linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1/*
   2 * Initialize MMU support.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/init.h>
   9
  10#include <linux/bootmem.h>
  11#include <linux/efi.h>
  12#include <linux/elf.h>
  13#include <linux/mm.h>
  14#include <linux/mmzone.h>
  15#include <linux/module.h>
  16#include <linux/personality.h>
  17#include <linux/reboot.h>
  18#include <linux/slab.h>
  19#include <linux/swap.h>
  20#include <linux/proc_fs.h>
  21#include <linux/bitops.h>
  22#include <linux/kexec.h>
  23
  24#include <asm/a.out.h>
  25#include <asm/dma.h>
  26#include <asm/ia32.h>
  27#include <asm/io.h>
  28#include <asm/machvec.h>
  29#include <asm/numa.h>
  30#include <asm/patch.h>
  31#include <asm/pgalloc.h>
  32#include <asm/sal.h>
  33#include <asm/sections.h>
  34#include <asm/system.h>
  35#include <asm/tlb.h>
  36#include <asm/uaccess.h>
  37#include <asm/unistd.h>
  38#include <asm/mca.h>
  39
  40DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  41
  42extern void ia64_tlb_init (void);
  43
  44unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  45
  46#ifdef CONFIG_VIRTUAL_MEM_MAP
  47unsigned long vmalloc_end = VMALLOC_END_INIT;
  48EXPORT_SYMBOL(vmalloc_end);
  49struct page *vmem_map;
  50EXPORT_SYMBOL(vmem_map);
  51#endif
  52
  53struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  54EXPORT_SYMBOL(zero_page_memmap_ptr);
  55
  56void
  57__ia64_sync_icache_dcache (pte_t pte)
  58{
  59        unsigned long addr;
  60        struct page *page;
  61
  62        page = pte_page(pte);
  63        addr = (unsigned long) page_address(page);
  64
  65        if (test_bit(PG_arch_1, &page->flags))
  66                return;                         /* i-cache is already coherent with d-cache */
  67
  68        flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  69        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  70}
  71
  72/*
  73 * Since DMA is i-cache coherent, any (complete) pages that were written via
  74 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  75 * flush them when they get mapped into an executable vm-area.
  76 */
  77void
  78dma_mark_clean(void *addr, size_t size)
  79{
  80        unsigned long pg_addr, end;
  81
  82        pg_addr = PAGE_ALIGN((unsigned long) addr);
  83        end = (unsigned long) addr + size;
  84        while (pg_addr + PAGE_SIZE <= end) {
  85                struct page *page = virt_to_page(pg_addr);
  86                set_bit(PG_arch_1, &page->flags);
  87                pg_addr += PAGE_SIZE;
  88        }
  89}
  90
  91inline void
  92ia64_set_rbs_bot (void)
  93{
  94        unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
  95
  96        if (stack_size > MAX_USER_STACK_SIZE)
  97                stack_size = MAX_USER_STACK_SIZE;
  98        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  99}
 100
 101/*
 102 * This performs some platform-dependent address space initialization.
 103 * On IA-64, we want to setup the VM area for the register backing
 104 * store (which grows upwards) and install the gateway page which is
 105 * used for signal trampolines, etc.
 106 */
 107void
 108ia64_init_addr_space (void)
 109{
 110        struct vm_area_struct *vma;
 111
 112        ia64_set_rbs_bot();
 113
 114        /*
 115         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 116         * the problem.  When the process attempts to write to the register backing store
 117         * for the first time, it will get a SEGFAULT in this case.
 118         */
 119        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 120        if (vma) {
 121                vma->vm_mm = current->mm;
 122                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 123                vma->vm_end = vma->vm_start + PAGE_SIZE;
 124                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 125                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 126                down_write(&current->mm->mmap_sem);
 127                if (insert_vm_struct(current->mm, vma)) {
 128                        up_write(&current->mm->mmap_sem);
 129                        kmem_cache_free(vm_area_cachep, vma);
 130                        return;
 131                }
 132                up_write(&current->mm->mmap_sem);
 133        }
 134
 135        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 136        if (!(current->personality & MMAP_PAGE_ZERO)) {
 137                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 138                if (vma) {
 139                        vma->vm_mm = current->mm;
 140                        vma->vm_end = PAGE_SIZE;
 141                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 142                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
 143                        down_write(&current->mm->mmap_sem);
 144                        if (insert_vm_struct(current->mm, vma)) {
 145                                up_write(&current->mm->mmap_sem);
 146                                kmem_cache_free(vm_area_cachep, vma);
 147                                return;
 148                        }
 149                        up_write(&current->mm->mmap_sem);
 150                }
 151        }
 152}
 153
 154void
 155free_initmem (void)
 156{
 157        unsigned long addr, eaddr;
 158
 159        addr = (unsigned long) ia64_imva(__init_begin);
 160        eaddr = (unsigned long) ia64_imva(__init_end);
 161        while (addr < eaddr) {
 162                ClearPageReserved(virt_to_page(addr));
 163                init_page_count(virt_to_page(addr));
 164                free_page(addr);
 165                ++totalram_pages;
 166                addr += PAGE_SIZE;
 167        }
 168        printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
 169               (__init_end - __init_begin) >> 10);
 170}
 171
 172void __init
 173free_initrd_mem (unsigned long start, unsigned long end)
 174{
 175        struct page *page;
 176        /*
 177         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 178         * Thus EFI and the kernel may have different page sizes. It is
 179         * therefore possible to have the initrd share the same page as
 180         * the end of the kernel (given current setup).
