linux/drivers/acpi/osl.c
<<
>>
Prefs
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
  31#include <linux/pci.h>
  32#include <linux/interrupt.h>
  33#include <linux/kmod.h>
  34#include <linux/delay.h>
  35#include <linux/workqueue.h>
  36#include <linux/nmi.h>
  37#include <linux/acpi.h>
  38#include <linux/efi.h>
  39#include <linux/ioport.h>
  40#include <linux/list.h>
  41#include <linux/jiffies.h>
  42#include <linux/semaphore.h>
  43
  44#include <asm/io.h>
  45#include <linux/uaccess.h>
  46#include <linux/io-64-nonatomic-lo-hi.h>
  47
  48#include "internal.h"
  49
  50#define _COMPONENT              ACPI_OS_SERVICES
  51ACPI_MODULE_NAME("osl");
  52
  53struct acpi_os_dpc {
  54        acpi_osd_exec_callback function;
  55        void *context;
  56        struct work_struct work;
  57};
  58
  59#ifdef ENABLE_DEBUGGER
  60#include <linux/kdb.h>
  61
  62/* stuff for debugger support */
  63int acpi_in_debugger;
  64EXPORT_SYMBOL(acpi_in_debugger);
  65#endif                          /*ENABLE_DEBUGGER */
  66
  67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  68                                      u32 pm1b_ctrl);
  69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  70                                      u32 val_b);
  71
  72static acpi_osd_handler acpi_irq_handler;
  73static void *acpi_irq_context;
  74static struct workqueue_struct *kacpid_wq;
  75static struct workqueue_struct *kacpi_notify_wq;
  76static struct workqueue_struct *kacpi_hotplug_wq;
  77static bool acpi_os_initialized;
  78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  79bool acpi_permanent_mmap = false;
  80
  81/*
  82 * This list of permanent mappings is for memory that may be accessed from
  83 * interrupt context, where we can't do the ioremap().
  84 */
  85struct acpi_ioremap {
  86        struct list_head list;
  87        void __iomem *virt;
  88        acpi_physical_address phys;
  89        acpi_size size;
  90        unsigned long refcount;
  91};
  92
  93static LIST_HEAD(acpi_ioremaps);
  94static DEFINE_MUTEX(acpi_ioremap_lock);
  95
  96static void __init acpi_request_region (struct acpi_generic_address *gas,
  97        unsigned int length, char *desc)
  98{
  99        u64 addr;
 100
 101        /* Handle possible alignment issues */
 102        memcpy(&addr, &gas->address, sizeof(addr));
 103        if (!addr || !length)
 104                return;
 105
 106        /* Resources are never freed */
 107        if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 108                request_region(addr, length, desc);
 109        else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 110                request_mem_region(addr, length, desc);
 111}
 112
 113static int __init acpi_reserve_resources(void)
 114{
 115        acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 116                "ACPI PM1a_EVT_BLK");
 117
 118        acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 119                "ACPI PM1b_EVT_BLK");
 120
 121        acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 122                "ACPI PM1a_CNT_BLK");
 123
 124        acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 125                "ACPI PM1b_CNT_BLK");
 126
 127        if (acpi_gbl_FADT.pm_timer_length == 4)
 128                acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 129
 130        acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 131                "ACPI PM2_CNT_BLK");
 132
 133        /* Length of GPE blocks must be a non-negative multiple of 2 */
 134
 135        if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 136                acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 137                               acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 138
 139        if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 140                acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 141                               acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 142
 143        return 0;
 144}
 145fs_initcall_sync(acpi_reserve_resources);
 146
 147void acpi_os_printf(const char *fmt, ...)
 148{
 149        va_list args;
 150        va_start(args, fmt);
 151        acpi_os_vprintf(fmt, args);
 152        va_end(args);
 153}
 154EXPORT_SYMBOL(acpi_os_printf);
 155
 156void acpi_os_vprintf(const char *fmt, va_list args)
 157{
 158        static char buffer[512];
 159
 160        vsprintf(buffer, fmt, args);
 161
 162#ifdef ENABLE_DEBUGGER
 163        if (acpi_in_debugger) {
 164                kdb_printf("%s", buffer);
 165        } else {
 166                if (printk_get_level(buffer))
 167                        printk("%s", buffer);
 168                else
 169                        printk(KERN_CONT "%s", buffer);
 170        }
 171#else
 172        if (acpi_debugger_write_log(buffer) < 0) {
 173                if (printk_get_level(buffer))
 174                        printk("%s", buffer);
 175                else
 176                        printk(KERN_CONT "%s", buffer);
 177        }
 178#endif
 179}
 180
 181#ifdef CONFIG_KEXEC
 182static unsigned long acpi_rsdp;
 183static int __init setup_acpi_rsdp(char *arg)
 184{
 185        return kstrtoul(arg, 16, &acpi_rsdp);
 186}
 187early_param("acpi_rsdp", setup_acpi_rsdp);
 188#endif
 189
 190acpi_physical_address __init acpi_os_get_root_pointer(void)
 191{
 192        acpi_physical_address pa = 0;
 193
 194#ifdef CONFIG_KEXEC
 195        if (acpi_rsdp)
 196                return acpi_rsdp;
 197#endif
 198
 199        if (efi_enabled(EFI_CONFIG_TABLES)) {
 200                if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 201                        return efi.acpi20;
 202                if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 203                        return efi.acpi;
 204                pr_err(PREFIX "System description tables not found\n");
 205        } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 206                acpi_find_root_pointer(&pa);
 207        }
 208
 209        return pa;
 210}
 211
 212/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 213static struct acpi_ioremap *
