      Receive a frame from the socket and optionally record the address of the
1738 *      sender. We verify the buffers are writable and if needed move the
1739 *      sender address from kernel to user space.
1740 */
1741
1742SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1743                unsigned, flags, struct sockaddr __user *, addr,
1744                int __user *, addr_len)
1745{
1746        struct socket *sock;
1747        struct iovec iov;
1748        struct msghdr msg;
1749        struct sockaddr_storage address;
1750        int err, err2;
1751        int fput_needed;
1752
1753        if (size > INT_MAX)
1754                size = INT_MAX;
1755        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1756        if (!sock)
1757                goto out;
1758
1759        msg.msg_control = NULL;
1760        msg.msg_controllen = 0;
1761        msg.msg_iovlen = 1;
1762        msg.msg_iov = &iov;
1763        iov.iov_len = size;
1764        iov.iov_base = ubuf;
1765        msg.msg_name = (struct sockaddr *)&address;
1766        msg.msg_namelen = sizeof(address);
1767        if (sock->file->f_flags & O_NONBLOCK)
1768                flags |= MSG_DONTWAIT;
1769        err = sock_recvmsg(sock, &msg, size, flags);
1770
1771        if (err >= 0 && addr != NULL) {
1772                err2 = move_addr_to_user((struct sockaddr *)&address,
1773                                         msg.msg_namelen, addr, addr_len);
1774                if (err2 < 0)
1775                        err = err2;
1776        }
1777
1778        fput_light(sock->file, fput_needed);
1779out:
1780        return err;
1781}
1782
1783/*
1784 *      Receive a datagram from a socket.
1785 */
1786
1787asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1788                         unsigned flags)
1789{
1790        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1791}
1792
1793/*
1794 *      Set a socket option. Because we don't know the option lengths we have
1795 *      to pass the user mode parameter for the protocols to sort out.
1796 */
1797
1798SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1799                char __user *, optval, int, optlen)
1800{
1801        int err, fput_needed;
1802        struct socket *sock;
1803
1804        if (optlen < 0)
1805                return -EINVAL;
1806
1807        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808        if (sock != NULL) {
1809                err = security_socket_setsockopt(sock, level, optname);
1810                if (err)
1811                        goto out_put;
1812
1813                if (level == SOL_SOCKET)
1814                        err =
1815                            sock_setsockopt(sock, level, optname, optval,
1816                                            optlen);
1817                else
1818                        err =
1819                            sock->ops->setsockopt(sock, level, optname, optval,
1820                                                  optlen);
1821out_put:
1822                fput_light(sock->file, fput_needed);
1823        }
1824        return err;
1825}
1826
1827/*
1828 *      Get a socket option. Because we don't know the option lengths we have
1829 *      to pass a user mode parameter for the protocols to sort out.
1830 */
1831
1832SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1833                char __user *, optval, int __user *, optlen)
1834{
1835        int err, fput_needed;
1836        struct socket *sock;
1837
1838        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1839        if (sock != NULL) {
1840                err = security_socket_getsockopt(sock, level, optname);
1841                if (err)
1842                        goto out_put;
1843
1844                if (level == SOL_SOCKET)
1845                        err =
1846                            sock_getsockopt(sock, level, optname, optval,
1847                                            optlen);
1848                else
1849                        err =
1850                            sock->ops->getsockopt(sock, level, optname, optval,
1851                                                  optlen);
1852out_put:
1853                fput_light(sock->file, fput_needed);
1854        }
1855        return err;
1856}
1857
1858/*
1859 *      Shutdown a socket.
1860 */
1861
1862SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1863{
1864        int err, fput_needed;
1865        struct socket *sock;
1866
1867        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1868        if (sock != NULL) {
1869                err = security_socket_shutdown(sock, how);
1870                if (!err)
1871                        err = sock->ops->shutdown(sock, how);
1872                fput_light(sock->file, fput_needed);
1873        }
1874        return err;
1875}
1876
1877/* A couple of helpful macros for getting the address of the 32/64 bit
1878 * fields which are the same type (int / unsigned) on our platforms.
