linux/include/net/tcp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the TCP module.
   8 *
   9 * Version:     @(#)tcp.h       1.0.5   05/23/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/tcp_ao.h>
  41#include <net/inet_ecn.h>
  42#include <net/dst.h>
  43#include <net/mptcp.h>
  44
  45#include <linux/seq_file.h>
  46#include <linux/memcontrol.h>
  47#include <linux/bpf-cgroup.h>
  48#include <linux/siphash.h>
  49
  50extern struct inet_hashinfo tcp_hashinfo;
  51
  52DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  53int tcp_orphan_count_sum(void);
  54
  55void tcp_time_wait(struct sock *sk, int state, int timeo);
  56
  57#define MAX_TCP_HEADER  L1_CACHE_ALIGN(128 + MAX_HEADER)
  58#define MAX_TCP_OPTION_SPACE 40
  59#define TCP_MIN_SND_MSS         48
  60#define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  61
  62/*
  63 * Never offer a window over 32767 without using window scaling. Some
  64 * poor stacks do signed 16bit maths!
  65 */
  66#define MAX_TCP_WINDOW          32767U
  67
  68/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  69#define TCP_MIN_MSS             88U
  70
  71/* The initial MTU to use for probing */
  72#define TCP_BASE_MSS            1024
  73
  74/* probing interval, default to 10 minutes as per RFC4821 */
  75#define TCP_PROBE_INTERVAL      600
  76
  77/* Specify interval when tcp mtu probing will stop */
  78#define TCP_PROBE_THRESHOLD     8
  79
  80/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  81#define TCP_FASTRETRANS_THRESH 3
  82
  83/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  84#define TCP_MAX_QUICKACKS       16U
  85
  86/* Maximal number of window scale according to RFC1323 */
  87#define TCP_MAX_WSCALE          14U
  88
  89/* urg_data states */
  90#define TCP_URG_VALID   0x0100
  91#define TCP_URG_NOTYET  0x0200
  92#define TCP_URG_READ    0x0400
  93
  94#define TCP_RETR1       3       /*
  95                                 * This is how many retries it does before it
  96                                 * tries to figure out if the gateway is
  97                                 * down. Minimal RFC value is 3; it corresponds
  98                                 * to ~3sec-8min depending on RTO.
  99                                 */
 100
 101#define TCP_RETR2       15      /*
 102                                 * This should take at least
 103                                 * 90 minutes to time out.
 104                                 * RFC1122 says that the limit is 100 sec.
 105                                 * 15 is ~13-30min depending on RTO.
 106                                 */
 107
 108#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 109                                 * when active opening a connection.
 110                                 * RFC1122 says the minimum retry MUST
 111                                 * be at least 180secs.  Nevertheless
 112                                 * this value is corresponding to
 113                                 * 63secs of retransmission with the
 114                                 * current initial RTO.
 115                                 */
 116
 117#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 118                                 * when passive opening a connection.
 119                                 * This is corresponding to 31secs of
 120                                 * retransmission with the current
 121                                 * initial RTO.
 122                                 */
 123
 124#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 125                                  * state, about 60 seconds     */
 126#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 127                                 /* BSD style FIN_WAIT2 deadlock breaker.
 128                                  * It used to be 3min, new value is 60sec,
 129                                  * to combine FIN-WAIT-2 timeout with
 130                                  * TIME-WAIT timer.
 131                                  */
 132#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 133
 134#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 135static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
 136
 137#if HZ >= 100
 138#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 139#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 140#else
 141#define TCP_DELACK_MIN  4U
 142#define TCP_ATO_MIN     4U
 143#endif
 144#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 145#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 146#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 147
 148#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
 149
 150#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 151#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 152                                                 * used as a fallback RTO for the
 153                                                 * initial data transmission if no
 154                                                 * valid RTT sample has been acquired,
 155                                                 * most likely due to retrans in 3WHS.
 156                                                 */
 157
 158#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 159                                                         * for local resources.
 160                                                         */
 161#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 162#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 163#define TCP_KEEPALIVE_INTVL     (75*HZ)
 164
 165#define MAX_TCP_KEEPIDLE        32767
 166#define MAX_TCP_KEEPINTVL       32767
 167#define MAX_TCP_KEEPCNT         127
 168#define MAX_TCP_SYNCNT          127
 169
 170/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 171 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 172 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 173 */
 174#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
 175
 176#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 177                                         * after this time. It should be equal
 178                                         * (or greater than) TCP_TIMEWAIT_LEN
 179                                         * to provide reliability equal to one
 180                                         * provided by timewait state.
 181                                         */
 182#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 183                                         * timestamps. It must be less than
 184                                         * minimal timewait lifetime.
 185                                         */
 186/*
 187 *      TCP option
 188 */
 189
 190#define TCPOPT_NOP              1       /* Padding */
 191#define TCPOPT_EOL              0       /* End of options */
 192#define TCPOPT_MSS              2       /* Segment size negotiating */
 193#define TCPOPT_WINDOW           3       /* Window scaling */
 194#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 195#define TCPOPT_SACK             5       /* SACK Block */
 196#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 197#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 198#define TCPOPT_AO               29      /* Authentication Option (RFC5925) */
 199#define TCPOPT_MPTCP            30      /* Multipath TCP (RFC6824) */
 200#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 201#define TCPOPT_EXP              254     /* Experimental */
 202/* Magic number to be after the option value for sharing TCP
 203 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 204 */
 205#define TCPOPT_FASTOPEN_MAGIC   0xF989
 206#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 207
 208/*
 209 *     TCP option lengths
 210 */
 211
 212#define TCPOLEN_MSS            4
 213#define TCPOLEN_WINDOW         3
 214#define TCPOLEN_SACK_PERM      2
 215#define TCPOLEN_TIMESTAMP      10
 216#define TCPOLEN_MD5SIG         18
 217#define TCPOLEN_FASTOPEN_BASE  2
 218#define TCPOLEN_EXP_FASTOPEN_BASE  4
 219#define TCPOLEN_EXP_SMC_BASE   6
 220
 221/* But this is what stacks really send out. */
 222#define TCPOLEN_TSTAMP_ALIGNED          12
 223#define TCPOLEN_WSCALE_ALIGNED          4
 224#define TCPOLEN_SACKPERM_ALIGNED        4
 225#define TCPOLEN_SACK_BASE               2
 226#define TCPOLEN_SACK_BASE_ALIGNED       4
 227#define TCPOLEN_SACK_PERBLOCK           8
 228#define TCPOLEN_MD5SIG_ALIGNED          20
 229#define TCPOLEN_MSS_ALIGNED             4
 230#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 231
 232/* Flags in tp->nonagle */
 233#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 234#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 235#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 236
 237/* TCP thin-stream limits */
 238#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 239
 240/* TCP initial congestion window as per rfc6928 */
 241#define TCP_INIT_CWND           10
 242
 243/* Bit Flags for sysctl_tcp_fastopen */
 244#define TFO_CLIENT_ENABLE       1
 245#define TFO_SERVER_ENABLE       2
 246#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 247
 248/* Accept SYN data w/o any cookie option */
 249#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 250
 251/* Force enable TFO on all listeners, i.e., not requiring the
 252 * TCP_FASTOPEN socket option.
 253 */
 254#define TFO_SERVER_WO_SOCKOPT1  0x400
 255
 256
 257/* sysctl variables for tcp */
 258extern int sysctl_tcp_max_orphans;
 259extern long sysctl_tcp_mem[3];
 260
 261#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 262#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 263#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 264
 265extern atomic_long_t tcp_memory_allocated;
 266DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 267
 268extern struct percpu_counter tcp_sockets_allocated;
 269extern unsigned long tcp_memory_pressure;
 270
 271/* optimized version of sk_under_memory_pressure() for TCP sockets */
 272static inline bool tcp_under_memory_pressure(const struct sock *sk)
 273{
 274        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 275            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 276                return true;
 277
 278        return READ_ONCE(tcp_memory_pressure);
 279}
 280/*
 281 * The next routines deal with comparing 32 bit unsigned ints
 282 * and worry about wraparound (automatic with unsigned arithmetic).
