linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70#include <linux/compat.h>
  71
  72#include "audit.h"
  73
  74/* flags stating the success for a syscall */
  75#define AUDITSC_INVALID 0
  76#define AUDITSC_SUCCESS 1
  77#define AUDITSC_FAILURE 2
  78
  79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  80 * for saving names from getname().  If we get more names we will allocate
  81 * a name dynamically and also add those to the list anchored by names_list. */
  82#define AUDIT_NAMES     5
  83
  84/* no execve audit message should be longer than this (userspace limits) */
  85#define MAX_EXECVE_AUDIT_LEN 7500
  86
  87/* number of audit rules */
  88int audit_n_rules;
  89
  90/* determines whether we collect data for signals sent */
  91int audit_signals;
  92
  93struct audit_cap_data {
  94        kernel_cap_t            permitted;
  95        kernel_cap_t            inheritable;
  96        union {
  97                unsigned int    fE;             /* effective bit of a file capability */
  98                kernel_cap_t    effective;      /* effective set of a process */
  99        };
 100};
 101
 102/* When fs/namei.c:getname() is called, we store the pointer in name and
 103 * we don't let putname() free it (instead we free all of the saved
 104 * pointers at syscall exit time).
 105 *
 106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
 107 */
 108struct audit_names {
 109        struct list_head        list;           /* audit_context->names_list */
 110        struct filename *name;
 111        unsigned long           ino;
 112        dev_t                   dev;
 113        umode_t                 mode;
 114        kuid_t                  uid;
 115        kgid_t                  gid;
 116        dev_t                   rdev;
 117        u32                     osid;
 118        struct audit_cap_data    fcap;
 119        unsigned int            fcap_ver;
 120        int                     name_len;       /* number of name's characters to log */
 121        unsigned char           type;           /* record type */
 122        bool                    name_put;       /* call __putname() for this name */
 123        /*
 124         * This was an allocated audit_names and not from the array of
 125         * names allocated in the task audit context.  Thus this name
 126         * should be freed on syscall exit
 127         */
 128        bool                    should_free;
 129};
 130
 131struct audit_aux_data {
 132        struct audit_aux_data   *next;
 133        int                     type;
 134};
 135
 136#define AUDIT_AUX_IPCPERM       0
 137
 138/* Number of target pids per aux struct. */
 139#define AUDIT_AUX_PIDS  16
 140
 141struct audit_aux_data_execve {
 142        struct audit_aux_data   d;
 143        int argc;
 144        int envc;
 145        struct mm_struct *mm;
 146};
 147
 148struct audit_aux_data_pids {
 149        struct audit_aux_data   d;
 150        pid_t                   target_pid[AUDIT_AUX_PIDS];
 151        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 152        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 153        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 154        u32                     target_sid[AUDIT_AUX_PIDS];
 155        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 156        int                     pid_count;
 157};
 158
 159struct audit_aux_data_bprm_fcaps {
 160        struct audit_aux_data   d;
 161        struct audit_cap_data   fcap;
 162        unsigned int            fcap_ver;
 163        struct audit_cap_data   old_pcap;
 164        struct audit_cap_data   new_pcap;
 165};
 166
 167struct audit_aux_data_capset {
 168        struct audit_aux_data   d;
 169        pid_t                   pid;
 170        struct audit_cap_data   cap;
 171};
 172
 173struct audit_tree_refs {
 174        struct audit_tree_refs *next;
 175        struct audit_chunk *c[31];
 176};
 177
 178/* The per-task audit context. */
 179struct audit_context {
 180        int                 dummy;      /* must be the first element */
 181        int                 in_syscall; /* 1 if task is in a syscall */
 182        enum audit_state    state, current_state;
 183        unsigned int        serial;     /* serial number for record */
 184        int                 major;      /* syscall number */
 185        struct timespec     ctime;      /* time of syscall entry */
 186        unsigned long       argv[4];    /* syscall arguments */
 187        long                return_code;/* syscall return code */
 188        u64                 prio;
 189        int                 return_valid; /* return code is valid */
 190        /*
 191         * The names_list is the list of all audit_names collected during this
 192         * syscall.  The first AUDIT_NAMES entries in the names_list will
 193         * actually be from the preallocated_names array for performance
 194         * reasons.  Except during allocation they should never be referenced
 195         * through the preallocated_names array and should only be found/used
 196         * by running the names_list.
 197         */
 198        struct audit_names  preallocated_names[AUDIT_NAMES];
 199        int                 name_count; /* total records in names_list */
 200        struct list_head    names_list; /* anchor for struct audit_names->list */
 201        char *              filterkey;  /* key for rule that triggered record */
 202        struct path         pwd;
 203        struct audit_aux_data *aux;
 204        struct audit_aux_data *aux_pids;
 205        struct sockaddr_storage *sockaddr;
 206        size_t sockaddr_len;
 207                                /* Save things to print about task_struct */
 208        pid_t               pid, ppid;
 209        kuid_t              uid, euid, suid, fsuid;
 210        kgid_t              gid, egid, sgid, fsgid;
 211        unsigned long       personality;
 212        int                 arch;
 213
 214        pid_t               target_pid;
 215        kuid_t              target_auid;
 216        kuid_t              target_uid;
 217        unsigned int        target_sessionid;
 218        u32                 target_sid;
 219        char                target_comm[TASK_COMM_LEN];
 220
 221        struct audit_tree_refs *trees, *first_trees;
 222        struct list_head killed_trees;
 223        int tree_count;
 224
 225        int type;
 226        union {
 227                struct {
 228                        int nargs;
 229                        long args[6];
 230                } socketcall;
 231                struct {
 232                        kuid_t                  uid;
 233                        kgid_t                  gid;
 234                        umode_t                 mode;
 235                        u32                     osid;
 236                        int                     has_perm;
 237                        uid_t                   perm_uid;
 238                        gid_t                   perm_gid;
 239                        umode_t                 perm_mode;
 240                        unsigned long           qbytes;
 241                } ipc;
 242                struct {
 243                        mqd_t                   mqdes;
 244                        struct mq_attr          mqstat;
 245                } mq_getsetattr;
 246                struct {
 247                        mqd_t                   mqdes;
 248                        int                     sigev_signo;
 249                } mq_notify;
 250                struct {
 251                        mqd_t                   mqdes;
 252                        size_t                  msg_len;
 253                        unsigned int            msg_prio;
 254                        struct timespec         abs_timeout;
 255                } mq_sendrecv;
 256                struct {
 257                        int                     oflag;
 258                        umode_t                 mode;
 259                        struct mq_attr          attr;
 260                } mq_open;
 261                struct {
 262                        pid_t                   pid;
 263                        struct audit_cap_data   cap;
 264                } capset;
 265                struct {
 266                        int                     fd;
 267                        int                     flags;
 268                } mmap;
 269        };
 270        int fds[2];
 271
 272#if AUDIT_DEBUG
 273        int                 put_count;
 274        int                 ino_count;
 275#endif
 276};
 277
 278static inline int open_arg(int flags, int mask)
 279{
 280        int n = ACC_MODE(flags);
 281        if (flags & (O_TRUNC | O_CREAT))
 282                n |= AUDIT_PERM_WRITE;
 283        return n & mask;
 284}
 285
 286static int audit_match_perm(struct audit_context *ctx, int mask)
 287{
 288        unsigned n;
 289        if (unlikely(!ctx))
 290                return 0;
 291        n = ctx->major;
 292
 293        switch (audit_classify_syscall(ctx->arch, n)) {
 294        case 0: /* native */
 295                if ((mask & AUDIT_PERM_WRITE) &&
 296                     audit_match_class(AUDIT_CLASS_WRITE, n))
 297                        return 1;
 298                if ((mask & AUDIT_PERM_READ) &&
 299                     audit_match_class(AUDIT_CLASS_READ, n))
 300                        return 1;
 301                if ((mask & AUDIT_PERM_ATTR) &&
 302                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 303                        return 1;
 304                return 0;
 305        case 1: /* 32bit on biarch */
 306                if ((mask & AUDIT_PERM_WRITE) &&
 307                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 308                        return 1;
 309                if ((mask & AUDIT_PERM_READ) &&
 310                     audit_match_class(AUDIT_CLASS_READ_32, n))
 311                        return 1;
 312                if ((mask & AUDIT_PERM_ATTR) &&
 313                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 314                        return 1;
 315                return 0;
 316        case 2: /* open */
 317                return mask & ACC_MODE(ctx->argv[1]);
 318        case 3: /* openat */
 319                return mask & ACC_MODE(ctx->argv[2]);
 320        case 4: /* socketcall */
 321                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 322        case 5: /* execve */
 323                return mask & AUDIT_PERM_EXEC;
 324        default:
 325                return 0;
 326        }
 327}
 328
 329static int audit_match_filetype(struct audit_context *ctx, int val)
 330{
 331        struct audit_names *n;
 332        umode_t mode = (umode_t)val;
 333
 334        if (unlikely(!ctx))
 335                return 0;
 336
 337        list_for_each_entry(n, &ctx->names_list, list) {
 338                if ((n->ino != -1) &&
 339                    ((n->mode & S_IFMT) == mode))
 340                        return 1;
 341        }
 342
 343        return 0;
 344}
 345
 346/*
 347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 348 * ->first_trees points to its beginning, ->trees - to the current end of data.
 349 * ->tree_count is the number of free entries in array pointed to by ->trees.
 350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 351 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 352 * it's going to remain 1-element for almost any setup) until we free context itself.