 214acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 215{
 216        struct acpi_ioremap *map;
 217
 218        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 219                if (map->phys <= phys &&
 220                    phys + size <= map->phys + map->size)
 221                        return map;
 222
 223        return NULL;
 224}
 225
 226/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 227static void __iomem *
 228acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 229{
 230        struct acpi_ioremap *map;
 231
 232        map = acpi_map_lookup(phys, size);
 233        if (map)
 234                return map->virt + (phys - map->phys);
 235
 236        return NULL;
 237}
 238
 239void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 240{
 241        struct acpi_ioremap *map;
 242        void __iomem *virt = NULL;
 243
 244        mutex_lock(&acpi_ioremap_lock);
 245        map = acpi_map_lookup(phys, size);
 246        if (map) {
 247                virt = map->virt + (phys - map->phys);
 248                map->refcount++;
 249        }
 250        mutex_unlock(&acpi_ioremap_lock);
 251        return virt;
 252}
 253EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 254
 255/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 256static struct acpi_ioremap *
 257acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 258{
 259        struct acpi_ioremap *map;
 260
 261        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 262                if (map->virt <= virt &&
 263                    virt + size <= map->virt + map->size)
 264                        return map;
 265
 266        return NULL;
 267}
 268
 269#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 270/* ioremap will take care of cache attributes */
 271#define should_use_kmap(pfn)   0
 272#else
 273#define should_use_kmap(pfn)   page_is_ram(pfn)
 274#endif
 275
 276static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 277{
 278        unsigned long pfn;
 279
 280        pfn = pg_off >> PAGE_SHIFT;
 281        if (should_use_kmap(pfn)) {
 282                if (pg_sz > PAGE_SIZE)
 283                        return NULL;
 284                return (void __iomem __force *)kmap(pfn_to_page(pfn));
 285        } else
 286                return acpi_os_ioremap(pg_off, pg_sz);
 287}
 288
 289static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 290{
 291        unsigned long pfn;
 292
 293        pfn = pg_off >> PAGE_SHIFT;
 294        if (should_use_kmap(pfn))
 295                kunmap(pfn_to_page(pfn));
 296        else
 297                iounmap(vaddr);
 298}
 299
 300/**
 301 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 302 * @phys: Start of the physical address range to map.
 303 * @size: Size of the physical address range to map.
 304 *
 305 * Look up the given physical address range in the list of existing ACPI memory
 306 * mappings.  If found, get a reference to it and return a pointer to it (its
 307 * virtual address).  If not found, map it, add it to that list and return a
 308 * pointer to it.
 309 *
 310 * During early init (when acpi_permanent_mmap has not been set yet) this
 311 * routine simply calls __acpi_map_table() to get the job done.
 312 */
 313void __iomem *__ref
 314acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 315{
 316        struct acpi_ioremap *map;
 317        void __iomem *virt;
 318        acpi_physical_address pg_off;
 319        acpi_size pg_sz;
 320
 321        if (phys > ULONG_MAX) {
 322                printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 323                return NULL;
 324        }
 325
 326        if (!acpi_permanent_mmap)
 327                return __acpi_map_table((unsigned long)phys, size);
 328
 329        mutex_lock(&acpi_ioremap_lock);
 330        /* Check if there's a suitable mapping already. */
 331        map = acpi_map_lookup(phys, size);
 332        if (map) {
 333                map->refcount++;
 334                goto out;
 335        }
 336
 337        map = kzalloc(sizeof(*map), GFP_KERNEL);
 338        if (!map) {
 339                mutex_unlock(&acpi_ioremap_lock);
 340                return NULL;
 341        }
 342
 343        pg_off = round_down(phys, PAGE_SIZE);
 344        pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 345        virt = acpi_map(pg_off, pg_sz);
 346        if (!virt) {
 347                mutex_unlock(&acpi_ioremap_lock);
 348                kfree(map);
 349                return NULL;
 350        }
 351
 352        INIT_LIST_HEAD(&map->list);
 353        map->virt = virt;
 354        map->phys = pg_off;
 355        map->size = pg_sz;
 356        map->refcount = 1;
 357
 358        list_add_tail_rcu(&map->list, &acpi_ioremaps);
 359
 360out:
 361        mutex_unlock(&acpi_ioremap_lock);
 362        return map->virt + (phys - map->phys);
 363}
 364EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 365
 366void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 367{
 368        return (void *)acpi_os_map_iomem(phys, size);
 369}
 370EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 371
 372static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 373{
 374        if (!--map->refcount)
 375                list_del_rcu(&map->list);
 376}
 377
 378static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 379{
 380        if (!map->refcount) {
 381                synchronize_rcu_expedited();
 382                acpi_unmap(map->phys, map->virt);
 383                kfree(map);
 384        }
 385}
 386
 387/**
 388 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 389 * @virt: Start of the address range to drop a reference to.
 390 * @size: Size of the address range to drop a reference to.
 391 *
 392 * Look up the given virtual address range in the list of existing ACPI memory
 393 * mappings, drop a reference to it and unmap it if there are no more active
 394 * references to it.
 395 *
 396 * During early init (when acpi_permanent_mmap has not been set yet) this
 397 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 398 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 399 * here.