 283 */
 284
 285static inline bool before(__u32 seq1, __u32 seq2)
 286{
 287        return (__s32)(seq1-seq2) < 0;
 288}
 289#define after(seq2, seq1)       before(seq1, seq2)
 290
 291/* is s2<=s1<=s3 ? */
 292static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 293{
 294        return seq3 - seq2 >= seq1 - seq2;
 295}
 296
 297static inline bool tcp_out_of_memory(struct sock *sk)
 298{
 299        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 300            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 301                return true;
 302        return false;
 303}
 304
 305static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 306{
 307        sk_wmem_queued_add(sk, -skb->truesize);
 308        if (!skb_zcopy_pure(skb))
 309                sk_mem_uncharge(sk, skb->truesize);
 310        else
 311                sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 312        __kfree_skb(skb);
 313}
 314
 315void sk_forced_mem_schedule(struct sock *sk, int size);
 316
 317bool tcp_check_oom(struct sock *sk, int shift);
 318
 319
 320extern struct proto tcp_prot;
 321
 322#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 323#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 324#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 325#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 326
 327void tcp_tasklet_init(void);
 328
 329int tcp_v4_err(struct sk_buff *skb, u32);
 330
 331void tcp_shutdown(struct sock *sk, int how);
 332
 333int tcp_v4_early_demux(struct sk_buff *skb);
 334int tcp_v4_rcv(struct sk_buff *skb);
 335
 336void tcp_remove_empty_skb(struct sock *sk);
 337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 338int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 339int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 340                         size_t size, struct ubuf_info *uarg);
 341void tcp_splice_eof(struct socket *sock);
 342int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 343int tcp_wmem_schedule(struct sock *sk, int copy);
 344void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 345              int size_goal);
 346void tcp_release_cb(struct sock *sk);
 347void tcp_wfree(struct sk_buff *skb);
 348void tcp_write_timer_handler(struct sock *sk);
 349void tcp_delack_timer_handler(struct sock *sk);
 350int tcp_ioctl(struct sock *sk, int cmd, int *karg);
 351int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 352void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 353void tcp_rcv_space_adjust(struct sock *sk);
 354int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 355void tcp_twsk_destructor(struct sock *sk);
 356void tcp_twsk_purge(struct list_head *net_exit_list, int family);
 357ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 358                        struct pipe_inode_info *pipe, size_t len,
 359                        unsigned int flags);
 360struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 361                                     bool force_schedule);
 362
 363static inline void tcp_dec_quickack_mode(struct sock *sk)
 364{
 365        struct inet_connection_sock *icsk = inet_csk(sk);
 366
 367        if (icsk->icsk_ack.quick) {
 368                /* How many ACKs S/ACKing new data have we sent? */
 369                const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
 370
 371                if (pkts >= icsk->icsk_ack.quick) {
 372                        icsk->icsk_ack.quick = 0;
 373                        /* Leaving quickack mode we deflate ATO. */
 374                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 375                } else
 376                        icsk->icsk_ack.quick -= pkts;
 377        }
 378}
 379
 380#define TCP_ECN_OK              1
 381#define TCP_ECN_QUEUE_CWR       2
 382#define TCP_ECN_DEMAND_CWR      4
 383#define TCP_ECN_SEEN            8
 384
 385enum tcp_tw_status {
 386        TCP_TW_SUCCESS = 0,
 387        TCP_TW_RST = 1,
 388        TCP_TW_ACK = 2,
 389        TCP_TW_SYN = 3
 390};
 391
 392
 393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 394                                              struct sk_buff *skb,
 395                                              const struct tcphdr *th);
 396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 397                           struct request_sock *req, bool fastopen,
 398                           bool *lost_race);
 399int tcp_child_process(struct sock *parent, struct sock *child,
 400                      struct sk_buff *skb);
 401void tcp_enter_loss(struct sock *sk);
 402void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 403void tcp_clear_retrans(struct tcp_sock *tp);
 404void tcp_update_metrics(struct sock *sk);
 405void tcp_init_metrics(struct sock *sk);
 406void tcp_metrics_init(void);
 407bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 408void __tcp_close(struct sock *sk, long timeout);
 409void tcp_close(struct sock *sk, long timeout);
 410void tcp_init_sock(struct sock *sk);
 411void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 412__poll_t tcp_poll(struct file *file, struct socket *sock,
 413                      struct poll_table_struct *wait);
 414int do_tcp_getsockopt(struct sock *sk, int level,
 415                      int optname, sockptr_t optval, sockptr_t optlen);
 416int tcp_getsockopt(struct sock *sk, int level, int optname,
 417                   char __user *optval, int __user *optlen);
 418bool tcp_bpf_bypass_getsockopt(int level, int optname);
 419int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 420                      sockptr_t optval, unsigned int optlen);
 421int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 422                   unsigned int optlen);
 423void tcp_set_keepalive(struct sock *sk, int val);
 424void tcp_syn_ack_timeout(const struct request_sock *req);
 425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 426                int flags, int *addr_len);
 427int tcp_set_rcvlowat(struct sock *sk, int val);
 428int tcp_set_window_clamp(struct sock *sk, int val);
 429void tcp_update_recv_tstamps(struct sk_buff *skb,
 430                             struct scm_timestamping_internal *tss);
 431void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 432                        struct scm_timestamping_internal *tss);
 433void tcp_data_ready(struct sock *sk);
 434#ifdef CONFIG_MMU
 435int tcp_mmap(struct file *file, struct socket *sock,
 436             struct vm_area_struct *vma);
 437#endif
 438void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 439                       struct tcp_options_received *opt_rx,
 440                       int estab, struct tcp_fastopen_cookie *foc);
 441
 442/*
 443 *      BPF SKB-less helpers
 444 */
 445u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 446                         struct tcphdr *th, u32 *cookie);
 447u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 448                         struct tcphdr *th, u32 *cookie);
 449u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 450u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 451                          const struct tcp_request_sock_ops *af_ops,
 452                          struct sock *sk, struct tcphdr *th);
 453/*
 454 *      TCP v4 functions exported for the inet6 API
 455 */
 456
 457void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 458void tcp_v4_mtu_reduced(struct sock *sk);
 459void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 460void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 461int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 462struct sock *tcp_create_openreq_child(const struct sock *sk,
 463                                      struct request_sock *req,
 464                                      struct sk_buff *skb);
 465void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 466struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 467                                  struct request_sock *req,
 468                                  struct dst_entry *dst,
 469                                  struct request_sock *req_unhash,
 470                                  bool *own_req);
 471int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 472int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 473int tcp_connect(struct sock *sk);
 474enum tcp_synack_type {
 475        TCP_SYNACK_NORMAL,
 476        TCP_SYNACK_FASTOPEN,
 477        TCP_SYNACK_COOKIE,
 478};
 479struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 480                                struct request_sock *req,
 481                                struct tcp_fastopen_cookie *foc,
 482                                enum tcp_synack_type synack_type,
 483                                struct sk_buff *syn_skb);
 484int tcp_disconnect(struct sock *sk, int flags);
 485
 486void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 487int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 488void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 489
 490/* From syncookies.c */
 491struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 492                                 struct request_sock *req,
 493                                 struct dst_entry *dst, u32 tsoff);
 494int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 495                      u32 cookie);
 496struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 497struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 498                                            const struct tcp_request_sock_ops *af_ops,
 499                                            struct sock *sk, struct sk_buff *skb);
 500#ifdef CONFIG_SYN_COOKIES
 501
 502/* Syncookies use a monotonic timer which increments every 60 seconds.
 503 * This counter is used both as a hash input and partially encoded into
 504 * the cookie value.  A cookie is only validated further if the delta
 505 * between the current counter value and the encoded one is less than this,
 506 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 507 * the counter advances immediately after a cookie is generated).
 508 */
 509#define MAX_SYNCOOKIE_AGE       2
 510#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 511#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 512
 513/* syncookies: remember time of last synqueue overflow
 514 * But do not dirty this field too often (once per second is enough)
 515 * It is racy as we do not hold a lock, but race is very minor.
 516 */
 517static inline void tcp_synq_overflow(const struct sock *sk)
 518{
 519        unsigned int last_overflow;
 520        unsigned int now = jiffies;
 521
 522        if (sk->sk_reuseport) {
 523                struct sock_reuseport *reuse;
 524
 525                reuse = rcu_dereference(sk->sk_reuseport_cb);
 526                if (likely(reuse)) {
 527                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 528                        if (!time_between32(now, last_overflow,
 529                                            last_overflow + HZ))
 530                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 531                        return;
 532                }
 533        }
 534
 535        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 536        if (!time_between32(now, last_overflow, last_overflow + HZ))
 537                WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
 538}
 539
 540/* syncookies: no recent synqueue overflow on this listening socket? */
 541static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 542{
 543        unsigned int last_overflow;
 544        unsigned int now = jiffies;
 545
 546        if (sk->sk_reuseport) {
 547                struct sock_reuseport *reuse;
 548
 549                reuse = rcu_dereference(sk->sk_reuseport_cb);
 550                if (likely(reuse)) {
 551                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 552                        return !time_between32(now, last_overflow - HZ,
 553                                               last_overflow +
 554                                               TCP_SYNCOOKIE_VALID);
 555                }
 556        }
 557
 558        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 559
 560        /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 561         * then we're under synflood. However, we have to use
 562         * 'last_overflow - HZ' as lower bound. That's because a concurrent
 563         * tcp_synq_overflow() could update .ts_recent_stamp after we read
 564         * jiffies but before we store .ts_recent_stamp into last_overflow,
 565         * which could lead to rejecting a valid syncookie.
 566         */
 567        return !time_between32(now, last_overflow - HZ,
 568                               last_overflow + TCP_SYNCOOKIE_VALID);
 569}
 570
 571static inline u32 tcp_cookie_time(void)
 572{
 573        u64 val = get_jiffies_64();
 574
 575        do_div(val, TCP_SYNCOOKIE_PERIOD);
 576        return val;
 577}
 578
 579u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 580                              u16 *mssp);
 581__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 582u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 583bool cookie_timestamp_decode(const struct net *net,
 584                             struct tcp_options_received *opt);
 585bool cookie_ecn_ok(const struct tcp_options_received *opt,
 586                   const struct net *net, const struct dst_entry *dst);
 587
 588/* From net/ipv6/syncookies.c */
 589int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 590                      u32 cookie);
 591struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 592
 593u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 594                              const struct tcphdr *th, u16 *mssp);
 595__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 596#endif
 597/* tcp_output.c */
 598
 599void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 600void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 601void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 602                               int nonagle);
 603int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 604int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 605void tcp_retransmit_timer(struct sock *sk);
 606void tcp_xmit_retransmit_queue(struct sock *);
 607void tcp_simple_retransmit(struct sock *);
 608void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 609int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 610enum tcp_queue {
 611        TCP_FRAG_IN_WRITE_QUEUE,
 612        TCP_FRAG_IN_RTX_QUEUE,
 613};
 614int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 615                 struct sk_buff *skb, u32 len,
 616                 unsigned int mss_now, gfp_t gfp);
 617
 618void tcp_send_probe0(struct sock *);
 619int tcp_write_wakeup(struct sock *, int mib);
 620void tcp_send_fin(struct sock *sk);
 621void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 622int tcp_send_synack(struct sock *);
 623void tcp_push_one(struct sock *, unsigned int mss_now);
 624void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 625void tcp_send_ack(struct sock *sk);
 626void tcp_send_delayed_ack(struct sock *sk);
 627void tcp_send_loss_probe(struct sock *sk);
 628bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 629void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 630                             const struct sk_buff *next_skb);
 631
 632/* tcp_input.c */
 633void tcp_rearm_rto(struct sock *sk);
 634void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 635void tcp_reset(struct sock *sk, struct sk_buff *skb);
 636void tcp_fin(struct sock *sk);
 637void tcp_check_space(struct sock *sk);
 638void tcp_sack_compress_send_ack(struct sock *sk);
 639
 640/* tcp_timer.c */
 641void tcp_init_xmit_timers(struct sock *);
 642static inline void tcp_clear_xmit_timers(struct sock *sk)
 643{
 644        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 645                __sock_put(sk);
 646
 647        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 648                __sock_put(sk);
 649
 650        inet_csk_clear_xmit_timers(sk);
 651}
 652
 653unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 654unsigned int tcp_current_mss(struct sock *sk);
 655u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 656
 657/* Bound MSS / TSO packet size with the half of the window */
 658static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 659{
 660        int cutoff;
 661
 662        /* When peer uses tiny windows, there is no use in packetizing
 663         * to sub-MSS pieces for the sake of SWS or making sure there
 664         * are enough packets in the pipe for fast recovery.
