linux/drivers/scsi/aacraid/commsup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Adaptec AAC series RAID controller driver
   4 *      (c) Copyright 2001 Red Hat Inc.
   5 *
   6 * based on the old aacraid driver that is..
   7 * Adaptec aacraid device driver for Linux.
   8 *
   9 * Copyright (c) 2000-2010 Adaptec, Inc.
  10 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
  11 *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
  12 *
  13 * Module Name:
  14 *  commsup.c
  15 *
  16 * Abstract: Contain all routines that are required for FSA host/adapter
  17 *    communication.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/crash_dump.h>
  23#include <linux/types.h>
  24#include <linux/sched.h>
  25#include <linux/pci.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/completion.h>
  29#include <linux/blkdev.h>
  30#include <linux/delay.h>
  31#include <linux/kthread.h>
  32#include <linux/interrupt.h>
  33#include <linux/bcd.h>
  34#include <scsi/scsi.h>
  35#include <scsi/scsi_host.h>
  36#include <scsi/scsi_device.h>
  37#include <scsi/scsi_cmnd.h>
  38
  39#include "aacraid.h"
  40
  41/**
  42 *      fib_map_alloc           -       allocate the fib objects
  43 *      @dev: Adapter to allocate for
  44 *
  45 *      Allocate and map the shared PCI space for the FIB blocks used to
  46 *      talk to the Adaptec firmware.
  47 */
  48
  49static int fib_map_alloc(struct aac_dev *dev)
  50{
  51        if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
  52                dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  53        else
  54                dev->max_cmd_size = dev->max_fib_size;
  55        if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
  56                dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  57        } else {
  58                dev->max_cmd_size = dev->max_fib_size;
  59        }
  60
  61        dprintk((KERN_INFO
  62          "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
  63          &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
  64          AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
  65        dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
  66                (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
  67                * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
  68                &dev->hw_fib_pa, GFP_KERNEL);
  69        if (dev->hw_fib_va == NULL)
  70                return -ENOMEM;
  71        return 0;
  72}
  73
  74/**
  75 *      aac_fib_map_free                -       free the fib objects
  76 *      @dev: Adapter to free
  77 *
  78 *      Free the PCI mappings and the memory allocated for FIB blocks
  79 *      on this adapter.
  80 */
  81
  82void aac_fib_map_free(struct aac_dev *dev)
  83{
  84        size_t alloc_size;
  85        size_t fib_size;
  86        int num_fibs;
  87
  88        if(!dev->hw_fib_va || !dev->max_cmd_size)
  89                return;
  90
  91        num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
  92        fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
  93        alloc_size = fib_size * num_fibs + ALIGN32 - 1;
  94
  95        dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
  96                          dev->hw_fib_pa);
  97
  98        dev->hw_fib_va = NULL;
  99        dev->hw_fib_pa = 0;
 100}
 101
 102void aac_fib_vector_assign(struct aac_dev *dev)
 103{
 104        u32 i = 0;
 105        u32 vector = 1;
 106        struct fib *fibptr = NULL;
 107
 108        for (i = 0, fibptr = &dev->fibs[i];
 109                i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 110                i++, fibptr++) {
 111                if ((dev->max_msix == 1) ||
 112                  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
 113                        - dev->vector_cap))) {
 114                        fibptr->vector_no = 0;
 115                } else {
 116                        fibptr->vector_no = vector;
 117                        vector++;
 118                        if (vector == dev->max_msix)
 119                                vector = 1;
 120                }
 121        }
 122}
 123
 124/**
 125 *      aac_fib_setup   -       setup the fibs
 126 *      @dev: Adapter to set up
 127 *
 128 *      Allocate the PCI space for the fibs, map it and then initialise the
 129 *      fib area, the unmapped fib data and also the free list
 130 */
 131
 132int aac_fib_setup(struct aac_dev * dev)
 133{
 134        struct fib *fibptr;
 135        struct hw_fib *hw_fib;
 136        dma_addr_t hw_fib_pa;
 137        int i;
 138        u32 max_cmds;
 139
 140        while (((i = fib_map_alloc(dev)) == -ENOMEM)
 141         && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 142                max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
 143                dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
 144                if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
 145                        dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
 146        }
 147        if (i<0)
 148                return -ENOMEM;
 149
 150        memset(dev->hw_fib_va, 0,
 151                (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
 152                (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 153
 154        /* 32 byte alignment for PMC */
 155        hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
 156        hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
 157                                        (hw_fib_pa - dev->hw_fib_pa));
 158
 159        /* add Xport header */
 160        hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 161                sizeof(struct aac_fib_xporthdr));
 162        hw_fib_pa += sizeof(struct aac_fib_xporthdr);
 163
 164        /*
 165         *      Initialise the fibs
 166         */
 167        for (i = 0, fibptr = &dev->fibs[i];
 168                i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 169                i++, fibptr++)
 170        {
 171                fibptr->flags = 0;
 172                fibptr->size = sizeof(struct fib);
 173                fibptr->dev = dev;
 174                fibptr->hw_fib_va = hw_fib;
 175                fibptr->data = (void *) fibptr->hw_fib_va->data;
 176                fibptr->next = fibptr+1;        /* Forward chain the fibs */
 177                init_completion(&fibptr->event_wait);
 178                spin_lock_init(&fibptr->event_lock);
 179                hw_fib->header.XferState = cpu_to_le32(0xffffffff);
 180                hw_fib->header.SenderSize =
 181                        cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
 182                fibptr->hw_fib_pa = hw_fib_pa;
 183                fibptr->hw_sgl_pa = hw_fib_pa +
 184                        offsetof(struct aac_hba_cmd_req, sge[2]);
 185                /*
 186                 * one element is for the ptr to the separate sg list,
 187                 * second element for 32 byte alignment
 188                 */
 189                fibptr->hw_error_pa = hw_fib_pa +
 190                        offsetof(struct aac_native_hba, resp.resp_bytes[0]);
 191
 192                hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 193                        dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
 194                hw_fib_pa = hw_fib_pa +
 195                        dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
 196        }
 197
 198        /*
 199         *Assign vector numbers to fibs
 200         */
 201        aac_fib_vector_assign(dev);
 202
 203        /*
 204         *      Add the fib chain to the free list
 205         */
 206        dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 207        /*
 208        *       Set 8 fibs aside for management tools
 209        */
 210        dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
 211        return 0;
 212}
 213
 214/**
 215 *      aac_fib_alloc_tag-allocate a fib using tags
 216 *      @dev: Adapter to allocate the fib for
 217 *      @scmd: SCSI command
 218 *
 219 *      Allocate a fib from the adapter fib pool using tags
 220 *      from the blk layer.
 221 */
 222
 223struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
 224{
 225        struct fib *fibptr;
 226
 227        fibptr = &dev->fibs[scmd->request->tag];
 228        /*
 229         *      Null out fields that depend on being zero at the start of
 230         *      each I/O
 231         */
 232        fibptr->hw_fib_va->header.XferState = 0;
 233        fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 234        fibptr->callback_data = NULL;
 235        fibptr->callback = NULL;
 236        fibptr->flags = 0;
 237
 238        return fibptr;
 239}
 240
 241/**
 242 *      aac_fib_alloc   -       allocate a fib
 243 *      @dev: Adapter to allocate the fib for
 244 *
 245 *      Allocate a fib from the adapter fib pool. If the pool is empty we
 246 *      return NULL.
 247 */
 248
 249struct fib *aac_fib_alloc(struct aac_dev *dev)
 250{
 251        struct fib * fibptr;
 252        unsigned long flags;
 253        spin_lock_irqsave(&dev->fib_lock, flags);
 254        fibptr = dev->free_fib;
 255        if(!fibptr){
 256                spin_unlock_irqrestore(&dev->fib_lock, flags);
 257                return fibptr;
 258        }
 259        dev->free_fib = fibptr->next;
 260        spin_unlock_irqrestore(&dev->fib_lock, flags);
 261        /*
 262         *      Set the proper node type code and node byte size
 263         */
 264        fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 265        fibptr->size = sizeof(struct fib);
 266        /*
 267         *      Null out fields that depend on being zero at the start of
 268         *      each I/O
 269         */
 270        fibptr->hw_fib_va->header.XferState = 0;
 271        fibptr->flags = 0;
 272        fibptr->callback = NULL;
 273        fibptr->callback_data = NULL;
 274
 275        return fibptr;
 276}
 277
 278/**
 279 *      aac_fib_free    -       free a fib
 280 *      @fibptr: fib to free up
 281 *
 282 *      Frees up a fib and places it on the appropriate queue
 283 */
 284
 285void aac_fib_free(struct fib *fibptr)
 286{
 287        unsigned long flags;
 288
 289        if (fibptr->done == 2)
 290                return;
 291
 292        spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 293        if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 294                aac_config.fib_timeouts++;
 295        if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
 296                fibptr->hw_fib_va->header.XferState != 0) {
 297                printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 298                         (void*)fibptr,
 299                         le32_to_cpu(fibptr->hw_fib_va->header.XferState));
 300        }
 301        fibptr->next = fibptr->dev->free_fib;
 302        fibptr->dev->free_fib = fibptr;
 303        spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 304}
 305
 306/**
 307 *      aac_fib_init    -       initialise a fib
 308 *      @fibptr: The fib to initialize
 309 *
 310 *      Set up the generic fib fields ready for use
 311 */
 312
 313void aac_fib_init(struct fib *fibptr)
 314{
 315        struct hw_fib *hw_fib = fibptr->hw_fib_va;
 316
 317        memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
 318        hw_fib->header.StructType = FIB_MAGIC;
 319        hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 320        hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 321        hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 322        hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 323}
 324
 325/**
 326 *      fib_dealloc             -       deallocate a fib
 327 *      @fibptr: fib to deallocate
 328 *
 329 *      Will deallocate and return to the free pool the FIB pointed to by the
 330 *      caller.