 181         *
 182         * To avoid freeing/using the wrong page (kernel sized) we:
 183         *      - align up the beginning of initrd
 184         *      - align down the end of initrd
 185         *
 186         *  |             |
 187         *  |=============| a000
 188         *  |             |
 189         *  |             |
 190         *  |             | 9000
 191         *  |/////////////|
 192         *  |/////////////|
 193         *  |=============| 8000
 194         *  |///INITRD////|
 195         *  |/////////////|
 196         *  |/////////////| 7000
 197         *  |             |
 198         *  |KKKKKKKKKKKKK|
 199         *  |=============| 6000
 200         *  |KKKKKKKKKKKKK|
 201         *  |KKKKKKKKKKKKK|
 202         *  K=kernel using 8KB pages
 203         *
 204         * In this example, we must free page 8000 ONLY. So we must align up
 205         * initrd_start and keep initrd_end as is.
 206         */
 207        start = PAGE_ALIGN(start);
 208        end = end & PAGE_MASK;
 209
 210        if (start < end)
 211                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 212
 213        for (; start < end; start += PAGE_SIZE) {
 214                if (!virt_addr_valid(start))
 215                        continue;
 216                page = virt_to_page(start);
 217                ClearPageReserved(page);
 218                init_page_count(page);
 219                free_page(start);
 220                ++totalram_pages;
 221        }
 222}
 223
 224/*
 225 * This installs a clean page in the kernel's page table.
 226 */
 227static struct page * __init
 228put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 229{
 230        pgd_t *pgd;
 231        pud_t *pud;
 232        pmd_t *pmd;
 233        pte_t *pte;
 234
 235        if (!PageReserved(page))
 236                printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
 237                       page_address(page));
 238
 239        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 240
 241        {
 242                pud = pud_alloc(&init_mm, pgd, address);
 243                if (!pud)
 244                        goto out;
 245                pmd = pmd_alloc(&init_mm, pud, address);
 246                if (!pmd)
 247                        goto out;
 248                pte = pte_alloc_kernel(pmd, address);
 249                if (!pte)
 250                        goto out;
 251                if (!pte_none(*pte))
 252                        goto out;
 253                set_pte(pte, mk_pte(page, pgprot));
 254        }
 255  out:
 256        /* no need for flush_tlb */
 257        return page;
 258}
 259
 260static void __init
 261setup_gate (void)
 262{
 263        struct page *page;
 264
 265        /*
 266         * Map the gate page twice: once read-only to export the ELF
 267         * headers etc. and once execute-only page to enable
 268         * privilege-promotion via "epc":
 269         */
 270        page = virt_to_page(ia64_imva(__start_gate_section));
 271        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 272#ifdef HAVE_BUGGY_SEGREL
 273        page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
 274        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 275#else
 276        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 277        /* Fill in the holes (if any) with read-only zero pages: */
 278        {
 279                unsigned long addr;
 280
 281                for (addr = GATE_ADDR + PAGE_SIZE;
 282                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 283                     addr += PAGE_SIZE)
 284                {
 285                        put_kernel_page(ZERO_PAGE(0), addr,
 286                                        PAGE_READONLY);
 287                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 288                                        PAGE_READONLY);
 289                }
 290        }
 291#endif
 292        ia64_patch_gate();
 293}
 294
 295void __devinit
 296ia64_mmu_init (void *my_cpu_data)
 297{
 298        unsigned long pta, impl_va_bits;
 299        extern void __devinit tlb_init (void);
 300
 301#ifdef CONFIG_DISABLE_VHPT
 302#       define VHPT_ENABLE_BIT  0
 303#else
 304#       define VHPT_ENABLE_BIT  1
 305#endif
 306
 307        /*
 308         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 309         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 310         * virtual address space are implemented but if we pick a large enough page size
 311         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 312         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 313         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 314         * problem in practice.  Alternatively, we could truncate the top of the mapped
 315         * address space to not permit mappings that would overlap with the VMLPT.