 665         *
 666         * On the other hand, for extremely large MSS devices, handling
 667         * smaller than MSS windows in this way does make sense.
 668         */
 669        if (tp->max_window > TCP_MSS_DEFAULT)
 670                cutoff = (tp->max_window >> 1);
 671        else
 672                cutoff = tp->max_window;
 673
 674        if (cutoff && pktsize > cutoff)
 675                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 676        else
 677                return pktsize;
 678}
 679
 680/* tcp.c */
 681void tcp_get_info(struct sock *, struct tcp_info *);
 682
 683/* Read 'sendfile()'-style from a TCP socket */
 684int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 685                  sk_read_actor_t recv_actor);
 686int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 687struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 688void tcp_read_done(struct sock *sk, size_t len);
 689
 690void tcp_initialize_rcv_mss(struct sock *sk);
 691
 692int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 693int tcp_mss_to_mtu(struct sock *sk, int mss);
 694void tcp_mtup_init(struct sock *sk);
 695
 696static inline void tcp_bound_rto(const struct sock *sk)
 697{
 698        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 699                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 700}
 701
 702static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 703{
 704        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 705}
 706
 707static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 708{
 709        /* mptcp hooks are only on the slow path */
 710        if (sk_is_mptcp((struct sock *)tp))
 711                return;
 712
 713        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 714                               ntohl(TCP_FLAG_ACK) |
 715                               snd_wnd);
 716}
 717
 718static inline void tcp_fast_path_on(struct tcp_sock *tp)
 719{
 720        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 721}
 722
 723static inline void tcp_fast_path_check(struct sock *sk)
 724{
 725        struct tcp_sock *tp = tcp_sk(sk);
 726
 727        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 728            tp->rcv_wnd &&
 729            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 730            !tp->urg_data)
 731                tcp_fast_path_on(tp);
 732}
 733
 734u32 tcp_delack_max(const struct sock *sk);
 735
 736/* Compute the actual rto_min value */
 737static inline u32 tcp_rto_min(const struct sock *sk)
 738{
 739        const struct dst_entry *dst = __sk_dst_get(sk);
 740        u32 rto_min = inet_csk(sk)->icsk_rto_min;
 741
 742        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 743                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 744        return rto_min;
 745}
 746
 747static inline u32 tcp_rto_min_us(const struct sock *sk)
 748{
 749        return jiffies_to_usecs(tcp_rto_min(sk));
 750}
 751
 752static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 753{
 754        return dst_metric_locked(dst, RTAX_CC_ALGO);
 755}
 756
 757/* Minimum RTT in usec. ~0 means not available. */
 758static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 759{
 760        return minmax_get(&tp->rtt_min);
 761}
 762
 763/* Compute the actual receive window we are currently advertising.
 764 * Rcv_nxt can be after the window if our peer push more data
 765 * than the offered window.
 766 */
 767static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 768{
 769        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 770
 771        if (win < 0)
 772                win = 0;
 773        return (u32) win;
 774}
 775
 776/* Choose a new window, without checks for shrinking, and without
 777 * scaling applied to the result.  The caller does these things
 778 * if necessary.  This is a "raw" window selection.
 779 */
 780u32 __tcp_select_window(struct sock *sk);
 781
 782void tcp_send_window_probe(struct sock *sk);
 783
 784/* TCP uses 32bit jiffies to save some space.
 785 * Note that this is different from tcp_time_stamp, which
 786 * historically has been the same until linux-4.13.
 787 */
 788#define tcp_jiffies32 ((u32)jiffies)
 789
 790/*
 791 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 792 * It is no longer tied to jiffies, but to 1 ms clock.
 793 * Note: double check if you want to use tcp_jiffies32 instead of this.
 794 */
 795#define TCP_TS_HZ       1000
 796
 797static inline u64 tcp_clock_ns(void)
 798{
 799        return ktime_get_ns();
 800}
 801
 802static inline u64 tcp_clock_us(void)
 803{
 804        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 805}
 806
 807static inline u64 tcp_clock_ms(void)
 808{
 809        return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
 810}
 811
 812/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 813 * or usec resolution. Each socket carries a flag to select one or other
 814 * resolution, as the route attribute could change anytime.
 815 * Each flow must stick to initial resolution.
 816 */
 817static inline u32 tcp_clock_ts(bool usec_ts)
 818{
 819        return usec_ts ? tcp_clock_us() : tcp_clock_ms();
 820}
 821
 822static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
 823{
 824        return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
 825}
 826
 827static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
 828{
 829        if (tp->tcp_usec_ts)
 830                return tp->tcp_mstamp;
 831        return tcp_time_stamp_ms(tp);
 832}
 833
 834void tcp_mstamp_refresh(struct tcp_sock *tp);
 835
 836static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 837{
 838        return max_t(s64, t1 - t0, 0);
 839}
 840
 841/* provide the departure time in us unit */
 842static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 843{
 844        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 845}
 846
 847/* Provide skb TSval in usec or ms unit */
 848static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
 849{
 850        if (usec_ts)
 851                return tcp_skb_timestamp_us(skb);
 852
 853        return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
 854}
 855
 856static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
 857{
 858        return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
 859}
 860
 861static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
 862{
 863        return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
 864}
 865
 866#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 867
 868#define TCPHDR_FIN 0x01
 869#define TCPHDR_SYN 0x02
 870#define TCPHDR_RST 0x04
 871#define TCPHDR_PSH 0x08
 872#define TCPHDR_ACK 0x10
 873#define TCPHDR_URG 0x20
 874#define TCPHDR_ECE 0x40
 875#define TCPHDR_CWR 0x80
 876
 877#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 878
 879/* This is what the send packet queuing engine uses to pass
 880 * TCP per-packet control information to the transmission code.
 881 * We also store the host-order sequence numbers in here too.
 882 * This is 44 bytes if IPV6 is enabled.
 883 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 884 */
 885struct tcp_skb_cb {
 886        __u32           seq;            /* Starting sequence number     */
 887        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 888        union {
 889                /* Note : tcp_tw_isn is used in input path only
 890                 *        (isn chosen by tcp_timewait_state_process())
 891                 *
 892                 *        tcp_gso_segs/size are used in write queue only,
 893                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 894                 */
 895                __u32           tcp_tw_isn;
 896                struct {
 897                        u16     tcp_gso_segs;
 898                        u16     tcp_gso_size;
 899                };
 900        };
 901        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 902
 903        __u8            sacked;         /* State flags for SACK.        */
 904#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 905#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 906#define TCPCB_LOST              0x04    /* SKB is lost                  */
 907#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 908#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 909#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 910#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 911                                TCPCB_REPAIRED)
 912
 913        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 914        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 915                        eor:1,          /* Is skb MSG_EOR marked? */
 916                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 917                        unused:5;
 918        __u32           ack_seq;        /* Sequence number ACK'd        */
 919        union {
 920                struct {
 921#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 922                        /* There is space for up to 24 bytes */
 923                        __u32 is_app_limited:1, /* cwnd not fully used? */
 924                              delivered_ce:20,
 925                              unused:11;
 926                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 927                        __u32 delivered;
 928                        /* start of send pipeline phase */
 929                        u64 first_tx_mstamp;
 930                        /* when we reached the "delivered" count */
 931                        u64 delivered_mstamp;
 932                } tx;   /* only used for outgoing skbs */
 933                union {
 934                        struct inet_skb_parm    h4;
 935#if IS_ENABLED(CONFIG_IPV6)
 936                        struct inet6_skb_parm   h6;
 937#endif
 938                } header;       /* For incoming skbs */
 939        };
 940};
 941
 942#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 943
 944extern const struct inet_connection_sock_af_ops ipv4_specific;
 945
 946#if IS_ENABLED(CONFIG_IPV6)
 947/* This is the variant of inet6_iif() that must be used by TCP,
 948 * as TCP moves IP6CB into a different location in skb->cb[]
 949 */
 950static inline int tcp_v6_iif(const struct sk_buff *skb)
 951{
 952        return TCP_SKB_CB(skb)->header.h6.iif;
 953}
 954
 955static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 956{
 957        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 958
 959        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 960}
 961
 962/* TCP_SKB_CB reference means this can not be used from early demux */
 963static inline int tcp_v6_sdif(const struct sk_buff *skb)
 964{
 965#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 966        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 967                return TCP_SKB_CB(skb)->header.h6.iif;
 968#endif
 969        return 0;
 970}
 971
 972extern const struct inet_connection_sock_af_ops ipv6_specific;
 973
 974INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 975INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 976void tcp_v6_early_demux(struct sk_buff *skb);
 977
 978#endif
 979
 980/* TCP_SKB_CB reference means this can not be used from early demux */
 981static inline int tcp_v4_sdif(struct sk_buff *skb)
 982{
 983#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 984        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 985                return TCP_SKB_CB(skb)->header.h4.iif;
 986#endif
 987        return 0;
 988}
 989
 990/* Due to TSO, an SKB can be composed of multiple actual
 991 * packets.  To keep these tracked properly, we use this.