 353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 354 */
 355
 356#ifdef CONFIG_AUDIT_TREE
 357static void audit_set_auditable(struct audit_context *ctx)
 358{
 359        if (!ctx->prio) {
 360                ctx->prio = 1;
 361                ctx->current_state = AUDIT_RECORD_CONTEXT;
 362        }
 363}
 364
 365static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 366{
 367        struct audit_tree_refs *p = ctx->trees;
 368        int left = ctx->tree_count;
 369        if (likely(left)) {
 370                p->c[--left] = chunk;
 371                ctx->tree_count = left;
 372                return 1;
 373        }
 374        if (!p)
 375                return 0;
 376        p = p->next;
 377        if (p) {
 378                p->c[30] = chunk;
 379                ctx->trees = p;
 380                ctx->tree_count = 30;
 381                return 1;
 382        }
 383        return 0;
 384}
 385
 386static int grow_tree_refs(struct audit_context *ctx)
 387{
 388        struct audit_tree_refs *p = ctx->trees;
 389        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 390        if (!ctx->trees) {
 391                ctx->trees = p;
 392                return 0;
 393        }
 394        if (p)
 395                p->next = ctx->trees;
 396        else
 397                ctx->first_trees = ctx->trees;
 398        ctx->tree_count = 31;
 399        return 1;
 400}
 401#endif
 402
 403static void unroll_tree_refs(struct audit_context *ctx,
 404                      struct audit_tree_refs *p, int count)
 405{
 406#ifdef CONFIG_AUDIT_TREE
 407        struct audit_tree_refs *q;
 408        int n;
 409        if (!p) {
 410                /* we started with empty chain */
 411                p = ctx->first_trees;
 412                count = 31;
 413                /* if the very first allocation has failed, nothing to do */
 414                if (!p)
 415                        return;
 416        }
 417        n = count;
 418        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 419                while (n--) {
 420                        audit_put_chunk(q->c[n]);
 421                        q->c[n] = NULL;
 422                }
 423        }
 424        while (n-- > ctx->tree_count) {
 425                audit_put_chunk(q->c[n]);
 426                q->c[n] = NULL;
 427        }
 428        ctx->trees = p;
 429        ctx->tree_count = count;
 430#endif
 431}
 432
 433static void free_tree_refs(struct audit_context *ctx)
 434{
 435        struct audit_tree_refs *p, *q;
 436        for (p = ctx->first_trees; p; p = q) {
 437                q = p->next;
 438                kfree(p);
 439        }
 440}
 441
 442static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 443{
 444#ifdef CONFIG_AUDIT_TREE
 445        struct audit_tree_refs *p;
 446        int n;
 447        if (!tree)
 448                return 0;
 449        /* full ones */
 450        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 451                for (n = 0; n < 31; n++)
 452                        if (audit_tree_match(p->c[n], tree))
 453                                return 1;
 454        }
 455        /* partial */
 456        if (p) {
 457                for (n = ctx->tree_count; n < 31; n++)
 458                        if (audit_tree_match(p->c[n], tree))
 459                                return 1;
 460        }
 461#endif
 462        return 0;
 463}
 464
 465static int audit_compare_uid(kuid_t uid,
 466                             struct audit_names *name,
 467                             struct audit_field *f,
 468                             struct audit_context *ctx)
 469{
 470        struct audit_names *n;
 471        int rc;
 472 
 473        if (name) {
 474                rc = audit_uid_comparator(uid, f->op, name->uid);
 475                if (rc)
 476                        return rc;
 477        }
 478 
 479        if (ctx) {
 480                list_for_each_entry(n, &ctx->names_list, list) {
 481                        rc = audit_uid_comparator(uid, f->op, n->uid);
 482                        if (rc)
 483                                return rc;
 484                }
 485        }
 486        return 0;
 487}
 488
 489static int audit_compare_gid(kgid_t gid,
 490                             struct audit_names *name,
 491                             struct audit_field *f,
 492                             struct audit_context *ctx)
 493{
 494        struct audit_names *n;
 495        int rc;
 496 
 497        if (name) {
 498                rc = audit_gid_comparator(gid, f->op, name->gid);
 499                if (rc)
 500                        return rc;
 501        }
 502 
 503        if (ctx) {
 504                list_for_each_entry(n, &ctx->names_list, list) {
 505                        rc = audit_gid_comparator(gid, f->op, n->gid);
 506                        if (rc)
 507                                return rc;
 508                }
 509        }
 510        return 0;
 511}
 512
 513static int audit_field_compare(struct task_struct *tsk,
 514                               const struct cred *cred,
 515                               struct audit_field *f,
 516                               struct audit_context *ctx,
 517                               struct audit_names *name)
 518{
 519        switch (f->val) {
 520        /* process to file object comparisons */
 521        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 522                return audit_compare_uid(cred->uid, name, f, ctx);
 523        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 524                return audit_compare_gid(cred->gid, name, f, ctx);
 525        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 526                return audit_compare_uid(cred->euid, name, f, ctx);
 527        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 528                return audit_compare_gid(cred->egid, name, f, ctx);
 529        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 530                return audit_compare_uid(tsk->loginuid, name, f, ctx);
 531        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 532                return audit_compare_uid(cred->suid, name, f, ctx);
 533        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 534                return audit_compare_gid(cred->sgid, name, f, ctx);
 535        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 536                return audit_compare_uid(cred->fsuid, name, f, ctx);
 537        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 538                return audit_compare_gid(cred->fsgid, name, f, ctx);
 539        /* uid comparisons */
 540        case AUDIT_COMPARE_UID_TO_AUID:
 541                return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 542        case AUDIT_COMPARE_UID_TO_EUID:
 543                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 544        case AUDIT_COMPARE_UID_TO_SUID:
 545                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 546        case AUDIT_COMPARE_UID_TO_FSUID:
 547                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 548        /* auid comparisons */
 549        case AUDIT_COMPARE_AUID_TO_EUID:
 550                return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 551        case AUDIT_COMPARE_AUID_TO_SUID:
 552                return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 553        case AUDIT_COMPARE_AUID_TO_FSUID:
 554                return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 555        /* euid comparisons */
 556        case AUDIT_COMPARE_EUID_TO_SUID:
 557                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 558        case AUDIT_COMPARE_EUID_TO_FSUID:
 559                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 560        /* suid comparisons */
 561        case AUDIT_COMPARE_SUID_TO_FSUID:
 562                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 563        /* gid comparisons */
 564        case AUDIT_COMPARE_GID_TO_EGID:
 565                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 566        case AUDIT_COMPARE_GID_TO_SGID:
 567                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 568        case AUDIT_COMPARE_GID_TO_FSGID:
 569                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 570        /* egid comparisons */
 571        case AUDIT_COMPARE_EGID_TO_SGID:
 572                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 573        case AUDIT_COMPARE_EGID_TO_FSGID:
 574                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 575        /* sgid comparison */
 576        case AUDIT_COMPARE_SGID_TO_FSGID:
 577                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 578        default:
 579                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 580                return 0;
 581        }
 582        return 0;
 583}
 584
 585/* Determine if any context name data matches a rule's watch data */
 586/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 587 * otherwise.
 588 *
 589 * If task_creation is true, this is an explicit indication that we are
 590 * filtering a task rule at task creation time.  This and tsk == current are
 591 * the only situations where tsk->cred may be accessed without an rcu read lock.
 592 */
 593static int audit_filter_rules(struct task_struct *tsk,
 594                              struct audit_krule *rule,
 595                              struct audit_context *ctx,
 596                              struct audit_names *name,
 597                              enum audit_state *state,
 598                              bool task_creation)
 599{
 600        const struct cred *cred;
 601        int i, need_sid = 1;
 602        u32 sid;
 603
 604        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 605
 606        for (i = 0; i < rule->field_count; i++) {
 607                struct audit_field *f = &rule->fields[i];
 608                struct audit_names *n;
 609                int result = 0;
 610
 611                switch (f->type) {
 612                case AUDIT_PID:
 613                        result = audit_comparator(tsk->pid, f->op, f->val);
 614                        break;
 615                case AUDIT_PPID:
 616                        if (ctx) {
 617                                if (!ctx->ppid)
 618                                        ctx->ppid = sys_getppid();
 619                                result = audit_comparator(ctx->ppid, f->op, f->val);
 620                        }
 621                        break;
 622                case AUDIT_UID:
 623                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 624                        break;
 625                case AUDIT_EUID:
 626                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 627                        break;
 628                case AUDIT_SUID:
 629                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 630                        break;
 631                case AUDIT_FSUID:
 632                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 633                        break;
 634                case AUDIT_GID:
 635                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 636                        break;
 637                case AUDIT_EGID:
 638                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 639                        break;
 640                case AUDIT_SGID:
 641                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 642                        break;
 643                case AUDIT_FSGID:
 644                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 645                        break;
 646                case AUDIT_PERS:
 647                        result = audit_comparator(tsk->personality, f->op, f->val);
 648                        break;
 649                case AUDIT_ARCH:
 650                        if (ctx)
 651                                result = audit_comparator(ctx->arch, f->op, f->val);
 652                        break;
 653
 654                case AUDIT_EXIT:
 655                        if (ctx && ctx->return_valid)
 656                                result = audit_comparator(ctx->return_code, f->op, f->val);
 657                        break;
 658                case AUDIT_SUCCESS:
 659                        if (ctx && ctx->return_valid) {
 660                                if (f->val)
 661                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 662                                else
 663                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 664                        }
 665                        break;
 666                case AUDIT_DEVMAJOR:
 667                        if (name) {
 668                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 669                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 670                                        ++result;
 671                        } else if (ctx) {
 672                                list_for_each_entry(n, &ctx->names_list, list) {
 673                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 674                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 675                                                ++result;
 676                                                break;
 677                                        }
 678                                }
 679                        }
 680                        break;
 681                case AUDIT_DEVMINOR:
 682                        if (name) {
 683                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 684                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 685                                        ++result;
 686                        } else if (ctx) {
 687                                list_for_each_entry(n, &ctx->names_list, list) {
 688                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 689                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 690                                                ++result;
 691                                                break;
 692                                        }
 693                                }
 694                        }
 695                        break;
 696                case AUDIT_INODE:
 697                        if (name)
 698                                result = (name->ino == f->val);
 699                        else if (ctx) {
 700                                list_for_each_entry(n, &ctx->names_list, list) {
 701                                        if (audit_comparator(n->ino, f->op, f->val)) {
 702                                                ++result;
 703                                                break;
 704                                        }
 705                                }
 706                        }
 707                        break;
 708                case AUDIT_OBJ_UID:
 709                        if (name) {
 710                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 711                        } else if (ctx) {
 712                                list_for_each_entry(n, &ctx->names_list, list) {