 316         * --davidm 00/12/06
 317         */
 318#       define pte_bits                 3
 319#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 320        /*
 321         * The virtual page table has to cover the entire implemented address space within
 322         * a region even though not all of this space may be mappable.  The reason for
 323         * this is that the Access bit and Dirty bit fault handlers perform
 324         * non-speculative accesses to the virtual page table, so the address range of the
 325         * virtual page table itself needs to be covered by virtual page table.
 326         */
 327#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 328#       define POW2(n)                  (1ULL << (n))
 329
 330        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 331
 332        if (impl_va_bits < 51 || impl_va_bits > 61)
 333                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 334        /*
 335         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 336         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 337         * the test makes sure that our mapped space doesn't overlap the
 338         * unimplemented hole in the middle of the region.
 339         */
 340        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 341            (mapped_space_bits > impl_va_bits - 1))
 342                panic("Cannot build a big enough virtual-linear page table"
 343                      " to cover mapped address space.\n"
 344                      " Try using a smaller page size.\n");
 345
 346
 347        /* place the VMLPT at the end of each page-table mapped region: */
 348        pta = POW2(61) - POW2(vmlpt_bits);
 349
 350        /*
 351         * Set the (virtually mapped linear) page table address.  Bit
 352         * 8 selects between the short and long format, bits 2-7 the
 353         * size of the table, and bit 0 whether the VHPT walker is
 354         * enabled.
 355         */
 356        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 357
 358        ia64_tlb_init();
 359
 360#ifdef  CONFIG_HUGETLB_PAGE
 361        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 362        ia64_srlz_d();
 363#endif
 364}
 365
 366#ifdef CONFIG_VIRTUAL_MEM_MAP
 367int vmemmap_find_next_valid_pfn(int node, int i)
 368{
 369        unsigned long end_address, hole_next_pfn;
 370        unsigned long stop_address;
 371        pg_data_t *pgdat = NODE_DATA(node);
 372
 373        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 374        end_address = PAGE_ALIGN(end_address);
 375
 376        stop_address = (unsigned long) &vmem_map[
 377                pgdat->node_start_pfn + pgdat->node_spanned_pages];
 378
 379        do {
 380                pgd_t *pgd;
 381                pud_t *pud;
 382                pmd_t *pmd;
 383                pte_t *pte;
 384
 385                pgd = pgd_offset_k(end_address);
 386                if (pgd_none(*pgd)) {
 387                        end_address += PGDIR_SIZE;
 388                        continue;
 389                }
 390
 391                pud = pud_offset(pgd, end_address);
 392                if (pud_none(*pud)) {
 393                        end_address += PUD_SIZE;
 394                        continue;
 395                }
 396
 397                pmd = pmd_offset(pud, end_address);
 398                if (pmd_none(*pmd)) {
 399                        end_address += PMD_SIZE;
 400                        continue;
 401                }
 402
 403                pte = pte_offset_kernel(pmd, end_address);
 404retry_pte:
 405                if (pte_none(*pte)) {
 406                        end_address += PAGE_SIZE;
 407                        pte++;
 408                        if ((end_address < stop_address) &&
 409                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 410                                goto retry_pte;
 411                        continue;
 412                }
 413                /* Found next valid vmem_map page */
 414                break;
 415        } while (end_address < stop_address);
 416
 417        end_address = min(end_address, stop_address);
 418        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 419        hole_next_pfn = end_address / sizeof(struct page);
 420        return hole_next_pfn - pgdat->node_start_pfn;
 421}
 422
 423int __init
 424create_mem_map_page_table (u64 start, u64 end, void *arg)
 425{
 426        unsigned long address, start_page, end_page;
 427        struct page *map_start, *map_end;
 428        int node;
 429        pgd_t *pgd;
 430        pud_t *pud;
 431        pmd_t *pmd;
 432        pte_t *pte;
 433
 434        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 435        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 436
 437        start_page = (unsigned long) map_start & PAGE_MASK;
 438        end_page = PAGE_ALIGN((unsigned long) map_end);
 439        node = paddr_to_nid(__pa(start));
 440
 441        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 442                pgd = pgd_offset_k(address);
 443                if (pgd_none(*pgd))
 444                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 445                pud = pud_offset(pgd, address);
 446
 447                if (pud_none(*pud))
 448                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 449                pmd = pmd_offset(pud, address);
 450
 451                if (pmd_none(*pmd))
 452                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 453                pte = pte_offset_kernel(pmd, address);
 454
 455                if (pte_none(*pte))
 456                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 457                                             PAGE_KERNEL));
 458        }
 459        return 0;
 460}
 461
 462struct memmap_init_callback_data {
 463        struct page *start;
 464        struct page *end;
 465        int nid;
 466        unsigned long zone;
 467};
 468
 469static int __meminit
 470virtual_memmap_init (u64 start, u64 end, void *arg)
 471{
 472        struct memmap_init_callback_data *args;
 473        struct page *map_start, *map_end;
 474
 475        args = (struct memmap_init_callback_data *) arg;
 476        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 477        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 478
 479        if (map_start < args->start)
 480                map_start = args->start;
 481        if (map_end > args->end)
 482                map_end = args->end;
 483
 484        /*
 485         * We have to initialize "out of bounds" struct page elements that fit completely
 486         * on the same pages that were allocated for the "in bounds" elements because they
 487         * may be referenced later (and found to be "reserved").
