linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE          0
  62#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  63#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  64#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  65#define DESCRIPTOR_STATUS               (1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  67#define DESCRIPTOR_PING                 (1 << 7)
  68#define DESCRIPTOR_YY                   (1 << 6)
  69#define DESCRIPTOR_NO_IRQ               (0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  73#define DESCRIPTOR_WAIT                 (3 << 0)
  74
  75#define DESCRIPTOR_CMD                  (0xf << 12)
  76
  77struct descriptor {
  78        __le16 req_count;
  79        __le16 control;
  80        __le32 data_address;
  81        __le32 branch_address;
  82        __le16 res_count;
  83        __le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)       (regs)
  87#define CONTROL_CLEAR(regs)     ((regs) + 4)
  88#define COMMAND_PTR(regs)       ((regs) + 12)
  89#define CONTEXT_MATCH(regs)     ((regs) + 16)
  90
  91#define AR_BUFFER_SIZE  (32*1024)
  92#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD       4096
  97#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101        struct fw_ohci *ohci;
 102        struct page *pages[AR_BUFFERS];
 103        void *buffer;
 104        struct descriptor *descriptors;
 105        dma_addr_t descriptors_bus;
 106        void *pointer;
 107        unsigned int last_buffer_index;
 108        u32 regs;
 109        struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115                                     struct descriptor *d,
 116                                     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123        struct list_head list;
 124        dma_addr_t buffer_bus;
 125        size_t buffer_size;
 126        size_t used;
 127        struct descriptor buffer[0];
 128};
 129
 130struct context {
 131        struct fw_ohci *ohci;
 132        u32 regs;
 133        int total_allocation;
 134        u32 current_bus;
 135        bool running;
 136        bool flushing;
 137
 138        /*
 139         * List of page-sized buffers for storing DMA descriptors.
 140         * Head of list contains buffers in use and tail of list contains
 141         * free buffers.
 142         */
 143        struct list_head buffer_list;
 144
 145        /*
 146         * Pointer to a buffer inside buffer_list that contains the tail
 147         * end of the current DMA program.
 148         */
 149        struct descriptor_buffer *buffer_tail;
 150
 151        /*
 152         * The descriptor containing the branch address of the first
 153         * descriptor that has not yet been filled by the device.
 154         */
 155        struct descriptor *last;
 156
 157        /*
 158         * The last descriptor block in the DMA program. It contains the branch
 159         * address that must be updated upon appending a new descriptor.
 160         */
 161        struct descriptor *prev;
 162        int prev_z;
 163
 164        descriptor_callback_t callback;
 165
 166        struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177        struct fw_iso_context base;
 178        struct context context;
 179        void *header;
 180        size_t header_length;
 181        unsigned long flushing_completions;
 182        u32 mc_buffer_bus;
 183        u16 mc_completed;
 184        u16 last_timestamp;
 185        u8 sync;
 186        u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192        struct fw_card card;
 193
 194        __iomem char *registers;
 195        int node_id;
 196        int generation;
 197        int request_generation; /* for timestamping incoming requests */
 198        unsigned quirks;
 199        unsigned int pri_req_max;
 200        u32 bus_time;
 201        bool bus_time_running;
 202        bool is_root;
 203        bool csr_state_setclear_abdicate;
 204        int n_ir;
 205        int n_it;
 206        /*
 207         * Spinlock for accessing fw_ohci data.  Never call out of
 208         * this driver with this lock held.
 209         */
 210        spinlock_t lock;
 211
 212        struct mutex phy_reg_mutex;
 213
 214        void *misc_buffer;
 215        dma_addr_t misc_buffer_bus;
 216
 217        struct ar_context ar_request_ctx;
 218        struct ar_context ar_response_ctx;
 219        struct context at_request_ctx;
 220        struct context at_response_ctx;
 221
 222        u32 it_context_support;
 223        u32 it_context_mask;     /* unoccupied IT contexts */
 224        struct iso_context *it_context_list;
 225        u64 ir_context_channels; /* unoccupied channels */
 226        u32 ir_context_support;
 227        u32 ir_context_mask;     /* unoccupied IR contexts */
 228        struct iso_context *ir_context_list;
 229        u64 mc_channels; /* channels in use by the multichannel IR context */
 230        bool mc_allocated;
 231
 232        __be32    *config_rom;
 233        dma_addr_t config_rom_bus;
 234        __be32    *next_config_rom;
 235        dma_addr_t next_config_rom_bus;
 236        __be32     next_header;
 237
 238        __le32    *self_id;
 239        dma_addr_t self_id_bus;
 240        struct work_struct bus_reset_work;
 241
 242        u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249        return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 253#define IR_CONTEXT_BUFFER_FILL          0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 258
 259#define CONTEXT_RUN     0x8000
 260#define CONTEXT_WAKE    0x1000
 261#define CONTEXT_DEAD    0x0800
 262#define CONTEXT_ACTIVE  0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 267
 268#define OHCI1394_REGISTER_SIZE          0x800
 269#define OHCI1394_PCI_HCI_Control        0x40
 270#define SELF_ID_BUF_SIZE                0x800
 271#define OHCI_TCODE_PHY_PACKET           0x0e
 272#define OHCI_VERSION_1_1                0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X        0x3044
 284#define PCI_REV_ID_VIA_VT6306           0x46
 285
 286#define QUIRK_CYCLE_TIMER               0x1
 287#define QUIRK_RESET_PACKET              0x2
 288#define QUIRK_BE_HEADERS                0x4
 289#define QUIRK_NO_1394A                  0x8
 290#define QUIRK_NO_MSI                    0x10
 291#define QUIRK_TI_SLLZ059                0x20
 292#define QUIRK_IR_WAKE                   0x40
 293
 294/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 295static const struct {
 296        unsigned short vendor, device, revision, flags;
 297} ohci_quirks[] = {
 298        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 299                QUIRK_CYCLE_TIMER},
 300
 301        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 302                QUIRK_BE_HEADERS},
 303
 304        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 305                QUIRK_NO_MSI},
 306
 307        {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 308                QUIRK_RESET_PACKET},
 309
 310        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 311                QUIRK_NO_MSI},
 312
 313        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 314                QUIRK_CYCLE_TIMER},
 315
 316        {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 317                QUIRK_NO_MSI},
 318
 319        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 320                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 321
 322        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 323                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 324
 325        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 326                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 327
 328        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 329                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 330
 331        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 332                QUIRK_RESET_PACKET},
 333
 334        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 335                QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 336
 337        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 338                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 339};
 340
 341/* This overrides anything that was found in ohci_quirks[]. */
 342static int param_quirks;
 343module_param_named(quirks, param_quirks, int, 0644);
 344MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 345        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 346        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 347        ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
 348        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 349        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 350        ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
 351        ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
 352        ")");
 353
 354#define OHCI_PARAM_DEBUG_AT_AR          1
 355#define OHCI_PARAM_DEBUG_SELFIDS        2
 356#define OHCI_PARAM_DEBUG_IRQS           4
 357#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 358
 359static int param_debug;
 360module_param_named(debug, param_debug, int, 0644);
 361MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 362        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 363        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 364        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 365        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 366        ", or a combination, or all = -1)");
 367
 368static bool param_remote_dma;
 369module_param_named(remote_dma, param_remote_dma, bool, 0444);
 370MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 371
 372static void log_irqs(struct fw_ohci *ohci, u32 evt)
 373{
 374        if (likely(!(param_debug &
 375                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 376                return;
 377
 378        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 379            !(evt & OHCI1394_busReset))
 380                return;
 381
 382        ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 383            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 384            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 385            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 386            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 387            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 388            evt & OHCI1394_isochRx              ? " IR"                 : "",
 389            evt & OHCI1394_isochTx              ? " IT"                 : "",
 390            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 391            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 392            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 393            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 394            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 395            evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
 396            evt & OHCI1394_busReset             ? " busReset"           : "",
 397            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 398                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 399                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 400                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 401                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 402                    OHCI1394_cycleInconsistent |
 403                    OHCI1394_regAccessFail | OHCI1394_busReset)
 404                                                ? " ?"                  : "");
 405}
 406
 407static const char *speed[] = {
 408        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 409};
 410static const char *power[] = {
 411        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 412        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 413};
 414static const char port[] = { '.', '-', 'p', 'c', };
 415
 416static char _p(u32 *s, int shift)
 417{
 418        return port[*s >> shift & 3];
 419}
 420
 421static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 422{
 423        u32 *s;
 424
 425        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 426                return;
 427
 428        ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 429                    self_id_count, generation, ohci->node_id);
 430
 431        for (s = ohci->self_id_buffer; self_id_count--; ++s)
 432                if ((*s & 1 << 23) == 0)
 433                        ohci_notice(ohci,
 434                            "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 435                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 436                            speed[*s >> 14 & 3], *s >> 16 & 63,
 437                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 438                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 439                else
 440                        ohci_notice(ohci,
 441                            "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 442                            *s, *s >> 24 & 63,
 443                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 444                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 445}
 446
 447static const char *evts[] = {
 448        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 449        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 450        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 451        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 452        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 453        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 454        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 455        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 456        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 457        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 458        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 459        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 460        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 461        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 462        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 463        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 464        [0x20] = "pending/cancelled",
 465};
 466static const char *tcodes[] = {
 467        [0x0] = "QW req",               [0x1] = "BW req",
 468        [0x2] = "W resp",               [0x3] = "-reserved-",
 469        [0x4] = "QR req",               [0x5] = "BR req",
 470        [0x6] = "QR resp",              [0x7] = "BR resp",
 471        [0x8] = "cycle start",          [0x9] = "Lk req",
 472        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 473        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 474        [0xe] = "link internal",        [0xf] = "-reserved-",
 475};
 476
 477static void log_ar_at_event(struct fw_ohci *ohci,
 478                            char dir, int speed, u32 *header, int evt)
 479{
 480        int tcode = header[0] >> 4 & 0xf;
 481        char specific[12];
 482
 483        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 484                return;
 485
 486        if (unlikely(evt >= ARRAY_SIZE(evts)))
 487                        evt = 0x1f;
 488
 489        if (evt == OHCI1394_evt_bus_reset) {
 490                ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 491                            dir, (header[2] >> 16) & 0xff);
 492                return;
 493        }
 494
 495        switch (tcode) {
 496        case 0x0: case 0x6: case 0x8:
 497                snprintf(specific, sizeof(specific), " = %08x",
 498                         be32_to_cpu((__force __be32)header[3]));
 499                break;
 500        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 501                snprintf(specific, sizeof(specific), " %x,%x",
 502                         header[3] >> 16, header[3] & 0xffff);
 503                break;
 504        default:
 505                specific[0] = '\0';
 506        }
 507
 508        switch (tcode) {
 509        case 0xa:
 510                ohci_notice(ohci, "A%c %s, %s\n",
 511                            dir, evts[evt], tcodes[tcode]);
 512                break;
 513        case 0xe:
 514                ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 515                            dir, evts[evt], header[1], header[2]);
 516                break;
 517        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 518                ohci_notice(ohci,
 519                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 520                            dir, speed, header[0] >> 10 & 0x3f,
 521                            header[1] >> 16, header[0] >> 16, evts[evt],
 522                            tcodes[tcode], header[1] & 0xffff, header[2], specific);
 523                break;
 524        default:
 525                ohci_notice(ohci,
 526                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 527                            dir, speed, header[0] >> 10 & 0x3f,
 528                            header[1] >> 16, header[0] >> 16, evts[evt],
 529                            tcodes[tcode], specific);
 530        }
 531}
 532
 533static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 534{
 535        writel(data, ohci->registers + offset);
 536}
 537
 538static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 539{
 540        return readl(ohci->registers + offset);
 541}
 542
 543static inline void flush_writes(const struct fw_ohci *ohci)
 544{
 545        /* Do a dummy read to flush writes. */
 546        reg_read(ohci, OHCI1394_Version);
 547}
 548
 549/*
 550 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 551 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 552 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 553 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 554 */
 555static int read_phy_reg(struct fw_ohci *ohci, int addr)
 556{
 557        u32 val;
 558        int i;
 559
 560        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 561        for (i = 0; i < 3 + 100; i++) {
 562                val = reg_read(ohci, OHCI1394_PhyControl);
 563                if (!~val)
 564                        return -ENODEV; /* Card was ejected. */
 565
 566                if (val & OHCI1394_PhyControl_ReadDone)
 567                        return OHCI1394_PhyControl_ReadData(val);
 568
 569                /*
 570                 * Try a few times without waiting.  Sleeping is necessary
 571                 * only when the link/PHY interface is busy.
 572                 */
 573                if (i >= 3)
 574                        msleep(1);
 575        }
 576        ohci_err(ohci, "failed to read phy reg %d\n", addr);
 577        dump_stack();
 578
 579        return -EBUSY;
 580}
 581
 582static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 583{
 584        int i;
 585
 586        reg_write(ohci, OHCI1394_PhyControl,
 587                  OHCI1394_PhyControl_Write(addr, val));
 588        for (i = 0; i < 3 + 100; i++) {
 589                val = reg_read(ohci, OHCI1394_PhyControl);
 590                if (!~val)
 591                        return -ENODEV; /* Card was ejected. */
 592
 593                if (!(val & OHCI1394_PhyControl_WritePending))
 594                        return 0;
 595
 596                if (i >= 3)
 597                        msleep(1);
 598        }
 599        ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 600        dump_stack();
 601
 602        return -EBUSY;
 603}
 604
 605static int update_phy_reg(struct fw_ohci *ohci, int addr,
 606                          int clear_bits, int set_bits)
 607{
 608        int ret = read_phy_reg(ohci, addr);
 609        if (ret < 0)
 610                return ret;
 611
 612        /*
 613         * The interrupt status bits are cleared by writing a one bit.
 614         * Avoid clearing them unless explicitly requested in set_bits.