 713                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 714                                                ++result;
 715                                                break;
 716                                        }
 717                                }
 718                        }
 719                        break;
 720                case AUDIT_OBJ_GID:
 721                        if (name) {
 722                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 723                        } else if (ctx) {
 724                                list_for_each_entry(n, &ctx->names_list, list) {
 725                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 726                                                ++result;
 727                                                break;
 728                                        }
 729                                }
 730                        }
 731                        break;
 732                case AUDIT_WATCH:
 733                        if (name)
 734                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 735                        break;
 736                case AUDIT_DIR:
 737                        if (ctx)
 738                                result = match_tree_refs(ctx, rule->tree);
 739                        break;
 740                case AUDIT_LOGINUID:
 741                        result = 0;
 742                        if (ctx)
 743                                result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 744                        break;
 745                case AUDIT_LOGINUID_SET:
 746                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 747                        break;
 748                case AUDIT_SUBJ_USER:
 749                case AUDIT_SUBJ_ROLE:
 750                case AUDIT_SUBJ_TYPE:
 751                case AUDIT_SUBJ_SEN:
 752                case AUDIT_SUBJ_CLR:
 753                        /* NOTE: this may return negative values indicating
 754                           a temporary error.  We simply treat this as a
 755                           match for now to avoid losing information that
 756                           may be wanted.   An error message will also be
 757                           logged upon error */
 758                        if (f->lsm_rule) {
 759                                if (need_sid) {
 760                                        security_task_getsecid(tsk, &sid);
 761                                        need_sid = 0;
 762                                }
 763                                result = security_audit_rule_match(sid, f->type,
 764                                                                  f->op,
 765                                                                  f->lsm_rule,
 766                                                                  ctx);
 767                        }
 768                        break;
 769                case AUDIT_OBJ_USER:
 770                case AUDIT_OBJ_ROLE:
 771                case AUDIT_OBJ_TYPE:
 772                case AUDIT_OBJ_LEV_LOW:
 773                case AUDIT_OBJ_LEV_HIGH:
 774                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 775                           also applies here */
 776                        if (f->lsm_rule) {
 777                                /* Find files that match */
 778                                if (name) {
 779                                        result = security_audit_rule_match(
 780                                                   name->osid, f->type, f->op,
 781                                                   f->lsm_rule, ctx);
 782                                } else if (ctx) {
 783                                        list_for_each_entry(n, &ctx->names_list, list) {
 784                                                if (security_audit_rule_match(n->osid, f->type,
 785                                                                              f->op, f->lsm_rule,
 786                                                                              ctx)) {
 787                                                        ++result;
 788                                                        break;
 789                                                }
 790                                        }
 791                                }
 792                                /* Find ipc objects that match */
 793                                if (!ctx || ctx->type != AUDIT_IPC)
 794                                        break;
 795                                if (security_audit_rule_match(ctx->ipc.osid,
 796                                                              f->type, f->op,
 797                                                              f->lsm_rule, ctx))
 798                                        ++result;
 799                        }
 800                        break;
 801                case AUDIT_ARG0:
 802                case AUDIT_ARG1:
 803                case AUDIT_ARG2:
 804                case AUDIT_ARG3:
 805                        if (ctx)
 806                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 807                        break;
 808                case AUDIT_FILTERKEY:
 809                        /* ignore this field for filtering */
 810                        result = 1;
 811                        break;
 812                case AUDIT_PERM:
 813                        result = audit_match_perm(ctx, f->val);
 814                        break;
 815                case AUDIT_FILETYPE:
 816                        result = audit_match_filetype(ctx, f->val);
 817                        break;
 818                case AUDIT_FIELD_COMPARE:
 819                        result = audit_field_compare(tsk, cred, f, ctx, name);
 820                        break;
 821                }
 822                if (!result)
 823                        return 0;
 824        }
 825
 826        if (ctx) {
 827                if (rule->prio <= ctx->prio)
 828                        return 0;
 829                if (rule->filterkey) {
 830                        kfree(ctx->filterkey);
 831                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 832                }
 833                ctx->prio = rule->prio;
 834        }
 835        switch (rule->action) {
 836        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 837        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 838        }
 839        return 1;
 840}
 841
 842/* At process creation time, we can determine if system-call auditing is
 843 * completely disabled for this task.  Since we only have the task
 844 * structure at this point, we can only check uid and gid.
 845 */
 846static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 847{
 848        struct audit_entry *e;
 849        enum audit_state   state;
 850
 851        rcu_read_lock();
 852        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 853                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 854                                       &state, true)) {
 855                        if (state == AUDIT_RECORD_CONTEXT)
 856                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 857                        rcu_read_unlock();
 858                        return state;
 859                }
 860        }
 861        rcu_read_unlock();
 862        return AUDIT_BUILD_CONTEXT;
 863}
 864
 865/* At syscall entry and exit time, this filter is called if the
 866 * audit_state is not low enough that auditing cannot take place, but is
 867 * also not high enough that we already know we have to write an audit
 868 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 869 */
 870static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 871                                             struct audit_context *ctx,
 872                                             struct list_head *list)
 873{
 874        struct audit_entry *e;
 875        enum audit_state state;
 876
 877        if (audit_pid && tsk->tgid == audit_pid)
 878                return AUDIT_DISABLED;
 879
 880        rcu_read_lock();
 881        if (!list_empty(list)) {
 882                int word = AUDIT_WORD(ctx->major);
 883                int bit  = AUDIT_BIT(ctx->major);
 884
 885                list_for_each_entry_rcu(e, list, list) {
 886                        if ((e->rule.mask[word] & bit) == bit &&
 887                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 888                                               &state, false)) {
 889                                rcu_read_unlock();
 890                                ctx->current_state = state;
 891                                return state;
 892                        }
 893                }
 894        }
 895        rcu_read_unlock();
 896        return AUDIT_BUILD_CONTEXT;
 897}
 898
 899/*
 900 * Given an audit_name check the inode hash table to see if they match.
 901 * Called holding the rcu read lock to protect the use of audit_inode_hash
 902 */
 903static int audit_filter_inode_name(struct task_struct *tsk,
 904                                   struct audit_names *n,
 905                                   struct audit_context *ctx) {
 906        int word, bit;
 907        int h = audit_hash_ino((u32)n->ino);
 908        struct list_head *list = &audit_inode_hash[h];
 909        struct audit_entry *e;
 910        enum audit_state state;
 911
 912        word = AUDIT_WORD(ctx->major);
 913        bit  = AUDIT_BIT(ctx->major);
 914
 915        if (list_empty(list))
 916                return 0;
 917
 918        list_for_each_entry_rcu(e, list, list) {
 919                if ((e->rule.mask[word] & bit) == bit &&
 920                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 921                        ctx->current_state = state;
 922                        return 1;
 923                }
 924        }
 925
 926        return 0;
 927}
 928
 929/* At syscall exit time, this filter is called if any audit_names have been
 930 * collected during syscall processing.  We only check rules in sublists at hash
 931 * buckets applicable to the inode numbers in audit_names.
 932 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 933 */
 934void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 935{
 936        struct audit_names *n;
 937
 938        if (audit_pid && tsk->tgid == audit_pid)
 939                return;
 940
 941        rcu_read_lock();
 942
 943        list_for_each_entry(n, &ctx->names_list, list) {
 944                if (audit_filter_inode_name(tsk, n, ctx))
 945                        break;
 946        }
 947        rcu_read_unlock();
 948}
 949
 950static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 951                                                      int return_valid,
 952                                                      long return_code)
 953{
 954        struct audit_context *context = tsk->audit_context;
 955
 956        if (!context)
 957                return NULL;
 958        context->return_valid = return_valid;
 959
 960        /*
 961         * we need to fix up the return code in the audit logs if the actual
 962         * return codes are later going to be fixed up by the arch specific
 963         * signal handlers
 964         *
 965         * This is actually a test for:
 966         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 967         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 968         *
 969         * but is faster than a bunch of ||
 970         */
 971        if (unlikely(return_code <= -ERESTARTSYS) &&
 972            (return_code >= -ERESTART_RESTARTBLOCK) &&
 973            (return_code != -ENOIOCTLCMD))
 974                context->return_code = -EINTR;
 975        else
 976                context->return_code  = return_code;
 977
 978        if (context->in_syscall && !context->dummy) {
 979                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 980                audit_filter_inodes(tsk, context);
 981        }
 982
 983        tsk->audit_context = NULL;
 984        return context;
 985}
 986
 987static inline void audit_free_names(struct audit_context *context)
 988{
 989        struct audit_names *n, *next;
 990
 991#if AUDIT_DEBUG == 2
 992        if (context->put_count + context->ino_count != context->name_count) {
 993                printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 994                       " name_count=%d put_count=%d"
 995                       " ino_count=%d [NOT freeing]\n",
 996                       __FILE__, __LINE__,
 997                       context->serial, context->major, context->in_syscall,
 998                       context->name_count, context->put_count,
 999                       context->ino_count);
1000                list_for_each_entry(n, &context->names_list, list) {
1001                        printk(KERN_ERR "names[%d] = %p = %s\n", i,
1002                               n->name, n->name->name ?: "(null)");
1003                }
1004                dump_stack();
1005                return;
1006        }
1007#endif
1008#if AUDIT_DEBUG
1009        context->put_count  = 0;
1010        context->ino_count  = 0;
1011#endif
1012
1013        list_for_each_entry_safe(n, next, &context->names_list, list) {
1014                list_del(&n->list);
1015                if (n->name && n->name_put)
1016                        __putname(n->name);
1017                if (n->should_free)
1018                        kfree(n);
1019        }
1020        context->name_count = 0;
1021        path_put(&context->pwd);
1022        context->pwd.dentry = NULL;
1023        context->pwd.mnt = NULL;
1024}
1025
1026static inline void audit_free_aux(struct audit_context *context)
1027{
1028        struct audit_aux_data *aux;
1029
1030        while ((aux = context->aux)) {
1031                context->aux = aux->next;
1032                kfree(aux);
1033        }
1034        while ((aux = context->aux_pids)) {
1035                context->aux_pids = aux->next;
1036                kfree(aux);
1037        }
1038}
1039
1040static inline void audit_zero_context(struct audit_context *context,
1041                                      enum audit_state state)
1042{
1043        memset(context, 0, sizeof(*context));
1044        context->state      = state;
1045        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1046}
1047
1048static inline struct audit_context *audit_alloc_context(enum audit_state state)
1049{
1050        struct audit_context *context;
1051
1052        if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1053                return NULL;
1054        audit_zero_context(context, state);
1055        INIT_LIST_HEAD(&context->killed_trees);
1056        INIT_LIST_HEAD(&context->names_list);
1057        return context;
1058}
1059
1060/**
1061 * audit_alloc - allocate an audit context block for a task
1062 * @tsk: task
1063 *
1064 * Filter on the task information and allocate a per-task audit context
1065 * if necessary.  Doing so turns on system call auditing for the
1066 * specified task.  This is called from copy_process, so no lock is
1067 * needed.