 331 */
 332
 333static void fib_dealloc(struct fib * fibptr)
 334{
 335        struct hw_fib *hw_fib = fibptr->hw_fib_va;
 336        hw_fib->header.XferState = 0;
 337}
 338
 339/*
 340 *      Commuication primitives define and support the queuing method we use to
 341 *      support host to adapter commuication. All queue accesses happen through
 342 *      these routines and are the only routines which have a knowledge of the
 343 *       how these queues are implemented.
 344 */
 345
 346/**
 347 *      aac_get_entry           -       get a queue entry
 348 *      @dev: Adapter
 349 *      @qid: Queue Number
 350 *      @entry: Entry return
 351 *      @index: Index return
 352 *      @nonotify: notification control
 353 *
 354 *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
 355 *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 356 *      returned.
 357 */
 358
 359static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 360{
 361        struct aac_queue * q;
 362        unsigned long idx;
 363
 364        /*
 365         *      All of the queues wrap when they reach the end, so we check
 366         *      to see if they have reached the end and if they have we just
 367         *      set the index back to zero. This is a wrap. You could or off
 368         *      the high bits in all updates but this is a bit faster I think.
 369         */
 370
 371        q = &dev->queues->queue[qid];
 372
 373        idx = *index = le32_to_cpu(*(q->headers.producer));
 374        /* Interrupt Moderation, only interrupt for first two entries */
 375        if (idx != le32_to_cpu(*(q->headers.consumer))) {
 376                if (--idx == 0) {
 377                        if (qid == AdapNormCmdQueue)
 378                                idx = ADAP_NORM_CMD_ENTRIES;
 379                        else
 380                                idx = ADAP_NORM_RESP_ENTRIES;
 381                }
 382                if (idx != le32_to_cpu(*(q->headers.consumer)))
 383                        *nonotify = 1;
 384        }
 385
 386        if (qid == AdapNormCmdQueue) {
 387                if (*index >= ADAP_NORM_CMD_ENTRIES)
 388                        *index = 0; /* Wrap to front of the Producer Queue. */
 389        } else {
 390                if (*index >= ADAP_NORM_RESP_ENTRIES)
 391                        *index = 0; /* Wrap to front of the Producer Queue. */
 392        }
 393
 394        /* Queue is full */
 395        if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
 396                printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 397                                qid, atomic_read(&q->numpending));
 398                return 0;
 399        } else {
 400                *entry = q->base + *index;
 401                return 1;
 402        }
 403}
 404
 405/**
 406 *      aac_queue_get           -       get the next free QE
 407 *      @dev: Adapter
 408 *      @index: Returned index
 409 *      @qid: Queue number
 410 *      @hw_fib: Fib to associate with the queue entry
 411 *      @wait: Wait if queue full
 412 *      @fibptr: Driver fib object to go with fib
 413 *      @nonotify: Don't notify the adapter
 414 *
 415 *      Gets the next free QE off the requested priorty adapter command
 416 *      queue and associates the Fib with the QE. The QE represented by
 417 *      index is ready to insert on the queue when this routine returns
 418 *      success.
 419 */
 420
 421int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 422{
 423        struct aac_entry * entry = NULL;
 424        int map = 0;
 425
 426        if (qid == AdapNormCmdQueue) {
 427                /*  if no entries wait for some if caller wants to */
 428                while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 429                        printk(KERN_ERR "GetEntries failed\n");
 430                }
 431                /*
 432                 *      Setup queue entry with a command, status and fib mapped
 433                 */
 434                entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 435                map = 1;
 436        } else {
 437                while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 438                        /* if no entries wait for some if caller wants to */
 439                }
 440                /*
 441                 *      Setup queue entry with command, status and fib mapped
 442                 */
 443                entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 444                entry->addr = hw_fib->header.SenderFibAddress;
 445                        /* Restore adapters pointer to the FIB */
 446                hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
 447                map = 0;
 448        }
 449        /*
 450         *      If MapFib is true than we need to map the Fib and put pointers
 451         *      in the queue entry.
 452         */
 453        if (map)
 454                entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 455        return 0;
 456}
 457
 458/*
 459 *      Define the highest level of host to adapter communication routines.
 460 *      These routines will support host to adapter FS commuication. These
 461 *      routines have no knowledge of the commuication method used. This level
 462 *      sends and receives FIBs. This level has no knowledge of how these FIBs
 463 *      get passed back and forth.
 464 */
 465
 466/**
 467 *      aac_fib_send    -       send a fib to the adapter
 468 *      @command: Command to send
 469 *      @fibptr: The fib
 470 *      @size: Size of fib data area
 471 *      @priority: Priority of Fib
 472 *      @wait: Async/sync select
 473 *      @reply: True if a reply is wanted
 474 *      @callback: Called with reply
 475 *      @callback_data: Passed to callback
 476 *
 477 *      Sends the requested FIB to the adapter and optionally will wait for a
 478 *      response FIB. If the caller does not wish to wait for a response than
 479 *      an event to wait on must be supplied. This event will be set when a
 480 *      response FIB is received from the adapter.
 481 */
 482
 483int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 484                int priority, int wait, int reply, fib_callback callback,
 485                void *callback_data)
 486{
 487        struct aac_dev * dev = fibptr->dev;
 488        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 489        unsigned long flags = 0;
 490        unsigned long mflags = 0;
 491        unsigned long sflags = 0;
 492
 493        if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 494                return -EBUSY;
 495
 496        if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
 497                return -EINVAL;
 498
 499        /*
 500         *      There are 5 cases with the wait and response requested flags.
 501         *      The only invalid cases are if the caller requests to wait and
 502         *      does not request a response and if the caller does not want a
 503         *      response and the Fib is not allocated from pool. If a response
 504         *      is not requested the Fib will just be deallocaed by the DPC
 505         *      routine when the response comes back from the adapter. No
 506         *      further processing will be done besides deleting the Fib. We
 507         *      will have a debug mode where the adapter can notify the host
 508         *      it had a problem and the host can log that fact.
 509         */
 510        fibptr->flags = 0;
 511        if (wait && !reply) {
 512                return -EINVAL;
 513        } else if (!wait && reply) {
 514                hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 515                FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 516        } else if (!wait && !reply) {
 517                hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 518                FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 519        } else if (wait && reply) {
 520                hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 521                FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 522        }
 523        /*
 524         *      Map the fib into 32bits by using the fib number
 525         */
 526
 527        hw_fib->header.SenderFibAddress =
 528                cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 529
 530        /* use the same shifted value for handle to be compatible
 531         * with the new native hba command handle
 532         */
 533        hw_fib->header.Handle =
 534                cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 535
 536        /*
 537         *      Set FIB state to indicate where it came from and if we want a
 538         *      response from the adapter. Also load the command from the
 539         *      caller.
 540         *
 541         *      Map the hw fib pointer as a 32bit value
 542         */
 543        hw_fib->header.Command = cpu_to_le16(command);
 544        hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 545        /*
 546         *      Set the size of the Fib we want to send to the adapter
 547         */
 548        hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 549        if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 550                return -EMSGSIZE;
 551        }
 552        /*
 553         *      Get a queue entry connect the FIB to it and send an notify
 554         *      the adapter a command is ready.
 555         */
 556        hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 557
 558        /*
 559         *      Fill in the Callback and CallbackContext if we are not
 560         *      going to wait.
 561         */
 562        if (!wait) {
 563                fibptr->callback = callback;
 564                fibptr->callback_data = callback_data;
 565                fibptr->flags = FIB_CONTEXT_FLAG;
 566        }
 567
 568        fibptr->done = 0;
 569
 570        FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 571
 572        dprintk((KERN_DEBUG "Fib contents:.\n"));
 573        dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 574        dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 575        dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 576        dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
 577        dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 578        dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 579
 580        if (!dev->queues)
 581                return -EBUSY;
 582
 583        if (wait) {
 584
 585                spin_lock_irqsave(&dev->manage_lock, mflags);
 586                if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 587                        printk(KERN_INFO "No management Fibs Available:%d\n",
 588                                                dev->management_fib_count);
 589                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 590                        return -EBUSY;
 591                }
 592                dev->management_fib_count++;
 593                spin_unlock_irqrestore(&dev->manage_lock, mflags);
 594                spin_lock_irqsave(&fibptr->event_lock, flags);
 595        }
 596
 597        if (dev->sync_mode) {
 598                if (wait)
 599                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 600                spin_lock_irqsave(&dev->sync_lock, sflags);
 601                if (dev->sync_fib) {
 602                        list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
 603                        spin_unlock_irqrestore(&dev->sync_lock, sflags);
 604                } else {
 605                        dev->sync_fib = fibptr;
 606                        spin_unlock_irqrestore(&dev->sync_lock, sflags);
 607                        aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
 608                                (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
 609                                NULL, NULL, NULL, NULL, NULL);
 610                }
 611                if (wait) {
 612                        fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 613                        if (wait_for_completion_interruptible(&fibptr->event_wait)) {
 614                                fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
 615                                return -EFAULT;
 616                        }
 617                        return 0;
 618                }
 619                return -EINPROGRESS;
 620        }
 621
 622        if (aac_adapter_deliver(fibptr) != 0) {
 623                printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
 624                if (wait) {
 625                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 626                        spin_lock_irqsave(&dev->manage_lock, mflags);
 627                        dev->management_fib_count--;
 628                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 629                }
 630                return -EBUSY;
 631        }
 632
 633
 634        /*
 635         *      If the caller wanted us to wait for response wait now.
 636         */
 637
 638        if (wait) {
 639                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 640                /* Only set for first known interruptable command */
 641                if (wait < 0) {
 642                        /*
 643                         * *VERY* Dangerous to time out a command, the
 644                         * assumption is made that we have no hope of
 645                         * functioning because an interrupt routing or other
 646                         * hardware failure has occurred.