 615         */
 616        if (addr == 5)
 617                clear_bits |= PHY_INT_STATUS_BITS;
 618
 619        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 620}
 621
 622static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 623{
 624        int ret;
 625
 626        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 627        if (ret < 0)
 628                return ret;
 629
 630        return read_phy_reg(ohci, addr);
 631}
 632
 633static int ohci_read_phy_reg(struct fw_card *card, int addr)
 634{
 635        struct fw_ohci *ohci = fw_ohci(card);
 636        int ret;
 637
 638        mutex_lock(&ohci->phy_reg_mutex);
 639        ret = read_phy_reg(ohci, addr);
 640        mutex_unlock(&ohci->phy_reg_mutex);
 641
 642        return ret;
 643}
 644
 645static int ohci_update_phy_reg(struct fw_card *card, int addr,
 646                               int clear_bits, int set_bits)
 647{
 648        struct fw_ohci *ohci = fw_ohci(card);
 649        int ret;
 650
 651        mutex_lock(&ohci->phy_reg_mutex);
 652        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 653        mutex_unlock(&ohci->phy_reg_mutex);
 654
 655        return ret;
 656}
 657
 658static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 659{
 660        return page_private(ctx->pages[i]);
 661}
 662
 663static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 664{
 665        struct descriptor *d;
 666
 667        d = &ctx->descriptors[index];
 668        d->branch_address  &= cpu_to_le32(~0xf);
 669        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 670        d->transfer_status =  0;
 671
 672        wmb(); /* finish init of new descriptors before branch_address update */
 673        d = &ctx->descriptors[ctx->last_buffer_index];
 674        d->branch_address  |= cpu_to_le32(1);
 675
 676        ctx->last_buffer_index = index;
 677
 678        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 679}
 680
 681static void ar_context_release(struct ar_context *ctx)
 682{
 683        unsigned int i;
 684
 685        if (ctx->buffer)
 686                vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 687
 688        for (i = 0; i < AR_BUFFERS; i++)
 689                if (ctx->pages[i]) {
 690                        dma_unmap_page(ctx->ohci->card.device,
 691                                       ar_buffer_bus(ctx, i),
 692                                       PAGE_SIZE, DMA_FROM_DEVICE);
 693                        __free_page(ctx->pages[i]);
 694                }
 695}
 696
 697static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 698{
 699        struct fw_ohci *ohci = ctx->ohci;
 700
 701        if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 702                reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 703                flush_writes(ohci);
 704
 705                ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 706        }
 707        /* FIXME: restart? */
 708}
 709
 710static inline unsigned int ar_next_buffer_index(unsigned int index)
 711{
 712        return (index + 1) % AR_BUFFERS;
 713}
 714
 715static inline unsigned int ar_prev_buffer_index(unsigned int index)
 716{
 717        return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 718}
 719
 720static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 721{
 722        return ar_next_buffer_index(ctx->last_buffer_index);
 723}
 724
 725/*
 726 * We search for the buffer that contains the last AR packet DMA data written
 727 * by the controller.
 728 */
 729static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 730                                                 unsigned int *buffer_offset)
 731{
 732        unsigned int i, next_i, last = ctx->last_buffer_index;
 733        __le16 res_count, next_res_count;
 734
 735        i = ar_first_buffer_index(ctx);
 736        res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 737
 738        /* A buffer that is not yet completely filled must be the last one. */
 739        while (i != last && res_count == 0) {
 740
 741                /* Peek at the next descriptor. */
 742                next_i = ar_next_buffer_index(i);
 743                rmb(); /* read descriptors in order */
 744                next_res_count = ACCESS_ONCE(
 745                                ctx->descriptors[next_i].res_count);
 746                /*
 747                 * If the next descriptor is still empty, we must stop at this
 748                 * descriptor.
 749                 */
 750                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 751                        /*
 752                         * The exception is when the DMA data for one packet is
 753                         * split over three buffers; in this case, the middle
 754                         * buffer's descriptor might be never updated by the
 755                         * controller and look still empty, and we have to peek
 756                         * at the third one.
 757                         */
 758                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 759                                next_i = ar_next_buffer_index(next_i);
 760                                rmb();
 761                                next_res_count = ACCESS_ONCE(
 762                                        ctx->descriptors[next_i].res_count);
 763                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 764                                        goto next_buffer_is_active;
 765                        }
 766
 767                        break;
 768                }
 769
 770next_buffer_is_active:
 771                i = next_i;
 772                res_count = next_res_count;
 773        }
 774
 775        rmb(); /* read res_count before the DMA data */
 776
 777        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 778        if (*buffer_offset > PAGE_SIZE) {
 779                *buffer_offset = 0;
 780                ar_context_abort(ctx, "corrupted descriptor");
 781        }
 782
 783        return i;
 784}
 785
 786static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 787                                    unsigned int end_buffer_index,
 788                                    unsigned int end_buffer_offset)
 789{
 790        unsigned int i;
 791
 792        i = ar_first_buffer_index(ctx);
 793        while (i != end_buffer_index) {
 794                dma_sync_single_for_cpu(ctx->ohci->card.device,
 795                                        ar_buffer_bus(ctx, i),
 796                                        PAGE_SIZE, DMA_FROM_DEVICE);
 797                i = ar_next_buffer_index(i);
 798        }
 799        if (end_buffer_offset > 0)
 800                dma_sync_single_for_cpu(ctx->ohci->card.device,
 801                                        ar_buffer_bus(ctx, i),
 802                                        end_buffer_offset, DMA_FROM_DEVICE);
 803}
 804
 805#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 806#define cond_le32_to_cpu(v) \
 807        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 808#else
 809#define cond_le32_to_cpu(v) le32_to_cpu(v)
 810#endif
 811
 812static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 813{
 814        struct fw_ohci *ohci = ctx->ohci;
 815        struct fw_packet p;
 816        u32 status, length, tcode;
 817        int evt;
 818
 819        p.header[0] = cond_le32_to_cpu(buffer[0]);
 820        p.header[1] = cond_le32_to_cpu(buffer[1]);
 821        p.header[2] = cond_le32_to_cpu(buffer[2]);
 822
 823        tcode = (p.header[0] >> 4) & 0x0f;
 824        switch (tcode) {
 825        case TCODE_WRITE_QUADLET_REQUEST:
 826        case TCODE_READ_QUADLET_RESPONSE:
 827                p.header[3] = (__force __u32) buffer[3];
 828                p.header_length = 16;
 829                p.payload_length = 0;
 830                break;
 831
 832        case TCODE_READ_BLOCK_REQUEST :
 833                p.header[3] = cond_le32_to_cpu(buffer[3]);
 834                p.header_length = 16;
 835                p.payload_length = 0;
 836                break;
 837
 838        case TCODE_WRITE_BLOCK_REQUEST:
 839        case TCODE_READ_BLOCK_RESPONSE:
 840        case TCODE_LOCK_REQUEST:
 841        case TCODE_LOCK_RESPONSE:
 842                p.header[3] = cond_le32_to_cpu(buffer[3]);
 843                p.header_length = 16;
 844                p.payload_length = p.header[3] >> 16;
 845                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 846                        ar_context_abort(ctx, "invalid packet length");
 847                        return NULL;
 848                }
 849                break;
 850
 851        case TCODE_WRITE_RESPONSE:
 852        case TCODE_READ_QUADLET_REQUEST:
 853        case OHCI_TCODE_PHY_PACKET:
 854                p.header_length = 12;
 855                p.payload_length = 0;
 856                break;
 857
 858        default:
 859                ar_context_abort(ctx, "invalid tcode");
 860                return NULL;
 861        }
 862
 863        p.payload = (void *) buffer + p.header_length;
 864
 865        /* FIXME: What to do about evt_* errors? */
 866        length = (p.header_length + p.payload_length + 3) / 4;
 867        status = cond_le32_to_cpu(buffer[length]);
 868        evt    = (status >> 16) & 0x1f;
 869
 870        p.ack        = evt - 16;
 871        p.speed      = (status >> 21) & 0x7;
 872        p.timestamp  = status & 0xffff;
 873        p.generation = ohci->request_generation;
 874
 875        log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 876
 877        /*
 878         * Several controllers, notably from NEC and VIA, forget to
 879         * write ack_complete status at PHY packet reception.
 880         */
 881        if (evt == OHCI1394_evt_no_status &&
 882            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 883                p.ack = ACK_COMPLETE;
 884
 885        /*
 886         * The OHCI bus reset handler synthesizes a PHY packet with
 887         * the new generation number when a bus reset happens (see
 888         * section 8.4.2.3).  This helps us determine when a request
 889         * was received and make sure we send the response in the same
 890         * generation.  We only need this for requests; for responses
 891         * we use the unique tlabel for finding the matching
 892         * request.
 893         *
 894         * Alas some chips sometimes emit bus reset packets with a
 895         * wrong generation.  We set the correct generation for these
 896         * at a slightly incorrect time (in bus_reset_work).
 897         */
 898        if (evt == OHCI1394_evt_bus_reset) {
 899                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 900                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 901        } else if (ctx == &ohci->ar_request_ctx) {
 902                fw_core_handle_request(&ohci->card, &p);
 903        } else {
 904                fw_core_handle_response(&ohci->card, &p);
 905        }
 906
 907        return buffer + length + 1;
 908}
 909
 910static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 911{
 912        void *next;
 913
 914        while (p < end) {
 915                next = handle_ar_packet(ctx, p);
 916                if (!next)
 917                        return p;
 918                p = next;
 919        }
 920
 921        return p;
 922}
 923
 924static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 925{
 926        unsigned int i;
 927
 928        i = ar_first_buffer_index(ctx);
 929        while (i != end_buffer) {
 930                dma_sync_single_for_device(ctx->ohci->card.device,
 931                                           ar_buffer_bus(ctx, i),
 932                                           PAGE_SIZE, DMA_FROM_DEVICE);
 933                ar_context_link_page(ctx, i);
 934                i = ar_next_buffer_index(i);
 935        }
 936}
 937
 938static void ar_context_tasklet(unsigned long data)
 939{
 940        struct ar_context *ctx = (struct ar_context *)data;
 941        unsigned int end_buffer_index, end_buffer_offset;
 942        void *p, *end;
 943
 944        p = ctx->pointer;
 945        if (!p)
 946                return;
 947
 948        end_buffer_index = ar_search_last_active_buffer(ctx,
 949                                                        &end_buffer_offset);
 950        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 951        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 952
 953        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 954                /*
 955                 * The filled part of the overall buffer wraps around; handle
 956                 * all packets up to the buffer end here.  If the last packet
 957                 * wraps around, its tail will be visible after the buffer end
 958                 * because the buffer start pages are mapped there again.
 959                 */
 960                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 961                p = handle_ar_packets(ctx, p, buffer_end);
 962                if (p < buffer_end)
 963                        goto error;
 964                /* adjust p to point back into the actual buffer */
 965                p -= AR_BUFFERS * PAGE_SIZE;
 966        }
 967
 968        p = handle_ar_packets(ctx, p, end);
 969        if (p != end) {
 970                if (p > end)
 971                        ar_context_abort(ctx, "inconsistent descriptor");
 972                goto error;
 973        }
 974
 975        ctx->pointer = p;
 976        ar_recycle_buffers(ctx, end_buffer_index);
 977
 978        return;
 979
 980error:
 981        ctx->pointer = NULL;
 982}
 983
 984static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 985                           unsigned int descriptors_offset, u32 regs)
 986{
 987        unsigned int i;
 988        dma_addr_t dma_addr;
 989        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 990        struct descriptor *d;
 991
 992        ctx->regs        = regs;
 993        ctx->ohci        = ohci;
 994        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 995
 996        for (i = 0; i < AR_BUFFERS; i++) {
 997                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 998                if (!ctx->pages[i])
 999                        goto out_of_memory;
1000                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1001                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
1002                if (dma_mapping_error(ohci->card.device, dma_addr)) {
1003                        __free_page(ctx->pages[i]);
1004                        ctx->pages[i] = NULL;
1005                        goto out_of_memory;
1006                }
1007                set_page_private(ctx->pages[i], dma_addr);
1008        }
1009
1010        for (i = 0; i < AR_BUFFERS; i++)
1011                pages[i]              = ctx->pages[i];
1012        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1013                pages[AR_BUFFERS + i] = ctx->pages[i];
1014        ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1015                                 -1, PAGE_KERNEL);
1016        if (!ctx->buffer)
1017                goto out_of_memory;
1018
1019        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1020        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1021
1022        for (i = 0; i < AR_BUFFERS; i++) {
1023                d = &ctx->descriptors[i];
1024                d->req_count      = cpu_to_le16(PAGE_SIZE);
1025                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1026                                                DESCRIPTOR_STATUS |
1027                                                DESCRIPTOR_BRANCH_ALWAYS);
1028                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1029                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1030                        ar_next_buffer_index(i) * sizeof(struct descriptor));
1031        }
1032
1033        return 0;
1034
1035out_of_memory:
1036        ar_context_release(ctx);
1037
1038        return -ENOMEM;
1039}
1040
1041static void ar_context_run(struct ar_context *ctx)
1042{
1043        unsigned int i;
1044
1045        for (i = 0; i < AR_BUFFERS; i++)
1046                ar_context_link_page(ctx, i);
1047
1048        ctx->pointer = ctx->buffer;
1049
1050        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1051        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1052}
1053
1054static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1055{
1056        __le16 branch;
1057
1058        branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1059
1060        /* figure out which descriptor the branch address goes in */
1061        if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1062                return d;
1063        else
1064                return d + z - 1;
1065}
1066
1067static void context_tasklet(unsigned long data)
1068{
1069        struct context *ctx = (struct context *) data;
1070        struct descriptor *d, *last;
1071        u32 address;
1072        int z;
1073        struct descriptor_buffer *desc;
1074
1075        desc = list_entry(ctx->buffer_list.next,
1076                        struct descriptor_buffer, list);
1077        last = ctx->last;
1078        while (last->branch_address != 0) {
1079                struct descriptor_buffer *old_desc = desc;
1080                address = le32_to_cpu(last->branch_address);
1081                z = address & 0xf;
1082                address &= ~0xf;
1083                ctx->current_bus = address;
1084
1085                /* If the branch address points to a buffer outside of the
1086                 * current buffer, advance to the next buffer. */
1087                if (address < desc->buffer_bus ||
1088                                address >= desc->buffer_bus + desc->used)
1089                        desc = list_entry(desc->list.next,
1090                                        struct descriptor_buffer, list);
1091                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1092                last = find_branch_descriptor(d, z);
1093
1094                if (!ctx->callback(ctx, d, last))
1095                        break;
1096
1097                if (old_desc != desc) {
1098                        /* If we've advanced to the next buffer, move the
1099                         * previous buffer to the free list. */
1100                        unsigned long flags;
1101                        old_desc->used = 0;
1102                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1103                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1104                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1105                }
1106                ctx->last = last;
1107        }
1108}
1109
1110/*
1111 * Allocate a new buffer and add it to the list of free buffers for this
1112 * context.  Must be called with ohci->lock held.
1113 */
1114static int context_add_buffer(struct context *ctx)
1115{
1116        struct descriptor_buffer *desc;
1117        dma_addr_t uninitialized_var(bus_addr);
1118        int offset;
1119
1120        /*
1121         * 16MB of descriptors should be far more than enough for any DMA
1122         * program.  This will catch run-away userspace or DoS attacks.
