linux/crypto/sha3_generic.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Cryptographic API.
   4 *
   5 * SHA-3, as specified in
   6 * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
   7 *
   8 * SHA-3 code by Jeff Garzik <jeff@garzik.org>
   9 *               Ard Biesheuvel <ard.biesheuvel@linaro.org>
  10 */
  11#include <crypto/internal/hash.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/types.h>
  15#include <crypto/sha3.h>
  16#include <asm/unaligned.h>
  17
  18/*
  19 * On some 32-bit architectures (h8300), GCC ends up using
  20 * over 1 KB of stack if we inline the round calculation into the loop
  21 * in keccakf(). On the other hand, on 64-bit architectures with plenty
  22 * of [64-bit wide] general purpose registers, not inlining it severely
  23 * hurts performance. So let's use 64-bitness as a heuristic to decide
  24 * whether to inline or not.
  25 */
  26#ifdef CONFIG_64BIT
  27#define SHA3_INLINE     inline
  28#else
  29#define SHA3_INLINE     noinline
  30#endif
  31
  32#define KECCAK_ROUNDS 24
  33
  34static const u64 keccakf_rndc[24] = {
  35        0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
  36        0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
  37        0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
  38        0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
  39        0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
  40        0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
  41        0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
  42        0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
  43};
  44
  45/* update the state with given number of rounds */
  46
  47static SHA3_INLINE void keccakf_round(u64 st[25])
  48{
  49        u64 t[5], tt, bc[5];
  50
  51        /* Theta */
  52        bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
  53        bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
  54        bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
  55        bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
  56        bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
  57
  58        t[0] = bc[4] ^ rol64(bc[1], 1);
  59        t[1] = bc[0] ^ rol64(bc[2], 1);
  60        t[2] = bc[1] ^ rol64(bc[3], 1);
  61        t[3] = bc[2] ^ rol64(bc[4], 1);
  62        t[4] = bc[3] ^ rol64(bc[0], 1);
  63
  64        st[0] ^= t[0];
  65
  66        /* Rho Pi */
  67        tt = st[1];
  68        st[ 1] = rol64(st[ 6] ^ t[1], 44);
  69        st[ 6] = rol64(st[ 9] ^ t[4], 20);
  70        st[ 9] = rol64(st[22] ^ t[2], 61);
  71        st[22] = rol64(st[14] ^ t[4], 39);
  72        st[14] = rol64(st[20] ^ t[0], 18);
  73        st[20] = rol64(st[ 2] ^ t[2], 62);
  74        st[ 2] = rol64(st[12] ^ t[2], 43);
  75        st[12] = rol64(st[13] ^ t[3], 25);
  76        st[13] = rol64(st[19] ^ t[4],  8);
  77        st[19] = rol64(st[23] ^ t[3], 56);
  78        st[23] = rol64(st[15] ^ t[0], 41);
  79        st[15] = rol64(st[ 4] ^ t[4], 27);
  80        st[ 4] = rol64(st[24] ^ t[4], 14);
  81        st[24] = rol64(st[21] ^ t[1],  2);
  82        st[21] = rol64(st[ 8] ^ t[3], 55);
  83        st[ 8] = rol64(st[16] ^ t[1], 45);
  84        st[16] = rol64(st[ 5] ^ t[0], 36);
  85        st[ 5] = rol64(st[ 3] ^ t[3], 28);
  86        st[ 3] = rol64(st[18] ^ t[3], 21);
  87        st[18] = rol64(st[17] ^ t[2], 15);
  88        st[17] = rol64(st[11] ^ t[1], 10);
  89        st[11] = rol64(st[ 7] ^ t[2],  6);
  90        st[ 7] = rol64(st[10] ^ t[0],  3);
  91        st[10] = rol64(    tt ^ t[1],  1);
  92
  93        /* Chi */
  94        bc[ 0] = ~st[ 1] & st[ 2];
  95        bc[ 1] = ~st[ 2] & st[ 3];
  96        bc[ 2] = ~st[ 3] & st[ 4];
  97        bc[ 3] = ~st[ 4] & st[ 0];