 400 */
 401void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 402{
 403        struct acpi_ioremap *map;
 404
 405        if (!acpi_permanent_mmap) {
 406                __acpi_unmap_table(virt, size);
 407                return;
 408        }
 409
 410        mutex_lock(&acpi_ioremap_lock);
 411        map = acpi_map_lookup_virt(virt, size);
 412        if (!map) {
 413                mutex_unlock(&acpi_ioremap_lock);
 414                WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 415                return;
 416        }
 417        acpi_os_drop_map_ref(map);
 418        mutex_unlock(&acpi_ioremap_lock);
 419
 420        acpi_os_map_cleanup(map);
 421}
 422EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 423
 424void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 425{
 426        return acpi_os_unmap_iomem((void __iomem *)virt, size);
 427}
 428EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 429
 430int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 431{
 432        u64 addr;
 433        void __iomem *virt;
 434
 435        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 436                return 0;
 437
 438        /* Handle possible alignment issues */
 439        memcpy(&addr, &gas->address, sizeof(addr));
 440        if (!addr || !gas->bit_width)
 441                return -EINVAL;
 442
 443        virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 444        if (!virt)
 445                return -EIO;
 446
 447        return 0;
 448}
 449EXPORT_SYMBOL(acpi_os_map_generic_address);
 450
 451void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 452{
 453        u64 addr;
 454        struct acpi_ioremap *map;
 455
 456        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 457                return;
 458
 459        /* Handle possible alignment issues */
 460        memcpy(&addr, &gas->address, sizeof(addr));
 461        if (!addr || !gas->bit_width)
 462                return;
 463
 464        mutex_lock(&acpi_ioremap_lock);
 465        map = acpi_map_lookup(addr, gas->bit_width / 8);
 466        if (!map) {
 467                mutex_unlock(&acpi_ioremap_lock);
 468                return;
 469        }
 470        acpi_os_drop_map_ref(map);
 471        mutex_unlock(&acpi_ioremap_lock);
 472
 473        acpi_os_map_cleanup(map);
 474}
 475EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 476
 477#ifdef ACPI_FUTURE_USAGE
 478acpi_status
 479acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 480{
 481        if (!phys || !virt)
 482                return AE_BAD_PARAMETER;
 483
 484        *phys = virt_to_phys(virt);
 485
 486        return AE_OK;
 487}
 488#endif
 489
 490#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 491static bool acpi_rev_override;
 492
 493int __init acpi_rev_override_setup(char *str)
 494{
 495        acpi_rev_override = true;
 496        return 1;
 497}
 498__setup("acpi_rev_override", acpi_rev_override_setup);
 499#else
 500#define acpi_rev_override       false
 501#endif
 502
 503#define ACPI_MAX_OVERRIDE_LEN 100
 504
 505static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 506
 507acpi_status
 508acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 509                            acpi_string *new_val)
 510{
 511        if (!init_val || !new_val)
 512                return AE_BAD_PARAMETER;
 513
 514        *new_val = NULL;
 515        if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 516                printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 517                       acpi_os_name);
 518                *new_val = acpi_os_name;
 519        }
 520
 521        if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 522                printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 523                *new_val = (char *)5;
 524        }
 525
 526        return AE_OK;
 527}
 528
 529static irqreturn_t acpi_irq(int irq, void *dev_id)
 530{
 531        u32 handled;
 532
 533        handled = (*acpi_irq_handler) (acpi_irq_context);
 534
 535        if (handled) {
 536                acpi_irq_handled++;
 537                return IRQ_HANDLED;
 538        } else {
 539                acpi_irq_not_handled++;
 540                return IRQ_NONE;
 541        }
 542}
 543
 544acpi_status
 545acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 546                                  void *context)
 547{
 548        unsigned int irq;
 549
 550        acpi_irq_stats_init();
 551
 552        /*
 553         * ACPI interrupts different from the SCI in our copy of the FADT are
 554         * not supported.
 555         */
 556        if (gsi != acpi_gbl_FADT.sci_interrupt)
 557                return AE_BAD_PARAMETER;
 558
 559        if (acpi_irq_handler)
 560                return AE_ALREADY_ACQUIRED;
 561
 562        if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 563                printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 564                       gsi);
 565                return AE_OK;
 566        }
 567
 568        acpi_irq_handler = handler;
 569        acpi_irq_context = context;
 570        if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 571                printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 572                acpi_irq_handler = NULL;
 573                return AE_NOT_ACQUIRED;
 574        }
 575        acpi_sci_irq = irq;
 576
 577        return AE_OK;
 578}
 579
 580acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 581{
 582        if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 583                return AE_BAD_PARAMETER;
 584
 585        free_irq(acpi_sci_irq, acpi_irq);
 586        acpi_irq_handler = NULL;
 587        acpi_sci_irq = INVALID_ACPI_IRQ;
 588
 589        return AE_OK;
 590}
 591
 592/*
 593 * Running in interpreter thread context, safe to sleep
 594 */
 595
 596void acpi_os_sleep(u64 ms)
 597{
 598        msleep(ms);
 599}
 600
 601void acpi_os_stall(u32 us)
 602{
 603        while (us) {
 604                u32 delay = 1000;
 605
 606                if (delay > us)
 607                        delay = us;
 608                udelay(delay);
 609                touch_nmi_watchdog();
 610                us -= delay;
 611        }
 612}
 613
 614/*
 615 * Support ACPI 3.0 AML Timer operand
 616 * Returns 64-bit free-running, monotonically increasing timer
 617 * with 100ns granularity
 618 */
 619u64 acpi_os_get_timer(void)
 620{
 621        u64 time_ns = ktime_to_ns(ktime_get());
 622        do_div(time_ns, 100);
 623        return time_ns;
 624}
 625
 626acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 627{
 628        u32 dummy;
 629
 630        if (!value)
 631                value = &dummy;
 632
 633        *value = 0;
 634        if (width <= 8) {
 635                *(u8 *) value = inb(port);
 636        } else if (width <= 16) {
 637                *(u16 *) value = inw(port);
 638        } else if (width <= 32) {
 639                *(u32 *) value = inl(port);
 640        } else {
 641                BUG();
 642        }
 643
 644        return AE_OK;
 645}
 646