 992 */
 993static inline int tcp_skb_pcount(const struct sk_buff *skb)
 994{
 995        return TCP_SKB_CB(skb)->tcp_gso_segs;
 996}
 997
 998static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 999{
1000        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1001}
1002
1003static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1004{
1005        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1006}
1007
1008/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1009static inline int tcp_skb_mss(const struct sk_buff *skb)
1010{
1011        return TCP_SKB_CB(skb)->tcp_gso_size;
1012}
1013
1014static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1015{
1016        return likely(!TCP_SKB_CB(skb)->eor);
1017}
1018
1019static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1020                                        const struct sk_buff *from)
1021{
1022        return likely(tcp_skb_can_collapse_to(to) &&
1023                      mptcp_skb_can_collapse(to, from) &&
1024                      skb_pure_zcopy_same(to, from));
1025}
1026
1027/* Events passed to congestion control interface */
1028enum tcp_ca_event {
1029        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
1030        CA_EVENT_CWND_RESTART,  /* congestion window restart */
1031        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
1032        CA_EVENT_LOSS,          /* loss timeout */
1033        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
1034        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
1035};
1036
1037/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1038enum tcp_ca_ack_event_flags {
1039        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
1040        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
1041        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
1042};
1043
1044/*
1045 * Interface for adding new TCP congestion control handlers
1046 */
1047#define TCP_CA_NAME_MAX 16
1048#define TCP_CA_MAX      128
1049#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
1050
1051#define TCP_CA_UNSPEC   0
1052
1053/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1054#define TCP_CONG_NON_RESTRICTED 0x1
1055/* Requires ECN/ECT set on all packets */
1056#define TCP_CONG_NEEDS_ECN      0x2
1057#define TCP_CONG_MASK   (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1058
1059union tcp_cc_info;
1060
1061struct ack_sample {
1062        u32 pkts_acked;
1063        s32 rtt_us;
1064        u32 in_flight;
1065};
1066
1067/* A rate sample measures the number of (original/retransmitted) data
1068 * packets delivered "delivered" over an interval of time "interval_us".
1069 * The tcp_rate.c code fills in the rate sample, and congestion
1070 * control modules that define a cong_control function to run at the end
1071 * of ACK processing can optionally chose to consult this sample when
1072 * setting cwnd and pacing rate.
1073 * A sample is invalid if "delivered" or "interval_us" is negative.
1074 */
1075struct rate_sample {
1076        u64  prior_mstamp; /* starting timestamp for interval */
1077        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1078        u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1079        s32  delivered;         /* number of packets delivered over interval */
1080        s32  delivered_ce;      /* number of packets delivered w/ CE marks*/
1081        long interval_us;       /* time for tp->delivered to incr "delivered" */
1082        u32 snd_interval_us;    /* snd interval for delivered packets */
1083        u32 rcv_interval_us;    /* rcv interval for delivered packets */
1084        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1085        int  losses;            /* number of packets marked lost upon ACK */
1086        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1087        u32  prior_in_flight;   /* in flight before this ACK */
1088        u32  last_end_seq;      /* end_seq of most recently ACKed packet */
1089        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1090        bool is_retrans;        /* is sample from retransmission? */
1091        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1092};
1093
1094struct tcp_congestion_ops {
1095/* fast path fields are put first to fill one cache line */
1096
1097        /* return slow start threshold (required) */
1098        u32 (*ssthresh)(struct sock *sk);
1099
1100        /* do new cwnd calculation (required) */
1101        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1102
1103        /* call before changing ca_state (optional) */
1104        void (*set_state)(struct sock *sk, u8 new_state);
1105
1106        /* call when cwnd event occurs (optional) */
1107        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1108
1109        /* call when ack arrives (optional) */
1110        void (*in_ack_event)(struct sock *sk, u32 flags);
1111
1112        /* hook for packet ack accounting (optional) */
1113        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1114
1115        /* override sysctl_tcp_min_tso_segs */
1116        u32 (*min_tso_segs)(struct sock *sk);
1117
1118        /* call when packets are delivered to update cwnd and pacing rate,
1119         * after all the ca_state processing. (optional)
1120         */
1121        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1122
1123
1124        /* new value of cwnd after loss (required) */
1125        u32  (*undo_cwnd)(struct sock *sk);
1126        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1127        u32 (*sndbuf_expand)(struct sock *sk);
1128
1129/* control/slow paths put last */
1130        /* get info for inet_diag (optional) */
1131        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1132                           union tcp_cc_info *info);
1133
1134        char                    name[TCP_CA_NAME_MAX];
1135        struct module           *owner;
1136        struct list_head        list;
1137        u32                     key;
1138        u32                     flags;
1139
1140        /* initialize private data (optional) */
1141        void (*init)(struct sock *sk);
1142        /* cleanup private data  (optional) */
1143        void (*release)(struct sock *sk);
1144} ____cacheline_aligned_in_smp;
1145
1146int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1147void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1148int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1149                                  struct tcp_congestion_ops *old_type);
1150int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1151
1152void tcp_assign_congestion_control(struct sock *sk);
1153void tcp_init_congestion_control(struct sock *sk);
1154void tcp_cleanup_congestion_control(struct sock *sk);
1155int tcp_set_default_congestion_control(struct net *net, const char *name);
1156void tcp_get_default_congestion_control(struct net *net, char *name);
1157void tcp_get_available_congestion_control(char *buf, size_t len);
1158void tcp_get_allowed_congestion_control(char *buf, size_t len);
1159int tcp_set_allowed_congestion_control(char *allowed);
1160int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1161                               bool cap_net_admin);
1162u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1163void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1164
1165u32 tcp_reno_ssthresh(struct sock *sk);
1166u32 tcp_reno_undo_cwnd(struct sock *sk);
1167void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1168extern struct tcp_congestion_ops tcp_reno;
1169
1170struct tcp_congestion_ops *tcp_ca_find(const char *name);
1171struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1172u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1173#ifdef CONFIG_INET
1174char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1175#else
1176static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1177{
1178        return NULL;
1179}
1180#endif
1181
1182static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1183{
1184        const struct inet_connection_sock *icsk = inet_csk(sk);
1185
1186        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1187}
1188
1189static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1190{
1191        const struct inet_connection_sock *icsk = inet_csk(sk);
1192
1193        if (icsk->icsk_ca_ops->cwnd_event)
1194                icsk->icsk_ca_ops->cwnd_event(sk, event);
1195}
1196
1197/* From tcp_cong.c */
1198void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1199
1200/* From tcp_rate.c */
1201void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1202void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1203                            struct rate_sample *rs);
1204void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1205                  bool is_sack_reneg, struct rate_sample *rs);
1206void tcp_rate_check_app_limited(struct sock *sk);
1207
1208static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1209{
1210        return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1211}
1212
1213/* These functions determine how the current flow behaves in respect of SACK
1214 * handling. SACK is negotiated with the peer, and therefore it can vary
1215 * between different flows.
1216 *
1217 * tcp_is_sack - SACK enabled
1218 * tcp_is_reno - No SACK
1219 */
1220static inline int tcp_is_sack(const struct tcp_sock *tp)
1221{
1222        return likely(tp->rx_opt.sack_ok);
1223}
1224
1225static inline bool tcp_is_reno(const struct tcp_sock *tp)
1226{
1227        return !tcp_is_sack(tp);
1228}
1229
1230static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1231{
1232        return tp->sacked_out + tp->lost_out;
1233}
1234
1235/* This determines how many packets are "in the network" to the best
1236 * of our knowledge.  In many cases it is conservative, but where
1237 * detailed information is available from the receiver (via SACK
1238 * blocks etc.) we can make more aggressive calculations.
1239 *
1240 * Use this for decisions involving congestion control, use just
1241 * tp->packets_out to determine if the send queue is empty or not.
1242 *
1243 * Read this equation as:
1244 *
1245 *      "Packets sent once on transmission queue" MINUS
1246 *      "Packets left network, but not honestly ACKed yet" PLUS
1247 *      "Packets fast retransmitted"
1248 */
1249static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1250{
1251        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1252}
1253
1254#define TCP_INFINITE_SSTHRESH   0x7fffffff
1255
1256static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1257{
1258        return tp->snd_cwnd;
1259}
1260
1261static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1262{
1263        WARN_ON_ONCE((int)val <= 0);
1264        tp->snd_cwnd = val;
1265}
1266
1267static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1268{
1269        return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1270}
1271
1272static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1273{
1274        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1275}
1276
1277static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1278{
1279        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1280               (1 << inet_csk(sk)->icsk_ca_state);
1281}
1282
1283/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1284 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1285 * ssthresh.
1286 */
1287static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1288{
1289        const struct tcp_sock *tp = tcp_sk(sk);
1290
1291        if (tcp_in_cwnd_reduction(sk))
1292                return tp->snd_ssthresh;
1293        else
1294                return max(tp->snd_ssthresh,
1295                           ((tcp_snd_cwnd(tp) >> 1) +
1296                            (tcp_snd_cwnd(tp) >> 2)));
1297}
1298
1299/* Use define here intentionally to get WARN_ON location shown at the caller */
1300#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1301
1302void tcp_enter_cwr(struct sock *sk);
1303__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1304
1305/* The maximum number of MSS of available cwnd for which TSO defers
1306 * sending if not using sysctl_tcp_tso_win_divisor.
1307 */
1308static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1309{
1310        return 3;
1311}
1312
1313/* Returns end sequence number of the receiver's advertised window */
1314static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1315{
1316        return tp->snd_una + tp->snd_wnd;
1317}
1318
1319/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1320 * flexible approach. The RFC suggests cwnd should not be raised unless
1321 * it was fully used previously. And that's exactly what we do in
1322 * congestion avoidance mode. But in slow start we allow cwnd to grow
1323 * as long as the application has used half the cwnd.
1324 * Example :
1325 *    cwnd is 10 (IW10), but application sends 9 frames.
1326 *    We allow cwnd to reach 18 when all frames are ACKed.
1327 * This check is safe because it's as aggressive as slow start which already
1328 * risks 100% overshoot. The advantage is that we discourage application to
1329 * either send more filler packets or data to artificially blow up the cwnd
1330 * usage, and allow application-limited process to probe bw more aggressively.
1331 */
1332static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1333{
1334        const struct tcp_sock *tp = tcp_sk(sk);
1335
1336        if (tp->is_cwnd_limited)
1337                return true;
1338
1339        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1340        if (tcp_in_slow_start(tp))
1341                return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1342
1343        return false;
1344}
1345
1346/* BBR congestion control needs pacing.
1347 * Same remark for SO_MAX_PACING_RATE.
1348 * sch_fq packet scheduler is efficiently handling pacing,
1349 * but is not always installed/used.
1350 * Return true if TCP stack should pace packets itself.
1351 */
1352static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1353{
1354        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1355}
1356
1357/* Estimates in how many jiffies next packet for this flow can be sent.
1358 * Scheduling a retransmit timer too early would be silly.