1123         */
1124        if (ctx->total_allocation >= 16*1024*1024)
1125                return -ENOMEM;
1126
1127        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1128                        &bus_addr, GFP_ATOMIC);
1129        if (!desc)
1130                return -ENOMEM;
1131
1132        offset = (void *)&desc->buffer - (void *)desc;
1133        desc->buffer_size = PAGE_SIZE - offset;
1134        desc->buffer_bus = bus_addr + offset;
1135        desc->used = 0;
1136
1137        list_add_tail(&desc->list, &ctx->buffer_list);
1138        ctx->total_allocation += PAGE_SIZE;
1139
1140        return 0;
1141}
1142
1143static int context_init(struct context *ctx, struct fw_ohci *ohci,
1144                        u32 regs, descriptor_callback_t callback)
1145{
1146        ctx->ohci = ohci;
1147        ctx->regs = regs;
1148        ctx->total_allocation = 0;
1149
1150        INIT_LIST_HEAD(&ctx->buffer_list);
1151        if (context_add_buffer(ctx) < 0)
1152                return -ENOMEM;
1153
1154        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1155                        struct descriptor_buffer, list);
1156
1157        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1158        ctx->callback = callback;
1159
1160        /*
1161         * We put a dummy descriptor in the buffer that has a NULL
1162         * branch address and looks like it's been sent.  That way we
1163         * have a descriptor to append DMA programs to.
1164         */
1165        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1166        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1167        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1168        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1169        ctx->last = ctx->buffer_tail->buffer;
1170        ctx->prev = ctx->buffer_tail->buffer;
1171        ctx->prev_z = 1;
1172
1173        return 0;
1174}
1175
1176static void context_release(struct context *ctx)
1177{
1178        struct fw_card *card = &ctx->ohci->card;
1179        struct descriptor_buffer *desc, *tmp;
1180
1181        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1182                dma_free_coherent(card->device, PAGE_SIZE, desc,
1183                        desc->buffer_bus -
1184                        ((void *)&desc->buffer - (void *)desc));
1185}
1186
1187/* Must be called with ohci->lock held */
1188static struct descriptor *context_get_descriptors(struct context *ctx,
1189                                                  int z, dma_addr_t *d_bus)
1190{
1191        struct descriptor *d = NULL;
1192        struct descriptor_buffer *desc = ctx->buffer_tail;
1193
1194        if (z * sizeof(*d) > desc->buffer_size)
1195                return NULL;
1196
1197        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1198                /* No room for the descriptor in this buffer, so advance to the
1199                 * next one. */
1200
1201                if (desc->list.next == &ctx->buffer_list) {
1202                        /* If there is no free buffer next in the list,
1203                         * allocate one. */
1204                        if (context_add_buffer(ctx) < 0)
1205                                return NULL;
1206                }
1207                desc = list_entry(desc->list.next,
1208                                struct descriptor_buffer, list);
1209                ctx->buffer_tail = desc;
1210        }
1211
1212        d = desc->buffer + desc->used / sizeof(*d);
1213        memset(d, 0, z * sizeof(*d));
1214        *d_bus = desc->buffer_bus + desc->used;
1215
1216        return d;
1217}
1218
1219static void context_run(struct context *ctx, u32 extra)
1220{
1221        struct fw_ohci *ohci = ctx->ohci;
1222
1223        reg_write(ohci, COMMAND_PTR(ctx->regs),
1224                  le32_to_cpu(ctx->last->branch_address));
1225        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1226        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1227        ctx->running = true;
1228        flush_writes(ohci);
1229}
1230
1231static void context_append(struct context *ctx,
1232                           struct descriptor *d, int z, int extra)
1233{
1234        dma_addr_t d_bus;
1235        struct descriptor_buffer *desc = ctx->buffer_tail;
1236        struct descriptor *d_branch;
1237
1238        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1239
1240        desc->used += (z + extra) * sizeof(*d);
1241
1242        wmb(); /* finish init of new descriptors before branch_address update */
1243
1244        d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1245        d_branch->branch_address = cpu_to_le32(d_bus | z);
1246
1247        /*
1248         * VT6306 incorrectly checks only the single descriptor at the
1249         * CommandPtr when the wake bit is written, so if it's a
1250         * multi-descriptor block starting with an INPUT_MORE, put a copy of
1251         * the branch address in the first descriptor.
1252         *
1253         * Not doing this for transmit contexts since not sure how it interacts
1254         * with skip addresses.
1255         */
1256        if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1257            d_branch != ctx->prev &&
1258            (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1259             cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1260                ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1261        }
1262
1263        ctx->prev = d;
1264        ctx->prev_z = z;
1265}
1266
1267static void context_stop(struct context *ctx)
1268{
1269        struct fw_ohci *ohci = ctx->ohci;
1270        u32 reg;
1271        int i;
1272
1273        reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1274        ctx->running = false;
1275
1276        for (i = 0; i < 1000; i++) {
1277                reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1278                if ((reg & CONTEXT_ACTIVE) == 0)
1279                        return;
1280
1281                if (i)
1282                        udelay(10);
1283        }
1284        ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1285}
1286
1287struct driver_data {
1288        u8 inline_data[8];
1289        struct fw_packet *packet;
1290};
1291
1292/*
1293 * This function apppends a packet to the DMA queue for transmission.
1294 * Must always be called with the ochi->lock held to ensure proper
1295 * generation handling and locking around packet queue manipulation.
1296 */
1297static int at_context_queue_packet(struct context *ctx,
1298                                   struct fw_packet *packet)
1299{
1300        struct fw_ohci *ohci = ctx->ohci;
1301        dma_addr_t d_bus, uninitialized_var(payload_bus);
1302        struct driver_data *driver_data;
1303        struct descriptor *d, *last;
1304        __le32 *header;
1305        int z, tcode;
1306
1307        d = context_get_descriptors(ctx, 4, &d_bus);
1308        if (d == NULL) {
1309                packet->ack = RCODE_SEND_ERROR;
1310                return -1;
1311        }
1312
1313        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1314        d[0].res_count = cpu_to_le16(packet->timestamp);
1315
1316        /*
1317         * The DMA format for asynchronous link packets is different
1318         * from the IEEE1394 layout, so shift the fields around
1319         * accordingly.
1320         */
1321
1322        tcode = (packet->header[0] >> 4) & 0x0f;
1323        header = (__le32 *) &d[1];
1324        switch (tcode) {
1325        case TCODE_WRITE_QUADLET_REQUEST:
1326        case TCODE_WRITE_BLOCK_REQUEST:
1327        case TCODE_WRITE_RESPONSE:
1328        case TCODE_READ_QUADLET_REQUEST:
1329        case TCODE_READ_BLOCK_REQUEST:
1330        case TCODE_READ_QUADLET_RESPONSE:
1331        case TCODE_READ_BLOCK_RESPONSE:
1332        case TCODE_LOCK_REQUEST:
1333        case TCODE_LOCK_RESPONSE:
1334                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1335                                        (packet->speed << 16));
1336                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1337                                        (packet->header[0] & 0xffff0000));
1338                header[2] = cpu_to_le32(packet->header[2]);
1339
1340                if (TCODE_IS_BLOCK_PACKET(tcode))
1341                        header[3] = cpu_to_le32(packet->header[3]);
1342                else
1343                        header[3] = (__force __le32) packet->header[3];
1344
1345                d[0].req_count = cpu_to_le16(packet->header_length);
1346                break;
1347
1348        case TCODE_LINK_INTERNAL:
1349                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1350                                        (packet->speed << 16));
1351                header[1] = cpu_to_le32(packet->header[1]);
1352                header[2] = cpu_to_le32(packet->header[2]);
1353                d[0].req_count = cpu_to_le16(12);
1354
1355                if (is_ping_packet(&packet->header[1]))
1356                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1357                break;
1358
1359        case TCODE_STREAM_DATA:
1360                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1361                                        (packet->speed << 16));
1362                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1363                d[0].req_count = cpu_to_le16(8);
1364                break;
1365
1366        default:
1367                /* BUG(); */
1368                packet->ack = RCODE_SEND_ERROR;
1369                return -1;
1370        }
1371
1372        BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1373        driver_data = (struct driver_data *) &d[3];
1374        driver_data->packet = packet;
1375        packet->driver_data = driver_data;
1376
1377        if (packet->payload_length > 0) {
1378                if (packet->payload_length > sizeof(driver_data->inline_data)) {
1379                        payload_bus = dma_map_single(ohci->card.device,
1380                                                     packet->payload,
1381                                                     packet->payload_length,
1382                                                     DMA_TO_DEVICE);
1383                        if (dma_mapping_error(ohci->card.device, payload_bus)) {
1384                                packet->ack = RCODE_SEND_ERROR;
1385                                return -1;
1386                        }
1387                        packet->payload_bus     = payload_bus;
1388                        packet->payload_mapped  = true;
1389                } else {
1390                        memcpy(driver_data->inline_data, packet->payload,
1391                               packet->payload_length);
1392                        payload_bus = d_bus + 3 * sizeof(*d);
1393                }
1394
1395                d[2].req_count    = cpu_to_le16(packet->payload_length);
1396                d[2].data_address = cpu_to_le32(payload_bus);
1397                last = &d[2];
1398                z = 3;
1399        } else {
1400                last = &d[0];
1401                z = 2;
1402        }
1403
1404        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1405                                     DESCRIPTOR_IRQ_ALWAYS |
1406                                     DESCRIPTOR_BRANCH_ALWAYS);
1407
1408        /* FIXME: Document how the locking works. */
1409        if (ohci->generation != packet->generation) {
1410                if (packet->payload_mapped)
1411                        dma_unmap_single(ohci->card.device, payload_bus,
1412                                         packet->payload_length, DMA_TO_DEVICE);
1413                packet->ack = RCODE_GENERATION;
1414                return -1;
1415        }
1416
1417        context_append(ctx, d, z, 4 - z);
1418
1419        if (ctx->running)
1420                reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1421        else
1422                context_run(ctx, 0);
1423
1424        return 0;
1425}
1426
1427static void at_context_flush(struct context *ctx)
1428{
1429        tasklet_disable(&ctx->tasklet);
1430
1431        ctx->flushing = true;
1432        context_tasklet((unsigned long)ctx);
1433        ctx->flushing = false;
1434
1435        tasklet_enable(&ctx->tasklet);
1436}
1437
1438static int handle_at_packet(struct context *context,
1439                            struct descriptor *d,
1440                            struct descriptor *last)
1441{
1442        struct driver_data *driver_data;
1443        struct fw_packet *packet;
1444        struct fw_ohci *ohci = context->ohci;
1445        int evt;
1446
1447        if (last->transfer_status == 0 && !context->flushing)
1448                /* This descriptor isn't done yet, stop iteration. */
1449                return 0;
1450
1451        driver_data = (struct driver_data *) &d[3];
1452        packet = driver_data->packet;
1453        if (packet == NULL)
1454                /* This packet was cancelled, just continue. */
1455                return 1;
1456
1457        if (packet->payload_mapped)
1458                dma_unmap_single(ohci->card.device, packet->payload_bus,
1459                                 packet->payload_length, DMA_TO_DEVICE);
1460
1461        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1462        packet->timestamp = le16_to_cpu(last->res_count);
1463
1464        log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1465
1466        switch (evt) {
1467        case OHCI1394_evt_timeout:
1468                /* Async response transmit timed out. */
1469                packet->ack = RCODE_CANCELLED;
1470                break;
1471
1472        case OHCI1394_evt_flushed:
1473                /*
1474                 * The packet was flushed should give same error as
1475                 * when we try to use a stale generation count.
1476                 */
1477                packet->ack = RCODE_GENERATION;
1478                break;
1479
1480        case OHCI1394_evt_missing_ack:
1481                if (context->flushing)
1482                        packet->ack = RCODE_GENERATION;
1483                else {
1484                        /*
1485                         * Using a valid (current) generation count, but the
1486                         * node is not on the bus or not sending acks.