 647EXPORT_SYMBOL(acpi_os_read_port);
 648
 649acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 650{
 651        if (width <= 8) {
 652                outb(value, port);
 653        } else if (width <= 16) {
 654                outw(value, port);
 655        } else if (width <= 32) {
 656                outl(value, port);
 657        } else {
 658                BUG();
 659        }
 660
 661        return AE_OK;
 662}
 663
 664EXPORT_SYMBOL(acpi_os_write_port);
 665
 666int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 667{
 668
 669        switch (width) {
 670        case 8:
 671                *(u8 *) value = readb(virt_addr);
 672                break;
 673        case 16:
 674                *(u16 *) value = readw(virt_addr);
 675                break;
 676        case 32:
 677                *(u32 *) value = readl(virt_addr);
 678                break;
 679        case 64:
 680                *(u64 *) value = readq(virt_addr);
 681                break;
 682        default:
 683                return -EINVAL;
 684        }
 685
 686        return 0;
 687}
 688
 689acpi_status
 690acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 691{
 692        void __iomem *virt_addr;
 693        unsigned int size = width / 8;
 694        bool unmap = false;
 695        u64 dummy;
 696        int error;
 697
 698        rcu_read_lock();
 699        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 700        if (!virt_addr) {
 701                rcu_read_unlock();
 702                virt_addr = acpi_os_ioremap(phys_addr, size);
 703                if (!virt_addr)
 704                        return AE_BAD_ADDRESS;
 705                unmap = true;
 706        }
 707
 708        if (!value)
 709                value = &dummy;
 710
 711        error = acpi_os_read_iomem(virt_addr, value, width);
 712        BUG_ON(error);
 713
 714        if (unmap)
 715                iounmap(virt_addr);
 716        else
 717                rcu_read_unlock();
 718
 719        return AE_OK;
 720}
 721
 722acpi_status
 723acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 724{
 725        void __iomem *virt_addr;
 726        unsigned int size = width / 8;
 727        bool unmap = false;
 728
 729        rcu_read_lock();
 730        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 731        if (!virt_addr) {
 732                rcu_read_unlock();
 733                virt_addr = acpi_os_ioremap(phys_addr, size);
 734                if (!virt_addr)
 735                        return AE_BAD_ADDRESS;
 736                unmap = true;
 737        }
 738
 739        switch (width) {
 740        case 8:
 741                writeb(value, virt_addr);
 742                break;
 743        case 16:
 744                writew(value, virt_addr);
 745                break;
 746        case 32:
 747                writel(value, virt_addr);
 748                break;
 749        case 64:
 750                writeq(value, virt_addr);
 751                break;
 752        default:
 753                BUG();
 754        }
 755
 756        if (unmap)
 757                iounmap(virt_addr);
 758        else
 759                rcu_read_unlock();
 760
 761        return AE_OK;
 762}
 763
 764acpi_status
 765acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 766                               u64 *value, u32 width)
 767{
 768        int result, size;
 769        u32 value32;
 770
 771        if (!value)
 772                return AE_BAD_PARAMETER;
 773
 774        switch (width) {
 775        case 8:
 776                size = 1;
 777                break;
 778        case 16:
 779                size = 2;
 780                break;
 781        case 32:
 782                size = 4;
 783                break;
 784        default:
 785                return AE_ERROR;
 786        }
 787
 788        result = raw_pci_read(pci_id->segment, pci_id->bus,
 789                                PCI_DEVFN(pci_id->device, pci_id->function),
 790                                reg, size, &value32);
 791        *value = value32;
 792
 793        return (result ? AE_ERROR : AE_OK);
 794}
 795
 796acpi_status
 797acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 798                                u64 value, u32 width)
 799{
 800        int result, size;
 801
 802        switch (width) {
 803        case 8:
 804                size = 1;
 805                break;
 806        case 16:
 807                size = 2;
 808                break;
 809        case 32:
 810                size = 4;
 811                break;
 812        default:
 813                return AE_ERROR;
 814        }
 815
 816        result = raw_pci_write(pci_id->segment, pci_id->bus,
 817                                PCI_DEVFN(pci_id->device, pci_id->function),
 818                                reg, size, value);
 819
 820        return (result ? AE_ERROR : AE_OK);
 821}
 822
 823static void acpi_os_execute_deferred(struct work_struct *work)
 824{
 825        struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 826
 827        dpc->function(dpc->context);
 828        kfree(dpc);
 829}
 830
 831#ifdef CONFIG_ACPI_DEBUGGER
 832static struct acpi_debugger acpi_debugger;
 833static bool acpi_debugger_initialized;
 834
 835int acpi_register_debugger(struct module *owner,
 836                           const struct acpi_debugger_ops *ops)
 837{
 838        int ret = 0;
 839
 840        mutex_lock(&acpi_debugger.lock);
 841        if (acpi_debugger.ops) {
 842                ret = -EBUSY;
 843                goto err_lock;
 844        }
 845
 846        acpi_debugger.owner = owner;
 847        acpi_debugger.ops = ops;
 848
 849err_lock:
 850        mutex_unlock(&acpi_debugger.lock);
 851        return ret;
 852}
 853EXPORT_SYMBOL(acpi_register_debugger);
 854
 855void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 856{
 857        mutex_lock(&acpi_debugger.lock);
 858        if (ops == acpi_debugger.ops) {
 859                acpi_debugger.ops = NULL;
 860                acpi_debugger.owner = NULL;
 861        }
 862        mutex_unlock(&acpi_debugger.lock);
 863}
 864EXPORT_SYMBOL(acpi_unregister_debugger);
 865
 866int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 867{
 868        int ret;
 869        int (*func)(acpi_osd_exec_callback, void *);
 870        struct module *owner;
 871
 872        if (!acpi_debugger_initialized)
 873                return -ENODEV;
 874        mutex_lock(&acpi_debugger.lock);
 875        if (!acpi_debugger.ops) {
 876                ret = -ENODEV;
 877                goto err_lock;
 878        }
 879        if (!try_module_get(acpi_debugger.owner)) {
 880                ret = -ENODEV;
 881                goto err_lock;
 882        }
 883        func = acpi_debugger.ops->create_thread;
 884        owner = acpi_debugger.owner;
 885        mutex_unlock(&acpi_debugger.lock);
 886
 887        ret = func(function, context);
 888
 889        mutex_lock(&acpi_debugger.lock);
 890        module_put(owner);
 891err_lock:
 892        mutex_unlock(&acpi_debugger.lock);
 893        return ret;
 894}
 895
 896ssize_t acpi_debugger_write_log(const char *msg)