 647                         */
 648                        unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
 649                        while (!try_wait_for_completion(&fibptr->event_wait)) {
 650                                int blink;
 651                                if (time_is_before_eq_jiffies(timeout)) {
 652                                        struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
 653                                        atomic_dec(&q->numpending);
 654                                        if (wait == -1) {
 655                                                printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 656                                                  "Usually a result of a PCI interrupt routing problem;\n"
 657                                                  "update mother board BIOS or consider utilizing one of\n"
 658                                                  "the SAFE mode kernel options (acpi, apic etc)\n");
 659                                        }
 660                                        return -ETIMEDOUT;
 661                                }
 662
 663                                if (unlikely(aac_pci_offline(dev)))
 664                                        return -EFAULT;
 665
 666                                if ((blink = aac_adapter_check_health(dev)) > 0) {
 667                                        if (wait == -1) {
 668                                                printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
 669                                                  "Usually a result of a serious unrecoverable hardware problem\n",
 670                                                  blink);
 671                                        }
 672                                        return -EFAULT;
 673                                }
 674                                /*
 675                                 * Allow other processes / CPUS to use core
 676                                 */
 677                                schedule();
 678                        }
 679                } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
 680                        /* Do nothing ... satisfy
 681                         * wait_for_completion_interruptible must_check */
 682                }
 683
 684                spin_lock_irqsave(&fibptr->event_lock, flags);
 685                if (fibptr->done == 0) {
 686                        fibptr->done = 2; /* Tell interrupt we aborted */
 687                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 688                        return -ERESTARTSYS;
 689                }
 690                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 691                BUG_ON(fibptr->done == 0);
 692
 693                if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 694                        return -ETIMEDOUT;
 695                return 0;
 696        }
 697        /*
 698         *      If the user does not want a response than return success otherwise
 699         *      return pending
 700         */
 701        if (reply)
 702                return -EINPROGRESS;
 703        else
 704                return 0;
 705}
 706
 707int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
 708                void *callback_data)
 709{
 710        struct aac_dev *dev = fibptr->dev;
 711        int wait;
 712        unsigned long flags = 0;
 713        unsigned long mflags = 0;
 714        struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
 715                        fibptr->hw_fib_va;
 716
 717        fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
 718        if (callback) {
 719                wait = 0;
 720                fibptr->callback = callback;
 721                fibptr->callback_data = callback_data;
 722        } else
 723                wait = 1;
 724
 725
 726        hbacmd->iu_type = command;
 727
 728        if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
 729                /* bit1 of request_id must be 0 */
 730                hbacmd->request_id =
 731                        cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 732                fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
 733        } else
 734                return -EINVAL;
 735
 736
 737        if (wait) {
 738                spin_lock_irqsave(&dev->manage_lock, mflags);
 739                if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 740                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 741                        return -EBUSY;
 742                }
 743                dev->management_fib_count++;
 744                spin_unlock_irqrestore(&dev->manage_lock, mflags);
 745                spin_lock_irqsave(&fibptr->event_lock, flags);
 746        }
 747
 748        if (aac_adapter_deliver(fibptr) != 0) {
 749                if (wait) {
 750                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 751                        spin_lock_irqsave(&dev->manage_lock, mflags);
 752                        dev->management_fib_count--;
 753                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 754                }
 755                return -EBUSY;
 756        }
 757        FIB_COUNTER_INCREMENT(aac_config.NativeSent);
 758
 759        if (wait) {
 760
 761                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 762
 763                if (unlikely(aac_pci_offline(dev)))
 764                        return -EFAULT;
 765
 766                fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 767                if (wait_for_completion_interruptible(&fibptr->event_wait))
 768                        fibptr->done = 2;
 769                fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
 770
 771                spin_lock_irqsave(&fibptr->event_lock, flags);
 772                if ((fibptr->done == 0) || (fibptr->done == 2)) {
 773                        fibptr->done = 2; /* Tell interrupt we aborted */
 774                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 775                        return -ERESTARTSYS;
 776                }
 777                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 778                WARN_ON(fibptr->done == 0);
 779
 780                if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 781                        return -ETIMEDOUT;
 782
 783                return 0;
 784        }
 785
 786        return -EINPROGRESS;
 787}
 788
 789/**
 790 *      aac_consumer_get        -       get the top of the queue
 791 *      @dev: Adapter
 792 *      @q: Queue
 793 *      @entry: Return entry
 794 *
 795 *      Will return a pointer to the entry on the top of the queue requested that
 796 *      we are a consumer of, and return the address of the queue entry. It does
 797 *      not change the state of the queue.
 798 */
 799
 800int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 801{
 802        u32 index;
 803        int status;
 804        if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 805                status = 0;
 806        } else {
 807                /*
 808                 *      The consumer index must be wrapped if we have reached
 809                 *      the end of the queue, else we just use the entry
 810                 *      pointed to by the header index
 811                 */
 812                if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 813                        index = 0;
 814                else
 815                        index = le32_to_cpu(*q->headers.consumer);
 816                *entry = q->base + index;
 817                status = 1;
 818        }
 819        return(status);
 820}
 821
 822/**
 823 *      aac_consumer_free       -       free consumer entry
 824 *      @dev: Adapter
 825 *      @q: Queue
 826 *      @qid: Queue ident
 827 *
 828 *      Frees up the current top of the queue we are a consumer of. If the
 829 *      queue was full notify the producer that the queue is no longer full.
 830 */
 831
 832void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 833{
 834        int wasfull = 0;
 835        u32 notify;
 836
 837        if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 838                wasfull = 1;
 839
 840        if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 841                *q->headers.consumer = cpu_to_le32(1);
 842        else
 843                le32_add_cpu(q->headers.consumer, 1);
 844
 845        if (wasfull) {
 846                switch (qid) {
 847
 848                case HostNormCmdQueue:
 849                        notify = HostNormCmdNotFull;
 850                        break;
 851                case HostNormRespQueue:
 852                        notify = HostNormRespNotFull;
 853                        break;
 854                default:
 855                        BUG();
 856                        return;
 857                }
 858                aac_adapter_notify(dev, notify);
 859        }
 860}
 861
 862/**
 863 *      aac_fib_adapter_complete        -       complete adapter issued fib
 864 *      @fibptr: fib to complete
 865 *      @size: size of fib
 866 *
 867 *      Will do all necessary work to complete a FIB that was sent from
 868 *      the adapter.
 869 */
 870
 871int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 872{
 873        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 874        struct aac_dev * dev = fibptr->dev;
 875        struct aac_queue * q;
 876        unsigned long nointr = 0;
 877        unsigned long qflags;
 878
 879        if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
 880                dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
 881                dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
 882                kfree(hw_fib);
 883                return 0;
 884        }
 885
 886        if (hw_fib->header.XferState == 0) {
 887                if (dev->comm_interface == AAC_COMM_MESSAGE)
 888                        kfree(hw_fib);
 889                return 0;
 890        }
 891        /*
 892         *      If we plan to do anything check the structure type first.
 893         */
 894        if (hw_fib->header.StructType != FIB_MAGIC &&
 895            hw_fib->header.StructType != FIB_MAGIC2 &&
 896            hw_fib->header.StructType != FIB_MAGIC2_64) {
 897                if (dev->comm_interface == AAC_COMM_MESSAGE)
 898                        kfree(hw_fib);
 899                return -EINVAL;
 900        }
 901        /*
 902         *      This block handles the case where the adapter had sent us a
 903         *      command and we have finished processing the command. We
 904         *      call completeFib when we are done processing the command
 905         *      and want to send a response back to the adapter. This will
 906         *      send the completed cdb to the adapter.
 907         */
 908        if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 909                if (dev->comm_interface == AAC_COMM_MESSAGE) {
 910                        kfree (hw_fib);
 911                } else {
 912                        u32 index;
 913                        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 914                        if (size) {
 915                                size += sizeof(struct aac_fibhdr);
 916                                if (size > le16_to_cpu(hw_fib->header.SenderSize))
 917                                        return -EMSGSIZE;
 918                                hw_fib->header.Size = cpu_to_le16(size);
 919                        }
 920                        q = &dev->queues->queue[AdapNormRespQueue];
 921                        spin_lock_irqsave(q->lock, qflags);
 922                        aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 923                        *(q->headers.producer) = cpu_to_le32(index + 1);
 924                        spin_unlock_irqrestore(q->lock, qflags);
 925                        if (!(nointr & (int)aac_config.irq_mod))
 926                                aac_adapter_notify(dev, AdapNormRespQueue);
 927                }
 928        } else {
 929                printk(KERN_WARNING "aac_fib_adapter_complete: "
 930                        "Unknown xferstate detected.\n");
 931                BUG();
 932        }
 933        return 0;
 934}
 935
 936/**
 937 *      aac_fib_complete        -       fib completion handler
 938 *      @fibptr: FIB to complete
 939 *
 940 *      Will do all necessary work to complete a FIB.
 941 */
 942
 943int aac_fib_complete(struct fib *fibptr)
 944{
 945        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 946
 947        if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
 948                fib_dealloc(fibptr);
 949                return 0;
 950        }
 951
 952        /*
 953         *      Check for a fib which has already been completed or with a
 954         *      status wait timeout
 955         */
 956
 957        if (hw_fib->header.XferState == 0 || fibptr->done == 2)
 958                return 0;
 959        /*
 960         *      If we plan to do anything check the structure type first.
 961         */
 962
 963        if (hw_fib->header.StructType != FIB_MAGIC &&
 964            hw_fib->header.StructType != FIB_MAGIC2 &&
 965            hw_fib->header.StructType != FIB_MAGIC2_64)
 966                return -EINVAL;
 967        /*
 968         *      This block completes a cdb which orginated on the host and we
 969         *      just need to deallocate the cdb or reinit it. At this point the
 970         *      command is complete that we had sent to the adapter and this
 971         *      cdb could be reused.