  98        bc[ 4] = ~st[ 0] & st[ 1];
  99        st[ 0] ^= bc[ 0];
 100        st[ 1] ^= bc[ 1];
 101        st[ 2] ^= bc[ 2];
 102        st[ 3] ^= bc[ 3];
 103        st[ 4] ^= bc[ 4];
 104
 105        bc[ 0] = ~st[ 6] & st[ 7];
 106        bc[ 1] = ~st[ 7] & st[ 8];
 107        bc[ 2] = ~st[ 8] & st[ 9];
 108        bc[ 3] = ~st[ 9] & st[ 5];
 109        bc[ 4] = ~st[ 5] & st[ 6];
 110        st[ 5] ^= bc[ 0];
 111        st[ 6] ^= bc[ 1];
 112        st[ 7] ^= bc[ 2];
 113        st[ 8] ^= bc[ 3];
 114        st[ 9] ^= bc[ 4];
 115
 116        bc[ 0] = ~st[11] & st[12];
 117        bc[ 1] = ~st[12] & st[13];
 118        bc[ 2] = ~st[13] & st[14];
 119        bc[ 3] = ~st[14] & st[10];
 120        bc[ 4] = ~st[10] & st[11];
 121        st[10] ^= bc[ 0];
 122        st[11] ^= bc[ 1];
 123        st[12] ^= bc[ 2];
 124        st[13] ^= bc[ 3];
 125        st[14] ^= bc[ 4];
 126
 127        bc[ 0] = ~st[16] & st[17];
 128        bc[ 1] = ~st[17] & st[18];
 129        bc[ 2] = ~st[18] & st[19];
 130        bc[ 3] = ~st[19] & st[15];
 131        bc[ 4] = ~st[15] & st[16];
 132        st[15] ^= bc[ 0];
 133        st[16] ^= bc[ 1];
 134        st[17] ^= bc[ 2];
 135        st[18] ^= bc[ 3];
 136        st[19] ^= bc[ 4];
 137
 138        bc[ 0] = ~st[21] & st[22];
 139        bc[ 1] = ~st[22] & st[23];
 140        bc[ 2] = ~st[23] & st[24];
 141        bc[ 3] = ~st[24] & st[20];
 142        bc[ 4] = ~st[20] & st[21];
 143        st[20] ^= bc[ 0];
 144        st[21] ^= bc[ 1];
 145        st[22] ^= bc[ 2];
 146        st[23] ^= bc[ 3];
 147        st[24] ^= bc[ 4];
 148}
 149
 150static void keccakf(u64 st[25])
 151{
 152        int round;
 153
 154        for (round = 0; round < KECCAK_ROUNDS; round++) {
 155                keccakf_round(st);
 156                /* Iota */
 157                st[0] ^= keccakf_rndc[round];
 158        }
 159}
 160
 161int crypto_sha3_init(struct shash_desc *desc)
 162{
 163        struct sha3_state *sctx = shash_desc_ctx(desc);
 164        unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
 165
 166        sctx->rsiz = 200 - 2 * digest_size;
 167        sctx->rsizw = sctx->rsiz / 8;
 168        sctx->partial = 0;
 169
 170        memset(sctx->st, 0, sizeof(sctx->st));
 171        return 0;
 172}
 173EXPORT_SYMBOL(crypto_sha3_init);
 174
 175int crypto_sha3_update(struct shash_desc *desc, const u8 *data,
 176                       unsigned int len)
 177{
 178        struct sha3_state *sctx = shash_desc_ctx(desc);
 179        unsigned int done;
 180        const u8 *src;
 181
 182        done = 0;
 183        src = data;
 184
 185        if ((sctx->partial + len) > (sctx->rsiz - 1)) {
 186                if (sctx->partial) {
 187                        done = -sctx->partial;
 188                        memcpy(sctx->buf + sctx->partial, data,
 189                               done + sctx->rsiz);
 190                        src = sctx->buf;
 191                }
 192
 193                do {
 194                        unsigned int i;
 195
 196                        for (i = 0; i < sctx->rsizw; i++)
 197                                sctx->st[i] ^= get_unaligned_le64(src + 8 * i);
 198                        keccakf(sctx->st);
 199
 200                        done += sctx->rsiz;
 201                        src = data + done;
 202                } while (done + (sctx->rsiz - 1) < len);
 203
 204                sctx->partial = 0;
 205        }
 206        memcpy(sctx->buf + sctx->partial, src, len - done);
 207        sctx->partial += (len - done);
 208
 209        return 0;
 210}
 211EXPORT_SYMBOL(crypto_sha3_update);
 212
 213int crypto_sha3_final(struct shash_desc *desc, u8 *out)
 214{
 215        struct sha3_state *sctx = shash_desc_ctx(desc);
 216        unsigned int i, inlen = sctx->partial;