 897{
 898        ssize_t ret;
 899        ssize_t (*func)(const char *);
 900        struct module *owner;
 901
 902        if (!acpi_debugger_initialized)
 903                return -ENODEV;
 904        mutex_lock(&acpi_debugger.lock);
 905        if (!acpi_debugger.ops) {
 906                ret = -ENODEV;
 907                goto err_lock;
 908        }
 909        if (!try_module_get(acpi_debugger.owner)) {
 910                ret = -ENODEV;
 911                goto err_lock;
 912        }
 913        func = acpi_debugger.ops->write_log;
 914        owner = acpi_debugger.owner;
 915        mutex_unlock(&acpi_debugger.lock);
 916
 917        ret = func(msg);
 918
 919        mutex_lock(&acpi_debugger.lock);
 920        module_put(owner);
 921err_lock:
 922        mutex_unlock(&acpi_debugger.lock);
 923        return ret;
 924}
 925
 926ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 927{
 928        ssize_t ret;
 929        ssize_t (*func)(char *, size_t);
 930        struct module *owner;
 931
 932        if (!acpi_debugger_initialized)
 933                return -ENODEV;
 934        mutex_lock(&acpi_debugger.lock);
 935        if (!acpi_debugger.ops) {
 936                ret = -ENODEV;
 937                goto err_lock;
 938        }
 939        if (!try_module_get(acpi_debugger.owner)) {
 940                ret = -ENODEV;
 941                goto err_lock;
 942        }
 943        func = acpi_debugger.ops->read_cmd;
 944        owner = acpi_debugger.owner;
 945        mutex_unlock(&acpi_debugger.lock);
 946
 947        ret = func(buffer, buffer_length);
 948
 949        mutex_lock(&acpi_debugger.lock);
 950        module_put(owner);
 951err_lock:
 952        mutex_unlock(&acpi_debugger.lock);
 953        return ret;
 954}
 955
 956int acpi_debugger_wait_command_ready(void)
 957{
 958        int ret;
 959        int (*func)(bool, char *, size_t);
 960        struct module *owner;
 961
 962        if (!acpi_debugger_initialized)
 963                return -ENODEV;
 964        mutex_lock(&acpi_debugger.lock);
 965        if (!acpi_debugger.ops) {
 966                ret = -ENODEV;
 967                goto err_lock;
 968        }
 969        if (!try_module_get(acpi_debugger.owner)) {
 970                ret = -ENODEV;
 971                goto err_lock;
 972        }
 973        func = acpi_debugger.ops->wait_command_ready;
 974        owner = acpi_debugger.owner;
 975        mutex_unlock(&acpi_debugger.lock);
 976
 977        ret = func(acpi_gbl_method_executing,
 978                   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 979
 980        mutex_lock(&acpi_debugger.lock);
 981        module_put(owner);
 982err_lock:
 983        mutex_unlock(&acpi_debugger.lock);
 984        return ret;
 985}
 986
 987int acpi_debugger_notify_command_complete(void)
 988{
 989        int ret;
 990        int (*func)(void);
 991        struct module *owner;
 992
 993        if (!acpi_debugger_initialized)
 994                return -ENODEV;
 995        mutex_lock(&acpi_debugger.lock);
 996        if (!acpi_debugger.ops) {
 997                ret = -ENODEV;
 998                goto err_lock;
 999        }
1000        if (!try_module_get(acpi_debugger.owner)) {
1001                ret = -ENODEV;
1002                goto err_lock;
1003        }
1004        func = acpi_debugger.ops->notify_command_complete;
1005        owner = acpi_debugger.owner;
1006        mutex_unlock(&acpi_debugger.lock);
1007
1008        ret = func();
1009
1010        mutex_lock(&acpi_debugger.lock);
1011        module_put(owner);
1012err_lock:
1013        mutex_unlock(&acpi_debugger.lock);
1014        return ret;
1015}
1016
1017int __init acpi_debugger_init(void)
1018{
1019        mutex_init(&acpi_debugger.lock);
1020        acpi_debugger_initialized = true;
1021        return 0;
1022}
1023#endif
1024
1025/*******************************************************************************
1026 *
1027 * FUNCTION:    acpi_os_execute
1028 *
1029 * PARAMETERS:  Type               - Type of the callback
1030 *              Function           - Function to be executed
1031 *              Context            - Function parameters
1032 *
1033 * RETURN:      Status
1034 *
1035 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1036 *              immediately executes function on a separate thread.
1037 *
1038 ******************************************************************************/
1039
1040acpi_status acpi_os_execute(acpi_execute_type type,
1041                            acpi_osd_exec_callback function, void *context)
1042{
1043        acpi_status status = AE_OK;
1044        struct acpi_os_dpc *dpc;
1045        struct workqueue_struct *queue;
1046        int ret;
1047        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1048                          "Scheduling function [%p(%p)] for deferred execution.\n",
1049                          function, context));
1050
1051        if (type == OSL_DEBUGGER_MAIN_THREAD) {
1052                ret = acpi_debugger_create_thread(function, context);
1053                if (ret) {
1054                        pr_err("Call to kthread_create() failed.\n");
1055                        status = AE_ERROR;
1056                }
1057                goto out_thread;
1058        }
1059
1060        /*
1061         * Allocate/initialize DPC structure.  Note that this memory will be
1062         * freed by the callee.  The kernel handles the work_struct list  in a
1063         * way that allows us to also free its memory inside the callee.
1064         * Because we may want to schedule several tasks with different
1065         * parameters we can't use the approach some kernel code uses of
1066         * having a static work_struct.
1067         */
1068
1069        dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1070        if (!dpc)
1071                return AE_NO_MEMORY;
1072
1073        dpc->function = function;
1074        dpc->context = context;
1075
1076        /*
1077         * To prevent lockdep from complaining unnecessarily, make sure that
1078         * there is a different static lockdep key for each workqueue by using
1079         * INIT_WORK() for each of them separately.
1080         */
1081        if (type == OSL_NOTIFY_HANDLER) {
1082                queue = kacpi_notify_wq;
1083                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1084        } else if (type == OSL_GPE_HANDLER) {
1085                queue = kacpid_wq;
1086                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087        } else {
1088                pr_err("Unsupported os_execute type %d.\n", type);
1089                status = AE_ERROR;
1090        }
1091
1092        if (ACPI_FAILURE(status))
1093                goto err_workqueue;
1094
1095        /*
1096         * On some machines, a software-initiated SMI causes corruption unless
1097         * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1098         * typically it's done in GPE-related methods that are run via
1099         * workqueues, so we can avoid the known corruption cases by always
1100         * queueing on CPU 0.