1879 */
1880#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1881#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1882#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1883
1884/*
1885 *      BSD sendmsg interface
1886 */
1887
1888SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1889{
1890        struct compat_msghdr __user *msg_compat =
1891            (struct compat_msghdr __user *)msg;
1892        struct socket *sock;
1893        struct sockaddr_storage address;
1894        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1895        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1896            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1897        /* 20 is size of ipv6_pktinfo */
1898        unsigned char *ctl_buf = ctl;
1899        struct msghdr msg_sys;
1900        int err, ctl_len, iov_size, total_len;
1901        int fput_needed;
1902
1903        err = -EFAULT;
1904        if (MSG_CMSG_COMPAT & flags) {
1905                if (get_compat_msghdr(&msg_sys, msg_compat))
1906                        return -EFAULT;
1907        }
1908        else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1909                return -EFAULT;
1910
1911        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1912        if (!sock)
1913                goto out;
1914
1915        /* do not move before msg_sys is valid */
1916        err = -EMSGSIZE;
1917        if (msg_sys.msg_iovlen > UIO_MAXIOV)
1918                goto out_put;
1919
1920        /* Check whether to allocate the iovec area */
1921        err = -ENOMEM;
1922        iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1923        if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1924                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1925                if (!iov)
1926                        goto out_put;
1927        }
1928
1929        /* This will also move the address data into kernel space */
1930        if (MSG_CMSG_COMPAT & flags) {
1931                err = verify_compat_iovec(&msg_sys, iov,
1932                                          (struct sockaddr *)&address,
1933                                          VERIFY_READ);
1934        } else
1935                err = verify_iovec(&msg_sys, iov,
1936                                   (struct sockaddr *)&address,
1937                                   VERIFY_READ);
1938        if (err < 0)
1939                goto out_freeiov;
1940        total_len = err;
1941
1942        err = -ENOBUFS;
1943
1944        if (msg_sys.msg_controllen > INT_MAX)
1945                goto out_freeiov;
1946        ctl_len = msg_sys.msg_controllen;
1947        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1948                err =
1949                    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1950                                                     sizeof(ctl));
1951                if (err)
1952                        goto out_freeiov;
1953                ctl_buf = msg_sys.msg_control;
1954                ctl_len = msg_sys.msg_controllen;
1955        } else if (ctl_len) {
1956                if (ctl_len > sizeof(ctl)) {
1957                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1958                        if (ctl_buf == NULL)
1959                                goto out_freeiov;
1960                }
1961                err = -EFAULT;
1962                /*
1963                 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1964                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1965                 * checking falls down on this.
1966                 */
1967                if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1968                                   ctl_len))
1969                        goto out_freectl;
1970                msg_sys.msg_control = ctl_buf;
1971        }
1972        msg_sys.msg_flags = flags;
1973
1974        if (sock->file->f_flags & O_NONBLOCK)
1975                msg_sys.msg_flags |= MSG_DONTWAIT;
1976        err = sock_sendmsg(sock, &msg_sys, total_len);
1977
1978out_freectl:
1979        if (ctl_buf != ctl)
1980                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1981out_freeiov:
1982        if (iov != iovstack)
1983                sock_kfree_s(sock->sk, iov, iov_size);
1984out_put:
1985        fput_light(sock->file, fput_needed);
1986out:
1987        return err;
1988}
1989
1990/*
1991 *      BSD recvmsg interface
1992 */
1993
1994SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1995                unsigned int, flags)
1996{
1997        struct compat_msghdr __user *msg_compat =
1998            (struct compat_msghdr __user *)msg;
1999        struct socket *sock;
2000        struct iovec iovstack[UIO_FASTIOV];
2001        struct iovec *iov = iovstack;
2002        struct msghdr msg_sys;
2003        unsigned long cmsg_ptr;
2004        int err, iov_size, total_len, len;
2005        int fput_needed;
2006
2007        /* kernel mode address */
2008        struct sockaddr_storage addr;
2009
2010        /* user mode address pointers */
2011        struct sockaddr __user *uaddr;
2012        int __user *uaddr_len;
2013
2014        if (MSG_CMSG_COMPAT & flags) {
2015                if (get_compat_msghdr(&msg_sys, msg_compat))
2016                        return -EFAULT;
2017        }
2018        else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
2019                return -EFAULT;
2020
2021        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022        if (!sock)
2023                goto out;
2024
2025        err = -EMSGSIZE;
2026        if (msg_sys.msg_iovlen > UIO_MAXIOV)
2027                goto out_put;
2028
2029        /* Check whether to allocate the iovec area */
2030        err = -ENOMEM;
2031        iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2032        if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2033                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2034                if (!iov)
2035                        goto out_put;
2036        }
2037
2038        /*
2039         *      Save the user-mode address (verify_iovec will change the
2040         *      kernel msghdr to use the kernel address space)
2041         */
2042
2043        uaddr = (__force void __user *)msg_sys.msg_name;
2044        uaddr_len = COMPAT_NAMELEN(msg);
2045        if (MSG_CMSG_COMPAT & flags) {
2046                err = verify_compat_iovec(&msg_sys, iov,
2047                                          (struct sockaddr *)&addr,
2048                                          VERIFY_WRITE);
2049        } else