 217        unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
 218        __le64 *digest = (__le64 *)out;
 219
 220        sctx->buf[inlen++] = 0x06;
 221        memset(sctx->buf + inlen, 0, sctx->rsiz - inlen);
 222        sctx->buf[sctx->rsiz - 1] |= 0x80;
 223
 224        for (i = 0; i < sctx->rsizw; i++)
 225                sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i);
 226
 227        keccakf(sctx->st);
 228
 229        for (i = 0; i < digest_size / 8; i++)
 230                put_unaligned_le64(sctx->st[i], digest++);
 231
 232        if (digest_size & 4)
 233                put_unaligned_le32(sctx->st[i], (__le32 *)digest);
 234
 235        memset(sctx, 0, sizeof(*sctx));
 236        return 0;
 237}
 238EXPORT_SYMBOL(crypto_sha3_final);
 239
 240static struct shash_alg algs[] = { {
 241        .digestsize             = SHA3_224_DIGEST_SIZE,
 242        .init                   = crypto_sha3_init,
 243        .update                 = crypto_sha3_update,
 244        .final                  = crypto_sha3_final,
 245        .descsize               = sizeof(struct sha3_state),
 246        .base.cra_name          = "sha3-224",
 247        .base.cra_driver_name   = "sha3-224-generic",
 248        .base.cra_blocksize     = SHA3_224_BLOCK_SIZE,
 249        .base.cra_module        = THIS_MODULE,
 250}, {
 251        .digestsize             = SHA3_256_DIGEST_SIZE,
 252        .init                   = crypto_sha3_init,
 253        .update                 = crypto_sha3_update,
 254        .final                  = crypto_sha3_final,
 255        .descsize               = sizeof(struct sha3_state),
 256        .base.cra_name          = "sha3-256",
 257        .base.cra_driver_name   = "sha3-256-generic",
 258        .base.cra_blocksize     = SHA3_256_BLOCK_SIZE,
 259        .base.cra_module        = THIS_MODULE,
 260}, {
 261        .digestsize             = SHA3_384_DIGEST_SIZE,
 262        .init                   = crypto_sha3_init,
 263        .update                 = crypto_sha3_update,
 264        .final                  = crypto_sha3_final,
 265        .descsize               = sizeof(struct sha3_state),
 266        .base.cra_name          = "sha3-384",
 267        .base.cra_driver_name   = "sha3-384-generic",
 268        .base.cra_blocksize     = SHA3_384_BLOCK_SIZE,
 269        .base.cra_module        = THIS_MODULE,
 270}, {
 271        .digestsize             = SHA3_512_DIGEST_SIZE,
 272        .init                   = crypto_sha3_init,
 273        .update                 = crypto_sha3_update,
 274        .final                  = crypto_sha3_final,
 275        .descsize               = sizeof(struct sha3_state),
 276        .base.cra_name          = "sha3-512",
 277        .base.cra_driver_name   = "sha3-512-generic",
 278        .base.cra_blocksize     = SHA3_512_BLOCK_SIZE,
 279        .base.cra_module        = THIS_MODULE,
 280} };
 281
 282static int __init sha3_generic_mod_init(void)
 283{
 284        return crypto_register_shashes(algs, ARRAY_SIZE(algs));
 285}
 286
 287static void __exit sha3_generic_mod_fini(void)
 288{
 289        crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
 290}
 291
 292subsys_initcall(sha3_generic_mod_init);
 293module_exit(sha3_generic_mod_fini);
 294
 295MODULE_LICENSE("GPL");
 296MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm");
 297
 298MODULE_ALIAS_CRYPTO("sha3-224");
 299MODULE_ALIAS_CRYPTO("sha3-224-generic");
 300MODULE_ALIAS_CRYPTO("sha3-256");
 301MODULE_ALIAS_CRYPTO("sha3-256-generic");
 302MODULE_ALIAS_CRYPTO("sha3-384");
 303MODULE_ALIAS_CRYPTO("sha3-384-generic");
 304MODULE_ALIAS_CRYPTO("sha3-512");
 305MODULE_ALIAS_CRYPTO("sha3-512-generic");
 306
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.