1101         */
1102        ret = queue_work_on(0, queue, &dpc->work);
1103        if (!ret) {
1104                printk(KERN_ERR PREFIX
1105                          "Call to queue_work() failed.\n");
1106                status = AE_ERROR;
1107        }
1108err_workqueue:
1109        if (ACPI_FAILURE(status))
1110                kfree(dpc);
1111out_thread:
1112        return status;
1113}
1114EXPORT_SYMBOL(acpi_os_execute);
1115
1116void acpi_os_wait_events_complete(void)
1117{
1118        /*
1119         * Make sure the GPE handler or the fixed event handler is not used
1120         * on another CPU after removal.
1121         */
1122        if (acpi_sci_irq_valid())
1123                synchronize_hardirq(acpi_sci_irq);
1124        flush_workqueue(kacpid_wq);
1125        flush_workqueue(kacpi_notify_wq);
1126}
1127
1128struct acpi_hp_work {
1129        struct work_struct work;
1130        struct acpi_device *adev;
1131        u32 src;
1132};
1133
1134static void acpi_hotplug_work_fn(struct work_struct *work)
1135{
1136        struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1137
1138        acpi_os_wait_events_complete();
1139        acpi_device_hotplug(hpw->adev, hpw->src);
1140        kfree(hpw);
1141}
1142
1143acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1144{
1145        struct acpi_hp_work *hpw;
1146
1147        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1148                  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1149                  adev, src));
1150
1151        hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1152        if (!hpw)
1153                return AE_NO_MEMORY;
1154
1155        INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1156        hpw->adev = adev;
1157        hpw->src = src;
1158        /*
1159         * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1160         * the hotplug code may call driver .remove() functions, which may
1161         * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1162         * these workqueues.
1163         */
1164        if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1165                kfree(hpw);
1166                return AE_ERROR;
1167        }
1168        return AE_OK;
1169}
1170
1171bool acpi_queue_hotplug_work(struct work_struct *work)
1172{
1173        return queue_work(kacpi_hotplug_wq, work);
1174}
1175
1176acpi_status
1177acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1178{
1179        struct semaphore *sem = NULL;
1180
1181        sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1182        if (!sem)
1183                return AE_NO_MEMORY;
1184
1185        sema_init(sem, initial_units);
1186
1187        *handle = (acpi_handle *) sem;
1188
1189        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1190                          *handle, initial_units));
1191
1192        return AE_OK;
1193}
1194
1195/*
1196 * TODO: A better way to delete semaphores?  Linux doesn't have a
1197 * 'delete_semaphore()' function -- may result in an invalid
1198 * pointer dereference for non-synchronized consumers.  Should
1199 * we at least check for blocked threads and signal/cancel them?
1200 */
1201
1202acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1203{
1204        struct semaphore *sem = (struct semaphore *)handle;
1205
1206        if (!sem)
1207                return AE_BAD_PARAMETER;
1208
1209        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1210
1211        BUG_ON(!list_empty(&sem->wait_list));
1212        kfree(sem);
1213        sem = NULL;
1214
1215        return AE_OK;
1216}
1217
1218/*
1219 * TODO: Support for units > 1?
1220 */
1221acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1222{
1223        acpi_status status = AE_OK;
1224        struct semaphore *sem = (struct semaphore *)handle;
1225        long jiffies;
1226        int ret = 0;
1227
1228        if (!acpi_os_initialized)
1229                return AE_OK;
1230
1231        if (!sem || (units < 1))
1232                return AE_BAD_PARAMETER;
1233
1234        if (units > 1)
1235                return AE_SUPPORT;
1236
1237        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1238                          handle, units, timeout));
1239
1240        if (timeout == ACPI_WAIT_FOREVER)
1241                jiffies = MAX_SCHEDULE_TIMEOUT;
1242        else
1243                jiffies = msecs_to_jiffies(timeout);
1244
1245        ret = down_timeout(sem, jiffies);
1246        if (ret)
1247                status = AE_TIME;
1248
1249        if (ACPI_FAILURE(status)) {
1250                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1251                                  "Failed to acquire semaphore[%p|%d|%d], %s",
1252                                  handle, units, timeout,
1253                                  acpi_format_exception(status)));
1254        } else {
1255                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1256                                  "Acquired semaphore[%p|%d|%d]", handle,
1257                                  units, timeout));
1258        }
1259
1260        return status;
1261}
1262
1263/*
1264 * TODO: Support for units > 1?
1265 */
1266acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1267{
1268        struct semaphore *sem = (struct semaphore *)handle;
1269
1270        if (!acpi_os_initialized)
1271                return AE_OK;
1272
1273        if (!sem || (units < 1))
1274                return AE_BAD_PARAMETER;
1275
1276        if (units > 1)
1277                return AE_SUPPORT;
1278
1279        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1280                          units));
1281
1282        up(sem);
1283
1284        return AE_OK;
1285}
1286
1287acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1288{
1289#ifdef ENABLE_DEBUGGER
1290        if (acpi_in_debugger) {
1291                u32 chars;
1292
1293                kdb_read(buffer, buffer_length);
1294
1295                /* remove the CR kdb includes */
1296                chars = strlen(buffer) - 1;
1297                buffer[chars] = '\0';
1298        }
1299#else
1300        int ret;
1301
1302        ret = acpi_debugger_read_cmd(buffer, buffer_length);
1303        if (ret < 0)
1304                return AE_ERROR;
1305        if (bytes_read)
1306                *bytes_read = ret;
1307#endif
1308
1309        return AE_OK;
1310}
1311EXPORT_SYMBOL(acpi_os_get_line);
1312
1313acpi_status acpi_os_wait_command_ready(void)
1314{
1315        int ret;
1316
1317        ret = acpi_debugger_wait_command_ready();
1318        if (ret < 0)
1319                return AE_ERROR;
1320        return AE_OK;
1321}
1322
1323acpi_status acpi_os_notify_command_complete(void)
1324{
1325        int ret;
1326
1327        ret = acpi_debugger_notify_command_complete();
1328        if (ret < 0)
1329                return AE_ERROR;
1330        return AE_OK;
1331}
1332
1333acpi_status acpi_os_signal(u32 function, void *info)
1334{
1335        switch (function) {
1336        case ACPI_SIGNAL_FATAL:
1337                printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1338                break;
1339        case ACPI_SIGNAL_BREAKPOINT:
1340                /*
1341                 * AML Breakpoint
1342                 * ACPI spec. says to treat it as a NOP unless
1343                 * you are debugging.  So if/when we integrate
1344                 * AML debugger into the kernel debugger its
1345                 * hook will go here.  But until then it is
1346                 * not useful to print anything on breakpoints.
