linux/mm/bootmem.c
<<
>>
Prefs
   1/*
   2 *  bootmem - A boot-time physical memory allocator and configurator
   3 *
   4 *  Copyright (C) 1999 Ingo Molnar
   5 *                1999 Kanoj Sarcar, SGI
   6 *                2008 Johannes Weiner
   7 *
   8 * Access to this subsystem has to be serialized externally (which is true
   9 * for the boot process anyway).
  10 */
  11#include <linux/init.h>
  12#include <linux/pfn.h>
  13#include <linux/slab.h>
  14#include <linux/bootmem.h>
  15#include <linux/export.h>
  16#include <linux/kmemleak.h>
  17#include <linux/range.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/bug.h>
  21#include <asm/io.h>
  22#include <asm/processor.h>
  23
  24#include "internal.h"
  25
  26#ifndef CONFIG_NEED_MULTIPLE_NODES
  27struct pglist_data __refdata contig_page_data = {
  28        .bdata = &bootmem_node_data[0]
  29};
  30EXPORT_SYMBOL(contig_page_data);
  31#endif
  32
  33unsigned long max_low_pfn;
  34unsigned long min_low_pfn;
  35unsigned long max_pfn;
  36
  37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  38
  39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
  40
  41static int bootmem_debug;
  42
  43static int __init bootmem_debug_setup(char *buf)
  44{
  45        bootmem_debug = 1;
  46        return 0;
  47}
  48early_param("bootmem_debug", bootmem_debug_setup);
  49
  50#define bdebug(fmt, args...) ({                         \
  51        if (unlikely(bootmem_debug))                    \
  52                printk(KERN_INFO                        \
  53                        "bootmem::%s " fmt,             \
  54                        __func__, ## args);             \
  55})
  56
  57static unsigned long __init bootmap_bytes(unsigned long pages)
  58{
  59        unsigned long bytes = DIV_ROUND_UP(pages, 8);
  60
  61        return ALIGN(bytes, sizeof(long));
  62}
  63
  64/**
  65 * bootmem_bootmap_pages - calculate bitmap size in pages
  66 * @pages: number of pages the bitmap has to represent
  67 */
  68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  69{
  70        unsigned long bytes = bootmap_bytes(pages);
  71
  72        return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
  73}
  74
  75/*
  76 * link bdata in order
  77 */
  78static void __init link_bootmem(bootmem_data_t *bdata)
  79{
  80        bootmem_data_t *ent;
  81
  82        list_for_each_entry(ent, &bdata_list, list) {
  83                if (bdata->node_min_pfn < ent->node_min_pfn) {
  84                        list_add_tail(&bdata->list, &ent->list);
  85                        return;
  86                }
  87        }
  88
  89        list_add_tail(&bdata->list, &bdata_list);
  90}
  91
  92/*
  93 * Called once to set up the allocator itself.
  94 */
  95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
  96        unsigned long mapstart, unsigned long start, unsigned long end)
  97{
  98        unsigned long mapsize;
  99
 100        mminit_validate_memmodel_limits(&start, &end);
 101        bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 102        bdata->node_min_pfn = start;
 103        bdata->node_low_pfn = end;
 104        link_bootmem(bdata);
 105
 106        /*
 107         * Initially all pages are reserved - setup_arch() has to
 108         * register free RAM areas explicitly.
 109         */
 110        mapsize = bootmap_bytes(end - start);
 111        memset(bdata->node_bootmem_map, 0xff, mapsize);
 112
 113        bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
 114                bdata - bootmem_node_data, start, mapstart, end, mapsize);
 115
 116        return mapsize;
 117}
 118
 119/**
 120 * init_bootmem_node - register a node as boot memory
 121 * @pgdat: node to register
 122 * @freepfn: pfn where the bitmap for this node is to be placed
 123 * @startpfn: first pfn on the node
 124 * @endpfn: first pfn after the node
 125 *
 126 * Returns the number of bytes needed to hold the bitmap for this node.
 127 */
 128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
 129                                unsigned long startpfn, unsigned long endpfn)
 130{
 131        return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
 132}
 133
 134/**
 135 * init_bootmem - register boot memory
 136 * @start: pfn where the bitmap is to be placed
 137 * @pages: number of available physical pages
 138 *
 139 * Returns the number of bytes needed to hold the bitmap.