1068 */
1069int audit_alloc(struct task_struct *tsk)
1070{
1071        struct audit_context *context;
1072        enum audit_state     state;
1073        char *key = NULL;
1074
1075        if (likely(!audit_ever_enabled))
1076                return 0; /* Return if not auditing. */
1077
1078        state = audit_filter_task(tsk, &key);
1079        if (state == AUDIT_DISABLED)
1080                return 0;
1081
1082        if (!(context = audit_alloc_context(state))) {
1083                kfree(key);
1084                audit_log_lost("out of memory in audit_alloc");
1085                return -ENOMEM;
1086        }
1087        context->filterkey = key;
1088
1089        tsk->audit_context  = context;
1090        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1091        return 0;
1092}
1093
1094static inline void audit_free_context(struct audit_context *context)
1095{
1096        audit_free_names(context);
1097        unroll_tree_refs(context, NULL, 0);
1098        free_tree_refs(context);
1099        audit_free_aux(context);
1100        kfree(context->filterkey);
1101        kfree(context->sockaddr);
1102        kfree(context);
1103}
1104
1105void audit_log_task_context(struct audit_buffer *ab)
1106{
1107        char *ctx = NULL;
1108        unsigned len;
1109        int error;
1110        u32 sid;
1111
1112        security_task_getsecid(current, &sid);
1113        if (!sid)
1114                return;
1115
1116        error = security_secid_to_secctx(sid, &ctx, &len);
1117        if (error) {
1118                if (error != -EINVAL)
1119                        goto error_path;
1120                return;
1121        }
1122
1123        audit_log_format(ab, " subj=%s", ctx);
1124        security_release_secctx(ctx, len);
1125        return;
1126
1127error_path:
1128        audit_panic("error in audit_log_task_context");
1129        return;
1130}
1131
1132EXPORT_SYMBOL(audit_log_task_context);
1133
1134void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1135{
1136        const struct cred *cred;
1137        char name[sizeof(tsk->comm)];
1138        struct mm_struct *mm = tsk->mm;
1139        char *tty;
1140
1141        if (!ab)
1142                return;
1143
1144        /* tsk == current */
1145        cred = current_cred();
1146
1147        spin_lock_irq(&tsk->sighand->siglock);
1148        if (tsk->signal && tsk->signal->tty)
1149                tty = tsk->signal->tty->name;
1150        else
1151                tty = "(none)";
1152        spin_unlock_irq(&tsk->sighand->siglock);
1153
1154
1155        audit_log_format(ab,
1156                         " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1157                         " euid=%u suid=%u fsuid=%u"
1158                         " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1159                         sys_getppid(),
1160                         tsk->pid,
1161                         from_kuid(&init_user_ns, tsk->loginuid),
1162                         from_kuid(&init_user_ns, cred->uid),
1163                         from_kgid(&init_user_ns, cred->gid),
1164                         from_kuid(&init_user_ns, cred->euid),
1165                         from_kuid(&init_user_ns, cred->suid),
1166                         from_kuid(&init_user_ns, cred->fsuid),
1167                         from_kgid(&init_user_ns, cred->egid),
1168                         from_kgid(&init_user_ns, cred->sgid),
1169                         from_kgid(&init_user_ns, cred->fsgid),
1170                         tsk->sessionid, tty);
1171
1172        get_task_comm(name, tsk);
1173        audit_log_format(ab, " comm=");
1174        audit_log_untrustedstring(ab, name);
1175
1176        if (mm) {
1177                down_read(&mm->mmap_sem);
1178                if (mm->exe_file)
1179                        audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1180                up_read(&mm->mmap_sem);
1181        }
1182        audit_log_task_context(ab);
1183}
1184
1185EXPORT_SYMBOL(audit_log_task_info);
1186
1187static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1188                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
1189                                 u32 sid, char *comm)
1190{
1191        struct audit_buffer *ab;
1192        char *ctx = NULL;
1193        u32 len;
1194        int rc = 0;
1195
1196        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1197        if (!ab)
1198                return rc;
1199
1200        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1201                         from_kuid(&init_user_ns, auid),
1202                         from_kuid(&init_user_ns, uid), sessionid);
1203        if (security_secid_to_secctx(sid, &ctx, &len)) {
1204                audit_log_format(ab, " obj=(none)");
1205                rc = 1;
1206        } else {
1207                audit_log_format(ab, " obj=%s", ctx);
1208                security_release_secctx(ctx, len);
1209        }
1210        audit_log_format(ab, " ocomm=");
1211        audit_log_untrustedstring(ab, comm);
1212        audit_log_end(ab);
1213
1214        return rc;
1215}
1216
1217/*
1218 * to_send and len_sent accounting are very loose estimates.  We aren't
1219 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1220 * within about 500 bytes (next page boundary)
1221 *
1222 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1223 * logging that a[%d]= was going to be 16 characters long we would be wasting
1224 * space in every audit message.  In one 7500 byte message we can log up to
1225 * about 1000 min size arguments.  That comes down to about 50% waste of space
1226 * if we didn't do the snprintf to find out how long arg_num_len was.
1227 */
1228static int audit_log_single_execve_arg(struct audit_context *context,
1229                                        struct audit_buffer **ab,
1230                                        int arg_num,
1231                                        size_t *len_sent,
1232                                        const char __user *p,
1233                                        char *buf)
1234{
1235        char arg_num_len_buf[12];
1236        const char __user *tmp_p = p;
1237        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1238        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1239        size_t len, len_left, to_send;
1240        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1241        unsigned int i, has_cntl = 0, too_long = 0;
1242        int ret;
1243
1244        /* strnlen_user includes the null we don't want to send */
1245        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1246
1247        /*
1248         * We just created this mm, if we can't find the strings
1249         * we just copied into it something is _very_ wrong. Similar
1250         * for strings that are too long, we should not have created
1251         * any.
1252         */
1253        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1254                WARN_ON(1);
1255                send_sig(SIGKILL, current, 0);
1256                return -1;
1257        }
1258
1259        /* walk the whole argument looking for non-ascii chars */
1260        do {
1261                if (len_left > MAX_EXECVE_AUDIT_LEN)
1262                        to_send = MAX_EXECVE_AUDIT_LEN;
1263                else
1264                        to_send = len_left;
1265                ret = copy_from_user(buf, tmp_p, to_send);
1266                /*
1267                 * There is no reason for this copy to be short. We just
1268                 * copied them here, and the mm hasn't been exposed to user-
1269                 * space yet.
1270                 */
1271                if (ret) {
1272                        WARN_ON(1);
1273                        send_sig(SIGKILL, current, 0);
1274                        return -1;
1275                }
1276                buf[to_send] = '\0';
1277                has_cntl = audit_string_contains_control(buf, to_send);
1278                if (has_cntl) {
1279                        /*
1280                         * hex messages get logged as 2 bytes, so we can only
1281                         * send half as much in each message
1282                         */
1283                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1284                        break;
1285                }
1286                len_left -= to_send;
1287                tmp_p += to_send;
1288        } while (len_left > 0);
1289
1290        len_left = len;
1291
1292        if (len > max_execve_audit_len)
1293                too_long = 1;
1294
1295        /* rewalk the argument actually logging the message */
1296        for (i = 0; len_left > 0; i++) {
1297                int room_left;
1298
1299                if (len_left > max_execve_audit_len)
1300                        to_send = max_execve_audit_len;
1301                else
1302                        to_send = len_left;
1303
1304                /* do we have space left to send this argument in this ab? */
1305                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1306                if (has_cntl)
1307                        room_left -= (to_send * 2);
1308                else
1309                        room_left -= to_send;
1310                if (room_left < 0) {
1311                        *len_sent = 0;
1312                        audit_log_end(*ab);
1313                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1314                        if (!*ab)
1315                                return 0;
1316                }
1317
1318                /*
1319                 * first record needs to say how long the original string was
1320                 * so we can be sure nothing was lost.
1321                 */
1322                if ((i == 0) && (too_long))
1323                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1324                                         has_cntl ? 2*len : len);
1325
1326                /*
1327                 * normally arguments are small enough to fit and we already
1328                 * filled buf above when we checked for control characters
1329                 * so don't bother with another copy_from_user
1330                 */
1331                if (len >= max_execve_audit_len)
1332                        ret = copy_from_user(buf, p, to_send);
1333                else
1334                        ret = 0;
1335                if (ret) {
1336                        WARN_ON(1);
1337                        send_sig(SIGKILL, current, 0);
1338                        return -1;
1339                }
1340                buf[to_send] = '\0';
1341
1342                /* actually log it */
1343                audit_log_format(*ab, " a%d", arg_num);
1344                if (too_long)
1345                        audit_log_format(*ab, "[%d]", i);
1346                audit_log_format(*ab, "=");
1347                if (has_cntl)
1348                        audit_log_n_hex(*ab, buf, to_send);
1349                else
1350                        audit_log_string(*ab, buf);
1351
1352                p += to_send;
1353                len_left -= to_send;
1354                *len_sent += arg_num_len;
1355                if (has_cntl)
1356                        *len_sent += to_send * 2;
1357                else
1358                        *len_sent += to_send;
1359        }
1360        /* include the null we didn't log */
1361        return len + 1;
1362}
1363
1364static void audit_log_execve_info(struct audit_context *context,
1365                                  struct audit_buffer **ab,
1366                                  struct audit_aux_data_execve *axi)
1367{
1368        int i, len;
1369        size_t len_sent = 0;
1370        const char __user *p;
1371        char *buf;
1372
1373        if (axi->mm != current->mm)
1374                return; /* execve failed, no additional info */
1375
1376        p = (const char __user *)axi->mm->arg_start;
1377
1378        audit_log_format(*ab, "argc=%d", axi->argc);
1379
1380        /*
1381         * we need some kernel buffer to hold the userspace args.  Just
1382         * allocate one big one rather than allocating one of the right size
1383         * for every single argument inside audit_log_single_execve_arg()
1384         * should be <8k allocation so should be pretty safe.