 972         */
 973
 974        if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 975                (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 976        {
 977                fib_dealloc(fibptr);
 978        }
 979        else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 980        {
 981                /*
 982                 *      This handles the case when the host has aborted the I/O
 983                 *      to the adapter because the adapter is not responding
 984                 */
 985                fib_dealloc(fibptr);
 986        } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
 987                fib_dealloc(fibptr);
 988        } else {
 989                BUG();
 990        }
 991        return 0;
 992}
 993
 994/**
 995 *      aac_printf      -       handle printf from firmware
 996 *      @dev: Adapter
 997 *      @val: Message info
 998 *
 999 *      Print a message passed to us by the controller firmware on the
1000 *      Adaptec board
1001 */
1002
1003void aac_printf(struct aac_dev *dev, u32 val)
1004{
1005        char *cp = dev->printfbuf;
1006        if (dev->printf_enabled)
1007        {
1008                int length = val & 0xffff;
1009                int level = (val >> 16) & 0xffff;
1010
1011                /*
1012                 *      The size of the printfbuf is set in port.c
1013                 *      There is no variable or define for it
1014                 */
1015                if (length > 255)
1016                        length = 255;
1017                if (cp[length] != 0)
1018                        cp[length] = 0;
1019                if (level == LOG_AAC_HIGH_ERROR)
1020                        printk(KERN_WARNING "%s:%s", dev->name, cp);
1021                else
1022                        printk(KERN_INFO "%s:%s", dev->name, cp);
1023        }
1024        memset(cp, 0, 256);
1025}
1026
1027static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1028{
1029        return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1030}
1031
1032
1033static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1034{
1035        switch (aac_aif_data(aifcmd, 1)) {
1036        case AifBuCacheDataLoss:
1037                if (aac_aif_data(aifcmd, 2))
1038                        dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1039                        aac_aif_data(aifcmd, 2));
1040                else
1041                        dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1042                break;
1043        case AifBuCacheDataRecover:
1044                if (aac_aif_data(aifcmd, 2))
1045                        dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1046                        aac_aif_data(aifcmd, 2));
1047                else
1048                        dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1049                break;
1050        }
1051}
1052
1053#define AIF_SNIFF_TIMEOUT       (500*HZ)
1054/**
1055 *      aac_handle_aif          -       Handle a message from the firmware
1056 *      @dev: Which adapter this fib is from
1057 *      @fibptr: Pointer to fibptr from adapter
1058 *
1059 *      This routine handles a driver notify fib from the adapter and
1060 *      dispatches it to the appropriate routine for handling.
1061 */
1062static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063{
1064        struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065        struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066        u32 channel, id, lun, container;
1067        struct scsi_device *device;
1068        enum {
1069                NOTHING,
1070                DELETE,
1071                ADD,
1072                CHANGE
1073        } device_config_needed = NOTHING;
1074
1075        /* Sniff for container changes */
1076
1077        if (!dev || !dev->fsa_dev)
1078                return;
1079        container = channel = id = lun = (u32)-1;
1080
1081        /*
1082         *      We have set this up to try and minimize the number of
1083         * re-configures that take place. As a result of this when
1084         * certain AIF's come in we will set a flag waiting for another
1085         * type of AIF before setting the re-config flag.
1086         */
1087        switch (le32_to_cpu(aifcmd->command)) {
1088        case AifCmdDriverNotify:
1089                switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090                case AifRawDeviceRemove:
1091                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092                        if ((container >> 28)) {
1093                                container = (u32)-1;
1094                                break;
1095                        }
1096                        channel = (container >> 24) & 0xF;
1097                        if (channel >= dev->maximum_num_channels) {
1098                                container = (u32)-1;
1099                                break;
1100                        }
1101                        id = container & 0xFFFF;
1102                        if (id >= dev->maximum_num_physicals) {
1103                                container = (u32)-1;
1104                                break;
1105                        }
1106                        lun = (container >> 16) & 0xFF;
1107                        container = (u32)-1;
1108                        channel = aac_phys_to_logical(channel);
1109                        device_config_needed = DELETE;
1110                        break;
1111
1112                /*
1113                 *      Morph or Expand complete
1114                 */
1115                case AifDenMorphComplete:
1116                case AifDenVolumeExtendComplete:
1117                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118                        if (container >= dev->maximum_num_containers)
1119                                break;
1120
1121                        /*
1122                         *      Find the scsi_device associated with the SCSI
1123                         * address. Make sure we have the right array, and if
1124                         * so set the flag to initiate a new re-config once we
1125                         * see an AifEnConfigChange AIF come through.
1126                         */
1127
1128                        if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129                                device = scsi_device_lookup(dev->scsi_host_ptr,
1130                                        CONTAINER_TO_CHANNEL(container),
1131                                        CONTAINER_TO_ID(container),
1132                                        CONTAINER_TO_LUN(container));
1133                                if (device) {
1134                                        dev->fsa_dev[container].config_needed = CHANGE;
1135                                        dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136                                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137                                        scsi_device_put(device);
1138                                }
1139                        }
1140                }
1141
1142                /*
1143                 *      If we are waiting on something and this happens to be
1144                 * that thing then set the re-configure flag.
1145                 */
1146                if (container != (u32)-1) {
1147                        if (container >= dev->maximum_num_containers)
1148                                break;
1149                        if ((dev->fsa_dev[container].config_waiting_on ==
1150                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152                                dev->fsa_dev[container].config_waiting_on = 0;
1153                } else for (container = 0;
1154                    container < dev->maximum_num_containers; ++container) {
1155                        if ((dev->fsa_dev[container].config_waiting_on ==
1156                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158                                dev->fsa_dev[container].config_waiting_on = 0;
1159                }
1160                break;
1161
1162        case AifCmdEventNotify:
1163                switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164                case AifEnBatteryEvent:
1165                        dev->cache_protected =
1166                                (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167                        break;
1168                /*
1169                 *      Add an Array.
1170                 */
1171                case AifEnAddContainer:
1172                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173                        if (container >= dev->maximum_num_containers)
1174                                break;
1175                        dev->fsa_dev[container].config_needed = ADD;
1176                        dev->fsa_dev[container].config_waiting_on =
1177                                AifEnConfigChange;
1178                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179                        break;
1180
1181                /*
1182                 *      Delete an Array.
1183                 */
1184                case AifEnDeleteContainer:
1185                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186                        if (container >= dev->maximum_num_containers)
1187                                break;
1188                        dev->fsa_dev[container].config_needed = DELETE;
1189                        dev->fsa_dev[container].config_waiting_on =
1190                                AifEnConfigChange;
1191                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192                        break;
1193
1194                /*
1195                 *      Container change detected. If we currently are not
1196                 * waiting on something else, setup to wait on a Config Change.
1197                 */
1198                case AifEnContainerChange:
1199                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200                        if (container >= dev->maximum_num_containers)
1201                                break;
1202                        if (dev->fsa_dev[container].config_waiting_on &&
1203                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204                                break;
1205                        dev->fsa_dev[container].config_needed = CHANGE;
1206                        dev->fsa_dev[container].config_waiting_on =
1207                                AifEnConfigChange;
1208                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209                        break;
1210
1211                case AifEnConfigChange:
1212                        break;
1213
1214                case AifEnAddJBOD:
1215                case AifEnDeleteJBOD:
1216                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217                        if ((container >> 28)) {
1218                                container = (u32)-1;
1219                                break;
1220                        }
1221                        channel = (container >> 24) & 0xF;
1222                        if (channel >= dev->maximum_num_channels) {
1223                                container = (u32)-1;
1224                                break;
1225                        }
1226                        id = container & 0xFFFF;
1227                        if (id >= dev->maximum_num_physicals) {
1228                                container = (u32)-1;
1229                                break;
1230                        }
1231                        lun = (container >> 16) & 0xFF;
1232                        container = (u32)-1;
1233                        channel = aac_phys_to_logical(channel);
1234                        device_config_needed =
1235                          (((__le32 *)aifcmd->data)[0] ==
1236                            cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237                        if (device_config_needed == ADD) {
1238                                device = scsi_device_lookup(dev->scsi_host_ptr,
1239                                        channel,
1240                                        id,
1241                                        lun);
1242                                if (device) {
1243                                        scsi_remove_device(device);
1244                                        scsi_device_put(device);
1245                                }
1246                        }
1247                        break;
1248
1249                case AifEnEnclosureManagement:
1250                        /*
1251                         * If in JBOD mode, automatic exposure of new
1252                         * physical target to be suppressed until configured.
1253                         */
1254                        if (dev->jbod)
1255                                break;
1256                        switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257                        case EM_DRIVE_INSERTION:
1258                        case EM_DRIVE_REMOVAL:
1259                        case EM_SES_DRIVE_INSERTION:
1260                        case EM_SES_DRIVE_REMOVAL:
1261                                container = le32_to_cpu(
1262                                        ((__le32 *)aifcmd->data)[2]);
1263                                if ((container >> 28)) {
1264                                        container = (u32)-1;
1265                                        break;
1266                                }
1267                                channel = (container >> 24) & 0xF;
1268                                if (channel >= dev->maximum_num_channels) {
1269                                        container = (u32)-1;
1270                                        break;
1271                                }
1272                                id = container & 0xFFFF;
1273                                lun = (container >> 16) & 0xFF;
1274                                container = (u32)-1;
1275                                if (id >= dev->maximum_num_physicals) {
1276                                        /* legacy dev_t ? */
1277                                        if ((0x2000 <= id) || lun || channel ||
1278                                          ((channel = (id >> 7) & 0x3F) >=
1279                                          dev->maximum_num_channels))
1280                                                break;
1281                                        lun = (id >> 4) & 7;
1282                                        id &= 0xF;
1283                                }
1284                                channel = aac_phys_to_logical(channel);
1285                                device_config_needed =
1286                                  ((((__le32 *)aifcmd->data)[3]
1287                                    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288                                    (((__le32 *)aifcmd->data)[3]
1289                                    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290                                  ADD : DELETE;
1291                                break;
1292                        }
1293                        break;
1294                case AifBuManagerEvent:
1295                        aac_handle_aif_bu(dev, aifcmd);
1296                        break;
1297                }
1298
1299                /*
1300                 *      If we are waiting on something and this happens to be
1301                 * that thing then set the re-configure flag.