1487                         */
1488                        packet->ack = RCODE_NO_ACK;
1489                }
1490                break;
1491
1492        case ACK_COMPLETE + 0x10:
1493        case ACK_PENDING + 0x10:
1494        case ACK_BUSY_X + 0x10:
1495        case ACK_BUSY_A + 0x10:
1496        case ACK_BUSY_B + 0x10:
1497        case ACK_DATA_ERROR + 0x10:
1498        case ACK_TYPE_ERROR + 0x10:
1499                packet->ack = evt - 0x10;
1500                break;
1501
1502        case OHCI1394_evt_no_status:
1503                if (context->flushing) {
1504                        packet->ack = RCODE_GENERATION;
1505                        break;
1506                }
1507                /* fall through */
1508
1509        default:
1510                packet->ack = RCODE_SEND_ERROR;
1511                break;
1512        }
1513
1514        packet->callback(packet, &ohci->card, packet->ack);
1515
1516        return 1;
1517}
1518
1519#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1520#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1521#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1522#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1523#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1524
1525static void handle_local_rom(struct fw_ohci *ohci,
1526                             struct fw_packet *packet, u32 csr)
1527{
1528        struct fw_packet response;
1529        int tcode, length, i;
1530
1531        tcode = HEADER_GET_TCODE(packet->header[0]);
1532        if (TCODE_IS_BLOCK_PACKET(tcode))
1533                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1534        else
1535                length = 4;
1536
1537        i = csr - CSR_CONFIG_ROM;
1538        if (i + length > CONFIG_ROM_SIZE) {
1539                fw_fill_response(&response, packet->header,
1540                                 RCODE_ADDRESS_ERROR, NULL, 0);
1541        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1542                fw_fill_response(&response, packet->header,
1543                                 RCODE_TYPE_ERROR, NULL, 0);
1544        } else {
1545                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1546                                 (void *) ohci->config_rom + i, length);
1547        }
1548
1549        fw_core_handle_response(&ohci->card, &response);
1550}
1551
1552static void handle_local_lock(struct fw_ohci *ohci,
1553                              struct fw_packet *packet, u32 csr)
1554{
1555        struct fw_packet response;
1556        int tcode, length, ext_tcode, sel, try;
1557        __be32 *payload, lock_old;
1558        u32 lock_arg, lock_data;
1559
1560        tcode = HEADER_GET_TCODE(packet->header[0]);
1561        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1562        payload = packet->payload;
1563        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1564
1565        if (tcode == TCODE_LOCK_REQUEST &&
1566            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1567                lock_arg = be32_to_cpu(payload[0]);
1568                lock_data = be32_to_cpu(payload[1]);
1569        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1570                lock_arg = 0;
1571                lock_data = 0;
1572        } else {
1573                fw_fill_response(&response, packet->header,
1574                                 RCODE_TYPE_ERROR, NULL, 0);
1575                goto out;
1576        }
1577
1578        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1579        reg_write(ohci, OHCI1394_CSRData, lock_data);
1580        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1581        reg_write(ohci, OHCI1394_CSRControl, sel);
1582
1583        for (try = 0; try < 20; try++)
1584                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1585                        lock_old = cpu_to_be32(reg_read(ohci,
1586                                                        OHCI1394_CSRData));
1587                        fw_fill_response(&response, packet->header,
1588                                         RCODE_COMPLETE,
1589                                         &lock_old, sizeof(lock_old));
1590                        goto out;
1591                }
1592
1593        ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1594        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1595
1596 out:
1597        fw_core_handle_response(&ohci->card, &response);
1598}
1599
1600static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1601{
1602        u64 offset, csr;
1603
1604        if (ctx == &ctx->ohci->at_request_ctx) {
1605                packet->ack = ACK_PENDING;
1606                packet->callback(packet, &ctx->ohci->card, packet->ack);
1607        }
1608
1609        offset =
1610                ((unsigned long long)
1611                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1612                packet->header[2];
1613        csr = offset - CSR_REGISTER_BASE;
1614
1615        /* Handle config rom reads. */
1616        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1617                handle_local_rom(ctx->ohci, packet, csr);
1618        else switch (csr) {
1619        case CSR_BUS_MANAGER_ID:
1620        case CSR_BANDWIDTH_AVAILABLE:
1621        case CSR_CHANNELS_AVAILABLE_HI:
1622        case CSR_CHANNELS_AVAILABLE_LO:
1623                handle_local_lock(ctx->ohci, packet, csr);
1624                break;
1625        default:
1626                if (ctx == &ctx->ohci->at_request_ctx)
1627                        fw_core_handle_request(&ctx->ohci->card, packet);
1628                else
1629                        fw_core_handle_response(&ctx->ohci->card, packet);
1630                break;
1631        }
1632
1633        if (ctx == &ctx->ohci->at_response_ctx) {
1634                packet->ack = ACK_COMPLETE;
1635                packet->callback(packet, &ctx->ohci->card, packet->ack);
1636        }
1637}
1638
1639static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1640{
1641        unsigned long flags;
1642        int ret;
1643
1644        spin_lock_irqsave(&ctx->ohci->lock, flags);
1645
1646        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1647            ctx->ohci->generation == packet->generation) {
1648                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1649                handle_local_request(ctx, packet);
1650                return;
1651        }
1652
1653        ret = at_context_queue_packet(ctx, packet);
1654        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1655
1656        if (ret < 0)
1657                packet->callback(packet, &ctx->ohci->card, packet->ack);
1658
1659}
1660
1661static void detect_dead_context(struct fw_ohci *ohci,
1662                                const char *name, unsigned int regs)
1663{
1664        u32 ctl;
1665
1666        ctl = reg_read(ohci, CONTROL_SET(regs));
1667        if (ctl & CONTEXT_DEAD)
1668                ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1669                        name, evts[ctl & 0x1f]);
1670}
1671
1672static void handle_dead_contexts(struct fw_ohci *ohci)
1673{
1674        unsigned int i;
1675        char name[8];
1676
1677        detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1678        detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1679        detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1680        detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1681        for (i = 0; i < 32; ++i) {
1682                if (!(ohci->it_context_support & (1 << i)))
1683                        continue;
1684                sprintf(name, "IT%u", i);
1685                detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1686        }
1687        for (i = 0; i < 32; ++i) {
1688                if (!(ohci->ir_context_support & (1 << i)))
1689                        continue;
1690                sprintf(name, "IR%u", i);
1691                detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1692        }
1693        /* TODO: maybe try to flush and restart the dead contexts */
1694}
1695
1696static u32 cycle_timer_ticks(u32 cycle_timer)
1697{
1698        u32 ticks;
1699
1700        ticks = cycle_timer & 0xfff;
1701        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1702        ticks += (3072 * 8000) * (cycle_timer >> 25);
1703
1704        return ticks;
1705}
1706
1707/*
1708 * Some controllers exhibit one or more of the following bugs when updating the
1709 * iso cycle timer register:
1710 *  - When the lowest six bits are wrapping around to zero, a read that happens
1711 *    at the same time will return garbage in the lowest ten bits.
1712 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1713 *    not incremented for about 60 ns.
1714 *  - Occasionally, the entire register reads zero.
1715 *
1716 * To catch these, we read the register three times and ensure that the
1717 * difference between each two consecutive reads is approximately the same, i.e.
1718 * less than twice the other.  Furthermore, any negative difference indicates an
1719 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1720 * execute, so we have enough precision to compute the ratio of the differences.)
1721 */
1722static u32 get_cycle_time(struct fw_ohci *ohci)
1723{
1724        u32 c0, c1, c2;
1725        u32 t0, t1, t2;
1726        s32 diff01, diff12;
1727        int i;
1728
1729        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730
1731        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1732                i = 0;
1733                c1 = c2;
1734                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1735                do {
1736                        c0 = c1;
1737                        c1 = c2;
1738                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1739                        t0 = cycle_timer_ticks(c0);
1740                        t1 = cycle_timer_ticks(c1);
1741                        t2 = cycle_timer_ticks(c2);
1742                        diff01 = t1 - t0;
1743                        diff12 = t2 - t1;
1744                } while ((diff01 <= 0 || diff12 <= 0 ||
1745                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1746                         && i++ < 20);
1747        }
1748
1749        return c2;
1750}
1751
1752/*
1753 * This function has to be called at least every 64 seconds.  The bus_time
1754 * field stores not only the upper 25 bits of the BUS_TIME register but also
1755 * the most significant bit of the cycle timer in bit 6 so that we can detect
1756 * changes in this bit.
1757 */
1758static u32 update_bus_time(struct fw_ohci *ohci)
1759{
1760        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1761
1762        if (unlikely(!ohci->bus_time_running)) {
1763                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1764                ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1765                                 (cycle_time_seconds & 0x40);
1766                ohci->bus_time_running = true;
1767        }
1768
1769        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1770                ohci->bus_time += 0x40;
1771
1772        return ohci->bus_time | cycle_time_seconds;
1773}
1774
1775static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1776{
1777        int reg;
1778
1779        mutex_lock(&ohci->phy_reg_mutex);
1780        reg = write_phy_reg(ohci, 7, port_index);
1781        if (reg >= 0)
1782                reg = read_phy_reg(ohci, 8);
1783        mutex_unlock(&ohci->phy_reg_mutex);
1784        if (reg < 0)
1785                return reg;
1786
1787        switch (reg & 0x0f) {
1788        case 0x06:
1789                return 2;       /* is child node (connected to parent node) */
1790        case 0x0e:
1791                return 3;       /* is parent node (connected to child node) */
1792        }
1793        return 1;               /* not connected */
1794}
1795
1796static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1797        int self_id_count)
1798{
1799        int i;
1800        u32 entry;
1801
1802        for (i = 0; i < self_id_count; i++) {
1803                entry = ohci->self_id_buffer[i];
1804                if ((self_id & 0xff000000) == (entry & 0xff000000))
1805                        return -1;
1806                if ((self_id & 0xff000000) < (entry & 0xff000000))
1807                        return i;
1808        }
1809        return i;
1810}
1811
1812static int initiated_reset(struct fw_ohci *ohci)
1813{
1814        int reg;
1815        int ret = 0;
1816
1817        mutex_lock(&ohci->phy_reg_mutex);
1818        reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1819        if (reg >= 0) {
1820                reg = read_phy_reg(ohci, 8);
1821                reg |= 0x40;
1822                reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1823                if (reg >= 0) {
1824                        reg = read_phy_reg(ohci, 12); /* read register 12 */
1825                        if (reg >= 0) {
1826                                if ((reg & 0x08) == 0x08) {
1827                                        /* bit 3 indicates "initiated reset" */
1828                                        ret = 0x2;
1829                                }
1830                        }
1831                }
1832        }
1833        mutex_unlock(&ohci->phy_reg_mutex);
1834        return ret;
1835}
1836
1837/*
1838 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1839 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1840 * Construct the selfID from phy register contents.
1841 */
1842static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1843{
1844        int reg, i, pos, status;
1845        /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1846        u32 self_id = 0x8040c800;
1847
1848        reg = reg_read(ohci, OHCI1394_NodeID);
1849        if (!(reg & OHCI1394_NodeID_idValid)) {
1850                ohci_notice(ohci,
1851                            "node ID not valid, new bus reset in progress\n");
1852                return -EBUSY;
1853        }
1854        self_id |= ((reg & 0x3f) << 24); /* phy ID */
1855
1856        reg = ohci_read_phy_reg(&ohci->card, 4);
1857        if (reg < 0)
1858                return reg;
1859        self_id |= ((reg & 0x07) << 8); /* power class */
1860
1861        reg = ohci_read_phy_reg(&ohci->card, 1);
1862        if (reg < 0)
1863                return reg;
1864        self_id |= ((reg & 0x3f) << 16); /* gap count */
1865
1866        for (i = 0; i < 3; i++) {
1867                status = get_status_for_port(ohci, i);
1868                if (status < 0)
1869                        return status;
1870                self_id |= ((status & 0x3) << (6 - (i * 2)));
1871        }
1872
1873        self_id |= initiated_reset(ohci);
1874
1875        pos = get_self_id_pos(ohci, self_id, self_id_count);
1876        if (pos >= 0) {
1877                memmove(&(ohci->self_id_buffer[pos+1]),
1878                        &(ohci->self_id_buffer[pos]),
1879                        (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1880                ohci->self_id_buffer[pos] = self_id;
1881                self_id_count++;
1882        }
1883        return self_id_count;
1884}
1885
1886static void bus_reset_work(struct work_struct *work)
1887{
1888        struct fw_ohci *ohci =
1889                container_of(work, struct fw_ohci, bus_reset_work);
1890        int self_id_count, generation, new_generation, i, j;
1891        u32 reg;
1892        void *free_rom = NULL;
1893        dma_addr_t free_rom_bus = 0;
1894        bool is_new_root;
1895
1896        reg = reg_read(ohci, OHCI1394_NodeID);
1897        if (!(reg & OHCI1394_NodeID_idValid)) {
1898                ohci_notice(ohci,
1899                            "node ID not valid, new bus reset in progress\n");
1900                return;
1901        }
1902        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1903                ohci_notice(ohci, "malconfigured bus\n");
1904                return;
1905        }
1906        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1907                               OHCI1394_NodeID_nodeNumber);
1908
1909        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1910        if (!(ohci->is_root && is_new_root))
1911                reg_write(ohci, OHCI1394_LinkControlSet,
1912                          OHCI1394_LinkControl_cycleMaster);
1913        ohci->is_root = is_new_root;
1914
1915        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1916        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1917                ohci_notice(ohci, "self ID receive error\n");
1918                return;
1919        }
1920        /*
1921         * The count in the SelfIDCount register is the number of
1922         * bytes in the self ID receive buffer.  Since we also receive
1923         * the inverted quadlets and a header quadlet, we shift one
1924         * bit extra to get the actual number of self IDs.
1925         */
1926        self_id_count = (reg >> 3) & 0xff;
1927
1928        if (self_id_count > 252) {
1929                ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1930                return;
1931        }
1932
1933        generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1934        rmb();
1935
1936        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1937                u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1938                u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1939
1940                if (id != ~id2) {
1941                        /*
1942                         * If the invalid data looks like a cycle start packet,
1943                         * it's likely to be the result of the cycle master
1944                         * having a wrong gap count.  In this case, the self IDs
1945                         * so far are valid and should be processed so that the
1946                         * bus manager can then correct the gap count.
1947                         */
1948                        if (id == 0xffff008f) {
1949                                ohci_notice(ohci, "ignoring spurious self IDs\n");
1950                                self_id_count = j;
1951                                break;
1952                        }
1953
1954                        ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1955                                    j, self_id_count, id, id2);
1956                        return;
1957                }
1958                ohci->self_id_buffer[j] = id;
1959        }
1960
1961        if (ohci->quirks & QUIRK_TI_SLLZ059) {
1962                self_id_count = find_and_insert_self_id(ohci, self_id_count);
1963                if (self_id_count < 0) {
1964                        ohci_notice(ohci,
1965                                    "could not construct local self ID\n");
1966                        return;
1967                }
1968        }
1969
1970        if (self_id_count == 0) {
1971                ohci_notice(ohci, "no self IDs\n");
1972                return;
1973        }
1974        rmb();
1975
1976        /*
1977         * Check the consistency of the self IDs we just read.  The
1978         * problem we face is that a new bus reset can start while we
1979         * read out the self IDs from the DMA buffer. If this happens,
1980         * the DMA buffer will be overwritten with new self IDs and we
1981         * will read out inconsistent data.  The OHCI specification
1982         * (section 11.2) recommends a technique similar to
1983         * linux/seqlock.h, where we remember the generation of the
1984         * self IDs in the buffer before reading them out and compare
1985         * it to the current generation after reading them out.  If
1986         * the two generations match we know we have a consistent set
1987         * of self IDs.
1988         */
1989
1990        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1991        if (new_generation != generation) {
1992                ohci_notice(ohci, "new bus reset, discarding self ids\n");
1993                return;
1994        }
1995
1996        /* FIXME: Document how the locking works. */
1997        spin_lock_irq(&ohci->lock);
1998
1999        ohci->generation = -1; /* prevent AT packet queueing */
2000        context_stop(&ohci->at_request_ctx);
2001        context_stop(&ohci->at_response_ctx);
2002
2003        spin_unlock_irq(&ohci->lock);
2004
2005        /*
2006         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2007         * packets in the AT queues and software needs to drain them.
2008         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2009         */
2010        at_context_flush(&ohci->at_request_ctx);
2011        at_context_flush(&ohci->at_response_ctx);
2012
2013        spin_lock_irq(&ohci->lock);
2014
2015        ohci->generation = generation;
2016        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2017
2018        if (ohci->quirks & QUIRK_RESET_PACKET)
2019                ohci->request_generation = generation;
2020
2021        /*
2022         * This next bit is unrelated to the AT context stuff but we
2023         * have to do it under the spinlock also.  If a new config rom
2024         * was set up before this reset, the old one is now no longer
2025         * in use and we can free it. Update the config rom pointers
2026         * to point to the current config rom and clear the
2027         * next_config_rom pointer so a new update can take place.
2028         */
2029
2030        if (ohci->next_config_rom != NULL) {
2031                if (ohci->next_config_rom != ohci->config_rom) {
2032                        free_rom      = ohci->config_rom;
2033                        free_rom_bus  = ohci->config_rom_bus;
2034                }
2035                ohci->config_rom      = ohci->next_config_rom;
2036                ohci->config_rom_bus  = ohci->next_config_rom_bus;
2037                ohci->next_config_rom = NULL;
2038
2039                /*
2040                 * Restore config_rom image and manually update
2041                 * config_rom registers.  Writing the header quadlet
2042                 * will indicate that the config rom is ready, so we
2043                 * do that last.