1385         */
1386        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1387        if (!buf) {
1388                audit_panic("out of memory for argv string\n");
1389                return;
1390        }
1391
1392        for (i = 0; i < axi->argc; i++) {
1393                len = audit_log_single_execve_arg(context, ab, i,
1394                                                  &len_sent, p, buf);
1395                if (len <= 0)
1396                        break;
1397                p += len;
1398        }
1399        kfree(buf);
1400}
1401
1402static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1403{
1404        int i;
1405
1406        audit_log_format(ab, " %s=", prefix);
1407        CAP_FOR_EACH_U32(i) {
1408                audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1409        }
1410}
1411
1412static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1413{
1414        kernel_cap_t *perm = &name->fcap.permitted;
1415        kernel_cap_t *inh = &name->fcap.inheritable;
1416        int log = 0;
1417
1418        if (!cap_isclear(*perm)) {
1419                audit_log_cap(ab, "cap_fp", perm);
1420                log = 1;
1421        }
1422        if (!cap_isclear(*inh)) {
1423                audit_log_cap(ab, "cap_fi", inh);
1424                log = 1;
1425        }
1426
1427        if (log)
1428                audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1429}
1430
1431static void show_special(struct audit_context *context, int *call_panic)
1432{
1433        struct audit_buffer *ab;
1434        int i;
1435
1436        ab = audit_log_start(context, GFP_KERNEL, context->type);
1437        if (!ab)
1438                return;
1439
1440        switch (context->type) {
1441        case AUDIT_SOCKETCALL: {
1442                int nargs = context->socketcall.nargs;
1443                audit_log_format(ab, "nargs=%d", nargs);
1444                for (i = 0; i < nargs; i++)
1445                        audit_log_format(ab, " a%d=%lx", i,
1446                                context->socketcall.args[i]);
1447                break; }
1448        case AUDIT_IPC: {
1449                u32 osid = context->ipc.osid;
1450
1451                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1452                                 from_kuid(&init_user_ns, context->ipc.uid),
1453                                 from_kgid(&init_user_ns, context->ipc.gid),
1454                                 context->ipc.mode);
1455                if (osid) {
1456                        char *ctx = NULL;
1457                        u32 len;
1458                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1459                                audit_log_format(ab, " osid=%u", osid);
1460                                *call_panic = 1;
1461                        } else {
1462                                audit_log_format(ab, " obj=%s", ctx);
1463                                security_release_secctx(ctx, len);
1464                        }
1465                }
1466                if (context->ipc.has_perm) {
1467                        audit_log_end(ab);
1468                        ab = audit_log_start(context, GFP_KERNEL,
1469                                             AUDIT_IPC_SET_PERM);
1470                        if (unlikely(!ab))
1471                                return;
1472                        audit_log_format(ab,
1473                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1474                                context->ipc.qbytes,
1475                                context->ipc.perm_uid,
1476                                context->ipc.perm_gid,
1477                                context->ipc.perm_mode);
1478                }
1479                break; }
1480        case AUDIT_MQ_OPEN: {
1481                audit_log_format(ab,
1482                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1483                        "mq_msgsize=%ld mq_curmsgs=%ld",
1484                        context->mq_open.oflag, context->mq_open.mode,
1485                        context->mq_open.attr.mq_flags,
1486                        context->mq_open.attr.mq_maxmsg,
1487                        context->mq_open.attr.mq_msgsize,
1488                        context->mq_open.attr.mq_curmsgs);
1489                break; }
1490        case AUDIT_MQ_SENDRECV: {
1491                audit_log_format(ab,
1492                        "mqdes=%d msg_len=%zd msg_prio=%u "
1493                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1494                        context->mq_sendrecv.mqdes,
1495                        context->mq_sendrecv.msg_len,
1496                        context->mq_sendrecv.msg_prio,
1497                        context->mq_sendrecv.abs_timeout.tv_sec,
1498                        context->mq_sendrecv.abs_timeout.tv_nsec);
1499                break; }
1500        case AUDIT_MQ_NOTIFY: {
1501                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1502                                context->mq_notify.mqdes,
1503                                context->mq_notify.sigev_signo);
1504                break; }
1505        case AUDIT_MQ_GETSETATTR: {
1506                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1507                audit_log_format(ab,
1508                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1509                        "mq_curmsgs=%ld ",
1510                        context->mq_getsetattr.mqdes,
1511                        attr->mq_flags, attr->mq_maxmsg,
1512                        attr->mq_msgsize, attr->mq_curmsgs);
1513                break; }
1514        case AUDIT_CAPSET: {
1515                audit_log_format(ab, "pid=%d", context->capset.pid);
1516                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1517                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1518                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1519                break; }
1520        case AUDIT_MMAP: {
1521                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1522                                 context->mmap.flags);
1523                break; }
1524        }
1525        audit_log_end(ab);
1526}
1527
1528static void audit_log_name(struct audit_context *context, struct audit_names *n,
1529                           int record_num, int *call_panic)
1530{
1531        struct audit_buffer *ab;
1532        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1533        if (!ab)
1534                return; /* audit_panic has been called */
1535
1536        audit_log_format(ab, "item=%d", record_num);
1537
1538        if (n->name) {
1539                switch (n->name_len) {
1540                case AUDIT_NAME_FULL:
1541                        /* log the full path */
1542                        audit_log_format(ab, " name=");
1543                        audit_log_untrustedstring(ab, n->name->name);
1544                        break;
1545                case 0:
1546                        /* name was specified as a relative path and the
1547                         * directory component is the cwd */
1548                        audit_log_d_path(ab, " name=", &context->pwd);
1549                        break;
1550                default:
1551                        /* log the name's directory component */
1552                        audit_log_format(ab, " name=");
1553                        audit_log_n_untrustedstring(ab, n->name->name,
1554                                                    n->name_len);
1555                }
1556        } else
1557                audit_log_format(ab, " name=(null)");
1558
1559        if (n->ino != (unsigned long)-1) {
1560                audit_log_format(ab, " inode=%lu"
1561                                 " dev=%02x:%02x mode=%#ho"
1562                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1563                                 n->ino,
1564                                 MAJOR(n->dev),
1565                                 MINOR(n->dev),
1566                                 n->mode,
1567                                 from_kuid(&init_user_ns, n->uid),
1568                                 from_kgid(&init_user_ns, n->gid),
1569                                 MAJOR(n->rdev),
1570                                 MINOR(n->rdev));
1571        }
1572        if (n->osid != 0) {
1573                char *ctx = NULL;
1574                u32 len;
1575                if (security_secid_to_secctx(
1576                        n->osid, &ctx, &len)) {
1577                        audit_log_format(ab, " osid=%u", n->osid);
1578                        *call_panic = 2;
1579                } else {
1580                        audit_log_format(ab, " obj=%s", ctx);
1581                        security_release_secctx(ctx, len);
1582                }
1583        }
1584
1585        audit_log_fcaps(ab, n);
1586
1587        audit_log_end(ab);
1588}
1589
1590static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1591{
1592        int i, call_panic = 0;
1593        struct audit_buffer *ab;
1594        struct audit_aux_data *aux;
1595        struct audit_names *n;
1596
1597        /* tsk == current */
1598        context->personality = tsk->personality;
1599
1600        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1601        if (!ab)
1602                return;         /* audit_panic has been called */
1603        audit_log_format(ab, "arch=%x syscall=%d",
1604                         context->arch, context->major);
1605        if (context->personality != PER_LINUX)
1606                audit_log_format(ab, " per=%lx", context->personality);
1607        if (context->return_valid)
1608                audit_log_format(ab, " success=%s exit=%ld",
1609                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1610                                 context->return_code);
1611
1612        audit_log_format(ab,
1613                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1614                         context->argv[0],
1615                         context->argv[1],
1616                         context->argv[2],
1617                         context->argv[3],
1618                         context->name_count);
1619
1620        audit_log_task_info(ab, tsk);
1621        audit_log_key(ab, context->filterkey);
1622        audit_log_end(ab);
1623
1624        for (aux = context->aux; aux; aux = aux->next) {
1625
1626                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1627                if (!ab)
1628                        continue; /* audit_panic has been called */
1629
1630                switch (aux->type) {
1631
1632                case AUDIT_EXECVE: {
1633                        struct audit_aux_data_execve *axi = (void *)aux;
1634                        audit_log_execve_info(context, &ab, axi);
1635                        break; }
1636
1637                case AUDIT_BPRM_FCAPS: {
1638                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1639                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1640                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1641                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1642                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1643                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1644                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1645                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1646                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1647                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1648                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1649                        break; }
1650
1651                }
1652                audit_log_end(ab);
1653        }
1654
1655        if (context->type)
1656                show_special(context, &call_panic);
1657
1658        if (context->fds[0] >= 0) {
1659                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1660                if (ab) {
1661                        audit_log_format(ab, "fd0=%d fd1=%d",
1662                                        context->fds[0], context->fds[1]);
1663                        audit_log_end(ab);
1664                }
1665        }
1666
1667        if (context->sockaddr_len) {
1668                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1669                if (ab) {
1670                        audit_log_format(ab, "saddr=");
1671                        audit_log_n_hex(ab, (void *)context->sockaddr,
1672                                        context->sockaddr_len);
1673                        audit_log_end(ab);
1674                }
1675        }
1676
1677        for (aux = context->aux_pids; aux; aux = aux->next) {
1678                struct audit_aux_data_pids *axs = (void *)aux;
1679
1680                for (i = 0; i < axs->pid_count; i++)
1681                        if (audit_log_pid_context(context, axs->target_pid[i],
1682                                                  axs->target_auid[i],
1683                                                  axs->target_uid[i],
1684                                                  axs->target_sessionid[i],
1685                                                  axs->target_sid[i],
1686                                                  axs->target_comm[i]))
1687                                call_panic = 1;
1688        }
1689
1690        if (context->target_pid &&
1691            audit_log_pid_context(context, context->target_pid,
1692                                  context->target_auid, context->target_uid,
1693                                  context->target_sessionid,
1694                                  context->target_sid, context->target_comm))
1695                        call_panic = 1;
1696
1697        if (context->pwd.dentry && context->pwd.mnt) {
1698                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1699                if (ab) {
1700                        audit_log_d_path(ab, " cwd=", &context->pwd);
1701                        audit_log_end(ab);
1702                }
1703        }
1704
1705        i = 0;
1706        list_for_each_entry(n, &context->names_list, list)
1707                audit_log_name(context, n, i++, &call_panic);
1708
1709        /* Send end of event record to help user space know we are finished */
1710        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1711        if (ab)
1712                audit_log_end(ab);
1713        if (call_panic)
1714                audit_panic("error converting sid to string");
1715}
1716
1717/**
1718 * audit_free - free a per-task audit context
1719 * @tsk: task whose audit context block to free
1720 *
1721 * Called from copy_process and do_exit
1722 */
1723void __audit_free(struct task_struct *tsk)
1724{
1725        struct audit_context *context;
1726
1727        context = audit_get_context(tsk, 0, 0);
1728        if (!context)
1729                return;
1730
1731        /* Check for system calls that do not go through the exit
1732         * function (e.g., exit_group), then free context block.