 488         */
 489        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 490        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 491                    / sizeof(struct page));
 492
 493        if (map_start < map_end)
 494                memmap_init_zone((unsigned long)(map_end - map_start),
 495                                 args->nid, args->zone, page_to_pfn(map_start),
 496                                 MEMMAP_EARLY);
 497        return 0;
 498}
 499
 500void __meminit
 501memmap_init (unsigned long size, int nid, unsigned long zone,
 502             unsigned long start_pfn)
 503{
 504        if (!vmem_map)
 505                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
 506        else {
 507                struct page *start;
 508                struct memmap_init_callback_data args;
 509
 510                start = pfn_to_page(start_pfn);
 511                args.start = start;
 512                args.end = start + size;
 513                args.nid = nid;
 514                args.zone = zone;
 515
 516                efi_memmap_walk(virtual_memmap_init, &args);
 517        }
 518}
 519
 520int
 521ia64_pfn_valid (unsigned long pfn)
 522{
 523        char byte;
 524        struct page *pg = pfn_to_page(pfn);
 525
 526        return     (__get_user(byte, (char __user *) pg) == 0)
 527                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 528                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 529}
 530EXPORT_SYMBOL(ia64_pfn_valid);
 531
 532int __init
 533find_largest_hole (u64 start, u64 end, void *arg)
 534{
 535        u64 *max_gap = arg;
 536
 537        static u64 last_end = PAGE_OFFSET;
 538
 539        /* NOTE: this algorithm assumes efi memmap table is ordered */
 540
 541        if (*max_gap < (start - last_end))
 542                *max_gap = start - last_end;
 543        last_end = end;
 544        return 0;
 545}
 546
 547#endif /* CONFIG_VIRTUAL_MEM_MAP */
 548
 549int __init
 550register_active_ranges(u64 start, u64 len, int nid)
 551{
 552        u64 end = start + len;
 553
 554#ifdef CONFIG_KEXEC
 555        if (start > crashk_res.start && start < crashk_res.end)
 556                start = crashk_res.end;
 557        if (end > crashk_res.start && end < crashk_res.end)
 558                end = crashk_res.start;
 559#endif
 560
 561        if (start < end)
 562                add_active_range(nid, __pa(start) >> PAGE_SHIFT,
 563                        __pa(end) >> PAGE_SHIFT);
 564        return 0;
 565}
 566
 567static int __init
 568count_reserved_pages (u64 start, u64 end, void *arg)
 569{
 570        unsigned long num_reserved = 0;
 571        unsigned long *count = arg;
 572
 573        for (; start < end; start += PAGE_SIZE)
 574                if (PageReserved(virt_to_page(start)))
 575                        ++num_reserved;
 576        *count += num_reserved;
 577        return 0;
 578}
 579
 580int
 581find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
 582{
 583        unsigned long pfn_start, pfn_end;
 584#ifdef CONFIG_FLATMEM
 585        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 586        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 587#else
 588        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 589        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 590#endif
 591        min_low_pfn = min(min_low_pfn, pfn_start);
 592        max_low_pfn = max(max_low_pfn, pfn_end);
 593        return 0;
 594}
 595
 596/*
 597 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 598 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 599 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 600 * useful for performance testing, but conceivably could also come in handy for debugging
 601 * purposes.