1302                 */
1303                if (container != (u32)-1) {
1304                        if (container >= dev->maximum_num_containers)
1305                                break;
1306                        if ((dev->fsa_dev[container].config_waiting_on ==
1307                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309                                dev->fsa_dev[container].config_waiting_on = 0;
1310                } else for (container = 0;
1311                    container < dev->maximum_num_containers; ++container) {
1312                        if ((dev->fsa_dev[container].config_waiting_on ==
1313                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315                                dev->fsa_dev[container].config_waiting_on = 0;
1316                }
1317                break;
1318
1319        case AifCmdJobProgress:
1320                /*
1321                 *      These are job progress AIF's. When a Clear is being
1322                 * done on a container it is initially created then hidden from
1323                 * the OS. When the clear completes we don't get a config
1324                 * change so we monitor the job status complete on a clear then
1325                 * wait for a container change.
1326                 */
1327
1328                if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329                    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331                        for (container = 0;
1332                            container < dev->maximum_num_containers;
1333                            ++container) {
1334                                /*
1335                                 * Stomp on all config sequencing for all
1336                                 * containers?
1337                                 */
1338                                dev->fsa_dev[container].config_waiting_on =
1339                                        AifEnContainerChange;
1340                                dev->fsa_dev[container].config_needed = ADD;
1341                                dev->fsa_dev[container].config_waiting_stamp =
1342                                        jiffies;
1343                        }
1344                }
1345                if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346                    ((__le32 *)aifcmd->data)[6] == 0 &&
1347                    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348                        for (container = 0;
1349                            container < dev->maximum_num_containers;
1350                            ++container) {
1351                                /*
1352                                 * Stomp on all config sequencing for all
1353                                 * containers?
1354                                 */
1355                                dev->fsa_dev[container].config_waiting_on =
1356                                        AifEnContainerChange;
1357                                dev->fsa_dev[container].config_needed = DELETE;
1358                                dev->fsa_dev[container].config_waiting_stamp =
1359                                        jiffies;
1360                        }
1361                }
1362                break;
1363        }
1364
1365        container = 0;
1366retry_next:
1367        if (device_config_needed == NOTHING) {
1368                for (; container < dev->maximum_num_containers; ++container) {
1369                        if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370                            (dev->fsa_dev[container].config_needed != NOTHING) &&
1371                            time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372                                device_config_needed =
1373                                        dev->fsa_dev[container].config_needed;
1374                                dev->fsa_dev[container].config_needed = NOTHING;
1375                                channel = CONTAINER_TO_CHANNEL(container);
1376                                id = CONTAINER_TO_ID(container);
1377                                lun = CONTAINER_TO_LUN(container);
1378                                break;
1379                        }
1380                }
1381        }
1382        if (device_config_needed == NOTHING)
1383                return;
1384
1385        /*
1386         *      If we decided that a re-configuration needs to be done,
1387         * schedule it here on the way out the door, please close the door
1388         * behind you.
1389         */
1390
1391        /*
1392         *      Find the scsi_device associated with the SCSI address,
1393         * and mark it as changed, invalidating the cache. This deals
1394         * with changes to existing device IDs.
1395         */
1396
1397        if (!dev || !dev->scsi_host_ptr)
1398                return;
1399        /*
1400         * force reload of disk info via aac_probe_container
1401         */
1402        if ((channel == CONTAINER_CHANNEL) &&
1403          (device_config_needed != NOTHING)) {
1404                if (dev->fsa_dev[container].valid == 1)
1405                        dev->fsa_dev[container].valid = 2;
1406                aac_probe_container(dev, container);
1407        }
1408        device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409        if (device) {
1410                switch (device_config_needed) {
1411                case DELETE:
1412#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413                        scsi_remove_device(device);
1414#else
1415                        if (scsi_device_online(device)) {
1416                                scsi_device_set_state(device, SDEV_OFFLINE);
1417                                sdev_printk(KERN_INFO, device,
1418                                        "Device offlined - %s\n",
1419                                        (channel == CONTAINER_CHANNEL) ?
1420                                                "array deleted" :
1421                                                "enclosure services event");
1422                        }
1423#endif
1424                        break;
1425                case ADD:
1426                        if (!scsi_device_online(device)) {
1427                                sdev_printk(KERN_INFO, device,
1428                                        "Device online - %s\n",
1429                                        (channel == CONTAINER_CHANNEL) ?
1430                                                "array created" :
1431                                                "enclosure services event");
1432                                scsi_device_set_state(device, SDEV_RUNNING);
1433                        }
1434                        fallthrough;
1435                case CHANGE:
1436                        if ((channel == CONTAINER_CHANNEL)
1437                         && (!dev->fsa_dev[container].valid)) {
1438#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439                                scsi_remove_device(device);
1440#else
1441                                if (!scsi_device_online(device))
1442                                        break;
1443                                scsi_device_set_state(device, SDEV_OFFLINE);
1444                                sdev_printk(KERN_INFO, device,
1445                                        "Device offlined - %s\n",
1446                                        "array failed");
1447#endif
1448                                break;
1449                        }
1450                        scsi_rescan_device(&device->sdev_gendev);
1451                        break;
1452
1453                default:
1454                        break;
1455                }
1456                scsi_device_put(device);
1457                device_config_needed = NOTHING;
1458        }
1459        if (device_config_needed == ADD)
1460                scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1461        if (channel == CONTAINER_CHANNEL) {
1462                container++;
1463                device_config_needed = NOTHING;
1464                goto retry_next;
1465        }
1466}
1467
1468static void aac_schedule_bus_scan(struct aac_dev *aac)
1469{
1470        if (aac->sa_firmware)
1471                aac_schedule_safw_scan_worker(aac);
1472        else
1473                aac_schedule_src_reinit_aif_worker(aac);
1474}
1475
1476static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1477{
1478        int index, quirks;
1479        int retval;
1480        struct Scsi_Host *host = aac->scsi_host_ptr;
1481        int jafo = 0;
1482        int bled;
1483        u64 dmamask;
1484        int num_of_fibs = 0;
1485
1486        /*
1487         * Assumptions:
1488         *      - host is locked, unless called by the aacraid thread.
1489         *        (a matter of convenience, due to legacy issues surrounding
1490         *        eh_host_adapter_reset).
1491         *      - in_reset is asserted, so no new i/o is getting to the
1492         *        card.
1493         *      - The card is dead, or will be very shortly ;-/ so no new
1494         *        commands are completing in the interrupt service.
1495         */
1496        aac_adapter_disable_int(aac);
1497        if (aac->thread && aac->thread->pid != current->pid) {
1498                spin_unlock_irq(host->host_lock);
1499                kthread_stop(aac->thread);
1500                aac->thread = NULL;
1501                jafo = 1;
1502        }
1503
1504        /*
1505         *      If a positive health, means in a known DEAD PANIC
1506         * state and the adapter could be reset to `try again'.
1507         */
1508        bled = forced ? 0 : aac_adapter_check_health(aac);
1509        retval = aac_adapter_restart(aac, bled, reset_type);
1510
1511        if (retval)
1512                goto out;
1513
1514        /*
1515         *      Loop through the fibs, close the synchronous FIBS
1516         */
1517        retval = 1;
1518        num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1519        for (index = 0; index <  num_of_fibs; index++) {
1520
1521                struct fib *fib = &aac->fibs[index];
1522                __le32 XferState = fib->hw_fib_va->header.XferState;
1523                bool is_response_expected = false;
1524
1525                if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1526                   (XferState & cpu_to_le32(ResponseExpected)))
1527                        is_response_expected = true;
1528
1529                if (is_response_expected
1530                  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1531                        unsigned long flagv;
1532                        spin_lock_irqsave(&fib->event_lock, flagv);
1533                        complete(&fib->event_wait);
1534                        spin_unlock_irqrestore(&fib->event_lock, flagv);
1535                        schedule();
1536                        retval = 0;
1537                }
1538        }
1539        /* Give some extra time for ioctls to complete. */
1540        if (retval == 0)
1541                ssleep(2);
1542        index = aac->cardtype;
1543
1544        /*
1545         * Re-initialize the adapter, first free resources, then carefully
1546         * apply the initialization sequence to come back again. Only risk
1547         * is a change in Firmware dropping cache, it is assumed the caller
1548         * will ensure that i/o is queisced and the card is flushed in that
1549         * case.
1550         */
1551        aac_free_irq(aac);
1552        aac_fib_map_free(aac);
1553        dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1554                          aac->comm_phys);
1555        aac_adapter_ioremap(aac, 0);
1556        aac->comm_addr = NULL;
1557        aac->comm_phys = 0;
1558        kfree(aac->queues);
1559        aac->queues = NULL;
1560        kfree(aac->fsa_dev);
1561        aac->fsa_dev = NULL;
1562
1563        dmamask = DMA_BIT_MASK(32);
1564        quirks = aac_get_driver_ident(index)->quirks;
1565        if (quirks & AAC_QUIRK_31BIT)
1566                retval = dma_set_mask(&aac->pdev->dev, dmamask);
1567        else if (!(quirks & AAC_QUIRK_SRC))
1568                retval = dma_set_mask(&aac->pdev->dev, dmamask);
1569        else
1570                retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1571
1572        if (quirks & AAC_QUIRK_31BIT && !retval) {
1573                dmamask = DMA_BIT_MASK(31);
1574                retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1575        }
1576
1577        if (retval)
1578                goto out;
1579
1580        if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1581                goto out;
1582
1583        if (jafo) {
1584                aac->thread = kthread_run(aac_command_thread, aac, "%s",
1585                                          aac->name);
1586                if (IS_ERR(aac->thread)) {
1587                        retval = PTR_ERR(aac->thread);
1588                        aac->thread = NULL;
1589                        goto out;
1590                }
1591        }
1592        (void)aac_get_adapter_info(aac);
1593        if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1594                host->sg_tablesize = 34;
1595                host->max_sectors = (host->sg_tablesize * 8) + 112;
1596        }
1597        if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1598                host->sg_tablesize = 17;
1599                host->max_sectors = (host->sg_tablesize * 8) + 112;
1600        }
1601        aac_get_config_status(aac, 1);
1602        aac_get_containers(aac);
1603        /*
1604         * This is where the assumption that the Adapter is quiesced
1605         * is important.