 140 */
 141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
 142{
 143        max_low_pfn = pages;
 144        min_low_pfn = start;
 145        return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
 146}
 147
 148/*
 149 * free_bootmem_late - free bootmem pages directly to page allocator
 150 * @addr: starting physical address of the range
 151 * @size: size of the range in bytes
 152 *
 153 * This is only useful when the bootmem allocator has already been torn
 154 * down, but we are still initializing the system.  Pages are given directly
 155 * to the page allocator, no bootmem metadata is updated because it is gone.
 156 */
 157void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
 158{
 159        unsigned long cursor, end;
 160
 161        kmemleak_free_part(__va(physaddr), size);
 162
 163        cursor = PFN_UP(physaddr);
 164        end = PFN_DOWN(physaddr + size);
 165
 166        for (; cursor < end; cursor++) {
 167                __free_pages_bootmem(pfn_to_page(cursor), 0);
 168                totalram_pages++;
 169        }
 170}
 171
 172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
 173{
 174        struct page *page;
 175        unsigned long start, end, pages, count = 0;
 176
 177        if (!bdata->node_bootmem_map)
 178                return 0;
 179
 180        start = bdata->node_min_pfn;
 181        end = bdata->node_low_pfn;
 182
 183        bdebug("nid=%td start=%lx end=%lx\n",
 184                bdata - bootmem_node_data, start, end);
 185
 186        while (start < end) {
 187                unsigned long *map, idx, vec;
 188                unsigned shift;
 189
 190                map = bdata->node_bootmem_map;
 191                idx = start - bdata->node_min_pfn;
 192                shift = idx & (BITS_PER_LONG - 1);
 193                /*
 194                 * vec holds at most BITS_PER_LONG map bits,
 195                 * bit 0 corresponds to start.
 196                 */
 197                vec = ~map[idx / BITS_PER_LONG];
 198
 199                if (shift) {
 200                        vec >>= shift;
 201                        if (end - start >= BITS_PER_LONG)
 202                                vec |= ~map[idx / BITS_PER_LONG + 1] <<
 203                                        (BITS_PER_LONG - shift);
 204                }
 205                /*
 206                 * If we have a properly aligned and fully unreserved
 207                 * BITS_PER_LONG block of pages in front of us, free
 208                 * it in one go.
 209                 */
 210                if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
 211                        int order = ilog2(BITS_PER_LONG);
 212
 213                        __free_pages_bootmem(pfn_to_page(start), order);
 214                        count += BITS_PER_LONG;
 215                        start += BITS_PER_LONG;
 216                } else {
 217                        unsigned long cur = start;
 218
 219                        start = ALIGN(start + 1, BITS_PER_LONG);
 220                        while (vec && cur != start) {
 221                                if (vec & 1) {
 222                                        page = pfn_to_page(cur);
 223                                        __free_pages_bootmem(page, 0);
 224                                        count++;
 225                                }
 226                                vec >>= 1;
 227                                ++cur;
 228                        }
 229                }
 230        }
 231
 232        page = virt_to_page(bdata->node_bootmem_map);
 233        pages = bdata->node_low_pfn - bdata->node_min_pfn;
 234        pages = bootmem_bootmap_pages(pages);
 235        count += pages;
 236        while (pages--)
 237                __free_pages_bootmem(page++, 0);
 238
 239        bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
 240
 241        return count;
 242}
 243
 244static void reset_node_lowmem_managed_pages(pg_data_t *pgdat)
 245{
 246        struct zone *z;
 247
 248        /*
 249         * In free_area_init_core(), highmem zone's managed_pages is set to
 250         * present_pages, and bootmem allocator doesn't allocate from highmem
 251         * zones. So there's no need to recalculate managed_pages because all
 252         * highmem pages will be managed by the buddy system. Here highmem
 253         * zone also includes highmem movable zone.
 254         */
 255        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 256                if (!is_highmem(z))
 257                        z->managed_pages = 0;
 258}
 259
 260/**
 261 * free_all_bootmem_node - release a node's free pages to the buddy allocator
 262 * @pgdat: node to be released
 263 *
 264 * Returns the number of pages actually released.
 265 */
 266unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
 267{
 268        register_page_bootmem_info_node(pgdat);
 269        reset_node_lowmem_managed_pages(pgdat);
 270        return free_all_bootmem_core(pgdat->bdata);
 271}
 272
 273/**
 274 * free_all_bootmem - release free pages to the buddy allocator
 275 *
 276 * Returns the number of pages actually released.