2044                 */
2045                reg_write(ohci, OHCI1394_BusOptions,
2046                          be32_to_cpu(ohci->config_rom[2]));
2047                ohci->config_rom[0] = ohci->next_header;
2048                reg_write(ohci, OHCI1394_ConfigROMhdr,
2049                          be32_to_cpu(ohci->next_header));
2050        }
2051
2052        if (param_remote_dma) {
2053                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2054                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2055        }
2056
2057        spin_unlock_irq(&ohci->lock);
2058
2059        if (free_rom)
2060                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2061                                  free_rom, free_rom_bus);
2062
2063        log_selfids(ohci, generation, self_id_count);
2064
2065        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2066                                 self_id_count, ohci->self_id_buffer,
2067                                 ohci->csr_state_setclear_abdicate);
2068        ohci->csr_state_setclear_abdicate = false;
2069}
2070
2071static irqreturn_t irq_handler(int irq, void *data)
2072{
2073        struct fw_ohci *ohci = data;
2074        u32 event, iso_event;
2075        int i;
2076
2077        event = reg_read(ohci, OHCI1394_IntEventClear);
2078
2079        if (!event || !~event)
2080                return IRQ_NONE;
2081
2082        /*
2083         * busReset and postedWriteErr must not be cleared yet
2084         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2085         */
2086        reg_write(ohci, OHCI1394_IntEventClear,
2087                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2088        log_irqs(ohci, event);
2089
2090        if (event & OHCI1394_selfIDComplete)
2091                queue_work(selfid_workqueue, &ohci->bus_reset_work);
2092
2093        if (event & OHCI1394_RQPkt)
2094                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2095
2096        if (event & OHCI1394_RSPkt)
2097                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2098
2099        if (event & OHCI1394_reqTxComplete)
2100                tasklet_schedule(&ohci->at_request_ctx.tasklet);
2101
2102        if (event & OHCI1394_respTxComplete)
2103                tasklet_schedule(&ohci->at_response_ctx.tasklet);
2104
2105        if (event & OHCI1394_isochRx) {
2106                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2107                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2108
2109                while (iso_event) {
2110                        i = ffs(iso_event) - 1;
2111                        tasklet_schedule(
2112                                &ohci->ir_context_list[i].context.tasklet);
2113                        iso_event &= ~(1 << i);
2114                }
2115        }
2116
2117        if (event & OHCI1394_isochTx) {
2118                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2119                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2120
2121                while (iso_event) {
2122                        i = ffs(iso_event) - 1;
2123                        tasklet_schedule(
2124                                &ohci->it_context_list[i].context.tasklet);
2125                        iso_event &= ~(1 << i);
2126                }
2127        }
2128
2129        if (unlikely(event & OHCI1394_regAccessFail))
2130                ohci_err(ohci, "register access failure\n");
2131
2132        if (unlikely(event & OHCI1394_postedWriteErr)) {
2133                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2134                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2135                reg_write(ohci, OHCI1394_IntEventClear,
2136                          OHCI1394_postedWriteErr);
2137                if (printk_ratelimit())
2138                        ohci_err(ohci, "PCI posted write error\n");
2139        }
2140
2141        if (unlikely(event & OHCI1394_cycleTooLong)) {
2142                if (printk_ratelimit())
2143                        ohci_notice(ohci, "isochronous cycle too long\n");
2144                reg_write(ohci, OHCI1394_LinkControlSet,
2145                          OHCI1394_LinkControl_cycleMaster);
2146        }
2147
2148        if (unlikely(event & OHCI1394_cycleInconsistent)) {
2149                /*
2150                 * We need to clear this event bit in order to make
2151                 * cycleMatch isochronous I/O work.  In theory we should
2152                 * stop active cycleMatch iso contexts now and restart
2153                 * them at least two cycles later.  (FIXME?)
2154                 */
2155                if (printk_ratelimit())
2156                        ohci_notice(ohci, "isochronous cycle inconsistent\n");
2157        }
2158
2159        if (unlikely(event & OHCI1394_unrecoverableError))
2160                handle_dead_contexts(ohci);
2161
2162        if (event & OHCI1394_cycle64Seconds) {
2163                spin_lock(&ohci->lock);
2164                update_bus_time(ohci);
2165                spin_unlock(&ohci->lock);
2166        } else
2167                flush_writes(ohci);
2168
2169        return IRQ_HANDLED;
2170}
2171
2172static int software_reset(struct fw_ohci *ohci)
2173{
2174        u32 val;
2175        int i;
2176
2177        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2178        for (i = 0; i < 500; i++) {
2179                val = reg_read(ohci, OHCI1394_HCControlSet);
2180                if (!~val)
2181                        return -ENODEV; /* Card was ejected. */
2182
2183                if (!(val & OHCI1394_HCControl_softReset))
2184                        return 0;
2185
2186                msleep(1);
2187        }
2188
2189        return -EBUSY;
2190}
2191
2192static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2193{
2194        size_t size = length * 4;
2195
2196        memcpy(dest, src, size);
2197        if (size < CONFIG_ROM_SIZE)
2198                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2199}
2200
2201static int configure_1394a_enhancements(struct fw_ohci *ohci)
2202{
2203        bool enable_1394a;
2204        int ret, clear, set, offset;
2205
2206        /* Check if the driver should configure link and PHY. */
2207        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2208              OHCI1394_HCControl_programPhyEnable))
2209                return 0;
2210
2211        /* Paranoia: check whether the PHY supports 1394a, too. */
2212        enable_1394a = false;
2213        ret = read_phy_reg(ohci, 2);
2214        if (ret < 0)
2215                return ret;
2216        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2217                ret = read_paged_phy_reg(ohci, 1, 8);
2218                if (ret < 0)
2219                        return ret;
2220                if (ret >= 1)
2221                        enable_1394a = true;
2222        }
2223
2224        if (ohci->quirks & QUIRK_NO_1394A)
2225                enable_1394a = false;
2226
2227        /* Configure PHY and link consistently. */
2228        if (enable_1394a) {
2229                clear = 0;
2230                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2231        } else {
2232                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2233                set = 0;
2234        }
2235        ret = update_phy_reg(ohci, 5, clear, set);
2236        if (ret < 0)
2237                return ret;
2238
2239        if (enable_1394a)
2240                offset = OHCI1394_HCControlSet;
2241        else
2242                offset = OHCI1394_HCControlClear;
2243        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2244
2245        /* Clean up: configuration has been taken care of. */
2246        reg_write(ohci, OHCI1394_HCControlClear,
2247                  OHCI1394_HCControl_programPhyEnable);
2248
2249        return 0;
2250}
2251
2252static int probe_tsb41ba3d(struct fw_ohci *ohci)
2253{
2254        /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2255        static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2256        int reg, i;
2257
2258        reg = read_phy_reg(ohci, 2);
2259        if (reg < 0)
2260                return reg;
2261        if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2262                return 0;
2263
2264        for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2265                reg = read_paged_phy_reg(ohci, 1, i + 10);
2266                if (reg < 0)
2267                        return reg;
2268                if (reg != id[i])
2269                        return 0;
2270        }
2271        return 1;
2272}
2273
2274static int ohci_enable(struct fw_card *card,
2275                       const __be32 *config_rom, size_t length)
2276{
2277        struct fw_ohci *ohci = fw_ohci(card);
2278        u32 lps, version, irqs;
2279        int i, ret;
2280
2281        if (software_reset(ohci)) {
2282                ohci_err(ohci, "failed to reset ohci card\n");
2283                return -EBUSY;
2284        }
2285
2286        /*
2287         * Now enable LPS, which we need in order to start accessing
2288         * most of the registers.  In fact, on some cards (ALI M5251),
2289         * accessing registers in the SClk domain without LPS enabled
2290         * will lock up the machine.  Wait 50msec to make sure we have
2291         * full link enabled.  However, with some cards (well, at least
2292         * a JMicron PCIe card), we have to try again sometimes.
2293         *
2294         * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2295         * cannot actually use the phy at that time.  These need tens of
2296         * millisecods pause between LPS write and first phy access too.
2297         */
2298
2299        reg_write(ohci, OHCI1394_HCControlSet,
2300                  OHCI1394_HCControl_LPS |
2301                  OHCI1394_HCControl_postedWriteEnable);
2302        flush_writes(ohci);
2303
2304        for (lps = 0, i = 0; !lps && i < 3; i++) {
2305                msleep(50);
2306                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2307                      OHCI1394_HCControl_LPS;
2308        }
2309
2310        if (!lps) {
2311                ohci_err(ohci, "failed to set Link Power Status\n");
2312                return -EIO;
2313        }
2314
2315        if (ohci->quirks & QUIRK_TI_SLLZ059) {
2316                ret = probe_tsb41ba3d(ohci);
2317                if (ret < 0)
2318                        return ret;
2319                if (ret)
2320                        ohci_notice(ohci, "local TSB41BA3D phy\n");
2321                else
2322                        ohci->quirks &= ~QUIRK_TI_SLLZ059;
2323        }
2324
2325        reg_write(ohci, OHCI1394_HCControlClear,
2326                  OHCI1394_HCControl_noByteSwapData);
2327
2328        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2329        reg_write(ohci, OHCI1394_LinkControlSet,
2330                  OHCI1394_LinkControl_cycleTimerEnable |
2331                  OHCI1394_LinkControl_cycleMaster);
2332
2333        reg_write(ohci, OHCI1394_ATRetries,
2334                  OHCI1394_MAX_AT_REQ_RETRIES |
2335                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2336                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2337                  (200 << 16));
2338
2339        ohci->bus_time_running = false;
2340
2341        for (i = 0; i < 32; i++)
2342                if (ohci->ir_context_support & (1 << i))
2343                        reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2344                                  IR_CONTEXT_MULTI_CHANNEL_MODE);
2345
2346        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2347        if (version >= OHCI_VERSION_1_1) {
2348                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2349                          0xfffffffe);
2350                card->broadcast_channel_auto_allocated = true;
2351        }
2352
2353        /* Get implemented bits of the priority arbitration request counter. */
2354        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2355        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2356        reg_write(ohci, OHCI1394_FairnessControl, 0);
2357        card->priority_budget_implemented = ohci->pri_req_max != 0;
2358
2359        reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2360        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2361        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2362
2363        ret = configure_1394a_enhancements(ohci);
2364        if (ret < 0)
2365                return ret;
2366
2367        /* Activate link_on bit and contender bit in our self ID packets.*/
2368        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2369        if (ret < 0)
2370                return ret;
2371
2372        /*
2373         * When the link is not yet enabled, the atomic config rom
2374         * update mechanism described below in ohci_set_config_rom()
2375         * is not active.  We have to update ConfigRomHeader and
2376         * BusOptions manually, and the write to ConfigROMmap takes
2377         * effect immediately.  We tie this to the enabling of the
2378         * link, so we have a valid config rom before enabling - the
2379         * OHCI requires that ConfigROMhdr and BusOptions have valid
2380         * values before enabling.
2381         *
2382         * However, when the ConfigROMmap is written, some controllers
2383         * always read back quadlets 0 and 2 from the config rom to
2384         * the ConfigRomHeader and BusOptions registers on bus reset.
2385         * They shouldn't do that in this initial case where the link
2386         * isn't enabled.  This means we have to use the same
2387         * workaround here, setting the bus header to 0 and then write
2388         * the right values in the bus reset tasklet.
2389         */
2390
2391        if (config_rom) {
2392                ohci->next_config_rom =
2393                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2394                                           &ohci->next_config_rom_bus,
2395                                           GFP_KERNEL);
2396                if (ohci->next_config_rom == NULL)
2397                        return -ENOMEM;
2398
2399                copy_config_rom(ohci->next_config_rom, config_rom, length);
2400        } else {
2401                /*
2402                 * In the suspend case, config_rom is NULL, which
2403                 * means that we just reuse the old config rom.
2404                 */
2405                ohci->next_config_rom = ohci->config_rom;
2406                ohci->next_config_rom_bus = ohci->config_rom_bus;
2407        }
2408
2409        ohci->next_header = ohci->next_config_rom[0];
2410        ohci->next_config_rom[0] = 0;
2411        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2412        reg_write(ohci, OHCI1394_BusOptions,
2413                  be32_to_cpu(ohci->next_config_rom[2]));
2414        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2415
2416        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2417
2418        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2419                OHCI1394_RQPkt | OHCI1394_RSPkt |
2420                OHCI1394_isochTx | OHCI1394_isochRx |
2421                OHCI1394_postedWriteErr |
2422                OHCI1394_selfIDComplete |
2423                OHCI1394_regAccessFail |
2424                OHCI1394_cycleInconsistent |
2425                OHCI1394_unrecoverableError |
2426                OHCI1394_cycleTooLong |
2427                OHCI1394_masterIntEnable;
2428        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2429                irqs |= OHCI1394_busReset;
2430        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2431
2432        reg_write(ohci, OHCI1394_HCControlSet,
2433                  OHCI1394_HCControl_linkEnable |
2434                  OHCI1394_HCControl_BIBimageValid);
2435
2436        reg_write(ohci, OHCI1394_LinkControlSet,
2437                  OHCI1394_LinkControl_rcvSelfID |
2438                  OHCI1394_LinkControl_rcvPhyPkt);
2439
2440        ar_context_run(&ohci->ar_request_ctx);
2441        ar_context_run(&ohci->ar_response_ctx);
2442
2443        flush_writes(ohci);
2444
2445        /* We are ready to go, reset bus to finish initialization. */
2446        fw_schedule_bus_reset(&ohci->card, false, true);
2447
2448        return 0;
2449}
2450
2451static int ohci_set_config_rom(struct fw_card *card,
2452                               const __be32 *config_rom, size_t length)
2453{
2454        struct fw_ohci *ohci;
2455        __be32 *next_config_rom;
2456        dma_addr_t uninitialized_var(next_config_rom_bus);
2457
2458        ohci = fw_ohci(card);
2459
2460        /*
2461         * When the OHCI controller is enabled, the config rom update
2462         * mechanism is a bit tricky, but easy enough to use.  See
2463         * section 5.5.6 in the OHCI specification.
2464         *
2465         * The OHCI controller caches the new config rom address in a
2466         * shadow register (ConfigROMmapNext) and needs a bus reset
2467         * for the changes to take place.  When the bus reset is
2468         * detected, the controller loads the new values for the
2469         * ConfigRomHeader and BusOptions registers from the specified
2470         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2471         * shadow register. All automatically and atomically.