2050                err = verify_iovec(&msg_sys, iov,
2051                                   (struct sockaddr *)&addr,
2052                                   VERIFY_WRITE);
2053        if (err < 0)
2054                goto out_freeiov;
2055        total_len = err;
2056
2057        cmsg_ptr = (unsigned long)msg_sys.msg_control;
2058        msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2059
2060        if (sock->file->f_flags & O_NONBLOCK)
2061                flags |= MSG_DONTWAIT;
2062        err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2063        if (err < 0)
2064                goto out_freeiov;
2065        len = err;
2066
2067        if (uaddr != NULL) {
2068                err = move_addr_to_user((struct sockaddr *)&addr,
2069                                        msg_sys.msg_namelen, uaddr,
2070                                        uaddr_len);
2071                if (err < 0)
2072                        goto out_freeiov;
2073        }
2074        err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2075                         COMPAT_FLAGS(msg));
2076        if (err)
2077                goto out_freeiov;
2078        if (MSG_CMSG_COMPAT & flags)
2079                err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2080                                 &msg_compat->msg_controllen);
2081        else
2082                err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2083                                 &msg->msg_controllen);
2084        if (err)
2085                goto out_freeiov;
2086        err = len;
2087
2088out_freeiov:
2089        if (iov != iovstack)
2090                sock_kfree_s(sock->sk, iov, iov_size);
2091out_put:
2092        fput_light(sock->file, fput_needed);
2093out:
2094        return err;
2095}
2096
2097#ifdef __ARCH_WANT_SYS_SOCKETCALL
2098
2099/* Argument list sizes for sys_socketcall */
2100#define AL(x) ((x) * sizeof(unsigned long))
2101static const unsigned char nargs[19]={
2102        AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2103        AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2104        AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2105        AL(6)
2106};
2107
2108#undef AL
2109
2110/*
2111 *      System call vectors.
2112 *
2113 *      Argument checking cleaned up. Saved 20% in size.
2114 *  This function doesn't need to set the kernel lock because
2115 *  it is set by the callees.
2116 */
2117
2118SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2119{
2120        unsigned long a[6];
2121        unsigned long a0, a1;
2122        int err;
2123
2124        if (call < 1 || call > SYS_PACCEPT)
2125                return -EINVAL;
2126
2127        /* copy_from_user should be SMP safe. */
2128        if (copy_from_user(a, args, nargs[call]))
2129                return -EFAULT;
2130
2131        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2132        if (err)
2133                return err;
2134
2135        a0 = a[0];
2136        a1 = a[1];
2137
2138        switch (call) {
2139        case SYS_SOCKET:
2140                err = sys_socket(a0, a1, a[2]);
2141                break;
2142        case SYS_BIND:
2143                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2144                break;
2145        case SYS_CONNECT:
2146                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2147                break;
2148        case SYS_LISTEN:
2149                err = sys_listen(a0, a1);
2150                break;
2151        case SYS_ACCEPT:
2152                err =
2153                    do_accept(a0, (struct sockaddr __user *)a1,
2154                              (int __user *)a[2], 0);
2155                break;
2156        case SYS_GETSOCKNAME:
2157                err =
2158                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2159                                    (int __user *)a[2]);
2160                break;
2161        case SYS_GETPEERNAME:
2162                err =
2163                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2164                                    (int __user *)a[2]);
2165                break;
2166        case SYS_SOCKETPAIR:
2167                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2168                break;
2169        case SYS_SEND:
2170                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2171                break;
2172        case SYS_SENDTO:
2173                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2174                                 (struct sockaddr __user *)a[4], a[5]);
2175                break;
2176        case SYS_RECV:
2177                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2178                break;
2179        case SYS_RECVFROM:
2180                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2181                                   (struct sockaddr __user *)a[4],
2182                                   (int __user *)a[5]);
2183                break;
2184        case SYS_SHUTDOWN:
2185                err = sys_shutdown(a0, a1);
2186                break;
2187        case SYS_SETSOCKOPT:
2188                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2189                break;
2190        case SYS_GETSOCKOPT:
2191                err =
2192                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2193                                   (int __user *)a[4]);
2194                break;
2195        case SYS_SENDMSG:
2196                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2197                break;
2198        case SYS_RECVMSG:
2199                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2200                break;
2201        case SYS_PACCEPT:
2202                err =
2203                    sys_paccept(a0, (struct sockaddr __user *)a1,
2204                                (int __user *)a[2],
2205                                (const sigset_t __user *) a[3],
2206                                a[4], a[5]);
2207                break;
2208        default:
2209                err = -EINVAL;
2210                break;
2211        }
2212        return err;
2213}
2214
2215#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2216
2217/**
2218 *      sock_register - add a socket protocol handler
2219 *      @ops: description of protocol
2220 *
2221 *      This function is called by a protocol handler that wants to
2222 *      advertise its address family, and have it linked into the
2223 *      socket interface. The value ops->family coresponds to the
2224 *      socket system call protocol family.