1359 */
1360static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1361{
1362        s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1363
1364        return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1365}
1366
1367static inline void tcp_reset_xmit_timer(struct sock *sk,
1368                                        const int what,
1369                                        unsigned long when,
1370                                        const unsigned long max_when)
1371{
1372        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1373                                  max_when);
1374}
1375
1376/* Something is really bad, we could not queue an additional packet,
1377 * because qdisc is full or receiver sent a 0 window, or we are paced.
1378 * We do not want to add fuel to the fire, or abort too early,
1379 * so make sure the timer we arm now is at least 200ms in the future,
1380 * regardless of current icsk_rto value (as it could be ~2ms)
1381 */
1382static inline unsigned long tcp_probe0_base(const struct sock *sk)
1383{
1384        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1385}
1386
1387/* Variant of inet_csk_rto_backoff() used for zero window probes */
1388static inline unsigned long tcp_probe0_when(const struct sock *sk,
1389                                            unsigned long max_when)
1390{
1391        u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1392                           inet_csk(sk)->icsk_backoff);
1393        u64 when = (u64)tcp_probe0_base(sk) << backoff;
1394
1395        return (unsigned long)min_t(u64, when, max_when);
1396}
1397
1398static inline void tcp_check_probe_timer(struct sock *sk)
1399{
1400        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1401                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1402                                     tcp_probe0_base(sk), TCP_RTO_MAX);
1403}
1404
1405static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1406{
1407        tp->snd_wl1 = seq;
1408}
1409
1410static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1411{
1412        tp->snd_wl1 = seq;
1413}
1414
1415/*
1416 * Calculate(/check) TCP checksum
1417 */
1418static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1419                                   __be32 daddr, __wsum base)
1420{
1421        return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1422}
1423
1424static inline bool tcp_checksum_complete(struct sk_buff *skb)
1425{
1426        return !skb_csum_unnecessary(skb) &&
1427                __skb_checksum_complete(skb);
1428}
1429
1430bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1431                     enum skb_drop_reason *reason);
1432
1433
1434int tcp_filter(struct sock *sk, struct sk_buff *skb);
1435void tcp_set_state(struct sock *sk, int state);
1436void tcp_done(struct sock *sk);
1437int tcp_abort(struct sock *sk, int err);
1438
1439static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1440{
1441        rx_opt->dsack = 0;
1442        rx_opt->num_sacks = 0;
1443}
1444
1445void tcp_cwnd_restart(struct sock *sk, s32 delta);
1446
1447static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1448{
1449        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1450        struct tcp_sock *tp = tcp_sk(sk);
1451        s32 delta;
1452
1453        if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1454            tp->packets_out || ca_ops->cong_control)
1455                return;
1456        delta = tcp_jiffies32 - tp->lsndtime;
1457        if (delta > inet_csk(sk)->icsk_rto)
1458                tcp_cwnd_restart(sk, delta);
1459}
1460
1461/* Determine a window scaling and initial window to offer. */
1462void tcp_select_initial_window(const struct sock *sk, int __space,
1463                               __u32 mss, __u32 *rcv_wnd,
1464                               __u32 *window_clamp, int wscale_ok,
1465                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1466
1467static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1468{
1469        s64 scaled_space = (s64)space * scaling_ratio;
1470
1471        return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1472}
1473
1474static inline int tcp_win_from_space(const struct sock *sk, int space)
1475{
1476        return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1477}
1478
1479/* inverse of __tcp_win_from_space() */
1480static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1481{
1482        u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1483
1484        do_div(val, scaling_ratio);
1485        return val;
1486}
1487
1488static inline int tcp_space_from_win(const struct sock *sk, int win)
1489{
1490        return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1491}
1492
1493/* Assume a conservative default of 1200 bytes of payload per 4K page.
1494 * This may be adjusted later in tcp_measure_rcv_mss().
1495 */
1496#define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1497                                   SKB_TRUESIZE(4096))
1498
1499static inline void tcp_scaling_ratio_init(struct sock *sk)
1500{
1501        tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1502}
1503
1504/* Note: caller must be prepared to deal with negative returns */
1505static inline int tcp_space(const struct sock *sk)
1506{
1507        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1508                                  READ_ONCE(sk->sk_backlog.len) -
1509                                  atomic_read(&sk->sk_rmem_alloc));
1510}
1511
1512static inline int tcp_full_space(const struct sock *sk)
1513{
1514        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1515}
1516
1517static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1518{
1519        int unused_mem = sk_unused_reserved_mem(sk);
1520        struct tcp_sock *tp = tcp_sk(sk);
1521
1522        tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1523        if (unused_mem)
1524                tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1525                                         tcp_win_from_space(sk, unused_mem));
1526}
1527
1528static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1529{
1530        __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1531}
1532
1533void tcp_cleanup_rbuf(struct sock *sk, int copied);
1534void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1535
1536
1537/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1538 * If 87.5 % (7/8) of the space has been consumed, we want to override
1539 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1540 * len/truesize ratio.
1541 */
1542static inline bool tcp_rmem_pressure(const struct sock *sk)
1543{
1544        int rcvbuf, threshold;
1545
1546        if (tcp_under_memory_pressure(sk))
1547                return true;
1548
1549        rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1550        threshold = rcvbuf - (rcvbuf >> 3);
1551
1552        return atomic_read(&sk->sk_rmem_alloc) > threshold;
1553}
1554
1555static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1556{
1557        const struct tcp_sock *tp = tcp_sk(sk);
1558        int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1559
1560        if (avail <= 0)
1561                return false;
1562
1563        return (avail >= target) || tcp_rmem_pressure(sk) ||
1564               (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1565}
1566
1567extern void tcp_openreq_init_rwin(struct request_sock *req,
1568                                  const struct sock *sk_listener,
1569                                  const struct dst_entry *dst);
1570
1571void tcp_enter_memory_pressure(struct sock *sk);
1572void tcp_leave_memory_pressure(struct sock *sk);
1573
1574static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1575{
1576        struct net *net = sock_net((struct sock *)tp);
1577        int val;
1578
1579        /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1580         * and do_tcp_setsockopt().
1581         */
1582        val = READ_ONCE(tp->keepalive_intvl);
1583
1584        return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1585}
1586
1587static inline int keepalive_time_when(const struct tcp_sock *tp)
1588{
1589        struct net *net = sock_net((struct sock *)tp);
1590        int val;
1591
1592        /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1593        val = READ_ONCE(tp->keepalive_time);
1594
1595        return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1596}
1597
1598static inline int keepalive_probes(const struct tcp_sock *tp)
1599{
1600        struct net *net = sock_net((struct sock *)tp);
1601        int val;
1602
1603        /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1604         * and do_tcp_setsockopt().
1605         */
1606        val = READ_ONCE(tp->keepalive_probes);
1607
1608        return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1609}
1610
1611static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1612{
1613        const struct inet_connection_sock *icsk = &tp->inet_conn;
1614
1615        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1616                          tcp_jiffies32 - tp->rcv_tstamp);
1617}
1618
1619static inline int tcp_fin_time(const struct sock *sk)
1620{
1621        int fin_timeout = tcp_sk(sk)->linger2 ? :
1622                READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1623        const int rto = inet_csk(sk)->icsk_rto;
1624
1625        if (fin_timeout < (rto << 2) - (rto >> 1))
1626                fin_timeout = (rto << 2) - (rto >> 1);
1627
1628        return fin_timeout;
1629}
1630
1631static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1632                                  int paws_win)
1633{
1634        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1635                return true;
1636        if (unlikely(!time_before32(ktime_get_seconds(),
1637                                    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1638                return true;
1639        /*
1640         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1641         * then following tcp messages have valid values. Ignore 0 value,
1642         * or else 'negative' tsval might forbid us to accept their packets.
1643         */
1644        if (!rx_opt->ts_recent)
1645                return true;
1646        return false;
1647}
1648
1649static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1650                                   int rst)
1651{
1652        if (tcp_paws_check(rx_opt, 0))
1653                return false;
1654
1655        /* RST segments are not recommended to carry timestamp,
1656           and, if they do, it is recommended to ignore PAWS because
1657           "their cleanup function should take precedence over timestamps."
1658           Certainly, it is mistake. It is necessary to understand the reasons
1659           of this constraint to relax it: if peer reboots, clock may go
1660           out-of-sync and half-open connections will not be reset.
1661           Actually, the problem would be not existing if all
1662           the implementations followed draft about maintaining clock
1663           via reboots. Linux-2.2 DOES NOT!
1664
1665           However, we can relax time bounds for RST segments to MSL.
1666         */
1667        if (rst && !time_before32(ktime_get_seconds(),
1668                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1669                return false;
1670        return true;
1671}
1672
1673bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1674                          int mib_idx, u32 *last_oow_ack_time);
1675
1676static inline void tcp_mib_init(struct net *net)
1677{
1678        /* See RFC 2012 */
1679        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1680        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1681        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1682        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1683}
1684
1685/* from STCP */
1686static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1687{
1688        tp->lost_skb_hint = NULL;
1689}
1690
1691static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1692{
1693        tcp_clear_retrans_hints_partial(tp);
1694        tp->retransmit_skb_hint = NULL;
1695}
1696
1697#define tcp_md5_addr tcp_ao_addr
1698
1699/* - key database */
1700struct tcp_md5sig_key {
1701        struct hlist_node       node;
1702        u8                      keylen;
1703        u8                      family; /* AF_INET or AF_INET6 */
1704        u8                      prefixlen;
1705        u8                      flags;
1706        union tcp_md5_addr      addr;
1707        int                     l3index; /* set if key added with L3 scope */
1708        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1709        struct rcu_head         rcu;
1710};
1711
1712/* - sock block */
1713struct tcp_md5sig_info {
1714        struct hlist_head       head;
1715        struct rcu_head         rcu;
1716};
1717
1718/* - pseudo header */
1719struct tcp4_pseudohdr {
1720        __be32          saddr;
1721        __be32          daddr;
1722        __u8            pad;
1723        __u8            protocol;
1724        __be16          len;
1725};
1726
1727struct tcp6_pseudohdr {
1728        struct in6_addr saddr;
1729        struct in6_addr daddr;
1730        __be32          len;
1731        __be32          protocol;       /* including padding */
1732};
1733
1734union tcp_md5sum_block {
1735        struct tcp4_pseudohdr ip4;
1736#if IS_ENABLED(CONFIG_IPV6)
1737        struct tcp6_pseudohdr ip6;
1738#endif
1739};
1740
1741/*
1742 * struct tcp_sigpool - per-CPU pool of ahash_requests
1743 * @scratch: per-CPU temporary area, that can be used between
1744 *           tcp_sigpool_start() and tcp_sigpool_end() to perform
1745 *           crypto request
1746 * @req: pre-allocated ahash request
1747 */
1748struct tcp_sigpool {
1749        void *scratch;
1750        struct ahash_request *req;
1751};
1752
1753int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1754void tcp_sigpool_get(unsigned int id);
1755void tcp_sigpool_release(unsigned int id);
1756int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1757                              const struct sk_buff *skb,
1758                              unsigned int header_len);
1759
1760/**
1761 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1762 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1763 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1764 *
1765 * Returns 0 on success, error otherwise.