 602 */
 603
 604static int nolwsys __initdata;
 605
 606static int __init
 607nolwsys_setup (char *s)
 608{
 609        nolwsys = 1;
 610        return 1;
 611}
 612
 613__setup("nolwsys", nolwsys_setup);
 614
 615void __init
 616mem_init (void)
 617{
 618        long reserved_pages, codesize, datasize, initsize;
 619        pg_data_t *pgdat;
 620        int i;
 621        static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
 622
 623        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 624        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 625        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 626
 627#ifdef CONFIG_PCI
 628        /*
 629         * This needs to be called _after_ the command line has been parsed but _before_
 630         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 631         * been freed.
 632         */
 633        platform_dma_init();
 634#endif
 635
 636#ifdef CONFIG_FLATMEM
 637        if (!mem_map)
 638                BUG();
 639        max_mapnr = max_low_pfn;
 640#endif
 641
 642        high_memory = __va(max_low_pfn * PAGE_SIZE);
 643
 644        kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
 645        kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
 646        kclist_add(&kcore_kernel, _stext, _end - _stext);
 647
 648        for_each_online_pgdat(pgdat)
 649                if (pgdat->bdata->node_bootmem_map)
 650                        totalram_pages += free_all_bootmem_node(pgdat);
 651
 652        reserved_pages = 0;
 653        efi_memmap_walk(count_reserved_pages, &reserved_pages);
 654
 655        codesize =  (unsigned long) _etext - (unsigned long) _stext;
 656        datasize =  (unsigned long) _edata - (unsigned long) _etext;
 657        initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
 658
 659        printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
 660               "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
 661               num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
 662               reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
 663
 664
 665        /*
 666         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 667         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 668         * code can tell them apart.
 669         */
 670        for (i = 0; i < NR_syscalls; ++i) {
 671                extern unsigned long fsyscall_table[NR_syscalls];
 672                extern unsigned long sys_call_table[NR_syscalls];
 673
 674                if (!fsyscall_table[i] || nolwsys)
 675                        fsyscall_table[i] = sys_call_table[i] | 1;
 676        }
 677        setup_gate();
 678
 679#ifdef CONFIG_IA32_SUPPORT
 680        ia32_mem_init();
 681#endif
 682}
 683
 684#ifdef CONFIG_MEMORY_HOTPLUG
 685int arch_add_memory(int nid, u64 start, u64 size)
 686{
 687        pg_data_t *pgdat;
 688        struct zone *zone;
 689        unsigned long start_pfn = start >> PAGE_SHIFT;
 690        unsigned long nr_pages = size >> PAGE_SHIFT;
 691        int ret;
 692
 693        pgdat = NODE_DATA(nid);
 694
 695        zone = pgdat->node_zones + ZONE_NORMAL;
 696        ret = __add_pages(zone, start_pfn, nr_pages);
 697
 698        if (ret)
 699                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 700                       __func__,  ret);
 701
 702        return ret;
 703}
 704#ifdef CONFIG_MEMORY_HOTREMOVE
 705int remove_memory(u64 start, u64 size)
 706{
 707        unsigned long start_pfn, end_pfn;
 708        unsigned long timeout = 120 * HZ;
 709        int ret;
 710        start_pfn = start >> PAGE_SHIFT;
 711        end_pfn = start_pfn + (size >> PAGE_SHIFT);
 712        ret = offline_pages(start_pfn, end_pfn, timeout);
 713        if (ret)
 714                goto out;
 715        /* we can free mem_map at this point */
 716out:
 717        return ret;
 718}
 719EXPORT_SYMBOL_GPL(remove_memory);
 720#endif /* CONFIG_MEMORY_HOTREMOVE */
 721#endif
 722
 723/*
 724 * Even when CONFIG_IA32_SUPPORT is not enabled it is
 725 * useful to have the Linux/x86 domain registered to
 726 * avoid an attempted module load when emulators call
 727 * personality(PER_LINUX32). This saves several milliseconds
 728 * on each such call.
 729 */
 730static struct exec_domain ia32_exec_domain;
 731
 732static int __init
 733per_linux32_init(void)
 734{
 735        ia32_exec_domain.name = "Linux/x86";
 736        ia32_exec_domain.handler = NULL;
 737        ia32_exec_domain.pers_low = PER_LINUX32;
 738        ia32_exec_domain.pers_high = PER_LINUX32;
 739        ia32_exec_domain.signal_map = default_exec_domain.signal_map;
 740        ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
 741        register_exec_domain(&ia32_exec_domain);
 742
 743        return 0;
 744}
 745
 746__initcall(per_linux32_init);
 747