2472         *
2473         * Now, there's a twist to this story.  The automatic load of
2474         * ConfigRomHeader and BusOptions doesn't honor the
2475         * noByteSwapData bit, so with a be32 config rom, the
2476         * controller will load be32 values in to these registers
2477         * during the atomic update, even on litte endian
2478         * architectures.  The workaround we use is to put a 0 in the
2479         * header quadlet; 0 is endian agnostic and means that the
2480         * config rom isn't ready yet.  In the bus reset tasklet we
2481         * then set up the real values for the two registers.
2482         *
2483         * We use ohci->lock to avoid racing with the code that sets
2484         * ohci->next_config_rom to NULL (see bus_reset_work).
2485         */
2486
2487        next_config_rom =
2488                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2489                                   &next_config_rom_bus, GFP_KERNEL);
2490        if (next_config_rom == NULL)
2491                return -ENOMEM;
2492
2493        spin_lock_irq(&ohci->lock);
2494
2495        /*
2496         * If there is not an already pending config_rom update,
2497         * push our new allocation into the ohci->next_config_rom
2498         * and then mark the local variable as null so that we
2499         * won't deallocate the new buffer.
2500         *
2501         * OTOH, if there is a pending config_rom update, just
2502         * use that buffer with the new config_rom data, and
2503         * let this routine free the unused DMA allocation.
2504         */
2505
2506        if (ohci->next_config_rom == NULL) {
2507                ohci->next_config_rom = next_config_rom;
2508                ohci->next_config_rom_bus = next_config_rom_bus;
2509                next_config_rom = NULL;
2510        }
2511
2512        copy_config_rom(ohci->next_config_rom, config_rom, length);
2513
2514        ohci->next_header = config_rom[0];
2515        ohci->next_config_rom[0] = 0;
2516
2517        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2518
2519        spin_unlock_irq(&ohci->lock);
2520
2521        /* If we didn't use the DMA allocation, delete it. */
2522        if (next_config_rom != NULL)
2523                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524                                  next_config_rom, next_config_rom_bus);
2525
2526        /*
2527         * Now initiate a bus reset to have the changes take
2528         * effect. We clean up the old config rom memory and DMA
2529         * mappings in the bus reset tasklet, since the OHCI
2530         * controller could need to access it before the bus reset
2531         * takes effect.
2532         */
2533
2534        fw_schedule_bus_reset(&ohci->card, true, true);
2535
2536        return 0;
2537}
2538
2539static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2540{
2541        struct fw_ohci *ohci = fw_ohci(card);
2542
2543        at_context_transmit(&ohci->at_request_ctx, packet);
2544}
2545
2546static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2547{
2548        struct fw_ohci *ohci = fw_ohci(card);
2549
2550        at_context_transmit(&ohci->at_response_ctx, packet);
2551}
2552
2553static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2554{
2555        struct fw_ohci *ohci = fw_ohci(card);
2556        struct context *ctx = &ohci->at_request_ctx;
2557        struct driver_data *driver_data = packet->driver_data;
2558        int ret = -ENOENT;
2559
2560        tasklet_disable(&ctx->tasklet);
2561
2562        if (packet->ack != 0)
2563                goto out;
2564
2565        if (packet->payload_mapped)
2566                dma_unmap_single(ohci->card.device, packet->payload_bus,
2567                                 packet->payload_length, DMA_TO_DEVICE);
2568
2569        log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2570        driver_data->packet = NULL;
2571        packet->ack = RCODE_CANCELLED;
2572        packet->callback(packet, &ohci->card, packet->ack);
2573        ret = 0;
2574 out:
2575        tasklet_enable(&ctx->tasklet);
2576
2577        return ret;
2578}
2579
2580static int ohci_enable_phys_dma(struct fw_card *card,
2581                                int node_id, int generation)
2582{
2583        struct fw_ohci *ohci = fw_ohci(card);
2584        unsigned long flags;
2585        int n, ret = 0;
2586
2587        if (param_remote_dma)
2588                return 0;
2589
2590        /*
2591         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2592         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2593         */
2594
2595        spin_lock_irqsave(&ohci->lock, flags);
2596
2597        if (ohci->generation != generation) {
2598                ret = -ESTALE;
2599                goto out;
2600        }
2601
2602        /*
2603         * Note, if the node ID contains a non-local bus ID, physical DMA is
2604         * enabled for _all_ nodes on remote buses.
2605         */
2606
2607        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2608        if (n < 32)
2609                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2610        else
2611                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2612
2613        flush_writes(ohci);
2614 out:
2615        spin_unlock_irqrestore(&ohci->lock, flags);
2616
2617        return ret;
2618}
2619
2620static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2621{
2622        struct fw_ohci *ohci = fw_ohci(card);
2623        unsigned long flags;
2624        u32 value;
2625
2626        switch (csr_offset) {
2627        case CSR_STATE_CLEAR:
2628        case CSR_STATE_SET:
2629                if (ohci->is_root &&
2630                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2631                     OHCI1394_LinkControl_cycleMaster))
2632                        value = CSR_STATE_BIT_CMSTR;
2633                else
2634                        value = 0;
2635                if (ohci->csr_state_setclear_abdicate)
2636                        value |= CSR_STATE_BIT_ABDICATE;
2637
2638                return value;
2639
2640        case CSR_NODE_IDS:
2641                return reg_read(ohci, OHCI1394_NodeID) << 16;
2642
2643        case CSR_CYCLE_TIME:
2644                return get_cycle_time(ohci);
2645
2646        case CSR_BUS_TIME:
2647                /*
2648                 * We might be called just after the cycle timer has wrapped
2649                 * around but just before the cycle64Seconds handler, so we
2650                 * better check here, too, if the bus time needs to be updated.
2651                 */
2652                spin_lock_irqsave(&ohci->lock, flags);
2653                value = update_bus_time(ohci);
2654                spin_unlock_irqrestore(&ohci->lock, flags);
2655                return value;
2656
2657        case CSR_BUSY_TIMEOUT:
2658                value = reg_read(ohci, OHCI1394_ATRetries);
2659                return (value >> 4) & 0x0ffff00f;
2660
2661        case CSR_PRIORITY_BUDGET:
2662                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2663                        (ohci->pri_req_max << 8);
2664
2665        default:
2666                WARN_ON(1);
2667                return 0;
2668        }
2669}
2670
2671static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2672{
2673        struct fw_ohci *ohci = fw_ohci(card);
2674        unsigned long flags;
2675
2676        switch (csr_offset) {
2677        case CSR_STATE_CLEAR:
2678                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2679                        reg_write(ohci, OHCI1394_LinkControlClear,
2680                                  OHCI1394_LinkControl_cycleMaster);
2681                        flush_writes(ohci);
2682                }
2683                if (value & CSR_STATE_BIT_ABDICATE)
2684                        ohci->csr_state_setclear_abdicate = false;
2685                break;
2686
2687        case CSR_STATE_SET:
2688                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2689                        reg_write(ohci, OHCI1394_LinkControlSet,
2690                                  OHCI1394_LinkControl_cycleMaster);
2691                        flush_writes(ohci);
2692                }
2693                if (value & CSR_STATE_BIT_ABDICATE)
2694                        ohci->csr_state_setclear_abdicate = true;
2695                break;
2696
2697        case CSR_NODE_IDS:
2698                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2699                flush_writes(ohci);
2700                break;
2701
2702        case CSR_CYCLE_TIME:
2703                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2704                reg_write(ohci, OHCI1394_IntEventSet,
2705                          OHCI1394_cycleInconsistent);
2706                flush_writes(ohci);
2707                break;
2708
2709        case CSR_BUS_TIME:
2710                spin_lock_irqsave(&ohci->lock, flags);
2711                ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2712                                 (value & ~0x7f);
2713                spin_unlock_irqrestore(&ohci->lock, flags);
2714                break;
2715
2716        case CSR_BUSY_TIMEOUT:
2717                value = (value & 0xf) | ((value & 0xf) << 4) |
2718                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2719                reg_write(ohci, OHCI1394_ATRetries, value);
2720                flush_writes(ohci);
2721                break;
2722
2723        case CSR_PRIORITY_BUDGET:
2724                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2725                flush_writes(ohci);
2726                break;
2727
2728        default:
2729                WARN_ON(1);
2730                break;
2731        }
2732}
2733
2734static void flush_iso_completions(struct iso_context *ctx)
2735{
2736        ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2737                              ctx->header_length, ctx->header,
2738                              ctx->base.callback_data);
2739        ctx->header_length = 0;
2740}
2741
2742static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2743{
2744        u32 *ctx_hdr;
2745
2746        if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2747                if (ctx->base.drop_overflow_headers)
2748                        return;
2749                flush_iso_completions(ctx);
2750        }
2751
2752        ctx_hdr = ctx->header + ctx->header_length;
2753        ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2754
2755        /*
2756         * The two iso header quadlets are byteswapped to little
2757         * endian by the controller, but we want to present them
2758         * as big endian for consistency with the bus endianness.
2759         */
2760        if (ctx->base.header_size > 0)
2761                ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2762        if (ctx->base.header_size > 4)
2763                ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2764        if (ctx->base.header_size > 8)
2765                memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2766        ctx->header_length += ctx->base.header_size;
2767}
2768
2769static int handle_ir_packet_per_buffer(struct context *context,
2770                                       struct descriptor *d,
2771                                       struct descriptor *last)
2772{
2773        struct iso_context *ctx =
2774                container_of(context, struct iso_context, context);
2775        struct descriptor *pd;
2776        u32 buffer_dma;
2777
2778        for (pd = d; pd <= last; pd++)
2779                if (pd->transfer_status)
2780                        break;
2781        if (pd > last)
2782                /* Descriptor(s) not done yet, stop iteration */
2783                return 0;
2784
2785        while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2786                d++;
2787                buffer_dma = le32_to_cpu(d->data_address);
2788                dma_sync_single_range_for_cpu(context->ohci->card.device,
2789                                              buffer_dma & PAGE_MASK,
2790                                              buffer_dma & ~PAGE_MASK,
2791                                              le16_to_cpu(d->req_count),
2792                                              DMA_FROM_DEVICE);
2793        }
2794
2795        copy_iso_headers(ctx, (u32 *) (last + 1));
2796
2797        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2798                flush_iso_completions(ctx);
2799
2800        return 1;
2801}
2802
2803/* d == last because each descriptor block is only a single descriptor. */
2804static int handle_ir_buffer_fill(struct context *context,
2805                                 struct descriptor *d,
2806                                 struct descriptor *last)
2807{
2808        struct iso_context *ctx =
2809                container_of(context, struct iso_context, context);
2810        unsigned int req_count, res_count, completed;
2811        u32 buffer_dma;
2812
2813        req_count = le16_to_cpu(last->req_count);
2814        res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2815        completed = req_count - res_count;
2816        buffer_dma = le32_to_cpu(last->data_address);
2817
2818        if (completed > 0) {
2819                ctx->mc_buffer_bus = buffer_dma;
2820                ctx->mc_completed = completed;
2821        }
2822
2823        if (res_count != 0)
2824                /* Descriptor(s) not done yet, stop iteration */
2825                return 0;
2826
2827        dma_sync_single_range_for_cpu(context->ohci->card.device,
2828                                      buffer_dma & PAGE_MASK,
2829                                      buffer_dma & ~PAGE_MASK,
2830                                      completed, DMA_FROM_DEVICE);
2831
2832        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2833                ctx->base.callback.mc(&ctx->base,
2834                                      buffer_dma + completed,
2835                                      ctx->base.callback_data);
2836                ctx->mc_completed = 0;
2837        }
2838
2839        return 1;
2840}
2841
2842static void flush_ir_buffer_fill(struct iso_context *ctx)
2843{
2844        dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2845                                      ctx->mc_buffer_bus & PAGE_MASK,
2846                                      ctx->mc_buffer_bus & ~PAGE_MASK,
2847                                      ctx->mc_completed, DMA_FROM_DEVICE);
2848
2849        ctx->base.callback.mc(&ctx->base,
2850                              ctx->mc_buffer_bus + ctx->mc_completed,
2851                              ctx->base.callback_data);
2852        ctx->mc_completed = 0;
2853}
2854
2855static inline void sync_it_packet_for_cpu(struct context *context,
2856                                          struct descriptor *pd)
2857{
2858        __le16 control;
2859        u32 buffer_dma;
2860
2861        /* only packets beginning with OUTPUT_MORE* have data buffers */
2862        if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2863                return;
2864
2865        /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2866        pd += 2;
2867
2868        /*
2869         * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2870         * data buffer is in the context program's coherent page and must not
2871         * be synced.