1766 */
1767int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1768/**
1769 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1770 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1771 */
1772void tcp_sigpool_end(struct tcp_sigpool *c);
1773size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1774/* - functions */
1775int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1776                        const struct sock *sk, const struct sk_buff *skb);
1777int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1778                   int family, u8 prefixlen, int l3index, u8 flags,
1779                   const u8 *newkey, u8 newkeylen);
1780int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1781                     int family, u8 prefixlen, int l3index,
1782                     struct tcp_md5sig_key *key);
1783
1784int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1785                   int family, u8 prefixlen, int l3index, u8 flags);
1786void tcp_clear_md5_list(struct sock *sk);
1787struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1788                                         const struct sock *addr_sk);
1789
1790#ifdef CONFIG_TCP_MD5SIG
1791struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1792                                           const union tcp_md5_addr *addr,
1793                                           int family, bool any_l3index);
1794static inline struct tcp_md5sig_key *
1795tcp_md5_do_lookup(const struct sock *sk, int l3index,
1796                  const union tcp_md5_addr *addr, int family)
1797{
1798        if (!static_branch_unlikely(&tcp_md5_needed.key))
1799                return NULL;
1800        return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1801}
1802
1803static inline struct tcp_md5sig_key *
1804tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1805                              const union tcp_md5_addr *addr, int family)
1806{
1807        if (!static_branch_unlikely(&tcp_md5_needed.key))
1808                return NULL;
1809        return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1810}
1811
1812enum skb_drop_reason
1813tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1814                     const void *saddr, const void *daddr,
1815                     int family, int l3index, const __u8 *hash_location);
1816
1817
1818#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1819#else
1820static inline struct tcp_md5sig_key *
1821tcp_md5_do_lookup(const struct sock *sk, int l3index,
1822                  const union tcp_md5_addr *addr, int family)
1823{
1824        return NULL;
1825}
1826
1827static inline struct tcp_md5sig_key *
1828tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1829                              const union tcp_md5_addr *addr, int family)
1830{
1831        return NULL;
1832}
1833
1834static inline enum skb_drop_reason
1835tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1836                     const void *saddr, const void *daddr,
1837                     int family, int l3index, const __u8 *hash_location)
1838{
1839        return SKB_NOT_DROPPED_YET;
1840}
1841#define tcp_twsk_md5_key(twsk)  NULL
1842#endif
1843
1844int tcp_md5_alloc_sigpool(void);
1845void tcp_md5_release_sigpool(void);
1846void tcp_md5_add_sigpool(void);
1847extern int tcp_md5_sigpool_id;
1848
1849int tcp_md5_hash_key(struct tcp_sigpool *hp,
1850                     const struct tcp_md5sig_key *key);
1851
1852/* From tcp_fastopen.c */
1853void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1854                            struct tcp_fastopen_cookie *cookie);
1855void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1856                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1857                            u16 try_exp);
1858struct tcp_fastopen_request {
1859        /* Fast Open cookie. Size 0 means a cookie request */
1860        struct tcp_fastopen_cookie      cookie;
1861        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1862        size_t                          size;
1863        int                             copied; /* queued in tcp_connect() */
1864        struct ubuf_info                *uarg;
1865};
1866void tcp_free_fastopen_req(struct tcp_sock *tp);
1867void tcp_fastopen_destroy_cipher(struct sock *sk);
1868void tcp_fastopen_ctx_destroy(struct net *net);
1869int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1870                              void *primary_key, void *backup_key);
1871int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1872                            u64 *key);
1873void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1874struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1875                              struct request_sock *req,
1876                              struct tcp_fastopen_cookie *foc,
1877                              const struct dst_entry *dst);
1878void tcp_fastopen_init_key_once(struct net *net);
1879bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1880                             struct tcp_fastopen_cookie *cookie);
1881bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1882#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1883#define TCP_FASTOPEN_KEY_MAX 2
1884#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1885        (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1886
1887/* Fastopen key context */
1888struct tcp_fastopen_context {
1889        siphash_key_t   key[TCP_FASTOPEN_KEY_MAX];
1890        int             num;
1891        struct rcu_head rcu;
1892};
1893
1894void tcp_fastopen_active_disable(struct sock *sk);
1895bool tcp_fastopen_active_should_disable(struct sock *sk);
1896void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1897void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1898
1899/* Caller needs to wrap with rcu_read_(un)lock() */
1900static inline
1901struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1902{
1903        struct tcp_fastopen_context *ctx;
1904
1905        ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1906        if (!ctx)
1907                ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1908        return ctx;
1909}
1910
1911static inline
1912bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1913                               const struct tcp_fastopen_cookie *orig)
1914{
1915        if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1916            orig->len == foc->len &&
1917            !memcmp(orig->val, foc->val, foc->len))
1918                return true;
1919        return false;
1920}
1921
1922static inline
1923int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1924{
1925        return ctx->num;
1926}
1927
1928/* Latencies incurred by various limits for a sender. They are
1929 * chronograph-like stats that are mutually exclusive.
1930 */
1931enum tcp_chrono {
1932        TCP_CHRONO_UNSPEC,
1933        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1934        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1935        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1936        __TCP_CHRONO_MAX,
1937};
1938
1939void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1940void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1941
1942/* This helper is needed, because skb->tcp_tsorted_anchor uses
1943 * the same memory storage than skb->destructor/_skb_refdst
1944 */
1945static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1946{
1947        skb->destructor = NULL;
1948        skb->_skb_refdst = 0UL;
1949}
1950
1951#define tcp_skb_tsorted_save(skb) {             \
1952        unsigned long _save = skb->_skb_refdst; \
1953        skb->_skb_refdst = 0UL;
1954
1955#define tcp_skb_tsorted_restore(skb)            \
1956        skb->_skb_refdst = _save;               \
1957}
1958
1959void tcp_write_queue_purge(struct sock *sk);
1960
1961static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1962{
1963        return skb_rb_first(&sk->tcp_rtx_queue);
1964}
1965
1966static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1967{
1968        return skb_rb_last(&sk->tcp_rtx_queue);
1969}
1970
1971static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1972{
1973        return skb_peek_tail(&sk->sk_write_queue);
1974}
1975
1976#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1977        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1978
1979static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1980{
1981        return skb_peek(&sk->sk_write_queue);
1982}
1983
1984static inline bool tcp_skb_is_last(const struct sock *sk,
1985                                   const struct sk_buff *skb)
1986{
1987        return skb_queue_is_last(&sk->sk_write_queue, skb);
1988}
1989
1990/**
1991 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1992 * @sk: socket
1993 *
1994 * Since the write queue can have a temporary empty skb in it,
1995 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1996 */
1997static inline bool tcp_write_queue_empty(const struct sock *sk)
1998{
1999        const struct tcp_sock *tp = tcp_sk(sk);
2000
2001        return tp->write_seq == tp->snd_nxt;
2002}
2003
2004static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2005{
2006        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2007}
2008
2009static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2010{
2011        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2012}
2013
2014static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2015{
2016        __skb_queue_tail(&sk->sk_write_queue, skb);
2017
2018        /* Queue it, remembering where we must start sending. */
2019        if (sk->sk_write_queue.next == skb)
2020                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2021}
2022
2023/* Insert new before skb on the write queue of sk.  */
2024static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2025                                                  struct sk_buff *skb,
2026                                                  struct sock *sk)
2027{
2028        __skb_queue_before(&sk->sk_write_queue, skb, new);
2029}
2030
2031static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2032{
2033        tcp_skb_tsorted_anchor_cleanup(skb);
2034        __skb_unlink(skb, &sk->sk_write_queue);
2035}
2036
2037void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2038
2039static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2040{
2041        tcp_skb_tsorted_anchor_cleanup(skb);
2042        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2043}
2044
2045static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2046{
2047        list_del(&skb->tcp_tsorted_anchor);
2048        tcp_rtx_queue_unlink(skb, sk);
2049        tcp_wmem_free_skb(sk, skb);
2050}
2051
2052static inline void tcp_push_pending_frames(struct sock *sk)
2053{
2054        if (tcp_send_head(sk)) {
2055                struct tcp_sock *tp = tcp_sk(sk);
2056
2057                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2058        }
2059}
2060
2061/* Start sequence of the skb just after the highest skb with SACKed
2062 * bit, valid only if sacked_out > 0 or when the caller has ensured
2063 * validity by itself.
2064 */
2065static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2066{
2067        if (!tp->sacked_out)
2068                return tp->snd_una;
2069
2070        if (tp->highest_sack == NULL)
2071                return tp->snd_nxt;
2072
2073        return TCP_SKB_CB(tp->highest_sack)->seq;
2074}
2075
2076static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2077{
2078        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2079}
2080
2081static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2082{
2083        return tcp_sk(sk)->highest_sack;
2084}
2085
2086static inline void tcp_highest_sack_reset(struct sock *sk)
2087{
2088        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2089}
2090
2091/* Called when old skb is about to be deleted and replaced by new skb */
2092static inline void tcp_highest_sack_replace(struct sock *sk,
2093                                            struct sk_buff *old,
2094                                            struct sk_buff *new)
2095{
2096        if (old == tcp_highest_sack(sk))
2097                tcp_sk(sk)->highest_sack = new;
2098}
2099
2100/* This helper checks if socket has IP_TRANSPARENT set */
2101static inline bool inet_sk_transparent(const struct sock *sk)
2102{
2103        switch (sk->sk_state) {
2104        case TCP_TIME_WAIT:
2105                return inet_twsk(sk)->tw_transparent;
2106        case TCP_NEW_SYN_RECV:
2107                return inet_rsk(inet_reqsk(sk))->no_srccheck;
2108        }
2109        return inet_test_bit(TRANSPARENT, sk);
2110}
2111
2112/* Determines whether this is a thin stream (which may suffer from
2113 * increased latency). Used to trigger latency-reducing mechanisms.