1733         * We use GFP_ATOMIC here because we might be doing this
1734         * in the context of the idle thread */
1735        /* that can happen only if we are called from do_exit() */
1736        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1737                audit_log_exit(context, tsk);
1738        if (!list_empty(&context->killed_trees))
1739                audit_kill_trees(&context->killed_trees);
1740
1741        audit_free_context(context);
1742}
1743
1744/**
1745 * audit_syscall_entry - fill in an audit record at syscall entry
1746 * @arch: architecture type
1747 * @major: major syscall type (function)
1748 * @a1: additional syscall register 1
1749 * @a2: additional syscall register 2
1750 * @a3: additional syscall register 3
1751 * @a4: additional syscall register 4
1752 *
1753 * Fill in audit context at syscall entry.  This only happens if the
1754 * audit context was created when the task was created and the state or
1755 * filters demand the audit context be built.  If the state from the
1756 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1757 * then the record will be written at syscall exit time (otherwise, it
1758 * will only be written if another part of the kernel requests that it
1759 * be written).
1760 */
1761void __audit_syscall_entry(int arch, int major,
1762                         unsigned long a1, unsigned long a2,
1763                         unsigned long a3, unsigned long a4)
1764{
1765        struct task_struct *tsk = current;
1766        struct audit_context *context = tsk->audit_context;
1767        enum audit_state     state;
1768
1769        if (!context)
1770                return;
1771
1772        BUG_ON(context->in_syscall || context->name_count);
1773
1774        if (!audit_enabled)
1775                return;
1776
1777        context->arch       = arch;
1778        context->major      = major;
1779        context->argv[0]    = a1;
1780        context->argv[1]    = a2;
1781        context->argv[2]    = a3;
1782        context->argv[3]    = a4;
1783
1784        state = context->state;
1785        context->dummy = !audit_n_rules;
1786        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1787                context->prio = 0;
1788                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1789        }
1790        if (state == AUDIT_DISABLED)
1791                return;
1792
1793        context->serial     = 0;
1794        context->ctime      = CURRENT_TIME;
1795        context->in_syscall = 1;
1796        context->current_state  = state;
1797        context->ppid       = 0;
1798}
1799
1800/**
1801 * audit_syscall_exit - deallocate audit context after a system call
1802 * @success: success value of the syscall
1803 * @return_code: return value of the syscall
1804 *
1805 * Tear down after system call.  If the audit context has been marked as
1806 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1807 * filtering, or because some other part of the kernel wrote an audit
1808 * message), then write out the syscall information.  In call cases,
1809 * free the names stored from getname().
1810 */
1811void __audit_syscall_exit(int success, long return_code)
1812{
1813        struct task_struct *tsk = current;
1814        struct audit_context *context;
1815
1816        if (success)
1817                success = AUDITSC_SUCCESS;
1818        else
1819                success = AUDITSC_FAILURE;
1820
1821        context = audit_get_context(tsk, success, return_code);
1822        if (!context)
1823                return;
1824
1825        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1826                audit_log_exit(context, tsk);
1827
1828        context->in_syscall = 0;
1829        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1830
1831        if (!list_empty(&context->killed_trees))
1832                audit_kill_trees(&context->killed_trees);
1833
1834        audit_free_names(context);
1835        unroll_tree_refs(context, NULL, 0);
1836        audit_free_aux(context);
1837        context->aux = NULL;
1838        context->aux_pids = NULL;
1839        context->target_pid = 0;
1840        context->target_sid = 0;
1841        context->sockaddr_len = 0;
1842        context->type = 0;
1843        context->fds[0] = -1;
1844        if (context->state != AUDIT_RECORD_CONTEXT) {
1845                kfree(context->filterkey);
1846                context->filterkey = NULL;
1847        }
1848        tsk->audit_context = context;
1849}
1850
1851static inline void handle_one(const struct inode *inode)
1852{
1853#ifdef CONFIG_AUDIT_TREE
1854        struct audit_context *context;
1855        struct audit_tree_refs *p;
1856        struct audit_chunk *chunk;
1857        int count;
1858        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1859                return;
1860        context = current->audit_context;
1861        p = context->trees;
1862        count = context->tree_count;
1863        rcu_read_lock();
1864        chunk = audit_tree_lookup(inode);
1865        rcu_read_unlock();
1866        if (!chunk)
1867                return;
1868        if (likely(put_tree_ref(context, chunk)))
1869                return;
1870        if (unlikely(!grow_tree_refs(context))) {
1871                printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1872                audit_set_auditable(context);
1873                audit_put_chunk(chunk);
1874                unroll_tree_refs(context, p, count);
1875                return;
1876        }
1877        put_tree_ref(context, chunk);
1878#endif
1879}
1880
1881static void handle_path(const struct dentry *dentry)
1882{
1883#ifdef CONFIG_AUDIT_TREE
1884        struct audit_context *context;
1885        struct audit_tree_refs *p;
1886        const struct dentry *d, *parent;
1887        struct audit_chunk *drop;
1888        unsigned long seq;
1889        int count;
1890
1891        context = current->audit_context;
1892        p = context->trees;
1893        count = context->tree_count;
1894retry:
1895        drop = NULL;
1896        d = dentry;
1897        rcu_read_lock();
1898        seq = read_seqbegin(&rename_lock);
1899        for(;;) {
1900                struct inode *inode = d->d_inode;
1901                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1902                        struct audit_chunk *chunk;
1903                        chunk = audit_tree_lookup(inode);
1904                        if (chunk) {
1905                                if (unlikely(!put_tree_ref(context, chunk))) {
1906                                        drop = chunk;
1907                                        break;
1908                                }
1909                        }
1910                }
1911                parent = d->d_parent;
1912                if (parent == d)
1913                        break;
1914                d = parent;
1915        }
1916        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1917                rcu_read_unlock();
1918                if (!drop) {
1919                        /* just a race with rename */
1920                        unroll_tree_refs(context, p, count);
1921                        goto retry;
1922                }
1923                audit_put_chunk(drop);
1924                if (grow_tree_refs(context)) {
1925                        /* OK, got more space */
1926                        unroll_tree_refs(context, p, count);
1927                        goto retry;
1928                }
1929                /* too bad */
1930                printk(KERN_WARNING
1931                        "out of memory, audit has lost a tree reference\n");
1932                unroll_tree_refs(context, p, count);
1933                audit_set_auditable(context);
1934                return;
1935        }
1936        rcu_read_unlock();
1937#endif
1938}
1939
1940static struct audit_names *audit_alloc_name(struct audit_context *context,
1941                                                unsigned char type)
1942{
1943        struct audit_names *aname;
1944
1945        if (context->name_count < AUDIT_NAMES) {
1946                aname = &context->preallocated_names[context->name_count];
1947                memset(aname, 0, sizeof(*aname));
1948        } else {
1949                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1950                if (!aname)
1951                        return NULL;
1952                aname->should_free = true;
1953        }
1954
1955        aname->ino = (unsigned long)-1;
1956        aname->type = type;
1957        list_add_tail(&aname->list, &context->names_list);
1958
1959        context->name_count++;
1960#if AUDIT_DEBUG
1961        context->ino_count++;
1962#endif
1963        return aname;
1964}
1965
1966/**
1967 * audit_reusename - fill out filename with info from existing entry
1968 * @uptr: userland ptr to pathname
1969 *
1970 * Search the audit_names list for the current audit context. If there is an
1971 * existing entry with a matching "uptr" then return the filename
1972 * associated with that audit_name. If not, return NULL.
1973 */
1974struct filename *
1975__audit_reusename(const __user char *uptr)
1976{
1977        struct audit_context *context = current->audit_context;
1978        struct audit_names *n;
1979
1980        list_for_each_entry(n, &context->names_list, list) {
1981                if (!n->name)
1982                        continue;
1983                if (n->name->uptr == uptr)
1984                        return n->name;
1985        }
1986        return NULL;
1987}
1988
1989/**
1990 * audit_getname - add a name to the list
1991 * @name: name to add
1992 *
1993 * Add a name to the list of audit names for this context.
1994 * Called from fs/namei.c:getname().
1995 */
1996void __audit_getname(struct filename *name)
1997{
1998        struct audit_context *context = current->audit_context;
1999        struct audit_names *n;
2000
2001        if (!context->in_syscall) {
2002#if AUDIT_DEBUG == 2
2003                printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2004                       __FILE__, __LINE__, context->serial, name);
2005                dump_stack();
2006#endif
2007                return;
2008        }
2009
2010#if AUDIT_DEBUG
2011        /* The filename _must_ have a populated ->name */
2012        BUG_ON(!name->name);
2013#endif
2014
2015        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2016        if (!n)
2017                return;
2018
2019        n->name = name;
2020        n->name_len = AUDIT_NAME_FULL;
2021        n->name_put = true;
2022        name->aname = n;
2023
2024        if (!context->pwd.dentry)
2025                get_fs_pwd(current->fs, &context->pwd);
2026}
2027
2028/* audit_putname - intercept a putname request
2029 * @name: name to intercept and delay for putname
2030 *
2031 * If we have stored the name from getname in the audit context,
2032 * then we delay the putname until syscall exit.
2033 * Called from include/linux/fs.h:putname().
2034 */
2035void audit_putname(struct filename *name)
2036{
2037        struct audit_context *context = current->audit_context;
2038
2039        BUG_ON(!context);
2040        if (!context->in_syscall) {
2041#if AUDIT_DEBUG == 2
2042                printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2043                       __FILE__, __LINE__, context->serial, name);
2044                if (context->name_count) {
2045                        struct audit_names *n;
2046                        int i;
2047
2048                        list_for_each_entry(n, &context->names_list, list)
2049                                printk(KERN_ERR "name[%d] = %p = %s\n", i,
2050                                       n->name, n->name->name ?: "(null)");
2051                        }
2052#endif
2053                __putname(name);
2054        }
2055#if AUDIT_DEBUG
2056        else {
2057                ++context->put_count;
2058                if (context->put_count > context->name_count) {
2059                        printk(KERN_ERR "%s:%d(:%d): major=%d"
2060                               " in_syscall=%d putname(%p) name_count=%d"
2061                               " put_count=%d\n",
2062                               __FILE__, __LINE__,
2063                               context->serial, context->major,
2064                               context->in_syscall, name->name,
2065                               context->name_count, context->put_count);
2066                        dump_stack();
2067                }
2068        }
2069#endif
2070}
2071
2072static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2073{
2074        struct cpu_vfs_cap_data caps;
2075        int rc;
2076
2077        if (!dentry)
2078                return 0;
2079
2080        rc = get_vfs_caps_from_disk(dentry, &caps);
2081        if (rc)
2082                return rc;
2083
2084        name->fcap.permitted = caps.permitted;
2085        name->fcap.inheritable = caps.inheritable;
2086        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2087        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2088
2089        return 0;
2090}
2091
2092
2093/* Copy inode data into an audit_names. */
2094static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2095                             const struct inode *inode)
2096{
2097        name->ino   = inode->i_ino;
2098        name->dev   = inode->i_sb->s_dev;
2099        name->mode  = inode->i_mode;
2100        name->uid   = inode->i_uid;
2101        name->gid   = inode->i_gid;
2102        name->rdev  = inode->i_rdev;
2103        security_inode_getsecid(inode, &name->osid);
2104        audit_copy_fcaps(name, dentry);
2105}
2106
2107/**
2108 * __audit_inode - store the inode and device from a lookup
2109 * @name: name being audited
2110 * @dentry: dentry being audited
2111 * @parent: does this dentry represent the parent?