1347                 */
1348                break;
1349        default:
1350                break;
1351        }
1352
1353        return AE_OK;
1354}
1355
1356static int __init acpi_os_name_setup(char *str)
1357{
1358        char *p = acpi_os_name;
1359        int count = ACPI_MAX_OVERRIDE_LEN - 1;
1360
1361        if (!str || !*str)
1362                return 0;
1363
1364        for (; count-- && *str; str++) {
1365                if (isalnum(*str) || *str == ' ' || *str == ':')
1366                        *p++ = *str;
1367                else if (*str == '\'' || *str == '"')
1368                        continue;
1369                else
1370                        break;
1371        }
1372        *p = 0;
1373
1374        return 1;
1375
1376}
1377
1378__setup("acpi_os_name=", acpi_os_name_setup);
1379
1380/*
1381 * Disable the auto-serialization of named objects creation methods.
1382 *
1383 * This feature is enabled by default.  It marks the AML control methods
1384 * that contain the opcodes to create named objects as "Serialized".
1385 */
1386static int __init acpi_no_auto_serialize_setup(char *str)
1387{
1388        acpi_gbl_auto_serialize_methods = FALSE;
1389        pr_info("ACPI: auto-serialization disabled\n");
1390
1391        return 1;
1392}
1393
1394__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1395
1396/* Check of resource interference between native drivers and ACPI
1397 * OperationRegions (SystemIO and System Memory only).
1398 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1399 * in arbitrary AML code and can interfere with legacy drivers.
1400 * acpi_enforce_resources= can be set to:
1401 *
1402 *   - strict (default) (2)
1403 *     -> further driver trying to access the resources will not load
1404 *   - lax              (1)
1405 *     -> further driver trying to access the resources will load, but you
1406 *     get a system message that something might go wrong...
1407 *
1408 *   - no               (0)
1409 *     -> ACPI Operation Region resources will not be registered
1410 *
1411 */
1412#define ENFORCE_RESOURCES_STRICT 2
1413#define ENFORCE_RESOURCES_LAX    1
1414#define ENFORCE_RESOURCES_NO     0
1415
1416static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1417
1418static int __init acpi_enforce_resources_setup(char *str)
1419{
1420        if (str == NULL || *str == '\0')
1421                return 0;
1422
1423        if (!strcmp("strict", str))
1424                acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1425        else if (!strcmp("lax", str))
1426                acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1427        else if (!strcmp("no", str))
1428                acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1429
1430        return 1;
1431}
1432
1433__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1434
1435/* Check for resource conflicts between ACPI OperationRegions and native
1436 * drivers */
1437int acpi_check_resource_conflict(const struct resource *res)
1438{
1439        acpi_adr_space_type space_id;
1440        acpi_size length;
1441        u8 warn = 0;
1442        int clash = 0;
1443
1444        if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1445                return 0;
1446        if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1447                return 0;
1448
1449        if (res->flags & IORESOURCE_IO)
1450                space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1451        else
1452                space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1453
1454        length = resource_size(res);
1455        if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1456                warn = 1;
1457        clash = acpi_check_address_range(space_id, res->start, length, warn);
1458
1459        if (clash) {
1460                if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1461                        if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1462                                printk(KERN_NOTICE "ACPI: This conflict may"
1463                                       " cause random problems and system"
1464                                       " instability\n");
1465                        printk(KERN_INFO "ACPI: If an ACPI driver is available"
1466                               " for this device, you should use it instead of"
1467                               " the native driver\n");
1468                }
1469                if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1470                        return -EBUSY;
1471        }
1472        return 0;
1473}
1474EXPORT_SYMBOL(acpi_check_resource_conflict);
1475
1476int acpi_check_region(resource_size_t start, resource_size_t n,
1477                      const char *name)
1478{
1479        struct resource res = {
1480                .start = start,
1481                .end   = start + n - 1,
1482                .name  = name,
1483                .flags = IORESOURCE_IO,
1484        };
1485
1486        return acpi_check_resource_conflict(&res);
1487}
1488EXPORT_SYMBOL(acpi_check_region);
1489
1490/*
1491 * Let drivers know whether the resource checks are effective
1492 */
1493int acpi_resources_are_enforced(void)
1494{
1495        return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1496}
1497EXPORT_SYMBOL(acpi_resources_are_enforced);
1498
1499/*
1500 * Deallocate the memory for a spinlock.
1501 */
1502void acpi_os_delete_lock(acpi_spinlock handle)
1503{
1504        ACPI_FREE(handle);
1505}
1506
1507/*
1508 * Acquire a spinlock.
1509 *
1510 * handle is a pointer to the spinlock_t.
1511 */
1512
1513acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1514{
1515        acpi_cpu_flags flags;
1516        spin_lock_irqsave(lockp, flags);
1517        return flags;
1518}
1519
1520/*
1521 * Release a spinlock. See above.