2114 */
2115static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2116{
2117        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2118}
2119
2120/* /proc */
2121enum tcp_seq_states {
2122        TCP_SEQ_STATE_LISTENING,
2123        TCP_SEQ_STATE_ESTABLISHED,
2124};
2125
2126void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2127void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2128void tcp_seq_stop(struct seq_file *seq, void *v);
2129
2130struct tcp_seq_afinfo {
2131        sa_family_t                     family;
2132};
2133
2134struct tcp_iter_state {
2135        struct seq_net_private  p;
2136        enum tcp_seq_states     state;
2137        struct sock             *syn_wait_sk;
2138        int                     bucket, offset, sbucket, num;
2139        loff_t                  last_pos;
2140};
2141
2142extern struct request_sock_ops tcp_request_sock_ops;
2143extern struct request_sock_ops tcp6_request_sock_ops;
2144
2145void tcp_v4_destroy_sock(struct sock *sk);
2146
2147struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2148                                netdev_features_t features);
2149struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2150INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2151INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2152INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2153INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2154#ifdef CONFIG_INET
2155void tcp_gro_complete(struct sk_buff *skb);
2156#else
2157static inline void tcp_gro_complete(struct sk_buff *skb) { }
2158#endif
2159
2160void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2161
2162static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2163{
2164        struct net *net = sock_net((struct sock *)tp);
2165        u32 val;
2166
2167        val = READ_ONCE(tp->notsent_lowat);
2168
2169        return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2170}
2171
2172bool tcp_stream_memory_free(const struct sock *sk, int wake);
2173
2174#ifdef CONFIG_PROC_FS
2175int tcp4_proc_init(void);
2176void tcp4_proc_exit(void);
2177#endif
2178
2179int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2180int tcp_conn_request(struct request_sock_ops *rsk_ops,
2181                     const struct tcp_request_sock_ops *af_ops,
2182                     struct sock *sk, struct sk_buff *skb);
2183
2184/* TCP af-specific functions */
2185struct tcp_sock_af_ops {
2186#ifdef CONFIG_TCP_MD5SIG
2187        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
2188                                                const struct sock *addr_sk);
2189        int             (*calc_md5_hash)(char *location,
2190                                         const struct tcp_md5sig_key *md5,
2191                                         const struct sock *sk,
2192                                         const struct sk_buff *skb);
2193        int             (*md5_parse)(struct sock *sk,
2194                                     int optname,
2195                                     sockptr_t optval,
2196                                     int optlen);
2197#endif
2198#ifdef CONFIG_TCP_AO
2199        int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2200        struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2201                                        struct sock *addr_sk,
2202                                        int sndid, int rcvid);
2203        int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2204                              const struct sock *sk,
2205                              __be32 sisn, __be32 disn, bool send);
2206        int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2207                            const struct sock *sk, const struct sk_buff *skb,
2208                            const u8 *tkey, int hash_offset, u32 sne);
2209#endif
2210};
2211
2212struct tcp_request_sock_ops {
2213        u16 mss_clamp;
2214#ifdef CONFIG_TCP_MD5SIG
2215        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2216                                                 const struct sock *addr_sk);
2217        int             (*calc_md5_hash) (char *location,
2218                                          const struct tcp_md5sig_key *md5,
2219                                          const struct sock *sk,
2220                                          const struct sk_buff *skb);
2221#endif
2222#ifdef CONFIG_TCP_AO
2223        struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2224                                        struct request_sock *req,
2225                                        int sndid, int rcvid);
2226        int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2227        int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2228                              struct request_sock *req, const struct sk_buff *skb,
2229                              int hash_offset, u32 sne);
2230#endif
2231#ifdef CONFIG_SYN_COOKIES
2232        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2233                                 __u16 *mss);
2234#endif
2235        struct dst_entry *(*route_req)(const struct sock *sk,
2236                                       struct sk_buff *skb,
2237                                       struct flowi *fl,
2238                                       struct request_sock *req);
2239        u32 (*init_seq)(const struct sk_buff *skb);
2240        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2241        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2242                           struct flowi *fl, struct request_sock *req,
2243                           struct tcp_fastopen_cookie *foc,
2244                           enum tcp_synack_type synack_type,
2245                           struct sk_buff *syn_skb);
2246};
2247
2248extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2249#if IS_ENABLED(CONFIG_IPV6)
2250extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2251#endif
2252
2253#ifdef CONFIG_SYN_COOKIES
2254static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2255                                         const struct sock *sk, struct sk_buff *skb,
2256                                         __u16 *mss)
2257{
2258        tcp_synq_overflow(sk);
2259        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2260        return ops->cookie_init_seq(skb, mss);
2261}
2262#else
2263static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2264                                         const struct sock *sk, struct sk_buff *skb,
2265                                         __u16 *mss)
2266{
2267        return 0;
2268}
2269#endif
2270
2271struct tcp_key {
2272        union {
2273                struct {
2274                        struct tcp_ao_key *ao_key;
2275                        char *traffic_key;
2276                        u32 sne;
2277                        u8 rcv_next;
2278                };
2279                struct tcp_md5sig_key *md5_key;
2280        };
2281        enum {
2282                TCP_KEY_NONE = 0,
2283                TCP_KEY_MD5,
2284                TCP_KEY_AO,
2285        } type;
2286};
2287
2288static inline void tcp_get_current_key(const struct sock *sk,
2289                                       struct tcp_key *out)
2290{
2291#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2292        const struct tcp_sock *tp = tcp_sk(sk);
2293#endif
2294
2295#ifdef CONFIG_TCP_AO
2296        if (static_branch_unlikely(&tcp_ao_needed.key)) {
2297                struct tcp_ao_info *ao;
2298
2299                ao = rcu_dereference_protected(tp->ao_info,
2300                                               lockdep_sock_is_held(sk));
2301                if (ao) {
2302                        out->ao_key = READ_ONCE(ao->current_key);
2303                        out->type = TCP_KEY_AO;
2304                        return;
2305                }
2306        }
2307#endif
2308#ifdef CONFIG_TCP_MD5SIG
2309        if (static_branch_unlikely(&tcp_md5_needed.key) &&
2310            rcu_access_pointer(tp->md5sig_info)) {
2311                out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2312                if (out->md5_key) {
2313                        out->type = TCP_KEY_MD5;
2314                        return;
2315                }
2316        }
2317#endif
2318        out->type = TCP_KEY_NONE;
2319}
2320
2321static inline bool tcp_key_is_md5(const struct tcp_key *key)
2322{
2323#ifdef CONFIG_TCP_MD5SIG
2324        if (static_branch_unlikely(&tcp_md5_needed.key) &&
2325            key->type == TCP_KEY_MD5)
2326                return true;
2327#endif
2328        return false;
2329}
2330
2331static inline bool tcp_key_is_ao(const struct tcp_key *key)
2332{
2333#ifdef CONFIG_TCP_AO
2334        if (static_branch_unlikely(&tcp_ao_needed.key) &&
2335            key->type == TCP_KEY_AO)
2336                return true;
2337#endif
2338        return false;
2339}
2340
2341int tcpv4_offload_init(void);
2342
2343void tcp_v4_init(void);
2344void tcp_init(void);
2345
2346/* tcp_recovery.c */
2347void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2348void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2349extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2350                                u32 reo_wnd);
2351extern bool tcp_rack_mark_lost(struct sock *sk);
2352extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2353                             u64 xmit_time);
2354extern void tcp_rack_reo_timeout(struct sock *sk);
2355extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2356
2357/* tcp_plb.c */
2358
2359/*
2360 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2361 * expects cong_ratio which represents fraction of traffic that experienced
2362 * congestion over a single RTT. In order to avoid floating point operations,
2363 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2364 */
2365#define TCP_PLB_SCALE 8
2366
2367/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2368struct tcp_plb_state {
2369        u8      consec_cong_rounds:5, /* consecutive congested rounds */
2370                unused:3;
2371        u32     pause_until; /* jiffies32 when PLB can resume rerouting */
2372};
2373
2374static inline void tcp_plb_init(const struct sock *sk,
2375                                struct tcp_plb_state *plb)
2376{
2377        plb->consec_cong_rounds = 0;
2378        plb->pause_until = 0;
2379}
2380void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2381                          const int cong_ratio);
2382void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2383void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2384
2385/* At how many usecs into the future should the RTO fire? */
2386static inline s64 tcp_rto_delta_us(const struct sock *sk)
2387{
2388        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2389        u32 rto = inet_csk(sk)->icsk_rto;
2390        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2391
2392        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2393}
2394
2395/*
2396 * Save and compile IPv4 options, return a pointer to it
2397 */
2398static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2399                                                         struct sk_buff *skb)
2400{
2401        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2402        struct ip_options_rcu *dopt = NULL;
2403
2404        if (opt->optlen) {
2405                int opt_size = sizeof(*dopt) + opt->optlen;
2406
2407                dopt = kmalloc(opt_size, GFP_ATOMIC);
2408                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2409                        kfree(dopt);
2410                        dopt = NULL;
2411                }
2412        }
2413        return dopt;
2414}
2415
2416/* locally generated TCP pure ACKs have skb->truesize == 2
2417 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2418 * This is much faster than dissecting the packet to find out.