1606         */
1607        scsi_host_complete_all_commands(host, DID_RESET);
1608
1609        retval = 0;
1610out:
1611        aac->in_reset = 0;
1612
1613        /*
1614         * Issue bus rescan to catch any configuration that might have
1615         * occurred
1616         */
1617        if (!retval && !is_kdump_kernel()) {
1618                dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1619                aac_schedule_bus_scan(aac);
1620        }
1621
1622        if (jafo) {
1623                spin_lock_irq(host->host_lock);
1624        }
1625        return retval;
1626}
1627
1628int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1629{
1630        unsigned long flagv = 0;
1631        int retval, unblock_retval;
1632        struct Scsi_Host *host = aac->scsi_host_ptr;
1633        int bled;
1634
1635        if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1636                return -EBUSY;
1637
1638        if (aac->in_reset) {
1639                spin_unlock_irqrestore(&aac->fib_lock, flagv);
1640                return -EBUSY;
1641        }
1642        aac->in_reset = 1;
1643        spin_unlock_irqrestore(&aac->fib_lock, flagv);
1644
1645        /*
1646         * Wait for all commands to complete to this specific
1647         * target (block maximum 60 seconds). Although not necessary,
1648         * it does make us a good storage citizen.
1649         */
1650        scsi_host_block(host);
1651
1652        /* Quiesce build, flush cache, write through mode */
1653        if (forced < 2)
1654                aac_send_shutdown(aac);
1655        spin_lock_irqsave(host->host_lock, flagv);
1656        bled = forced ? forced :
1657                        (aac_check_reset != 0 && aac_check_reset != 1);
1658        retval = _aac_reset_adapter(aac, bled, reset_type);
1659        spin_unlock_irqrestore(host->host_lock, flagv);
1660
1661        unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1662        if (!retval)
1663                retval = unblock_retval;
1664        if ((forced < 2) && (retval == -ENODEV)) {
1665                /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1666                struct fib * fibctx = aac_fib_alloc(aac);
1667                if (fibctx) {
1668                        struct aac_pause *cmd;
1669                        int status;
1670
1671                        aac_fib_init(fibctx);
1672
1673                        cmd = (struct aac_pause *) fib_data(fibctx);
1674
1675                        cmd->command = cpu_to_le32(VM_ContainerConfig);
1676                        cmd->type = cpu_to_le32(CT_PAUSE_IO);
1677                        cmd->timeout = cpu_to_le32(1);
1678                        cmd->min = cpu_to_le32(1);
1679                        cmd->noRescan = cpu_to_le32(1);
1680                        cmd->count = cpu_to_le32(0);
1681
1682                        status = aac_fib_send(ContainerCommand,
1683                          fibctx,
1684                          sizeof(struct aac_pause),
1685                          FsaNormal,
1686                          -2 /* Timeout silently */, 1,
1687                          NULL, NULL);
1688
1689                        if (status >= 0)
1690                                aac_fib_complete(fibctx);
1691                        /* FIB should be freed only after getting
1692                         * the response from the F/W */
1693                        if (status != -ERESTARTSYS)
1694                                aac_fib_free(fibctx);
1695                }
1696        }
1697
1698        return retval;
1699}
1700
1701int aac_check_health(struct aac_dev * aac)
1702{
1703        int BlinkLED;
1704        unsigned long time_now, flagv = 0;
1705        struct list_head * entry;
1706
1707        /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1708        if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1709                return 0;
1710
1711        if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1712                spin_unlock_irqrestore(&aac->fib_lock, flagv);
1713                return 0; /* OK */
1714        }
1715
1716        aac->in_reset = 1;
1717
1718        /* Fake up an AIF:
1719         *      aac_aifcmd.command = AifCmdEventNotify = 1
1720         *      aac_aifcmd.seqnum = 0xFFFFFFFF
1721         *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1722         *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1723         *      aac.aifcmd.data[2] = AifHighPriority = 3
1724         *      aac.aifcmd.data[3] = BlinkLED
1725         */
1726
1727        time_now = jiffies/HZ;
1728        entry = aac->fib_list.next;
1729
1730        /*
1731         * For each Context that is on the
1732         * fibctxList, make a copy of the
1733         * fib, and then set the event to wake up the
1734         * thread that is waiting for it.
1735         */
1736        while (entry != &aac->fib_list) {
1737                /*
1738                 * Extract the fibctx
1739                 */
1740                struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1741                struct hw_fib * hw_fib;
1742                struct fib * fib;
1743                /*
1744                 * Check if the queue is getting
1745                 * backlogged
1746                 */
1747                if (fibctx->count > 20) {
1748                        /*
1749                         * It's *not* jiffies folks,
1750                         * but jiffies / HZ, so do not
1751                         * panic ...
1752                         */
1753                        u32 time_last = fibctx->jiffies;
1754                        /*
1755                         * Has it been > 2 minutes
1756                         * since the last read off
1757                         * the queue?
1758                         */
1759                        if ((time_now - time_last) > aif_timeout) {
1760                                entry = entry->next;
1761                                aac_close_fib_context(aac, fibctx);
1762                                continue;
1763                        }
1764                }
1765                /*
1766                 * Warning: no sleep allowed while
1767                 * holding spinlock
1768                 */
1769                hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1770                fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1771                if (fib && hw_fib) {
1772                        struct aac_aifcmd * aif;
1773
1774                        fib->hw_fib_va = hw_fib;
1775                        fib->dev = aac;
1776                        aac_fib_init(fib);
1777                        fib->type = FSAFS_NTC_FIB_CONTEXT;
1778                        fib->size = sizeof (struct fib);
1779                        fib->data = hw_fib->data;
1780                        aif = (struct aac_aifcmd *)hw_fib->data;
1781                        aif->command = cpu_to_le32(AifCmdEventNotify);
1782                        aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1783                        ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1784                        ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1785                        ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1786                        ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1787
1788                        /*
1789                         * Put the FIB onto the
1790                         * fibctx's fibs
1791                         */
1792                        list_add_tail(&fib->fiblink, &fibctx->fib_list);
1793                        fibctx->count++;
1794                        /*
1795                         * Set the event to wake up the
1796                         * thread that will waiting.
1797                         */
1798                        complete(&fibctx->completion);
1799                } else {
1800                        printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1801                        kfree(fib);
1802                        kfree(hw_fib);
1803                }
1804                entry = entry->next;
1805        }
1806
1807        spin_unlock_irqrestore(&aac->fib_lock, flagv);
1808
1809        if (BlinkLED < 0) {
1810                printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1811                                aac->name, BlinkLED);
1812                goto out;
1813        }
1814
1815        printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1816
1817out:
1818        aac->in_reset = 0;
1819        return BlinkLED;
1820}
1821
1822static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1823{
1824        return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1825}
1826
1827static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1828                                                                int bus,
1829                                                                int target)
1830{
1831        if (bus != CONTAINER_CHANNEL)
1832                bus = aac_phys_to_logical(bus);
1833
1834        return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1835}
1836
1837static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1838{
1839        if (bus != CONTAINER_CHANNEL)
1840                bus = aac_phys_to_logical(bus);
1841
1842        return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1843}
1844
1845static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1846{
1847        if (sdev)
1848                scsi_device_put(sdev);
1849}
1850
1851static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1852{
1853        struct scsi_device *sdev;
1854
1855        sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1856        scsi_remove_device(sdev);
1857        aac_put_safw_scsi_device(sdev);
1858}
1859
1860static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1861        int bus, int target)
1862{
1863        return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1864}
1865
1866static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1867{
1868        if (is_safw_raid_volume(dev, bus, target))
1869                return dev->fsa_dev[target].valid;
1870        else
1871                return aac_is_safw_scan_count_equal(dev, bus, target);
1872}
1873
1874static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1875{
1876        int is_exposed = 0;
1877        struct scsi_device *sdev;
1878
1879        sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1880        if (sdev)
1881                is_exposed = 1;
1882        aac_put_safw_scsi_device(sdev);
1883
1884        return is_exposed;
1885}
1886
1887static int aac_update_safw_host_devices(struct aac_dev *dev)
1888{
1889        int i;
1890        int bus;
1891        int target;
1892        int is_exposed = 0;
1893        int rcode = 0;
1894
1895        rcode = aac_setup_safw_adapter(dev);
1896        if (unlikely(rcode < 0)) {
1897                goto out;
1898        }
1899
1900        for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1901
1902                bus = get_bus_number(i);
1903                target = get_target_number(i);
1904
1905                is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1906
1907                if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1908                        aac_add_safw_device(dev, bus, target);
1909                else if (!aac_is_safw_target_valid(dev, bus, target) &&
1910                                                                is_exposed)
1911                        aac_remove_safw_device(dev, bus, target);
1912        }
1913out:
1914        return rcode;
1915}
1916
1917static int aac_scan_safw_host(struct aac_dev *dev)
1918{
1919        int rcode = 0;
1920
1921        rcode = aac_update_safw_host_devices(dev);
1922        if (rcode)
1923                aac_schedule_safw_scan_worker(dev);
1924
1925        return rcode;
1926}
1927
1928int aac_scan_host(struct aac_dev *dev)
1929{
1930        int rcode = 0;
1931
1932        mutex_lock(&dev->scan_mutex);
1933        if (dev->sa_firmware)
1934                rcode = aac_scan_safw_host(dev);
1935        else
1936                scsi_scan_host(dev->scsi_host_ptr);
1937        mutex_unlock(&dev->scan_mutex);
1938
1939        return rcode;
1940}
1941
1942void aac_src_reinit_aif_worker(struct work_struct *work)
1943{
1944        struct aac_dev *dev = container_of(to_delayed_work(work),
1945                                struct aac_dev, src_reinit_aif_worker);
1946
1947        wait_event(dev->scsi_host_ptr->host_wait,
1948                        !scsi_host_in_recovery(dev->scsi_host_ptr));
1949        aac_reinit_aif(dev, dev->cardtype);
1950}
1951
1952/**
1953 *      aac_handle_sa_aif -     Handle a message from the firmware
1954 *      @dev: Which adapter this fib is from
1955 *      @fibptr: Pointer to fibptr from adapter
1956 *
1957 *      This routine handles a driver notify fib from the adapter and
1958 *      dispatches it to the appropriate routine for handling.
