linux/arch/um/kernel/irq.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   3 * Licensed under the GPL
   4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
   5 *      Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
   6 */
   7
   8#include "linux/cpumask.h"
   9#include "linux/hardirq.h"
  10#include "linux/interrupt.h"
  11#include "linux/kernel_stat.h"
  12#include "linux/module.h"
  13#include "linux/seq_file.h"
  14#include "as-layout.h"
  15#include "kern_util.h"
  16#include "os.h"
  17
  18/*
  19 * Generic, controller-independent functions:
  20 */
  21
  22int show_interrupts(struct seq_file *p, void *v)
  23{
  24        int i = *(loff_t *) v, j;
  25        struct irqaction * action;
  26        unsigned long flags;
  27
  28        if (i == 0) {
  29                seq_printf(p, "           ");
  30                for_each_online_cpu(j)
  31                        seq_printf(p, "CPU%d       ",j);
  32                seq_putc(p, '\n');
  33        }
  34
  35        if (i < NR_IRQS) {
  36                spin_lock_irqsave(&irq_desc[i].lock, flags);
  37                action = irq_desc[i].action;
  38                if (!action)
  39                        goto skip;
  40                seq_printf(p, "%3d: ",i);
  41#ifndef CONFIG_SMP
  42                seq_printf(p, "%10u ", kstat_irqs(i));
  43#else
  44                for_each_online_cpu(j)
  45                        seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
  46#endif
  47                seq_printf(p, " %14s", irq_desc[i].chip->typename);
  48                seq_printf(p, "  %s", action->name);
  49
  50                for (action=action->next; action; action = action->next)
  51                        seq_printf(p, ", %s", action->name);
  52
  53                seq_putc(p, '\n');
  54skip:
  55                spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  56        } else if (i == NR_IRQS)
  57                seq_putc(p, '\n');
  58
  59        return 0;
  60}
  61
  62/*
  63 * This list is accessed under irq_lock, except in sigio_handler,
  64 * where it is safe from being modified.  IRQ handlers won't change it -
  65 * if an IRQ source has vanished, it will be freed by free_irqs just
  66 * before returning from sigio_handler.  That will process a separate
  67 * list of irqs to free, with its own locking, coming back here to
  68 * remove list elements, taking the irq_lock to do so.
  69 */
  70static struct irq_fd *active_fds = NULL;
  71static struct irq_fd **last_irq_ptr = &active_fds;
  72
  73extern void free_irqs(void);
  74
  75void sigio_handler(int sig, struct uml_pt_regs *regs)
  76{
  77        struct irq_fd *irq_fd;
  78        int n;
  79
  80        if (smp_sigio_handler())
  81                return;
  82
  83        while (1) {
  84                n = os_waiting_for_events(active_fds);
  85                if (n <= 0) {
  86                        if (n == -EINTR)
  87                                continue;
  88                        else break;
  89                }
  90
  91                for (irq_fd = active_fds; irq_fd != NULL;
  92                     irq_fd = irq_fd->next) {
  93                        if (irq_fd->current_events != 0) {
  94                                irq_fd->current_events = 0;
  95                                do_IRQ(irq_fd->irq, regs);
  96                        }
  97                }
  98        }
  99
 100        free_irqs();
 101}
 102
 103static DEFINE_SPINLOCK(irq_lock);
 104
 105static int activate_fd(int irq, int fd, int type, void *dev_id)
 106{
 107        struct pollfd *tmp_pfd;
 108        struct irq_fd *new_fd, *irq_fd;
 109        unsigned long flags;
 110        int events, err, n;
 111
 112        err = os_set_fd_async(fd);
 113        if (err < 0)
 114                goto out;
 115
 116        err = -ENOMEM;
 117        new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
 118        if (new_fd == NULL)
 119                goto out;
 120
 121        if (type == IRQ_READ)
 122                events = UM_POLLIN | UM_POLLPRI;
 123        else events = UM_POLLOUT;
 124        *new_fd = ((struct irq_fd) { .next              = NULL,
 125                                     .id                = dev_id,
 126                                     .fd                = fd,
 127                                     .type              = type,
 128                                     .irq               = irq,
 129                                     .events            = events,
 130                                     .current_events    = 0 } );
 131
 132        err = -EBUSY;
 133        spin_lock_irqsave(&irq_lock, flags);
 134        for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
 135                if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
 136                        printk(KERN_ERR "Registering fd %d twice\n", fd);
 137                        printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
 138                        printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
 139                               dev_id);
 140                        goto out_unlock;
 141                }
 142        }
 143
 144        if (type == IRQ_WRITE)
 145                fd = -1;
 146
 147        tmp_pfd = NULL;
 148        n = 0;
 149
 150        while (1) {
 151                n = os_create_pollfd(fd, events, tmp_pfd, n);
 152                if (n == 0)
 153                        break;
 154
 155                /*
 156                 * n > 0
 157                 * It means we couldn't put new pollfd to current pollfds
 158                 * and tmp_fds is NULL or too small for new pollfds array.