2872         */
2873        if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2874            (context->current_bus          & PAGE_MASK)) {
2875                if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2876                        return;
2877                pd++;
2878        }
2879
2880        do {
2881                buffer_dma = le32_to_cpu(pd->data_address);
2882                dma_sync_single_range_for_cpu(context->ohci->card.device,
2883                                              buffer_dma & PAGE_MASK,
2884                                              buffer_dma & ~PAGE_MASK,
2885                                              le16_to_cpu(pd->req_count),
2886                                              DMA_TO_DEVICE);
2887                control = pd->control;
2888                pd++;
2889        } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2890}
2891
2892static int handle_it_packet(struct context *context,
2893                            struct descriptor *d,
2894                            struct descriptor *last)
2895{
2896        struct iso_context *ctx =
2897                container_of(context, struct iso_context, context);
2898        struct descriptor *pd;
2899        __be32 *ctx_hdr;
2900
2901        for (pd = d; pd <= last; pd++)
2902                if (pd->transfer_status)
2903                        break;
2904        if (pd > last)
2905                /* Descriptor(s) not done yet, stop iteration */
2906                return 0;
2907
2908        sync_it_packet_for_cpu(context, d);
2909
2910        if (ctx->header_length + 4 > PAGE_SIZE) {
2911                if (ctx->base.drop_overflow_headers)
2912                        return 1;
2913                flush_iso_completions(ctx);
2914        }
2915
2916        ctx_hdr = ctx->header + ctx->header_length;
2917        ctx->last_timestamp = le16_to_cpu(last->res_count);
2918        /* Present this value as big-endian to match the receive code */
2919        *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2920                               le16_to_cpu(pd->res_count));
2921        ctx->header_length += 4;
2922
2923        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2924                flush_iso_completions(ctx);
2925
2926        return 1;
2927}
2928
2929static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2930{
2931        u32 hi = channels >> 32, lo = channels;
2932
2933        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2934        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2935        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2936        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2937        mmiowb();
2938        ohci->mc_channels = channels;
2939}
2940
2941static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2942                                int type, int channel, size_t header_size)
2943{
2944        struct fw_ohci *ohci = fw_ohci(card);
2945        struct iso_context *uninitialized_var(ctx);
2946        descriptor_callback_t uninitialized_var(callback);
2947        u64 *uninitialized_var(channels);
2948        u32 *uninitialized_var(mask), uninitialized_var(regs);
2949        int index, ret = -EBUSY;
2950
2951        spin_lock_irq(&ohci->lock);
2952
2953        switch (type) {
2954        case FW_ISO_CONTEXT_TRANSMIT:
2955                mask     = &ohci->it_context_mask;
2956                callback = handle_it_packet;
2957                index    = ffs(*mask) - 1;
2958                if (index >= 0) {
2959                        *mask &= ~(1 << index);
2960                        regs = OHCI1394_IsoXmitContextBase(index);
2961                        ctx  = &ohci->it_context_list[index];
2962                }
2963                break;
2964
2965        case FW_ISO_CONTEXT_RECEIVE:
2966                channels = &ohci->ir_context_channels;
2967                mask     = &ohci->ir_context_mask;
2968                callback = handle_ir_packet_per_buffer;
2969                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2970                if (index >= 0) {
2971                        *channels &= ~(1ULL << channel);
2972                        *mask     &= ~(1 << index);
2973                        regs = OHCI1394_IsoRcvContextBase(index);
2974                        ctx  = &ohci->ir_context_list[index];
2975                }
2976                break;
2977
2978        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2979                mask     = &ohci->ir_context_mask;
2980                callback = handle_ir_buffer_fill;
2981                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2982                if (index >= 0) {
2983                        ohci->mc_allocated = true;
2984                        *mask &= ~(1 << index);
2985                        regs = OHCI1394_IsoRcvContextBase(index);
2986                        ctx  = &ohci->ir_context_list[index];
2987                }
2988                break;
2989
2990        default:
2991                index = -1;
2992                ret = -ENOSYS;
2993        }
2994
2995        spin_unlock_irq(&ohci->lock);
2996
2997        if (index < 0)
2998                return ERR_PTR(ret);
2999
3000        memset(ctx, 0, sizeof(*ctx));
3001        ctx->header_length = 0;
3002        ctx->header = (void *) __get_free_page(GFP_KERNEL);
3003        if (ctx->header == NULL) {
3004                ret = -ENOMEM;
3005                goto out;
3006        }
3007        ret = context_init(&ctx->context, ohci, regs, callback);
3008        if (ret < 0)
3009                goto out_with_header;
3010
3011        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3012                set_multichannel_mask(ohci, 0);
3013                ctx->mc_completed = 0;
3014        }
3015
3016        return &ctx->base;
3017
3018 out_with_header:
3019        free_page((unsigned long)ctx->header);
3020 out:
3021        spin_lock_irq(&ohci->lock);
3022
3023        switch (type) {
3024        case FW_ISO_CONTEXT_RECEIVE:
3025                *channels |= 1ULL << channel;
3026                break;
3027
3028        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3029                ohci->mc_allocated = false;
3030                break;
3031        }
3032        *mask |= 1 << index;
3033
3034        spin_unlock_irq(&ohci->lock);
3035
3036        return ERR_PTR(ret);
3037}
3038
3039static int ohci_start_iso(struct fw_iso_context *base,
3040                          s32 cycle, u32 sync, u32 tags)
3041{
3042        struct iso_context *ctx = container_of(base, struct iso_context, base);
3043        struct fw_ohci *ohci = ctx->context.ohci;
3044        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3045        int index;
3046
3047        /* the controller cannot start without any queued packets */
3048        if (ctx->context.last->branch_address == 0)
3049                return -ENODATA;
3050
3051        switch (ctx->base.type) {
3052        case FW_ISO_CONTEXT_TRANSMIT:
3053                index = ctx - ohci->it_context_list;
3054                match = 0;
3055                if (cycle >= 0)
3056                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3057                                (cycle & 0x7fff) << 16;
3058
3059                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3060                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3061                context_run(&ctx->context, match);
3062                break;
3063
3064        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3065                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3066                /* fall through */
3067        case FW_ISO_CONTEXT_RECEIVE:
3068                index = ctx - ohci->ir_context_list;
3069                match = (tags << 28) | (sync << 8) | ctx->base.channel;
3070                if (cycle >= 0) {
3071                        match |= (cycle & 0x07fff) << 12;
3072                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3073                }
3074
3075                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3076                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3077                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3078                context_run(&ctx->context, control);
3079
3080                ctx->sync = sync;
3081                ctx->tags = tags;
3082
3083                break;
3084        }
3085
3086        return 0;
3087}
3088
3089static int ohci_stop_iso(struct fw_iso_context *base)
3090{
3091        struct fw_ohci *ohci = fw_ohci(base->card);
3092        struct iso_context *ctx = container_of(base, struct iso_context, base);
3093        int index;
3094
3095        switch (ctx->base.type) {
3096        case FW_ISO_CONTEXT_TRANSMIT:
3097                index = ctx - ohci->it_context_list;
3098                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3099                break;
3100
3101        case FW_ISO_CONTEXT_RECEIVE:
3102        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3103                index = ctx - ohci->ir_context_list;
3104                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3105                break;
3106        }
3107        flush_writes(ohci);
3108        context_stop(&ctx->context);
3109        tasklet_kill(&ctx->context.tasklet);
3110
3111        return 0;
3112}
3113
3114static void ohci_free_iso_context(struct fw_iso_context *base)
3115{
3116        struct fw_ohci *ohci = fw_ohci(base->card);
3117        struct iso_context *ctx = container_of(base, struct iso_context, base);
3118        unsigned long flags;
3119        int index;
3120
3121        ohci_stop_iso(base);
3122        context_release(&ctx->context);
3123        free_page((unsigned long)ctx->header);
3124
3125        spin_lock_irqsave(&ohci->lock, flags);
3126
3127        switch (base->type) {
3128        case FW_ISO_CONTEXT_TRANSMIT:
3129                index = ctx - ohci->it_context_list;
3130                ohci->it_context_mask |= 1 << index;
3131                break;
3132
3133        case FW_ISO_CONTEXT_RECEIVE:
3134                index = ctx - ohci->ir_context_list;
3135                ohci->ir_context_mask |= 1 << index;
3136                ohci->ir_context_channels |= 1ULL << base->channel;
3137                break;
3138
3139        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3140                index = ctx - ohci->ir_context_list;
3141                ohci->ir_context_mask |= 1 << index;
3142                ohci->ir_context_channels |= ohci->mc_channels;
3143                ohci->mc_channels = 0;
3144                ohci->mc_allocated = false;
3145                break;
3146        }
3147
3148        spin_unlock_irqrestore(&ohci->lock, flags);
3149}
3150
3151static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3152{
3153        struct fw_ohci *ohci = fw_ohci(base->card);
3154        unsigned long flags;
3155        int ret;
3156
3157        switch (base->type) {
3158        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3159
3160                spin_lock_irqsave(&ohci->lock, flags);
3161
3162                /* Don't allow multichannel to grab other contexts' channels. */
3163                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3164                        *channels = ohci->ir_context_channels;
3165                        ret = -EBUSY;
3166                } else {
3167                        set_multichannel_mask(ohci, *channels);
3168                        ret = 0;
3169                }
3170
3171                spin_unlock_irqrestore(&ohci->lock, flags);
3172
3173                break;
3174        default:
3175                ret = -EINVAL;
3176        }
3177
3178        return ret;
3179}
3180
3181#ifdef CONFIG_PM
3182static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3183{
3184        int i;
3185        struct iso_context *ctx;
3186
3187        for (i = 0 ; i < ohci->n_ir ; i++) {
3188                ctx = &ohci->ir_context_list[i];
3189                if (ctx->context.running)
3190                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3191        }
3192
3193        for (i = 0 ; i < ohci->n_it ; i++) {
3194                ctx = &ohci->it_context_list[i];
3195                if (ctx->context.running)
3196                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3197        }
3198}
3199#endif
3200
3201static int queue_iso_transmit(struct iso_context *ctx,
3202                              struct fw_iso_packet *packet,
3203                              struct fw_iso_buffer *buffer,
3204                              unsigned long payload)
3205{
3206        struct descriptor *d, *last, *pd;
3207        struct fw_iso_packet *p;
3208        __le32 *header;
3209        dma_addr_t d_bus, page_bus;
3210        u32 z, header_z, payload_z, irq;
3211        u32 payload_index, payload_end_index, next_page_index;
3212        int page, end_page, i, length, offset;
3213
3214        p = packet;
3215        payload_index = payload;
3216
3217        if (p->skip)
3218                z = 1;
3219        else
3220                z = 2;
3221        if (p->header_length > 0)
3222                z++;
3223
3224        /* Determine the first page the payload isn't contained in. */
3225        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3226        if (p->payload_length > 0)
3227                payload_z = end_page - (payload_index >> PAGE_SHIFT);
3228        else
3229                payload_z = 0;
3230
3231        z += payload_z;
3232
3233        /* Get header size in number of descriptors. */
3234        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3235
3236        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3237        if (d == NULL)
3238                return -ENOMEM;
3239
3240        if (!p->skip) {
3241                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3242                d[0].req_count = cpu_to_le16(8);
3243                /*
3244                 * Link the skip address to this descriptor itself.  This causes
3245                 * a context to skip a cycle whenever lost cycles or FIFO
3246                 * overruns occur, without dropping the data.  The application
3247                 * should then decide whether this is an error condition or not.
3248                 * FIXME:  Make the context's cycle-lost behaviour configurable?
3249                 */
3250                d[0].branch_address = cpu_to_le32(d_bus | z);
3251
3252                header = (__le32 *) &d[1];
3253                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3254                                        IT_HEADER_TAG(p->tag) |
3255                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3256                                        IT_HEADER_CHANNEL(ctx->base.channel) |
3257                                        IT_HEADER_SPEED(ctx->base.speed));
3258                header[1] =
3259                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3260                                                          p->payload_length));
3261        }
3262
3263        if (p->header_length > 0) {
3264                d[2].req_count    = cpu_to_le16(p->header_length);
3265                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3266                memcpy(&d[z], p->header, p->header_length);
3267        }
3268
3269        pd = d + z - payload_z;
3270        payload_end_index = payload_index + p->payload_length;
3271        for (i = 0; i < payload_z; i++) {
3272                page               = payload_index >> PAGE_SHIFT;
3273                offset             = payload_index & ~PAGE_MASK;
3274                next_page_index    = (page + 1) << PAGE_SHIFT;
3275                length             =
3276                        min(next_page_index, payload_end_index) - payload_index;
3277                pd[i].req_count    = cpu_to_le16(length);
3278
3279                page_bus = page_private(buffer->pages[page]);
3280                pd[i].data_address = cpu_to_le32(page_bus + offset);
3281
3282                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3283                                                 page_bus, offset, length,
3284                                                 DMA_TO_DEVICE);
3285
3286                payload_index += length;
3287        }
3288
3289        if (p->interrupt)
3290                irq = DESCRIPTOR_IRQ_ALWAYS;
3291        else
3292                irq = DESCRIPTOR_NO_IRQ;
3293
3294        last = z == 2 ? d : d + z - 1;
3295        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3296                                     DESCRIPTOR_STATUS |
3297                                     DESCRIPTOR_BRANCH_ALWAYS |
3298                                     irq);
3299
3300        context_append(&ctx->context, d, z, header_z);
3301
3302        return 0;
3303}
3304
3305static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3306                                       struct fw_iso_packet *packet,
3307                                       struct fw_iso_buffer *buffer,
3308                                       unsigned long payload)
3309{
3310        struct device *device = ctx->context.ohci->card.device;
3311        struct descriptor *d, *pd;
3312        dma_addr_t d_bus, page_bus;
3313        u32 z, header_z, rest;
3314        int i, j, length;
3315        int page, offset, packet_count, header_size, payload_per_buffer;
3316
3317        /*
3318         * The OHCI controller puts the isochronous header and trailer in the
3319         * buffer, so we need at least 8 bytes.