 277 */
 278unsigned long __init free_all_bootmem(void)
 279{
 280        unsigned long total_pages = 0;
 281        bootmem_data_t *bdata;
 282        struct pglist_data *pgdat;
 283
 284        for_each_online_pgdat(pgdat)
 285                reset_node_lowmem_managed_pages(pgdat);
 286
 287        list_for_each_entry(bdata, &bdata_list, list)
 288                total_pages += free_all_bootmem_core(bdata);
 289
 290        return total_pages;
 291}
 292
 293static void __init __free(bootmem_data_t *bdata,
 294                        unsigned long sidx, unsigned long eidx)
 295{
 296        unsigned long idx;
 297
 298        bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
 299                sidx + bdata->node_min_pfn,
 300                eidx + bdata->node_min_pfn);
 301
 302        if (bdata->hint_idx > sidx)
 303                bdata->hint_idx = sidx;
 304
 305        for (idx = sidx; idx < eidx; idx++)
 306                if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
 307                        BUG();
 308}
 309
 310static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
 311                        unsigned long eidx, int flags)
 312{
 313        unsigned long idx;
 314        int exclusive = flags & BOOTMEM_EXCLUSIVE;
 315
 316        bdebug("nid=%td start=%lx end=%lx flags=%x\n",
 317                bdata - bootmem_node_data,
 318                sidx + bdata->node_min_pfn,
 319                eidx + bdata->node_min_pfn,
 320                flags);
 321
 322        for (idx = sidx; idx < eidx; idx++)
 323                if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
 324                        if (exclusive) {
 325                                __free(bdata, sidx, idx);
 326                                return -EBUSY;
 327                        }
 328                        bdebug("silent double reserve of PFN %lx\n",
 329                                idx + bdata->node_min_pfn);
 330                }
 331        return 0;
 332}
 333
 334static int __init mark_bootmem_node(bootmem_data_t *bdata,
 335                                unsigned long start, unsigned long end,
 336                                int reserve, int flags)
 337{
 338        unsigned long sidx, eidx;
 339
 340        bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
 341                bdata - bootmem_node_data, start, end, reserve, flags);
 342
 343        BUG_ON(start < bdata->node_min_pfn);
 344        BUG_ON(end > bdata->node_low_pfn);
 345
 346        sidx = start - bdata->node_min_pfn;
 347        eidx = end - bdata->node_min_pfn;
 348
 349        if (reserve)
 350                return __reserve(bdata, sidx, eidx, flags);
 351        else
 352                __free(bdata, sidx, eidx);
 353        return 0;
 354}
 355
 356static int __init mark_bootmem(unsigned long start, unsigned long end,
 357                                int reserve, int flags)
 358{
 359        unsigned long pos;
 360        bootmem_data_t *bdata;
 361
 362        pos = start;
 363        list_for_each_entry(bdata, &bdata_list, list) {
 364                int err;
 365                unsigned long max;
 366
 367                if (pos < bdata->node_min_pfn ||
 368                    pos >= bdata->node_low_pfn) {
 369                        BUG_ON(pos != start);
 370                        continue;
 371                }
 372
 373                max = min(bdata->node_low_pfn, end);
 374
 375                err = mark_bootmem_node(bdata, pos, max, reserve, flags);
 376                if (reserve && err) {
 377                        mark_bootmem(start, pos, 0, 0);
 378                        return err;
 379                }
 380
 381                if (max == end)
 382                        return 0;
 383                pos = bdata->node_low_pfn;
 384        }
 385        BUG();
 386}
 387
 388/**
 389 * free_bootmem_node - mark a page range as usable
 390 * @pgdat: node the range resides on
 391 * @physaddr: starting address of the range
 392 * @size: size of the range in bytes
 393 *
 394 * Partial pages will be considered reserved and left as they are.
 395 *
 396 * The range must reside completely on the specified node.
 397 */
 398void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 399                              unsigned long size)
 400{
 401        unsigned long start, end;
 402
 403        kmemleak_free_part(__va(physaddr), size);
 404
 405        start = PFN_UP(physaddr);
 406        end = PFN_DOWN(physaddr + size);
 407
 408        mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
 409}
 410
 411/**
 412 * free_bootmem - mark a page range as usable
 413 * @addr: starting physical address of the range
 414 * @size: size of the range in bytes
 415 *
 416 * Partial pages will be considered reserved and left as they are.