2112 */
2113void __audit_inode(struct filename *name, const struct dentry *dentry,
2114                   unsigned int parent)
2115{
2116        struct audit_context *context = current->audit_context;
2117        const struct inode *inode = dentry->d_inode;
2118        struct audit_names *n;
2119
2120        if (!context->in_syscall)
2121                return;
2122
2123        if (!name)
2124                goto out_alloc;
2125
2126#if AUDIT_DEBUG
2127        /* The struct filename _must_ have a populated ->name */
2128        BUG_ON(!name->name);
2129#endif
2130        /*
2131         * If we have a pointer to an audit_names entry already, then we can
2132         * just use it directly if the type is correct.
2133         */
2134        n = name->aname;
2135        if (n) {
2136                if (parent) {
2137                        if (n->type == AUDIT_TYPE_PARENT ||
2138                            n->type == AUDIT_TYPE_UNKNOWN)
2139                                goto out;
2140                } else {
2141                        if (n->type != AUDIT_TYPE_PARENT)
2142                                goto out;
2143                }
2144        }
2145
2146        list_for_each_entry_reverse(n, &context->names_list, list) {
2147                /* does the name pointer match? */
2148                if (!n->name || n->name->name != name->name)
2149                        continue;
2150
2151                /* match the correct record type */
2152                if (parent) {
2153                        if (n->type == AUDIT_TYPE_PARENT ||
2154                            n->type == AUDIT_TYPE_UNKNOWN)
2155                                goto out;
2156                } else {
2157                        if (n->type != AUDIT_TYPE_PARENT)
2158                                goto out;
2159                }
2160        }
2161
2162out_alloc:
2163        /* unable to find the name from a previous getname(). Allocate a new
2164         * anonymous entry.
2165         */
2166        n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2167        if (!n)
2168                return;
2169out:
2170        if (parent) {
2171                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2172                n->type = AUDIT_TYPE_PARENT;
2173        } else {
2174                n->name_len = AUDIT_NAME_FULL;
2175                n->type = AUDIT_TYPE_NORMAL;
2176        }
2177        handle_path(dentry);
2178        audit_copy_inode(n, dentry, inode);
2179}
2180
2181/**
2182 * __audit_inode_child - collect inode info for created/removed objects
2183 * @parent: inode of dentry parent
2184 * @dentry: dentry being audited
2185 * @type:   AUDIT_TYPE_* value that we're looking for
2186 *
2187 * For syscalls that create or remove filesystem objects, audit_inode
2188 * can only collect information for the filesystem object's parent.
2189 * This call updates the audit context with the child's information.
2190 * Syscalls that create a new filesystem object must be hooked after
2191 * the object is created.  Syscalls that remove a filesystem object
2192 * must be hooked prior, in order to capture the target inode during
2193 * unsuccessful attempts.
2194 */
2195void __audit_inode_child(const struct inode *parent,
2196                         const struct dentry *dentry,
2197                         const unsigned char type)
2198{
2199        struct audit_context *context = current->audit_context;
2200        const struct inode *inode = dentry->d_inode;
2201        const char *dname = dentry->d_name.name;
2202        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2203
2204        if (!context->in_syscall)
2205                return;
2206
2207        if (inode)
2208                handle_one(inode);
2209
2210        /* look for a parent entry first */
2211        list_for_each_entry(n, &context->names_list, list) {
2212                if (!n->name || n->type != AUDIT_TYPE_PARENT)
2213                        continue;
2214
2215                if (n->ino == parent->i_ino &&
2216                    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2217                        found_parent = n;
2218                        break;
2219                }
2220        }
2221
2222        /* is there a matching child entry? */
2223        list_for_each_entry(n, &context->names_list, list) {
2224                /* can only match entries that have a name */
2225                if (!n->name || n->type != type)
2226                        continue;
2227
2228                /* if we found a parent, make sure this one is a child of it */
2229                if (found_parent && (n->name != found_parent->name))
2230                        continue;
2231
2232                if (!strcmp(dname, n->name->name) ||
2233                    !audit_compare_dname_path(dname, n->name->name,
2234                                                found_parent ?
2235                                                found_parent->name_len :
2236                                                AUDIT_NAME_FULL)) {
2237                        found_child = n;
2238                        break;
2239                }
2240        }
2241
2242        if (!found_parent) {
2243                /* create a new, "anonymous" parent record */
2244                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2245                if (!n)
2246                        return;
2247                audit_copy_inode(n, NULL, parent);
2248        }
2249
2250        if (!found_child) {
2251                found_child = audit_alloc_name(context, type);
2252                if (!found_child)
2253                        return;
2254
2255                /* Re-use the name belonging to the slot for a matching parent
2256                 * directory. All names for this context are relinquished in
2257                 * audit_free_names() */
2258                if (found_parent) {
2259                        found_child->name = found_parent->name;
2260                        found_child->name_len = AUDIT_NAME_FULL;
2261                        /* don't call __putname() */
2262                        found_child->name_put = false;
2263                }
2264        }
2265        if (inode)
2266                audit_copy_inode(found_child, dentry, inode);
2267        else
2268                found_child->ino = (unsigned long)-1;
2269}
2270EXPORT_SYMBOL_GPL(__audit_inode_child);
2271
2272/**
2273 * auditsc_get_stamp - get local copies of audit_context values
2274 * @ctx: audit_context for the task
2275 * @t: timespec to store time recorded in the audit_context
2276 * @serial: serial value that is recorded in the audit_context
2277 *
2278 * Also sets the context as auditable.
2279 */
2280int auditsc_get_stamp(struct audit_context *ctx,
2281                       struct timespec *t, unsigned int *serial)
2282{
2283        if (!ctx->in_syscall)
2284                return 0;
2285        if (!ctx->serial)
2286                ctx->serial = audit_serial();
2287        t->tv_sec  = ctx->ctime.tv_sec;
2288        t->tv_nsec = ctx->ctime.tv_nsec;
2289        *serial    = ctx->serial;
2290        if (!ctx->prio) {
2291                ctx->prio = 1;
2292                ctx->current_state = AUDIT_RECORD_CONTEXT;
2293        }
2294        return 1;
2295}
2296
2297/* global counter which is incremented every time something logs in */
2298static atomic_t session_id = ATOMIC_INIT(0);
2299
2300/**
2301 * audit_set_loginuid - set current task's audit_context loginuid
2302 * @loginuid: loginuid value
2303 *
2304 * Returns 0.
2305 *
2306 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2307 */
2308int audit_set_loginuid(kuid_t loginuid)
2309{
2310        struct task_struct *task = current;
2311        struct audit_context *context = task->audit_context;
2312        unsigned int sessionid;
2313
2314#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2315        if (audit_loginuid_set(task))
2316                return -EPERM;
2317#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2318        if (!capable(CAP_AUDIT_CONTROL))
2319                return -EPERM;
2320#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2321
2322        sessionid = atomic_inc_return(&session_id);
2323        if (context && context->in_syscall) {
2324                struct audit_buffer *ab;
2325
2326                ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2327                if (ab) {
2328                        audit_log_format(ab, "login pid=%d uid=%u "
2329                                "old auid=%u new auid=%u"
2330                                " old ses=%u new ses=%u",
2331                                task->pid,
2332                                from_kuid(&init_user_ns, task_uid(task)),
2333                                from_kuid(&init_user_ns, task->loginuid),
2334                                from_kuid(&init_user_ns, loginuid),
2335                                task->sessionid, sessionid);
2336                        audit_log_end(ab);
2337                }
2338        }
2339        task->sessionid = sessionid;
2340        task->loginuid = loginuid;
2341        return 0;
2342}
2343
2344/**
2345 * __audit_mq_open - record audit data for a POSIX MQ open
2346 * @oflag: open flag
2347 * @mode: mode bits
2348 * @attr: queue attributes
2349 *
2350 */
2351void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2352{
2353        struct audit_context *context = current->audit_context;
2354
2355        if (attr)
2356                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2357        else
2358                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2359
2360        context->mq_open.oflag = oflag;
2361        context->mq_open.mode = mode;
2362
2363        context->type = AUDIT_MQ_OPEN;
2364}
2365
2366/**
2367 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2368 * @mqdes: MQ descriptor
2369 * @msg_len: Message length
2370 * @msg_prio: Message priority
2371 * @abs_timeout: Message timeout in absolute time
2372 *
2373 */
2374void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2375                        const struct timespec *abs_timeout)
2376{
2377        struct audit_context *context = current->audit_context;
2378        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2379
2380        if (abs_timeout)
2381                memcpy(p, abs_timeout, sizeof(struct timespec));
2382        else
2383                memset(p, 0, sizeof(struct timespec));
2384
2385        context->mq_sendrecv.mqdes = mqdes;
2386        context->mq_sendrecv.msg_len = msg_len;
2387        context->mq_sendrecv.msg_prio = msg_prio;
2388
2389        context->type = AUDIT_MQ_SENDRECV;
2390}
2391
2392/**
2393 * __audit_mq_notify - record audit data for a POSIX MQ notify
2394 * @mqdes: MQ descriptor
2395 * @notification: Notification event
2396 *
2397 */
2398
2399void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2400{
2401        struct audit_context *context = current->audit_context;
2402
2403        if (notification)
2404                context->mq_notify.sigev_signo = notification->sigev_signo;
2405        else
2406                context->mq_notify.sigev_signo = 0;
2407
2408        context->mq_notify.mqdes = mqdes;
2409        context->type = AUDIT_MQ_NOTIFY;
2410}
2411
2412/**
2413 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2414 * @mqdes: MQ descriptor
2415 * @mqstat: MQ flags
2416 *
2417 */
2418void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2419{
2420        struct audit_context *context = current->audit_context;
2421        context->mq_getsetattr.mqdes = mqdes;
2422        context->mq_getsetattr.mqstat = *mqstat;
2423        context->type = AUDIT_MQ_GETSETATTR;
2424}
2425
2426/**
2427 * audit_ipc_obj - record audit data for ipc object
2428 * @ipcp: ipc permissions
2429 *
2430 */
2431void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2432{
2433        struct audit_context *context = current->audit_context;
2434        context->ipc.uid = ipcp->uid;
2435        context->ipc.gid = ipcp->gid;
2436        context->ipc.mode = ipcp->mode;
2437        context->ipc.has_perm = 0;
2438        security_ipc_getsecid(ipcp, &context->ipc.osid);
2439        context->type = AUDIT_IPC;
2440}
2441
2442/**
2443 * audit_ipc_set_perm - record audit data for new ipc permissions
2444 * @qbytes: msgq bytes
2445 * @uid: msgq user id
2446 * @gid: msgq group id
2447 * @mode: msgq mode (permissions)
2448 *
2449 * Called only after audit_ipc_obj().