1959 */
1960static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1961{
1962        int i;
1963        u32 events = 0;
1964
1965        if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1966                events = SA_AIF_HOTPLUG;
1967        else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1968                events = SA_AIF_HARDWARE;
1969        else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1970                events = SA_AIF_PDEV_CHANGE;
1971        else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1972                events = SA_AIF_LDEV_CHANGE;
1973        else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1974                events = SA_AIF_BPSTAT_CHANGE;
1975        else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1976                events = SA_AIF_BPCFG_CHANGE;
1977
1978        switch (events) {
1979        case SA_AIF_HOTPLUG:
1980        case SA_AIF_HARDWARE:
1981        case SA_AIF_PDEV_CHANGE:
1982        case SA_AIF_LDEV_CHANGE:
1983        case SA_AIF_BPCFG_CHANGE:
1984
1985                aac_scan_host(dev);
1986
1987                break;
1988
1989        case SA_AIF_BPSTAT_CHANGE:
1990                /* currently do nothing */
1991                break;
1992        }
1993
1994        for (i = 1; i <= 10; ++i) {
1995                events = src_readl(dev, MUnit.IDR);
1996                if (events & (1<<23)) {
1997                        pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1998                                i, 10);
1999                        ssleep(1);
2000                }
2001        }
2002}
2003
2004static int get_fib_count(struct aac_dev *dev)
2005{
2006        unsigned int num = 0;
2007        struct list_head *entry;
2008        unsigned long flagv;
2009
2010        /*
2011         * Warning: no sleep allowed while
2012         * holding spinlock. We take the estimate
2013         * and pre-allocate a set of fibs outside the
2014         * lock.
2015         */
2016        num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2017                        / sizeof(struct hw_fib); /* some extra */
2018        spin_lock_irqsave(&dev->fib_lock, flagv);
2019        entry = dev->fib_list.next;
2020        while (entry != &dev->fib_list) {
2021                entry = entry->next;
2022                ++num;
2023        }
2024        spin_unlock_irqrestore(&dev->fib_lock, flagv);
2025
2026        return num;
2027}
2028
2029static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2030                                                struct fib **fib_pool,
2031                                                unsigned int num)
2032{
2033        struct hw_fib **hw_fib_p;
2034        struct fib **fib_p;
2035
2036        hw_fib_p = hw_fib_pool;
2037        fib_p = fib_pool;
2038        while (hw_fib_p < &hw_fib_pool[num]) {
2039                *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2040                if (!(*(hw_fib_p++))) {
2041                        --hw_fib_p;
2042                        break;
2043                }
2044
2045                *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2046                if (!(*(fib_p++))) {
2047                        kfree(*(--hw_fib_p));
2048                        break;
2049                }
2050        }
2051
2052        /*
2053         * Get the actual number of allocated fibs
2054         */
2055        num = hw_fib_p - hw_fib_pool;
2056        return num;
2057}
2058
2059static void wakeup_fibctx_threads(struct aac_dev *dev,
2060                                                struct hw_fib **hw_fib_pool,
2061                                                struct fib **fib_pool,
2062                                                struct fib *fib,
2063                                                struct hw_fib *hw_fib,
2064                                                unsigned int num)
2065{
2066        unsigned long flagv;
2067        struct list_head *entry;
2068        struct hw_fib **hw_fib_p;
2069        struct fib **fib_p;
2070        u32 time_now, time_last;
2071        struct hw_fib *hw_newfib;
2072        struct fib *newfib;
2073        struct aac_fib_context *fibctx;
2074
2075        time_now = jiffies/HZ;
2076        spin_lock_irqsave(&dev->fib_lock, flagv);
2077        entry = dev->fib_list.next;
2078        /*
2079         * For each Context that is on the
2080         * fibctxList, make a copy of the
2081         * fib, and then set the event to wake up the
2082         * thread that is waiting for it.
2083         */
2084
2085        hw_fib_p = hw_fib_pool;
2086        fib_p = fib_pool;
2087        while (entry != &dev->fib_list) {
2088                /*
2089                 * Extract the fibctx
2090                 */
2091                fibctx = list_entry(entry, struct aac_fib_context,
2092                                next);
2093                /*
2094                 * Check if the queue is getting
2095                 * backlogged
2096                 */
2097                if (fibctx->count > 20) {
2098                        /*
2099                         * It's *not* jiffies folks,
2100                         * but jiffies / HZ so do not
2101                         * panic ...
2102                         */
2103                        time_last = fibctx->jiffies;
2104                        /*
2105                         * Has it been > 2 minutes
2106                         * since the last read off
2107                         * the queue?
2108                         */
2109                        if ((time_now - time_last) > aif_timeout) {
2110                                entry = entry->next;
2111                                aac_close_fib_context(dev, fibctx);
2112                                continue;
2113                        }
2114                }
2115                /*
2116                 * Warning: no sleep allowed while
2117                 * holding spinlock
2118                 */
2119                if (hw_fib_p >= &hw_fib_pool[num]) {
2120                        pr_warn("aifd: didn't allocate NewFib\n");
2121                        entry = entry->next;
2122                        continue;
2123                }
2124
2125                hw_newfib = *hw_fib_p;
2126                *(hw_fib_p++) = NULL;
2127                newfib = *fib_p;
2128                *(fib_p++) = NULL;
2129                /*
2130                 * Make the copy of the FIB
2131                 */
2132                memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2133                memcpy(newfib, fib, sizeof(struct fib));
2134                newfib->hw_fib_va = hw_newfib;
2135                /*
2136                 * Put the FIB onto the
2137                 * fibctx's fibs
2138                 */
2139                list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2140                fibctx->count++;
2141                /*
2142                 * Set the event to wake up the
2143                 * thread that is waiting.
2144                 */
2145                complete(&fibctx->completion);
2146
2147                entry = entry->next;
2148        }
2149        /*
2150         *      Set the status of this FIB
2151         */
2152        *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2153        aac_fib_adapter_complete(fib, sizeof(u32));
2154        spin_unlock_irqrestore(&dev->fib_lock, flagv);
2155
2156}
2157
2158static void aac_process_events(struct aac_dev *dev)
2159{
2160        struct hw_fib *hw_fib;
2161        struct fib *fib;
2162        unsigned long flags;
2163        spinlock_t *t_lock;
2164
2165        t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2166        spin_lock_irqsave(t_lock, flags);
2167
2168        while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2169                struct list_head *entry;
2170                struct aac_aifcmd *aifcmd;
2171                unsigned int  num;
2172                struct hw_fib **hw_fib_pool, **hw_fib_p;
2173                struct fib **fib_pool, **fib_p;
2174
2175                set_current_state(TASK_RUNNING);
2176
2177                entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2178                list_del(entry);
2179
2180                t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2181                spin_unlock_irqrestore(t_lock, flags);
2182
2183                fib = list_entry(entry, struct fib, fiblink);
2184                hw_fib = fib->hw_fib_va;
2185                if (dev->sa_firmware) {
2186                        /* Thor AIF */
2187                        aac_handle_sa_aif(dev, fib);
2188                        aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2189                        goto free_fib;
2190                }
2191                /*
2192                 *      We will process the FIB here or pass it to a
2193                 *      worker thread that is TBD. We Really can't
2194                 *      do anything at this point since we don't have
2195                 *      anything defined for this thread to do.
2196                 */
2197                memset(fib, 0, sizeof(struct fib));
2198                fib->type = FSAFS_NTC_FIB_CONTEXT;
2199                fib->size = sizeof(struct fib);
2200                fib->hw_fib_va = hw_fib;
2201                fib->data = hw_fib->data;
2202                fib->dev = dev;
2203                /*
2204                 *      We only handle AifRequest fibs from the adapter.