 159                 * Needed size is equal to n as minimum.
 160                 *
 161                 * Here we have to drop the lock in order to call
 162                 * kmalloc, which might sleep.
 163                 * If something else came in and changed the pollfds array
 164                 * so we will not be able to put new pollfd struct to pollfds
 165                 * then we free the buffer tmp_fds and try again.
 166                 */
 167                spin_unlock_irqrestore(&irq_lock, flags);
 168                kfree(tmp_pfd);
 169
 170                tmp_pfd = kmalloc(n, GFP_KERNEL);
 171                if (tmp_pfd == NULL)
 172                        goto out_kfree;
 173
 174                spin_lock_irqsave(&irq_lock, flags);
 175        }
 176
 177        *last_irq_ptr = new_fd;
 178        last_irq_ptr = &new_fd->next;
 179
 180        spin_unlock_irqrestore(&irq_lock, flags);
 181
 182        /*
 183         * This calls activate_fd, so it has to be outside the critical
 184         * section.
 185         */
 186        maybe_sigio_broken(fd, (type == IRQ_READ));
 187
 188        return 0;
 189
 190 out_unlock:
 191        spin_unlock_irqrestore(&irq_lock, flags);
 192 out_kfree:
 193        kfree(new_fd);
 194 out:
 195        return err;
 196}
 197
 198static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
 199{
 200        unsigned long flags;
 201
 202        spin_lock_irqsave(&irq_lock, flags);
 203        os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
 204        spin_unlock_irqrestore(&irq_lock, flags);
 205}
 206
 207struct irq_and_dev {
 208        int irq;
 209        void *dev;
 210};
 211
 212static int same_irq_and_dev(struct irq_fd *irq, void *d)
 213{
 214        struct irq_and_dev *data = d;
 215
 216        return ((irq->irq == data->irq) && (irq->id == data->dev));
 217}
 218
 219static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
 220{
 221        struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq,
 222                                                          .dev  = dev });
 223
 224        free_irq_by_cb(same_irq_and_dev, &data);
 225}
 226
 227static int same_fd(struct irq_fd *irq, void *fd)
 228{
 229        return (irq->fd == *((int *)fd));
 230}
 231
 232void free_irq_by_fd(int fd)
 233{
 234        free_irq_by_cb(same_fd, &fd);
 235}
 236
 237/* Must be called with irq_lock held */
 238static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
 239{
 240        struct irq_fd *irq;
 241        int i = 0;
 242        int fdi;
 243
 244        for (irq = active_fds; irq != NULL; irq = irq->next) {
 245                if ((irq->fd == fd) && (irq->irq == irqnum))
 246                        break;
 247                i++;
 248        }
 249        if (irq == NULL) {
 250                printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
 251                       fd);
 252                goto out;
 253        }
 254        fdi = os_get_pollfd(i);
 255        if ((fdi != -1) && (fdi != fd)) {
 256                printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
 257                       "and pollfds, fd %d vs %d, need %d\n", irq->fd,
 258                       fdi, fd);
 259                irq = NULL;
 260                goto out;
 261        }
 262        *index_out = i;
 263 out:
 264        return irq;
 265}
 266
 267void reactivate_fd(int fd, int irqnum)
 268{
 269        struct irq_fd *irq;
 270        unsigned long flags;
 271        int i;
 272
 273        spin_lock_irqsave(&irq_lock, flags);
 274        irq = find_irq_by_fd(fd, irqnum, &i);
 275        if (irq == NULL) {
 276                spin_unlock_irqrestore(&irq_lock, flags);
 277                return;
 278        }
 279        os_set_pollfd(i, irq->fd);
 280        spin_unlock_irqrestore(&irq_lock, flags);
 281
 282        add_sigio_fd(fd);
 283}
 284