 417 *
 418 * The range must be contiguous but may span node boundaries.
 419 */
 420void __init free_bootmem(unsigned long physaddr, unsigned long size)
 421{
 422        unsigned long start, end;
 423
 424        kmemleak_free_part(__va(physaddr), size);
 425
 426        start = PFN_UP(physaddr);
 427        end = PFN_DOWN(physaddr + size);
 428
 429        mark_bootmem(start, end, 0, 0);
 430}
 431
 432/**
 433 * reserve_bootmem_node - mark a page range as reserved
 434 * @pgdat: node the range resides on
 435 * @physaddr: starting address of the range
 436 * @size: size of the range in bytes
 437 * @flags: reservation flags (see linux/bootmem.h)
 438 *
 439 * Partial pages will be reserved.
 440 *
 441 * The range must reside completely on the specified node.
 442 */
 443int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 444                                 unsigned long size, int flags)
 445{
 446        unsigned long start, end;
 447
 448        start = PFN_DOWN(physaddr);
 449        end = PFN_UP(physaddr + size);
 450
 451        return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
 452}
 453
 454/**
 455 * reserve_bootmem - mark a page range as reserved
 456 * @addr: starting address of the range
 457 * @size: size of the range in bytes
 458 * @flags: reservation flags (see linux/bootmem.h)
 459 *
 460 * Partial pages will be reserved.
 461 *
 462 * The range must be contiguous but may span node boundaries.
 463 */
 464int __init reserve_bootmem(unsigned long addr, unsigned long size,
 465                            int flags)
 466{
 467        unsigned long start, end;
 468
 469        start = PFN_DOWN(addr);
 470        end = PFN_UP(addr + size);
 471
 472        return mark_bootmem(start, end, 1, flags);
 473}
 474
 475static unsigned long __init align_idx(struct bootmem_data *bdata,
 476                                      unsigned long idx, unsigned long step)
 477{
 478        unsigned long base = bdata->node_min_pfn;
 479
 480        /*
 481         * Align the index with respect to the node start so that the
 482         * combination of both satisfies the requested alignment.
 483         */
 484
 485        return ALIGN(base + idx, step) - base;
 486}
 487
 488static unsigned long __init align_off(struct bootmem_data *bdata,
 489                                      unsigned long off, unsigned long align)
 490{
 491        unsigned long base = PFN_PHYS(bdata->node_min_pfn);
 492
 493        /* Same as align_idx for byte offsets */
 494
 495        return ALIGN(base + off, align) - base;
 496}
 497
 498static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
 499                                        unsigned long size, unsigned long align,
 500                                        unsigned long goal, unsigned long limit)
 501{
 502        unsigned long fallback = 0;
 503        unsigned long min, max, start, sidx, midx, step;
 504
 505        bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
 506                bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
 507                align, goal, limit);
 508
 509        BUG_ON(!size);
 510        BUG_ON(align & (align - 1));
 511        BUG_ON(limit && goal + size > limit);
 512
 513        if (!bdata->node_bootmem_map)
 514                return NULL;
 515
 516        min = bdata->node_min_pfn;
 517        max = bdata->node_low_pfn;
 518
 519        goal >>= PAGE_SHIFT;
 520        limit >>= PAGE_SHIFT;
 521
 522        if (limit && max > limit)
 523                max = limit;
 524        if (max <= min)
 525                return NULL;
 526
 527        step = max(align >> PAGE_SHIFT, 1UL);
 528
 529        if (goal && min < goal && goal < max)
 530                start = ALIGN(goal, step);
 531        else
 532                start = ALIGN(min, step);
 533
 534        sidx = start - bdata->node_min_pfn;
 535        midx = max - bdata->node_min_pfn;
 536
 537        if (bdata->hint_idx > sidx) {
 538                /*
 539                 * Handle the valid case of sidx being zero and still
 540                 * catch the fallback below.