2419 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2420 */
2421static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2422{
2423        return skb->truesize == 2;
2424}
2425
2426static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2427{
2428        skb->truesize = 2;
2429}
2430
2431static inline int tcp_inq(struct sock *sk)
2432{
2433        struct tcp_sock *tp = tcp_sk(sk);
2434        int answ;
2435
2436        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2437                answ = 0;
2438        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2439                   !tp->urg_data ||
2440                   before(tp->urg_seq, tp->copied_seq) ||
2441                   !before(tp->urg_seq, tp->rcv_nxt)) {
2442
2443                answ = tp->rcv_nxt - tp->copied_seq;
2444
2445                /* Subtract 1, if FIN was received */
2446                if (answ && sock_flag(sk, SOCK_DONE))
2447                        answ--;
2448        } else {
2449                answ = tp->urg_seq - tp->copied_seq;
2450        }
2451
2452        return answ;
2453}
2454
2455int tcp_peek_len(struct socket *sock);
2456
2457static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2458{
2459        u16 segs_in;
2460
2461        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2462
2463        /* We update these fields while other threads might
2464         * read them from tcp_get_info()
2465         */
2466        WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2467        if (skb->len > tcp_hdrlen(skb))
2468                WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2469}
2470
2471/*
2472 * TCP listen path runs lockless.
2473 * We forced "struct sock" to be const qualified to make sure
2474 * we don't modify one of its field by mistake.
2475 * Here, we increment sk_drops which is an atomic_t, so we can safely
2476 * make sock writable again.
2477 */
2478static inline void tcp_listendrop(const struct sock *sk)
2479{
2480        atomic_inc(&((struct sock *)sk)->sk_drops);
2481        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2482}
2483
2484enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2485
2486/*
2487 * Interface for adding Upper Level Protocols over TCP
2488 */
2489
2490#define TCP_ULP_NAME_MAX        16
2491#define TCP_ULP_MAX             128
2492#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2493
2494struct tcp_ulp_ops {
2495        struct list_head        list;
2496
2497        /* initialize ulp */
2498        int (*init)(struct sock *sk);
2499        /* update ulp */
2500        void (*update)(struct sock *sk, struct proto *p,
2501                       void (*write_space)(struct sock *sk));
2502        /* cleanup ulp */
2503        void (*release)(struct sock *sk);
2504        /* diagnostic */
2505        int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2506        size_t (*get_info_size)(const struct sock *sk);
2507        /* clone ulp */
2508        void (*clone)(const struct request_sock *req, struct sock *newsk,
2509                      const gfp_t priority);
2510
2511        char            name[TCP_ULP_NAME_MAX];
2512        struct module   *owner;
2513};
2514int tcp_register_ulp(struct tcp_ulp_ops *type);
2515void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2516int tcp_set_ulp(struct sock *sk, const char *name);
2517void tcp_get_available_ulp(char *buf, size_t len);
2518void tcp_cleanup_ulp(struct sock *sk);
2519void tcp_update_ulp(struct sock *sk, struct proto *p,
2520                    void (*write_space)(struct sock *sk));
2521
2522#define MODULE_ALIAS_TCP_ULP(name)                              \
2523        __MODULE_INFO(alias, alias_userspace, name);            \
2524        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2525
2526#ifdef CONFIG_NET_SOCK_MSG
2527struct sk_msg;
2528struct sk_psock;
2529
2530#ifdef CONFIG_BPF_SYSCALL
2531int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2532void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2533#endif /* CONFIG_BPF_SYSCALL */
2534
2535#ifdef CONFIG_INET
2536void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2537#else
2538static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2539{
2540}
2541#endif
2542
2543int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2544                          struct sk_msg *msg, u32 bytes, int flags);
2545#endif /* CONFIG_NET_SOCK_MSG */
2546
2547#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2548static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2549{
2550}
2551#endif
2552
2553#ifdef CONFIG_CGROUP_BPF
2554static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2555                                      struct sk_buff *skb,
2556                                      unsigned int end_offset)
2557{
2558        skops->skb = skb;
2559        skops->skb_data_end = skb->data + end_offset;
2560}
2561#else
2562static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2563                                      struct sk_buff *skb,
2564                                      unsigned int end_offset)
2565{
2566}
2567#endif
2568
2569/* Call BPF_SOCK_OPS program that returns an int. If the return value
2570 * is < 0, then the BPF op failed (for example if the loaded BPF
2571 * program does not support the chosen operation or there is no BPF
2572 * program loaded).
2573 */
2574#ifdef CONFIG_BPF
2575static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2576{
2577        struct bpf_sock_ops_kern sock_ops;
2578        int ret;
2579
2580        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2581        if (sk_fullsock(sk)) {
2582                sock_ops.is_fullsock = 1;
2583                sock_owned_by_me(sk);
2584        }
2585
2586        sock_ops.sk = sk;
2587        sock_ops.op = op;
2588        if (nargs > 0)
2589                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2590
2591        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2592        if (ret == 0)
2593                ret = sock_ops.reply;
2594        else
2595                ret = -1;
2596        return ret;
2597}
2598
2599static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2600{
2601        u32 args[2] = {arg1, arg2};
2602
2603        return tcp_call_bpf(sk, op, 2, args);
2604}
2605
2606static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2607                                    u32 arg3)
2608{
2609        u32 args[3] = {arg1, arg2, arg3};
2610
2611        return tcp_call_bpf(sk, op, 3, args);
2612}
2613
2614#else
2615static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2616{
2617        return -EPERM;
2618}
2619
2620static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2621{
2622        return -EPERM;
2623}
2624
2625static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2626                                    u32 arg3)
2627{
2628        return -EPERM;
2629}
2630
2631#endif
2632
2633static inline u32 tcp_timeout_init(struct sock *sk)
2634{
2635        int timeout;
2636
2637        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2638
2639        if (timeout <= 0)
2640                timeout = TCP_TIMEOUT_INIT;
2641        return min_t(int, timeout, TCP_RTO_MAX);
2642}
2643
2644static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2645{
2646        int rwnd;
2647
2648        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2649
2650        if (rwnd < 0)
2651                rwnd = 0;
2652        return rwnd;
2653}
2654
2655static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2656{
2657        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2658}
2659
2660static inline void tcp_bpf_rtt(struct sock *sk)
2661{
2662        if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2663                tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2664}
2665
2666#if IS_ENABLED(CONFIG_SMC)
2667extern struct static_key_false tcp_have_smc;
2668#endif
2669
2670#if IS_ENABLED(CONFIG_TLS_DEVICE)
2671void clean_acked_data_enable(struct inet_connection_sock *icsk,
2672                             void (*cad)(struct sock *sk, u32 ack_seq));
2673void clean_acked_data_disable(struct inet_connection_sock *icsk);
2674void clean_acked_data_flush(void);
2675#endif
2676
2677DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2678static inline void tcp_add_tx_delay(struct sk_buff *skb,
2679                                    const struct tcp_sock *tp)
2680{
2681        if (static_branch_unlikely(&tcp_tx_delay_enabled))
2682                skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2683}
2684
2685/* Compute Earliest Departure Time for some control packets
2686 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2687 */
2688static inline u64 tcp_transmit_time(const struct sock *sk)
2689{
2690        if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2691                u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2692                        tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2693
2694                return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2695        }
2696        return 0;
2697}
2698
2699static inline int tcp_parse_auth_options(const struct tcphdr *th,
2700                const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2701{
2702        const u8 *md5_tmp, *ao_tmp;
2703        int ret;
2704
2705        ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2706        if (ret)
2707                return ret;
2708
2709        if (md5_hash)
2710                *md5_hash = md5_tmp;
2711
2712        if (aoh) {
2713                if (!ao_tmp)
2714                        *aoh = NULL;
2715                else
2716                        *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2717        }
2718
2719        return 0;
2720}
2721
2722static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2723                                   int family, int l3index, bool stat_inc)
2724{
2725#ifdef CONFIG_TCP_AO
2726        struct tcp_ao_info *ao_info;
2727        struct tcp_ao_key *ao_key;
2728
2729        if (!static_branch_unlikely(&tcp_ao_needed.key))
2730                return false;
2731
2732        ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2733                                        lockdep_sock_is_held(sk));
2734        if (!ao_info)
2735                return false;
2736
2737        ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2738        if (ao_info->ao_required || ao_key) {
2739                if (stat_inc) {
2740                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2741                        atomic64_inc(&ao_info->counters.ao_required);
2742                }
2743                return true;
2744        }
2745#endif
2746        return false;
2747}
2748
2749/* Called with rcu_read_lock() */
2750static inline enum skb_drop_reason
2751tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2752                 const struct sk_buff *skb,
2753                 const void *saddr, const void *daddr,
2754                 int family, int dif, int sdif)
2755{
2756        const struct tcphdr *th = tcp_hdr(skb);
2757        const struct tcp_ao_hdr *aoh;
2758        const __u8 *md5_location;
2759        int l3index;
2760
2761        /* Invalid option or two times meet any of auth options */
2762        if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2763                tcp_hash_fail("TCP segment has incorrect auth options set",
2764                              family, skb, "");
2765                return SKB_DROP_REASON_TCP_AUTH_HDR;
2766        }
2767
2768        if (req) {
2769                if (tcp_rsk_used_ao(req) != !!aoh) {
2770                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2771                        tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2772                                      family, skb, "%s",
2773                                      !aoh ? "missing AO" : "AO signed");
2774                        return SKB_DROP_REASON_TCP_AOFAILURE;
2775                }
2776        }
2777
2778        /* sdif set, means packet ingressed via a device
2779         * in an L3 domain and dif is set to the l3mdev
2780         */
2781        l3index = sdif ? dif : 0;
2782
2783        /* Fast path: unsigned segments */
2784        if (likely(!md5_location && !aoh)) {
2785                /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2786                 * for the remote peer. On TCP-AO established connection
2787                 * the last key is impossible to remove, so there's
2788                 * always at least one current_key.
2789                 */
2790                if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2791                        tcp_hash_fail("AO hash is required, but not found",
2792                                        family, skb, "L3 index %d", l3index);
2793                        return SKB_DROP_REASON_TCP_AONOTFOUND;
2794                }
2795                if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2796                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2797                        tcp_hash_fail("MD5 Hash not found",
2798                                      family, skb, "L3 index %d", l3index);
2799                        return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2800                }
2801                return SKB_NOT_DROPPED_YET;
2802        }
2803
2804        if (aoh)
2805                return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2806
2807        return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2808                                    l3index, md5_location);
2809}
2810
2811#endif  /* _TCP_H */
2812