1522 */
1523
1524void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1525{
1526        spin_unlock_irqrestore(lockp, flags);
1527}
1528
1529#ifndef ACPI_USE_LOCAL_CACHE
1530
1531/*******************************************************************************
1532 *
1533 * FUNCTION:    acpi_os_create_cache
1534 *
1535 * PARAMETERS:  name      - Ascii name for the cache
1536 *              size      - Size of each cached object
1537 *              depth     - Maximum depth of the cache (in objects) <ignored>
1538 *              cache     - Where the new cache object is returned
1539 *
1540 * RETURN:      status
1541 *
1542 * DESCRIPTION: Create a cache object
1543 *
1544 ******************************************************************************/
1545
1546acpi_status
1547acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1548{
1549        *cache = kmem_cache_create(name, size, 0, 0, NULL);
1550        if (*cache == NULL)
1551                return AE_ERROR;
1552        else
1553                return AE_OK;
1554}
1555
1556/*******************************************************************************
1557 *
1558 * FUNCTION:    acpi_os_purge_cache
1559 *
1560 * PARAMETERS:  Cache           - Handle to cache object
1561 *
1562 * RETURN:      Status
1563 *
1564 * DESCRIPTION: Free all objects within the requested cache.
1565 *
1566 ******************************************************************************/
1567
1568acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1569{
1570        kmem_cache_shrink(cache);
1571        return (AE_OK);
1572}
1573
1574/*******************************************************************************
1575 *
1576 * FUNCTION:    acpi_os_delete_cache
1577 *
1578 * PARAMETERS:  Cache           - Handle to cache object
1579 *
1580 * RETURN:      Status
1581 *
1582 * DESCRIPTION: Free all objects within the requested cache and delete the
1583 *              cache object.
1584 *
1585 ******************************************************************************/
1586
1587acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1588{
1589        kmem_cache_destroy(cache);
1590        return (AE_OK);
1591}
1592
1593/*******************************************************************************
1594 *
1595 * FUNCTION:    acpi_os_release_object
1596 *
1597 * PARAMETERS:  Cache       - Handle to cache object
1598 *              Object      - The object to be released
1599 *
1600 * RETURN:      None
1601 *
1602 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1603 *              the object is deleted.
1604 *
1605 ******************************************************************************/
1606
1607acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1608{
1609        kmem_cache_free(cache, object);
1610        return (AE_OK);
1611}
1612#endif
1613
1614static int __init acpi_no_static_ssdt_setup(char *s)
1615{
1616        acpi_gbl_disable_ssdt_table_install = TRUE;
1617        pr_info("ACPI: static SSDT installation disabled\n");
1618
1619        return 0;
1620}
1621
1622early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1623
1624static int __init acpi_disable_return_repair(char *s)
1625{
1626        printk(KERN_NOTICE PREFIX
1627               "ACPI: Predefined validation mechanism disabled\n");
1628        acpi_gbl_disable_auto_repair = TRUE;
1629
1630        return 1;
1631}
1632
1633__setup("acpica_no_return_repair", acpi_disable_return_repair);
1634
1635acpi_status __init acpi_os_initialize(void)
1636{
1637        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1638        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1639        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1640        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1641        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1642                /*
1643                 * Use acpi_os_map_generic_address to pre-map the reset
1644                 * register if it's in system memory.
1645                 */
1646                int rv;
1647
1648                rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1649                pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1650        }
1651        acpi_os_initialized = true;
1652
1653        return AE_OK;
1654}
1655
1656acpi_status __init acpi_os_initialize1(void)
1657{
1658        kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1659        kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1660        kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1661        BUG_ON(!kacpid_wq);
1662        BUG_ON(!kacpi_notify_wq);
1663        BUG_ON(!kacpi_hotplug_wq);
1664        acpi_osi_init();
1665        return AE_OK;
1666}
1667
1668acpi_status acpi_os_terminate(void)
1669{
1670        if (acpi_irq_handler) {
1671                acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1672                                                 acpi_irq_handler);
1673        }
1674
1675        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1676        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1677        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1678        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1679        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1680                acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1681
1682        destroy_workqueue(kacpid_wq);
1683        destroy_workqueue(kacpi_notify_wq);
1684        destroy_workqueue(kacpi_hotplug_wq);
1685
1686        return AE_OK;
1687}
1688
1689acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1690                                  u32 pm1b_control)
1691{
1692        int rc = 0;
1693        if (__acpi_os_prepare_sleep)
1694                rc = __acpi_os_prepare_sleep(sleep_state,
1695                                             pm1a_control, pm1b_control);
1696        if (rc < 0)
1697                return AE_ERROR;
1698        else if (rc > 0)
1699                return AE_CTRL_TERMINATE;
1700
1701        return AE_OK;
1702}
1703
1704void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1705                               u32 pm1a_ctrl, u32 pm1b_ctrl))
1706{
1707        __acpi_os_prepare_sleep = func;
1708}
1709
1710#if (ACPI_REDUCED_HARDWARE)
1711acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1712                                  u32 val_b)
1713{
1714        int rc = 0;
1715        if (__acpi_os_prepare_extended_sleep)
1716                rc = __acpi_os_prepare_extended_sleep(sleep_state,
1717                                             val_a, val_b);
1718        if (rc < 0)
1719                return AE_ERROR;
1720        else if (rc > 0)
1721                return AE_CTRL_TERMINATE;
1722
1723        return AE_OK;
1724}
1725#else
1726acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1727                                  u32 val_b)
1728{
1729        return AE_OK;
1730}
1731#endif
1732
1733void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1734                               u32 val_a, u32 val_b))
1735{
1736        __acpi_os_prepare_extended_sleep = func;
1737}
1738
1739acpi_status acpi_os_enter_sleep(u8 sleep_state,
1740                                u32 reg_a_value, u32 reg_b_value)
1741{
1742        acpi_status status;
1743
1744        if (acpi_gbl_reduced_hardware)
1745                status = acpi_os_prepare_extended_sleep(sleep_state,
1746                                                        reg_a_value,
1747                                                        reg_b_value);
1748        else
1749                status = acpi_os_prepare_sleep(sleep_state,
1750                                               reg_a_value, reg_b_value);
1751        return status;
1752}
1753
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.