 541                 */
 542                fallback = sidx + 1;
 543                sidx = align_idx(bdata, bdata->hint_idx, step);
 544        }
 545
 546        while (1) {
 547                int merge;
 548                void *region;
 549                unsigned long eidx, i, start_off, end_off;
 550find_block:
 551                sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
 552                sidx = align_idx(bdata, sidx, step);
 553                eidx = sidx + PFN_UP(size);
 554
 555                if (sidx >= midx || eidx > midx)
 556                        break;
 557
 558                for (i = sidx; i < eidx; i++)
 559                        if (test_bit(i, bdata->node_bootmem_map)) {
 560                                sidx = align_idx(bdata, i, step);
 561                                if (sidx == i)
 562                                        sidx += step;
 563                                goto find_block;
 564                        }
 565
 566                if (bdata->last_end_off & (PAGE_SIZE - 1) &&
 567                                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
 568                        start_off = align_off(bdata, bdata->last_end_off, align);
 569                else
 570                        start_off = PFN_PHYS(sidx);
 571
 572                merge = PFN_DOWN(start_off) < sidx;
 573                end_off = start_off + size;
 574
 575                bdata->last_end_off = end_off;
 576                bdata->hint_idx = PFN_UP(end_off);
 577
 578                /*
 579                 * Reserve the area now:
 580                 */
 581                if (__reserve(bdata, PFN_DOWN(start_off) + merge,
 582                                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
 583                        BUG();
 584
 585                region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
 586                                start_off);
 587                memset(region, 0, size);
 588                /*
 589                 * The min_count is set to 0 so that bootmem allocated blocks
 590                 * are never reported as leaks.
 591                 */
 592                kmemleak_alloc(region, size, 0, 0);
 593                return region;
 594        }
 595
 596        if (fallback) {
 597                sidx = align_idx(bdata, fallback - 1, step);
 598                fallback = 0;
 599                goto find_block;
 600        }
 601
 602        return NULL;
 603}
 604
 605static void * __init alloc_bootmem_core(unsigned long size,
 606                                        unsigned long align,
 607                                        unsigned long goal,
 608                                        unsigned long limit)
 609{
 610        bootmem_data_t *bdata;
 611        void *region;
 612
 613        if (WARN_ON_ONCE(slab_is_available()))
 614                return kzalloc(size, GFP_NOWAIT);
 615
 616        list_for_each_entry(bdata, &bdata_list, list) {
 617                if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
 618                        continue;
 619                if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
 620                        break;
 621
 622                region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
 623                if (region)
 624                        return region;
 625        }
 626
 627        return NULL;
 628}
 629
 630static void * __init ___alloc_bootmem_nopanic(unsigned long size,
 631                                              unsigned long align,
 632                                              unsigned long goal,
 633                                              unsigned long limit)
 634{
 635        void *ptr;
 636
 637restart:
 638        ptr = alloc_bootmem_core(size, align, goal, limit);
 639        if (ptr)
 640                return ptr;
 641        if (goal) {
 642                goal = 0;
 643                goto restart;
 644        }
 645
 646        return NULL;
 647}
 648
 649/**
 650 * __alloc_bootmem_nopanic - allocate boot memory without panicking
 651 * @size: size of the request in bytes
 652 * @align: alignment of the region
 653 * @goal: preferred starting address of the region
 654 *
 655 * The goal is dropped if it can not be satisfied and the allocation will
 656 * fall back to memory below @goal.
 657 *
 658 * Allocation may happen on any node in the system.
 659 *
 660 * Returns NULL on failure.
 661 */
 662void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
 663                                        unsigned long goal)
 664{
 665        unsigned long limit = 0;
 666
 667        return ___alloc_bootmem_nopanic(size, align, goal, limit);
 668}
 669
 670static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
 671                                        unsigned long goal, unsigned long limit)
 672{
 673        void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
 674
 675        if (mem)
 676                return mem;
 677        /*
 678         * Whoops, we cannot satisfy the allocation request.
 679         */
 680        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 681        panic("Out of memory");
 682        return NULL;
 683}
 684
 685/**
 686 * __alloc_bootmem - allocate boot memory
 687 * @size: size of the request in bytes
 688 * @align: alignment of the region
 689 * @goal: preferred starting address of the region
 690 *
 691 * The goal is dropped if it can not be satisfied and the allocation will
 692 * fall back to memory below @goal.
 693 *
 694 * Allocation may happen on any node in the system.
 695 *
 696 * The function panics if the request can not be satisfied.