2225 */
2226int sock_register(const struct net_proto_family *ops)
2227{
2228        int err;
2229
2230        if (ops->family >= NPROTO) {
2231                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2232                       NPROTO);
2233                return -ENOBUFS;
2234        }
2235
2236        spin_lock(&net_family_lock);
2237        if (net_families[ops->family])
2238                err = -EEXIST;
2239        else {
2240                net_families[ops->family] = ops;
2241                err = 0;
2242        }
2243        spin_unlock(&net_family_lock);
2244
2245        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2246        return err;
2247}
2248
2249/**
2250 *      sock_unregister - remove a protocol handler
2251 *      @family: protocol family to remove
2252 *
2253 *      This function is called by a protocol handler that wants to
2254 *      remove its address family, and have it unlinked from the
2255 *      new socket creation.
2256 *
2257 *      If protocol handler is a module, then it can use module reference
2258 *      counts to protect against new references. If protocol handler is not
2259 *      a module then it needs to provide its own protection in
2260 *      the ops->create routine.
2261 */
2262void sock_unregister(int family)
2263{
2264        BUG_ON(family < 0 || family >= NPROTO);
2265
2266        spin_lock(&net_family_lock);
2267        net_families[family] = NULL;
2268        spin_unlock(&net_family_lock);
2269
2270        synchronize_rcu();
2271
2272        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2273}
2274
2275static int __init sock_init(void)
2276{
2277        /*
2278         *      Initialize sock SLAB cache.
2279         */
2280
2281        sk_init();
2282
2283        /*
2284         *      Initialize skbuff SLAB cache
2285         */
2286        skb_init();
2287
2288        /*
2289         *      Initialize the protocols module.
2290         */
2291
2292        init_inodecache();
2293        register_filesystem(&sock_fs_type);
2294        sock_mnt = kern_mount(&sock_fs_type);
2295
2296        /* The real protocol initialization is performed in later initcalls.
2297         */
2298
2299#ifdef CONFIG_NETFILTER
2300        netfilter_init();
2301#endif
2302
2303        return 0;
2304}
2305
2306core_initcall(sock_init);       /* early initcall */
2307
2308#ifdef CONFIG_PROC_FS
2309void socket_seq_show(struct seq_file *seq)
2310{
2311        int cpu;
2312        int counter = 0;
2313
2314        for_each_possible_cpu(cpu)
2315            counter += per_cpu(sockets_in_use, cpu);
2316
2317        /* It can be negative, by the way. 8) */
2318        if (counter < 0)
2319                counter = 0;
2320
2321        seq_printf(seq, "sockets: used %d\n", counter);
2322}
2323#endif                          /* CONFIG_PROC_FS */
2324
2325#ifdef CONFIG_COMPAT
2326static long compat_sock_ioctl(struct file *file, unsigned cmd,
2327                              unsigned long arg)
2328{
2329        struct socket *sock = file->private_data;
2330        int ret = -ENOIOCTLCMD;
2331        struct sock *sk;
2332        struct net *net;
2333
2334        sk = sock->sk;
2335        net = sock_net(sk);
2336
2337        if (sock->ops->compat_ioctl)
2338                ret = sock->ops->compat_ioctl(sock, cmd, arg);
2339
2340        if (ret == -ENOIOCTLCMD &&
2341            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2342                ret = compat_wext_handle_ioctl(net, cmd, arg);
2343
2344        return ret;
2345}
2346#endif
2347
2348int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2349{
2350        return sock->ops->bind(sock, addr, addrlen);
2351}
2352
2353int kernel_listen(struct socket *sock, int backlog)
2354{
2355        return sock->ops->listen(sock, backlog);
2356}
2357