 285void deactivate_fd(int fd, int irqnum)
 286{
 287        struct irq_fd *irq;
 288        unsigned long flags;
 289        int i;
 290
 291        spin_lock_irqsave(&irq_lock, flags);
 292        irq = find_irq_by_fd(fd, irqnum, &i);
 293        if (irq == NULL) {
 294                spin_unlock_irqrestore(&irq_lock, flags);
 295                return;
 296        }
 297
 298        os_set_pollfd(i, -1);
 299        spin_unlock_irqrestore(&irq_lock, flags);
 300
 301        ignore_sigio_fd(fd);
 302}
 303
 304/*
 305 * Called just before shutdown in order to provide a clean exec
 306 * environment in case the system is rebooting.  No locking because
 307 * that would cause a pointless shutdown hang if something hadn't
 308 * released the lock.
 309 */
 310int deactivate_all_fds(void)
 311{
 312        struct irq_fd *irq;
 313        int err;
 314
 315        for (irq = active_fds; irq != NULL; irq = irq->next) {
 316                err = os_clear_fd_async(irq->fd);
 317                if (err)
 318                        return err;
 319        }
 320        /* If there is a signal already queued, after unblocking ignore it */
 321        os_set_ioignore();
 322
 323        return 0;
 324}
 325
 326/*
 327 * do_IRQ handles all normal device IRQs (the special
 328 * SMP cross-CPU interrupts have their own specific
 329 * handlers).
 330 */
 331unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
 332{
 333        struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
 334        irq_enter();
 335        __do_IRQ(irq);
 336        irq_exit();
 337        set_irq_regs(old_regs);
 338        return 1;
 339}
 340
 341int um_request_irq(unsigned int irq, int fd, int type,
 342                   irq_handler_t handler,
 343                   unsigned long irqflags, const char * devname,
 344                   void *dev_id)
 345{
 346        int err;
 347
 348        if (fd != -1) {
 349                err = activate_fd(irq, fd, type, dev_id);
 350                if (err)
 351                        return err;
 352        }
 353
 354        return request_irq(irq, handler, irqflags, devname, dev_id);
 355}
 356
 357EXPORT_SYMBOL(um_request_irq);
 358EXPORT_SYMBOL(reactivate_fd);
 359
 360/*
 361 * hw_interrupt_type must define (startup || enable) &&
 362 * (shutdown || disable) && end
 363 */
 364static void dummy(unsigned int irq)
 365{
 366}
 367
 368/* This is used for everything else than the timer. */
 369static struct hw_interrupt_type normal_irq_type = {
 370        .typename = "SIGIO",
 371        .release = free_irq_by_irq_and_dev,
 372        .disable = dummy,
 373        .enable = dummy,
 374        .ack = dummy,
 375        .end = dummy
 376};
 377
 378static struct hw_interrupt_type SIGVTALRM_irq_type = {
 379        .typename = "SIGVTALRM",
 380        .release = free_irq_by_irq_and_dev,
 381        .shutdown = dummy, /* never called */
 382        .disable = dummy,
 383        .enable = dummy,
 384        .ack = dummy,
 385        .end = dummy
 386};
 387
 388void __init init_IRQ(void)
 389{
 390        int i;
 391
 392        irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
 393        irq_desc[TIMER_IRQ].action = NULL;
 394        irq_desc[TIMER_IRQ].depth = 1;
 395        irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
 396        enable_irq(TIMER_IRQ);
 397        for (i = 1; i < NR_IRQS; i++) {
 398                irq_desc[i].status = IRQ_DISABLED;
 399                irq_desc[i].action = NULL;
 400                irq_desc[i].depth = 1;
 401                irq_desc[i].chip = &normal_irq_type;
 402                enable_irq(i);
 403        }
 404}
 405
 406/*
 407 * IRQ stack entry and exit:
 408 *
 409 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
 410 * and switch over to the IRQ stack after some preparation.  We use
 411 * sigaltstack to receive signals on a separate stack from the start.