3320         */
3321        packet_count = packet->header_length / ctx->base.header_size;
3322        header_size  = max(ctx->base.header_size, (size_t)8);
3323
3324        /* Get header size in number of descriptors. */
3325        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3326        page     = payload >> PAGE_SHIFT;
3327        offset   = payload & ~PAGE_MASK;
3328        payload_per_buffer = packet->payload_length / packet_count;
3329
3330        for (i = 0; i < packet_count; i++) {
3331                /* d points to the header descriptor */
3332                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3333                d = context_get_descriptors(&ctx->context,
3334                                z + header_z, &d_bus);
3335                if (d == NULL)
3336                        return -ENOMEM;
3337
3338                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3339                                              DESCRIPTOR_INPUT_MORE);
3340                if (packet->skip && i == 0)
3341                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3342                d->req_count    = cpu_to_le16(header_size);
3343                d->res_count    = d->req_count;
3344                d->transfer_status = 0;
3345                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3346
3347                rest = payload_per_buffer;
3348                pd = d;
3349                for (j = 1; j < z; j++) {
3350                        pd++;
3351                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3352                                                  DESCRIPTOR_INPUT_MORE);
3353
3354                        if (offset + rest < PAGE_SIZE)
3355                                length = rest;
3356                        else
3357                                length = PAGE_SIZE - offset;
3358                        pd->req_count = cpu_to_le16(length);
3359                        pd->res_count = pd->req_count;
3360                        pd->transfer_status = 0;
3361
3362                        page_bus = page_private(buffer->pages[page]);
3363                        pd->data_address = cpu_to_le32(page_bus + offset);
3364
3365                        dma_sync_single_range_for_device(device, page_bus,
3366                                                         offset, length,
3367                                                         DMA_FROM_DEVICE);
3368
3369                        offset = (offset + length) & ~PAGE_MASK;
3370                        rest -= length;
3371                        if (offset == 0)
3372                                page++;
3373                }
3374                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3375                                          DESCRIPTOR_INPUT_LAST |
3376                                          DESCRIPTOR_BRANCH_ALWAYS);
3377                if (packet->interrupt && i == packet_count - 1)
3378                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3379
3380                context_append(&ctx->context, d, z, header_z);
3381        }
3382
3383        return 0;
3384}
3385
3386static int queue_iso_buffer_fill(struct iso_context *ctx,
3387                                 struct fw_iso_packet *packet,
3388                                 struct fw_iso_buffer *buffer,
3389                                 unsigned long payload)
3390{
3391        struct descriptor *d;
3392        dma_addr_t d_bus, page_bus;
3393        int page, offset, rest, z, i, length;
3394
3395        page   = payload >> PAGE_SHIFT;
3396        offset = payload & ~PAGE_MASK;
3397        rest   = packet->payload_length;
3398
3399        /* We need one descriptor for each page in the buffer. */
3400        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3401
3402        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3403                return -EFAULT;
3404
3405        for (i = 0; i < z; i++) {
3406                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3407                if (d == NULL)
3408                        return -ENOMEM;
3409
3410                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3411                                         DESCRIPTOR_BRANCH_ALWAYS);
3412                if (packet->skip && i == 0)
3413                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3414                if (packet->interrupt && i == z - 1)
3415                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3416
3417                if (offset + rest < PAGE_SIZE)
3418                        length = rest;
3419                else
3420                        length = PAGE_SIZE - offset;
3421                d->req_count = cpu_to_le16(length);
3422                d->res_count = d->req_count;
3423                d->transfer_status = 0;
3424
3425                page_bus = page_private(buffer->pages[page]);
3426                d->data_address = cpu_to_le32(page_bus + offset);
3427
3428                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3429                                                 page_bus, offset, length,
3430                                                 DMA_FROM_DEVICE);
3431
3432                rest -= length;
3433                offset = 0;
3434                page++;
3435
3436                context_append(&ctx->context, d, 1, 0);
3437        }
3438
3439        return 0;
3440}
3441
3442static int ohci_queue_iso(struct fw_iso_context *base,
3443                          struct fw_iso_packet *packet,
3444                          struct fw_iso_buffer *buffer,
3445                          unsigned long payload)
3446{
3447        struct iso_context *ctx = container_of(base, struct iso_context, base);
3448        unsigned long flags;
3449        int ret = -ENOSYS;
3450
3451        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3452        switch (base->type) {
3453        case FW_ISO_CONTEXT_TRANSMIT:
3454                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3455                break;
3456        case FW_ISO_CONTEXT_RECEIVE:
3457                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3458                break;
3459        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3460                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3461                break;
3462        }
3463        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3464
3465        return ret;
3466}
3467
3468static void ohci_flush_queue_iso(struct fw_iso_context *base)
3469{
3470        struct context *ctx =
3471                        &container_of(base, struct iso_context, base)->context;
3472
3473        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3474}
3475
3476static int ohci_flush_iso_completions(struct fw_iso_context *base)
3477{
3478        struct iso_context *ctx = container_of(base, struct iso_context, base);
3479        int ret = 0;
3480
3481        tasklet_disable(&ctx->context.tasklet);
3482
3483        if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3484                context_tasklet((unsigned long)&ctx->context);
3485
3486                switch (base->type) {
3487                case FW_ISO_CONTEXT_TRANSMIT:
3488                case FW_ISO_CONTEXT_RECEIVE:
3489                        if (ctx->header_length != 0)
3490                                flush_iso_completions(ctx);
3491                        break;
3492                case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3493                        if (ctx->mc_completed != 0)
3494                                flush_ir_buffer_fill(ctx);
3495                        break;
3496                default:
3497                        ret = -ENOSYS;
3498                }
3499
3500                clear_bit_unlock(0, &ctx->flushing_completions);
3501                smp_mb__after_clear_bit();
3502        }
3503
3504        tasklet_enable(&ctx->context.tasklet);
3505
3506        return ret;
3507}
3508
3509static const struct fw_card_driver ohci_driver = {
3510        .enable                 = ohci_enable,
3511        .read_phy_reg           = ohci_read_phy_reg,
3512        .update_phy_reg         = ohci_update_phy_reg,
3513        .set_config_rom         = ohci_set_config_rom,
3514        .send_request           = ohci_send_request,
3515        .send_response          = ohci_send_response,
3516        .cancel_packet          = ohci_cancel_packet,
3517        .enable_phys_dma        = ohci_enable_phys_dma,
3518        .read_csr               = ohci_read_csr,
3519        .write_csr              = ohci_write_csr,
3520
3521        .allocate_iso_context   = ohci_allocate_iso_context,
3522        .free_iso_context       = ohci_free_iso_context,
3523        .set_iso_channels       = ohci_set_iso_channels,
3524        .queue_iso              = ohci_queue_iso,
3525        .flush_queue_iso        = ohci_flush_queue_iso,
3526        .flush_iso_completions  = ohci_flush_iso_completions,
3527        .start_iso              = ohci_start_iso,
3528        .stop_iso               = ohci_stop_iso,
3529};
3530
3531#ifdef CONFIG_PPC_PMAC
3532static void pmac_ohci_on(struct pci_dev *dev)
3533{
3534        if (machine_is(powermac)) {
3535                struct device_node *ofn = pci_device_to_OF_node(dev);
3536
3537                if (ofn) {
3538                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3539                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3540                }
3541        }
3542}
3543
3544static void pmac_ohci_off(struct pci_dev *dev)
3545{
3546        if (machine_is(powermac)) {
3547                struct device_node *ofn = pci_device_to_OF_node(dev);
3548
3549                if (ofn) {
3550                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3551                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3552                }
3553        }
3554}
3555#else
3556static inline void pmac_ohci_on(struct pci_dev *dev) {}
3557static inline void pmac_ohci_off(struct pci_dev *dev) {}
3558#endif /* CONFIG_PPC_PMAC */
3559
3560static int pci_probe(struct pci_dev *dev,
3561                               const struct pci_device_id *ent)
3562{
3563        struct fw_ohci *ohci;
3564        u32 bus_options, max_receive, link_speed, version;
3565        u64 guid;
3566        int i, err;
3567        size_t size;
3568
3569        if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3570                dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3571                return -ENOSYS;
3572        }
3573
3574        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3575        if (ohci == NULL) {
3576                err = -ENOMEM;
3577                goto fail;
3578        }
3579
3580        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3581
3582        pmac_ohci_on(dev);
3583
3584        err = pci_enable_device(dev);
3585        if (err) {
3586                dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3587                goto fail_free;
3588        }
3589
3590        pci_set_master(dev);
3591        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3592        pci_set_drvdata(dev, ohci);
3593
3594        spin_lock_init(&ohci->lock);
3595        mutex_init(&ohci->phy_reg_mutex);
3596
3597        INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3598
3599        if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3600            pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3601                ohci_err(ohci, "invalid MMIO resource\n");
3602                err = -ENXIO;
3603                goto fail_disable;
3604        }
3605
3606        err = pci_request_region(dev, 0, ohci_driver_name);
3607        if (err) {
3608                ohci_err(ohci, "MMIO resource unavailable\n");
3609                goto fail_disable;
3610        }
3611
3612        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3613        if (ohci->registers == NULL) {
3614                ohci_err(ohci, "failed to remap registers\n");
3615                err = -ENXIO;
3616                goto fail_iomem;
3617        }
3618
3619        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3620                if ((ohci_quirks[i].vendor == dev->vendor) &&
3621                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3622                     ohci_quirks[i].device == dev->device) &&
3623                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3624                     ohci_quirks[i].revision >= dev->revision)) {
3625                        ohci->quirks = ohci_quirks[i].flags;
3626                        break;
3627                }
3628        if (param_quirks)
3629                ohci->quirks = param_quirks;
3630
3631        /*
3632         * Because dma_alloc_coherent() allocates at least one page,
3633         * we save space by using a common buffer for the AR request/
3634         * response descriptors and the self IDs buffer.
3635         */
3636        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3637        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3638        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3639                                               PAGE_SIZE,
3640                                               &ohci->misc_buffer_bus,
3641                                               GFP_KERNEL);
3642        if (!ohci->misc_buffer) {
3643                err = -ENOMEM;
3644                goto fail_iounmap;
3645        }
3646
3647        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3648                              OHCI1394_AsReqRcvContextControlSet);
3649        if (err < 0)
3650                goto fail_misc_buf;
3651
3652        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3653                              OHCI1394_AsRspRcvContextControlSet);
3654        if (err < 0)
3655                goto fail_arreq_ctx;
3656
3657        err = context_init(&ohci->at_request_ctx, ohci,
3658                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3659        if (err < 0)
3660                goto fail_arrsp_ctx;
3661
3662        err = context_init(&ohci->at_response_ctx, ohci,
3663                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3664        if (err < 0)
3665                goto fail_atreq_ctx;
3666
3667        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3668        ohci->ir_context_channels = ~0ULL;
3669        ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3670        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3671        ohci->ir_context_mask = ohci->ir_context_support;
3672        ohci->n_ir = hweight32(ohci->ir_context_mask);
3673        size = sizeof(struct iso_context) * ohci->n_ir;
3674        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3675
3676        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3677        ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3678        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3679        ohci->it_context_mask = ohci->it_context_support;
3680        ohci->n_it = hweight32(ohci->it_context_mask);
3681        size = sizeof(struct iso_context) * ohci->n_it;
3682        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3683
3684        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3685                err = -ENOMEM;
3686                goto fail_contexts;
3687        }
3688
3689        ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3690        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3691
3692        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3693        max_receive = (bus_options >> 12) & 0xf;
3694        link_speed = bus_options & 0x7;
3695        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3696                reg_read(ohci, OHCI1394_GUIDLo);
3697
3698        if (!(ohci->quirks & QUIRK_NO_MSI))
3699                pci_enable_msi(dev);
3700        if (request_irq(dev->irq, irq_handler,
3701                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3702                        ohci_driver_name, ohci)) {
3703                ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3704                err = -EIO;
3705                goto fail_msi;
3706        }
3707
3708        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3709        if (err)
3710                goto fail_irq;
3711
3712        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3713        ohci_notice(ohci,
3714                    "added OHCI v%x.%x device as card %d, "
3715                    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3716                    version >> 16, version & 0xff, ohci->card.index,
3717                    ohci->n_ir, ohci->n_it, ohci->quirks,
3718                    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3719                        ", >4 GB phys DMA" : "");
3720
3721        return 0;
3722
3723 fail_irq:
3724        free_irq(dev->irq, ohci);
3725 fail_msi:
3726        pci_disable_msi(dev);
3727 fail_contexts:
3728        kfree(ohci->ir_context_list);
3729        kfree(ohci->it_context_list);
3730        context_release(&ohci->at_response_ctx);
3731 fail_atreq_ctx:
3732        context_release(&ohci->at_request_ctx);
3733 fail_arrsp_ctx:
3734        ar_context_release(&ohci->ar_response_ctx);
3735 fail_arreq_ctx:
3736        ar_context_release(&ohci->ar_request_ctx);
3737 fail_misc_buf:
3738        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3739                          ohci->misc_buffer, ohci->misc_buffer_bus);
3740 fail_iounmap:
3741        pci_iounmap(dev, ohci->registers);
3742 fail_iomem:
3743        pci_release_region(dev, 0);
3744 fail_disable:
3745        pci_disable_device(dev);
3746 fail_free:
3747        kfree(ohci);
3748        pmac_ohci_off(dev);
3749 fail:
3750        return err;
3751}
3752
3753static void pci_remove(struct pci_dev *dev)
3754{
3755        struct fw_ohci *ohci = pci_get_drvdata(dev);
3756
3757        /*
3758         * If the removal is happening from the suspend state, LPS won't be
3759         * enabled and host registers (eg., IntMaskClear) won't be accessible.
3760         */
3761        if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3762                reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3763                flush_writes(ohci);
3764        }
3765        cancel_work_sync(&ohci->bus_reset_work);
3766        fw_core_remove_card(&ohci->card);
3767
3768        /*
3769         * FIXME: Fail all pending packets here, now that the upper
3770         * layers can't queue any more.
3771         */
3772
3773        software_reset(ohci);
3774        free_irq(dev->irq, ohci);
3775
3776        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3777                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3778                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3779        if (ohci->config_rom)
3780                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3781                                  ohci->config_rom, ohci->config_rom_bus);
3782        ar_context_release(&ohci->ar_request_ctx);
3783        ar_context_release(&ohci->ar_response_ctx);
3784        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3785                          ohci->misc_buffer, ohci->misc_buffer_bus);
3786        context_release(&ohci->at_request_ctx);
3787        context_release(&ohci->at_response_ctx);
3788        kfree(ohci->it_context_list);
3789        kfree(ohci->ir_context_list);
3790        pci_disable_msi(dev);
3791        pci_iounmap(dev, ohci->registers);
3792        pci_release_region(dev, 0);
3793        pci_disable_device(dev);
3794        kfree(ohci);
3795        pmac_ohci_off(dev);
3796
3797        dev_notice(&dev->dev, "removed fw-ohci device\n");
3798}
3799
3800#ifdef CONFIG_PM
3801static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3802{
3803        struct fw_ohci *ohci = pci_get_drvdata(dev);
3804        int err;
3805
3806        software_reset(ohci);
3807        err = pci_save_state(dev);
3808        if (err) {
3809                ohci_err(ohci, "pci_save_state failed\n");
3810                return err;
3811        }
3812        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3813        if (err)
3814                ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3815        pmac_ohci_off(dev);
3816
3817        return 0;
3818}
3819
3820static int pci_resume(struct pci_dev *dev)
3821{
3822        struct fw_ohci *ohci = pci_get_drvdata(dev);
3823        int err;
3824
3825        pmac_ohci_on(dev);
3826        pci_set_power_state(dev, PCI_D0);
3827        pci_restore_state(dev);
3828        err = pci_enable_device(dev);
3829        if (err) {
3830                ohci_err(ohci, "pci_enable_device failed\n");
3831                return err;
3832        }
3833
3834        /* Some systems don't setup GUID register on resume from ram  */
3835        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3836                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3837                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3838                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3839        }
3840
3841        err = ohci_enable(&ohci->card, NULL, 0);
3842        if (err)
3843                return err;
3844
3845        ohci_resume_iso_dma(ohci);
3846
3847        return 0;
3848}
3849#endif
3850
3851static const struct pci_device_id pci_table[] = {
3852        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3853        { }
3854};
3855
3856MODULE_DEVICE_TABLE(pci, pci_table);
3857
3858static struct pci_driver fw_ohci_pci_driver = {
3859        .name           = ohci_driver_name,
3860        .id_table       = pci_table,
3861        .probe          = pci_probe,
3862        .remove         = pci_remove,
3863#ifdef CONFIG_PM
3864        .resume         = pci_resume,
3865        .suspend        = pci_suspend,
3866#endif
3867};
3868
3869static int __init fw_ohci_init(void)
3870{
3871        selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3872        if (!selfid_workqueue)
3873                return -ENOMEM;
3874
3875        return pci_register_driver(&fw_ohci_pci_driver);
3876}
3877
3878static void __exit fw_ohci_cleanup(void)
3879{
3880        pci_unregister_driver(&fw_ohci_pci_driver);
3881        destroy_workqueue(selfid_workqueue);
3882}
3883
3884module_init(fw_ohci_init);
3885module_exit(fw_ohci_cleanup);
3886
3887MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3888MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3889MODULE_LICENSE("GPL");
3890
3891/* Provide a module alias so root-on-sbp2 initrds don't break. */
3892MODULE_ALIAS("ohci1394");
3893
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.