2205                 */
2206
2207                aifcmd = (struct aac_aifcmd *) hw_fib->data;
2208                if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2209                        /* Handle Driver Notify Events */
2210                        aac_handle_aif(dev, fib);
2211                        *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2212                        aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2213                        goto free_fib;
2214                }
2215                /*
2216                 * The u32 here is important and intended. We are using
2217                 * 32bit wrapping time to fit the adapter field
2218                 */
2219
2220                /* Sniff events */
2221                if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2222                 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2223                        aac_handle_aif(dev, fib);
2224                }
2225
2226                /*
2227                 * get number of fibs to process
2228                 */
2229                num = get_fib_count(dev);
2230                if (!num)
2231                        goto free_fib;
2232
2233                hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2234                                                GFP_KERNEL);
2235                if (!hw_fib_pool)
2236                        goto free_fib;
2237
2238                fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2239                if (!fib_pool)
2240                        goto free_hw_fib_pool;
2241
2242                /*
2243                 * Fill up fib pointer pools with actual fibs
2244                 * and hw_fibs
2245                 */
2246                num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2247                if (!num)
2248                        goto free_mem;
2249
2250                /*
2251                 * wakeup the thread that is waiting for
2252                 * the response from fw (ioctl)
2253                 */
2254                wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2255                                                            fib, hw_fib, num);
2256
2257free_mem:
2258                /* Free up the remaining resources */
2259                hw_fib_p = hw_fib_pool;
2260                fib_p = fib_pool;
2261                while (hw_fib_p < &hw_fib_pool[num]) {
2262                        kfree(*hw_fib_p);
2263                        kfree(*fib_p);
2264                        ++fib_p;
2265                        ++hw_fib_p;
2266                }
2267                kfree(fib_pool);
2268free_hw_fib_pool:
2269                kfree(hw_fib_pool);
2270free_fib:
2271                kfree(fib);
2272                t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2273                spin_lock_irqsave(t_lock, flags);
2274        }
2275        /*
2276         *      There are no more AIF's
2277         */
2278        t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2279        spin_unlock_irqrestore(t_lock, flags);
2280}
2281
2282static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2283                                                        u32 datasize)
2284{
2285        struct aac_srb *srbcmd;
2286        struct sgmap64 *sg64;
2287        dma_addr_t addr;
2288        char *dma_buf;
2289        struct fib *fibptr;
2290        int ret = -ENOMEM;
2291        u32 vbus, vid;
2292
2293        fibptr = aac_fib_alloc(dev);
2294        if (!fibptr)
2295                goto out;
2296
2297        dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2298                                     GFP_KERNEL);
2299        if (!dma_buf)
2300                goto fib_free_out;
2301
2302        aac_fib_init(fibptr);
2303
2304        vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2305        vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2306
2307        srbcmd = (struct aac_srb *)fib_data(fibptr);
2308
2309        srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2310        srbcmd->channel = cpu_to_le32(vbus);
2311        srbcmd->id = cpu_to_le32(vid);
2312        srbcmd->lun = 0;
2313        srbcmd->flags = cpu_to_le32(SRB_DataOut);
2314        srbcmd->timeout = cpu_to_le32(10);
2315        srbcmd->retry_limit = 0;
2316        srbcmd->cdb_size = cpu_to_le32(12);
2317        srbcmd->count = cpu_to_le32(datasize);
2318
2319        memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2320        srbcmd->cdb[0] = BMIC_OUT;
2321        srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2322        memcpy(dma_buf, (char *)wellness_str, datasize);
2323
2324        sg64 = (struct sgmap64 *)&srbcmd->sg;
2325        sg64->count = cpu_to_le32(1);
2326        sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2327        sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2328        sg64->sg[0].count = cpu_to_le32(datasize);
2329
2330        ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2331                                FsaNormal, 1, 1, NULL, NULL);
2332
2333        dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2334
2335        /*
2336         * Do not set XferState to zero unless
2337         * receives a response from F/W
2338         */
2339        if (ret >= 0)
2340                aac_fib_complete(fibptr);
2341
2342        /*
2343         * FIB should be freed only after
2344         * getting the response from the F/W
2345         */
2346        if (ret != -ERESTARTSYS)
2347                goto fib_free_out;
2348
2349out:
2350        return ret;
2351fib_free_out:
2352        aac_fib_free(fibptr);
2353        goto out;
2354}
2355
2356static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2357{
2358        struct tm cur_tm;
2359        char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2360        u32 datasize = sizeof(wellness_str);
2361        time64_t local_time;
2362        int ret = -ENODEV;
2363
2364        if (!dev->sa_firmware)
2365                goto out;
2366
2367        local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2368        time64_to_tm(local_time, 0, &cur_tm);
2369        cur_tm.tm_mon += 1;
2370        cur_tm.tm_year += 1900;
2371        wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2372        wellness_str[9] = bin2bcd(cur_tm.tm_min);
2373        wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2374        wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2375        wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2376        wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2377        wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2378
2379        ret = aac_send_wellness_command(dev, wellness_str, datasize);
2380
2381out:
2382        return ret;
2383}
2384
2385static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2386{
2387        int ret = -ENOMEM;
2388        struct fib *fibptr;
2389        __le32 *info;
2390
2391        fibptr = aac_fib_alloc(dev);
2392        if (!fibptr)
2393                goto out;
2394
2395        aac_fib_init(fibptr);
2396        info = (__le32 *)fib_data(fibptr);
2397        *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2398        ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2399                                        1, 1, NULL, NULL);
2400
2401        /*
2402         * Do not set XferState to zero unless
2403         * receives a response from F/W
2404         */
2405        if (ret >= 0)
2406                aac_fib_complete(fibptr);
2407
2408        /*
2409         * FIB should be freed only after
2410         * getting the response from the F/W
2411         */
2412        if (ret != -ERESTARTSYS)
2413                aac_fib_free(fibptr);
2414
2415out:
2416        return ret;
2417}
2418
2419/**
2420 *      aac_command_thread      -       command processing thread
2421 *      @data: Adapter to monitor
2422 *
2423 *      Waits on the commandready event in it's queue. When the event gets set
2424 *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2425 *      until the queue is empty. When the queue is empty it will wait for
2426 *      more FIBs.
2427 */
2428
2429int aac_command_thread(void *data)
2430{
2431        struct aac_dev *dev = data;
2432        DECLARE_WAITQUEUE(wait, current);
2433        unsigned long next_jiffies = jiffies + HZ;
2434        unsigned long next_check_jiffies = next_jiffies;
2435        long difference = HZ;
2436
2437        /*
2438         *      We can only have one thread per adapter for AIF's.
2439         */
2440        if (dev->aif_thread)
2441                return -EINVAL;
2442
2443        /*
2444         *      Let the DPC know it has a place to send the AIF's to.
2445         */
2446        dev->aif_thread = 1;
2447        add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2448        set_current_state(TASK_INTERRUPTIBLE);
2449        dprintk ((KERN_INFO "aac_command_thread start\n"));
2450        while (1) {
2451
2452                aac_process_events(dev);
2453
2454                /*
2455                 *      Background activity
2456                 */
2457                if ((time_before(next_check_jiffies,next_jiffies))
2458                 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2459                        next_check_jiffies = next_jiffies;
2460                        if (aac_adapter_check_health(dev) == 0) {
2461                                difference = ((long)(unsigned)check_interval)
2462                                           * HZ;
2463                                next_check_jiffies = jiffies + difference;
2464                        } else if (!dev->queues)
2465                                break;
2466                }
2467                if (!time_before(next_check_jiffies,next_jiffies)
2468                 && ((difference = next_jiffies - jiffies) <= 0)) {
2469                        struct timespec64 now;
2470                        int ret;
2471
2472                        /* Don't even try to talk to adapter if its sick */
2473                        ret = aac_adapter_check_health(dev);
2474                        if (ret || !dev->queues)
2475                                break;
2476                        next_check_jiffies = jiffies
2477                                           + ((long)(unsigned)check_interval)
2478                                           * HZ;
2479                        ktime_get_real_ts64(&now);
2480
2481                        /* Synchronize our watches */
2482                        if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2483                         && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2484                                difference = HZ + HZ / 2 -
2485                                             now.tv_nsec / (NSEC_PER_SEC / HZ);
2486                        else {
2487                                if (now.tv_nsec > NSEC_PER_SEC / 2)
2488                                        ++now.tv_sec;
2489
2490                                if (dev->sa_firmware)
2491                                        ret =
2492                                        aac_send_safw_hostttime(dev, &now);
2493                                else
2494                                        ret = aac_send_hosttime(dev, &now);
2495
2496                                difference = (long)(unsigned)update_interval*HZ;
2497                        }
2498                        next_jiffies = jiffies + difference;
2499                        if (time_before(next_check_jiffies,next_jiffies))
2500                                difference = next_check_jiffies - jiffies;
2501                }
2502                if (difference <= 0)
2503                        difference = 1;
2504                set_current_state(TASK_INTERRUPTIBLE);
2505
2506                if (kthread_should_stop())
2507                        break;
2508
2509                /*
2510                 * we probably want usleep_range() here instead of the
2511                 * jiffies computation
2512                 */
2513                schedule_timeout(difference);
2514
2515                if (kthread_should_stop())
2516                        break;
2517        }
2518        if (dev->queues)
2519                remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2520        dev->aif_thread = 0;
2521        return 0;
2522}
2523
2524int aac_acquire_irq(struct aac_dev *dev)
2525{
2526        int i;
2527        int j;
2528        int ret = 0;
2529
2530        if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2531                for (i = 0; i < dev->max_msix; i++) {
2532                        dev->aac_msix[i].vector_no = i;
2533                        dev->aac_msix[i].dev = dev;
2534                        if (request_irq(pci_irq_vector(dev->pdev, i),
2535                                        dev->a_ops.adapter_intr,
2536                                        0, "aacraid", &(dev->aac_msix[i]))) {
2537                                printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2538                                                dev->name, dev->id, i);
2539                                for (j = 0 ; j < i ; j++)
2540                                        free_irq(pci_irq_vector(dev->pdev, j),
2541                                                 &(dev->aac_msix[j]));
2542                                pci_disable_msix(dev->pdev);
2543                                ret = -1;
2544                        }
2545                }
2546        } else {
2547                dev->aac_msix[0].vector_no = 0;
2548                dev->aac_msix[0].dev = dev;
2549
2550                if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2551                        IRQF_SHARED, "aacraid",
2552                        &(dev->aac_msix[0])) < 0) {
2553                        if (dev->msi)
2554                                pci_disable_msi(dev->pdev);
2555                        printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2556                                        dev->name, dev->id);
2557                        ret = -1;
2558                }
2559        }
2560        return ret;
2561}
2562
2563void aac_free_irq(struct aac_dev *dev)
2564{
2565        int i;
2566
2567        if (aac_is_src(dev)) {
2568                if (dev->max_msix > 1) {
2569                        for (i = 0; i < dev->max_msix; i++)
2570                                free_irq(pci_irq_vector(dev->pdev, i),
2571                                         &(dev->aac_msix[i]));
2572                } else {
2573                        free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2574                }
2575        } else {
2576                free_irq(dev->pdev->irq, dev);
2577        }
2578        if (dev->msi)
2579                pci_disable_msi(dev->pdev);
2580        else if (dev->max_msix > 1)
2581                pci_disable_msix(dev->pdev);
2582}
2583