 697 */
 698void * __init __alloc_bootmem(unsigned long size, unsigned long align,
 699                              unsigned long goal)
 700{
 701        unsigned long limit = 0;
 702
 703        return ___alloc_bootmem(size, align, goal, limit);
 704}
 705
 706void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
 707                                unsigned long size, unsigned long align,
 708                                unsigned long goal, unsigned long limit)
 709{
 710        void *ptr;
 711
 712        if (WARN_ON_ONCE(slab_is_available()))
 713                return kzalloc(size, GFP_NOWAIT);
 714again:
 715
 716        /* do not panic in alloc_bootmem_bdata() */
 717        if (limit && goal + size > limit)
 718                limit = 0;
 719
 720        ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
 721        if (ptr)
 722                return ptr;
 723
 724        ptr = alloc_bootmem_core(size, align, goal, limit);
 725        if (ptr)
 726                return ptr;
 727
 728        if (goal) {
 729                goal = 0;
 730                goto again;
 731        }
 732
 733        return NULL;
 734}
 735
 736void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
 737                                   unsigned long align, unsigned long goal)
 738{
 739        if (WARN_ON_ONCE(slab_is_available()))
 740                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 741
 742        return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 743}
 744
 745void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 746                                    unsigned long align, unsigned long goal,
 747                                    unsigned long limit)
 748{
 749        void *ptr;
 750
 751        ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 752        if (ptr)
 753                return ptr;
 754
 755        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 756        panic("Out of memory");
 757        return NULL;
 758}
 759
 760/**
 761 * __alloc_bootmem_node - allocate boot memory from a specific node
 762 * @pgdat: node to allocate from
 763 * @size: size of the request in bytes
 764 * @align: alignment of the region
 765 * @goal: preferred starting address of the region
 766 *
 767 * The goal is dropped if it can not be satisfied and the allocation will
 768 * fall back to memory below @goal.
 769 *
 770 * Allocation may fall back to any node in the system if the specified node
 771 * can not hold the requested memory.
 772 *
 773 * The function panics if the request can not be satisfied.
 774 */
 775void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 776                                   unsigned long align, unsigned long goal)
 777{
 778        if (WARN_ON_ONCE(slab_is_available()))
 779                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 780
 781        return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
 782}
 783
 784void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
 785                                   unsigned long align, unsigned long goal)
 786{
 787#ifdef MAX_DMA32_PFN
 788        unsigned long end_pfn;
 789
 790        if (WARN_ON_ONCE(slab_is_available()))
 791                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 792
 793        /* update goal according ...MAX_DMA32_PFN */
 794        end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
 795
 796        if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
 797            (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
 798                void *ptr;
 799                unsigned long new_goal;
 800
 801                new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
 802                ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
 803                                                 new_goal, 0);
 804                if (ptr)
 805                        return ptr;
 806        }
 807#endif
 808
 809        return __alloc_bootmem_node(pgdat, size, align, goal);
 810
 811}
 812
 813#ifndef ARCH_LOW_ADDRESS_LIMIT
 814#define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
 815#endif
 816
 817/**
 818 * __alloc_bootmem_low - allocate low boot memory
 819 * @size: size of the request in bytes
 820 * @align: alignment of the region
 821 * @goal: preferred starting address of the region
 822 *
 823 * The goal is dropped if it can not be satisfied and the allocation will
 824 * fall back to memory below @goal.
 825 *
 826 * Allocation may happen on any node in the system.
 827 *
 828 * The function panics if the request can not be satisfied.
 829 */
 830void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
 831                                  unsigned long goal)
 832{
 833        return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
 834}
 835
 836void * __init __alloc_bootmem_low_nopanic(unsigned long size,
 837                                          unsigned long align,
 838                                          unsigned long goal)
 839{
 840        return ___alloc_bootmem_nopanic(size, align, goal,
 841                                        ARCH_LOW_ADDRESS_LIMIT);
 842}
 843
 844/**
 845 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
 846 * @pgdat: node to allocate from
 847 * @size: size of the request in bytes
 848 * @align: alignment of the region
 849 * @goal: preferred starting address of the region
 850 *
 851 * The goal is dropped if it can not be satisfied and the allocation will
 852 * fall back to memory below @goal.
 853 *
 854 * Allocation may fall back to any node in the system if the specified node
 855 * can not hold the requested memory.
 856 *
 857 * The function panics if the request can not be satisfied.
 858 */
 859void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
 860                                       unsigned long align, unsigned long goal)
 861{
 862        if (WARN_ON_ONCE(slab_is_available()))
 863                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 864
 865        return ___alloc_bootmem_node(pgdat, size, align,
 866                                     goal, ARCH_LOW_ADDRESS_LIMIT);
 867}
 868
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.