 412 * These two functions make sure the rest of the kernel won't be too
 413 * upset by being on a different stack.  The IRQ stack has a
 414 * thread_info structure at the bottom so that current et al continue
 415 * to work.
 416 *
 417 * to_irq_stack copies the current task's thread_info to the IRQ stack
 418 * thread_info and sets the tasks's stack to point to the IRQ stack.
 419 *
 420 * from_irq_stack copies the thread_info struct back (flags may have
 421 * been modified) and resets the task's stack pointer.
 422 *
 423 * Tricky bits -
 424 *
 425 * What happens when two signals race each other?  UML doesn't block
 426 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
 427 * could arrive while a previous one is still setting up the
 428 * thread_info.
 429 *
 430 * There are three cases -
 431 *     The first interrupt on the stack - sets up the thread_info and
 432 * handles the interrupt
 433 *     A nested interrupt interrupting the copying of the thread_info -
 434 * can't handle the interrupt, as the stack is in an unknown state
 435 *     A nested interrupt not interrupting the copying of the
 436 * thread_info - doesn't do any setup, just handles the interrupt
 437 *
 438 * The first job is to figure out whether we interrupted stack setup.
 439 * This is done by xchging the signal mask with thread_info->pending.
 440 * If the value that comes back is zero, then there is no setup in
 441 * progress, and the interrupt can be handled.  If the value is
 442 * non-zero, then there is stack setup in progress.  In order to have
 443 * the interrupt handled, we leave our signal in the mask, and it will
 444 * be handled by the upper handler after it has set up the stack.
 445 *
 446 * Next is to figure out whether we are the outer handler or a nested
 447 * one.  As part of setting up the stack, thread_info->real_thread is
 448 * set to non-NULL (and is reset to NULL on exit).  This is the
 449 * nesting indicator.  If it is non-NULL, then the stack is already
 450 * set up and the handler can run.
 451 */
 452
 453static unsigned long pending_mask;
 454
 455unsigned long to_irq_stack(unsigned long *mask_out)
 456{
 457        struct thread_info *ti;
 458        unsigned long mask, old;
 459        int nested;
 460
 461        mask = xchg(&pending_mask, *mask_out);
 462        if (mask != 0) {
 463                /*
 464                 * If any interrupts come in at this point, we want to
 465                 * make sure that their bits aren't lost by our
 466                 * putting our bit in.  So, this loop accumulates bits
 467                 * until xchg returns the same value that we put in.
 468                 * When that happens, there were no new interrupts,
 469                 * and pending_mask contains a bit for each interrupt
 470                 * that came in.
 471                 */
 472                old = *mask_out;
 473                do {
 474                        old |= mask;
 475                        mask = xchg(&pending_mask, old);
 476                } while (mask != old);
 477                return 1;
 478        }
 479
 480        ti = current_thread_info();
 481        nested = (ti->real_thread != NULL);
 482        if (!nested) {
 483                struct task_struct *task;
 484                struct thread_info *tti;
 485
 486                task = cpu_tasks[ti->cpu].task;
 487                tti = task_thread_info(task);
 488
 489                *ti = *tti;
 490                ti->real_thread = tti;
 491                task->stack = ti;
 492        }
 493
 494        mask = xchg(&pending_mask, 0);
 495        *mask_out |= mask | nested;
 496        return 0;
 497}
 498
 499unsigned long from_irq_stack(int nested)
 500{
 501        struct thread_info *ti, *to;
 502        unsigned long mask;
 503
 504        ti = current_thread_info();
 505
 506        pending_mask = 1;
 507
 508        to = ti->real_thread;
 509        current->stack = to;
 510        ti->real_thread = NULL;
 511        *to = *ti;
 512
 513        mask = xchg(&pending_mask, 0);
 514        return mask & ~1;
 515}
 516
 517