2358int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2359{
2360        struct sock *sk = sock->sk;
2361        int err;
2362
2363        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2364                               newsock);
2365        if (err < 0)
2366                goto done;
2367
2368        err = sock->ops->accept(sock, *newsock, flags);
2369        if (err < 0) {
2370                sock_release(*newsock);
2371                *newsock = NULL;
2372                goto done;
2373        }
2374
2375        (*newsock)->ops = sock->ops;
2376
2377done:
2378        return err;
2379}
2380
2381int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2382                   int flags)
2383{
2384        return sock->ops->connect(sock, addr, addrlen, flags);
2385}
2386
2387int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2388                         int *addrlen)
2389{
2390        return sock->ops->getname(sock, addr, addrlen, 0);
2391}
2392
2393int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2394                         int *addrlen)
2395{
2396        return sock->ops->getname(sock, addr, addrlen, 1);
2397}
2398
2399int kernel_getsockopt(struct socket *sock, int level, int optname,
2400                        char *optval, int *optlen)
2401{
2402        mm_segment_t oldfs = get_fs();
2403        int err;
2404
2405        set_fs(KERNEL_DS);
2406        if (level == SOL_SOCKET)
2407                err = sock_getsockopt(sock, level, optname, optval, optlen);
2408        else
2409                err = sock->ops->getsockopt(sock, level, optname, optval,
2410                                            optlen);
2411        set_fs(oldfs);
2412        return err;
2413}
2414
2415int kernel_setsockopt(struct socket *sock, int level, int optname,
2416                        char *optval, int optlen)
2417{
2418        mm_segment_t oldfs = get_fs();
2419        int err;
2420
2421        set_fs(KERNEL_DS);
2422        if (level == SOL_SOCKET)
2423                err = sock_setsockopt(sock, level, optname, optval, optlen);
2424        else
2425                err = sock->ops->setsockopt(sock, level, optname, optval,
2426                                            optlen);
2427        set_fs(oldfs);
2428        return err;
2429}
2430
2431int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2432                    size_t size, int flags)
2433{
2434        if (sock->ops->sendpage)
2435                return sock->ops->sendpage(sock, page, offset, size, flags);
2436
2437        return sock_no_sendpage(sock, page, offset, size, flags);
2438}
2439
2440int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2441{
2442        mm_segment_t oldfs = get_fs();
2443        int err;
2444
2445        set_fs(KERNEL_DS);
2446        err = sock->ops->ioctl(sock, cmd, arg);
2447        set_fs(oldfs);
2448
2449        return err;
2450}
2451
2452int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2453{
2454        return sock->ops->shutdown(sock, how);
2455}
2456
2457EXPORT_SYMBOL(sock_create);
2458EXPORT_SYMBOL(sock_create_kern);
2459EXPORT_SYMBOL(sock_create_lite);
2460EXPORT_SYMBOL(sock_map_fd);
2461EXPORT_SYMBOL(sock_recvmsg);
2462EXPORT_SYMBOL(sock_register);
2463EXPORT_SYMBOL(sock_release);
2464EXPORT_SYMBOL(sock_sendmsg);
2465EXPORT_SYMBOL(sock_unregister);
2466EXPORT_SYMBOL(sock_wake_async);
2467EXPORT_SYMBOL(sockfd_lookup);
2468EXPORT_SYMBOL(kernel_sendmsg);
2469EXPORT_SYMBOL(kernel_recvmsg);
2470EXPORT_SYMBOL(kernel_bind);
2471EXPORT_SYMBOL(kernel_listen);
2472EXPORT_SYMBOL(kernel_accept);
2473EXPORT_SYMBOL(kernel_connect);
2474EXPORT_SYMBOL(kernel_getsockname);
2475EXPORT_SYMBOL(kernel_getpeername);
2476EXPORT_SYMBOL(kernel_getsockopt);
2477EXPORT_SYMBOL(kernel_setsockopt);
2478EXPORT_SYMBOL(kernel_sendpage);
2479EXPORT_SYMBOL(kernel_sock_ioctl);
2480EXPORT_SYMBOL(kernel_sock_shutdown);
2481