2450 */
2451void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2452{
2453        struct audit_context *context = current->audit_context;
2454
2455        context->ipc.qbytes = qbytes;
2456        context->ipc.perm_uid = uid;
2457        context->ipc.perm_gid = gid;
2458        context->ipc.perm_mode = mode;
2459        context->ipc.has_perm = 1;
2460}
2461
2462int __audit_bprm(struct linux_binprm *bprm)
2463{
2464        struct audit_aux_data_execve *ax;
2465        struct audit_context *context = current->audit_context;
2466
2467        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2468        if (!ax)
2469                return -ENOMEM;
2470
2471        ax->argc = bprm->argc;
2472        ax->envc = bprm->envc;
2473        ax->mm = bprm->mm;
2474        ax->d.type = AUDIT_EXECVE;
2475        ax->d.next = context->aux;
2476        context->aux = (void *)ax;
2477        return 0;
2478}
2479
2480
2481/**
2482 * audit_socketcall - record audit data for sys_socketcall
2483 * @nargs: number of args
2484 * @args: args array
2485 *
2486 */
2487void __audit_socketcall(int nargs, unsigned long *args)
2488{
2489        struct audit_context *context = current->audit_context;
2490
2491        context->type = AUDIT_SOCKETCALL;
2492        context->socketcall.nargs = nargs;
2493        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2494}
2495
2496/**
2497 * __audit_fd_pair - record audit data for pipe and socketpair
2498 * @fd1: the first file descriptor
2499 * @fd2: the second file descriptor
2500 *
2501 */
2502void __audit_fd_pair(int fd1, int fd2)
2503{
2504        struct audit_context *context = current->audit_context;
2505        context->fds[0] = fd1;
2506        context->fds[1] = fd2;
2507}
2508
2509/**
2510 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2511 * @len: data length in user space
2512 * @a: data address in kernel space
2513 *
2514 * Returns 0 for success or NULL context or < 0 on error.
2515 */
2516int __audit_sockaddr(int len, void *a)
2517{
2518        struct audit_context *context = current->audit_context;
2519
2520        if (!context->sockaddr) {
2521                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2522                if (!p)
2523                        return -ENOMEM;
2524                context->sockaddr = p;
2525        }
2526
2527        context->sockaddr_len = len;
2528        memcpy(context->sockaddr, a, len);
2529        return 0;
2530}
2531
2532void __audit_ptrace(struct task_struct *t)
2533{
2534        struct audit_context *context = current->audit_context;
2535
2536        context->target_pid = t->pid;
2537        context->target_auid = audit_get_loginuid(t);
2538        context->target_uid = task_uid(t);
2539        context->target_sessionid = audit_get_sessionid(t);
2540        security_task_getsecid(t, &context->target_sid);
2541        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2542}
2543
2544/**
2545 * audit_signal_info - record signal info for shutting down audit subsystem
2546 * @sig: signal value
2547 * @t: task being signaled
2548 *
2549 * If the audit subsystem is being terminated, record the task (pid)
2550 * and uid that is doing that.
2551 */
2552int __audit_signal_info(int sig, struct task_struct *t)
2553{
2554        struct audit_aux_data_pids *axp;
2555        struct task_struct *tsk = current;
2556        struct audit_context *ctx = tsk->audit_context;
2557        kuid_t uid = current_uid(), t_uid = task_uid(t);
2558
2559        if (audit_pid && t->tgid == audit_pid) {
2560                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2561                        audit_sig_pid = tsk->pid;
2562                        if (uid_valid(tsk->loginuid))
2563                                audit_sig_uid = tsk->loginuid;
2564                        else
2565                                audit_sig_uid = uid;
2566                        security_task_getsecid(tsk, &audit_sig_sid);
2567                }
2568                if (!audit_signals || audit_dummy_context())
2569                        return 0;
2570        }
2571
2572        /* optimize the common case by putting first signal recipient directly
2573         * in audit_context */
2574        if (!ctx->target_pid) {
2575                ctx->target_pid = t->tgid;
2576                ctx->target_auid = audit_get_loginuid(t);
2577                ctx->target_uid = t_uid;
2578                ctx->target_sessionid = audit_get_sessionid(t);
2579                security_task_getsecid(t, &ctx->target_sid);
2580                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2581                return 0;
2582        }
2583
2584        axp = (void *)ctx->aux_pids;
2585        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2586                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2587                if (!axp)
2588                        return -ENOMEM;
2589
2590                axp->d.type = AUDIT_OBJ_PID;
2591                axp->d.next = ctx->aux_pids;
2592                ctx->aux_pids = (void *)axp;
2593        }
2594        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2595
2596        axp->target_pid[axp->pid_count] = t->tgid;
2597        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2598        axp->target_uid[axp->pid_count] = t_uid;
2599        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2600        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2601        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2602        axp->pid_count++;
2603
2604        return 0;
2605}
2606
2607/**
2608 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2609 * @bprm: pointer to the bprm being processed
2610 * @new: the proposed new credentials
2611 * @old: the old credentials
2612 *
2613 * Simply check if the proc already has the caps given by the file and if not
2614 * store the priv escalation info for later auditing at the end of the syscall
2615 *
2616 * -Eric
2617 */
2618int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2619                           const struct cred *new, const struct cred *old)
2620{
2621        struct audit_aux_data_bprm_fcaps *ax;
2622        struct audit_context *context = current->audit_context;
2623        struct cpu_vfs_cap_data vcaps;
2624        struct dentry *dentry;
2625
2626        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2627        if (!ax)
2628                return -ENOMEM;
2629
2630        ax->d.type = AUDIT_BPRM_FCAPS;
2631        ax->d.next = context->aux;
2632        context->aux = (void *)ax;
2633
2634        dentry = dget(bprm->file->f_dentry);
2635        get_vfs_caps_from_disk(dentry, &vcaps);
2636        dput(dentry);
2637
2638        ax->fcap.permitted = vcaps.permitted;
2639        ax->fcap.inheritable = vcaps.inheritable;
2640        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2641        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2642
2643        ax->old_pcap.permitted   = old->cap_permitted;
2644        ax->old_pcap.inheritable = old->cap_inheritable;
2645        ax->old_pcap.effective   = old->cap_effective;
2646
2647        ax->new_pcap.permitted   = new->cap_permitted;
2648        ax->new_pcap.inheritable = new->cap_inheritable;
2649        ax->new_pcap.effective   = new->cap_effective;
2650        return 0;
2651}
2652
2653/**
2654 * __audit_log_capset - store information about the arguments to the capset syscall
2655 * @pid: target pid of the capset call
2656 * @new: the new credentials
2657 * @old: the old (current) credentials
2658 *
2659 * Record the aguments userspace sent to sys_capset for later printing by the
2660 * audit system if applicable
2661 */
2662void __audit_log_capset(pid_t pid,
2663                       const struct cred *new, const struct cred *old)
2664{
2665        struct audit_context *context = current->audit_context;
2666        context->capset.pid = pid;
2667        context->capset.cap.effective   = new->cap_effective;
2668        context->capset.cap.inheritable = new->cap_effective;
2669        context->capset.cap.permitted   = new->cap_permitted;
2670        context->type = AUDIT_CAPSET;
2671}
2672
2673void __audit_mmap_fd(int fd, int flags)
2674{
2675        struct audit_context *context = current->audit_context;
2676        context->mmap.fd = fd;
2677        context->mmap.flags = flags;
2678        context->type = AUDIT_MMAP;
2679}
2680
2681static void audit_log_task(struct audit_buffer *ab)
2682{
2683        kuid_t auid, uid;
2684        kgid_t gid;
2685        unsigned int sessionid;
2686
2687        auid = audit_get_loginuid(current);
2688        sessionid = audit_get_sessionid(current);
2689        current_uid_gid(&uid, &gid);
2690
2691        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2692                         from_kuid(&init_user_ns, auid),
2693                         from_kuid(&init_user_ns, uid),
2694                         from_kgid(&init_user_ns, gid),
2695                         sessionid);
2696        audit_log_task_context(ab);
2697        audit_log_format(ab, " pid=%d comm=", current->pid);
2698        audit_log_untrustedstring(ab, current->comm);
2699}
2700
2701static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2702{
2703        audit_log_task(ab);
2704        audit_log_format(ab, " reason=");
2705        audit_log_string(ab, reason);
2706        audit_log_format(ab, " sig=%ld", signr);
2707}
2708/**
2709 * audit_core_dumps - record information about processes that end abnormally
2710 * @signr: signal value
2711 *
2712 * If a process ends with a core dump, something fishy is going on and we
2713 * should record the event for investigation.
2714 */
2715void audit_core_dumps(long signr)
2716{
2717        struct audit_buffer *ab;
2718
2719        if (!audit_enabled)
2720                return;
2721
2722        if (signr == SIGQUIT)   /* don't care for those */
2723                return;
2724
2725        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2726        if (unlikely(!ab))
2727                return;
2728        audit_log_abend(ab, "memory violation", signr);
2729        audit_log_end(ab);
2730}
2731
2732void __audit_seccomp(unsigned long syscall, long signr, int code)
2733{
2734        struct audit_buffer *ab;
2735
2736        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2737        if (unlikely(!ab))
2738                return;
2739        audit_log_task(ab);
2740        audit_log_format(ab, " sig=%ld", signr);
2741        audit_log_format(ab, " syscall=%ld", syscall);
2742        audit_log_format(ab, " compat=%d", is_compat_task());
2743        audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2744        audit_log_format(ab, " code=0x%x", code);
2745        audit_log_end(ab);
2746}
2747
2748struct list_head *audit_killed_trees(void)
2749{
2750        struct audit_context *ctx = current->audit_context;
2751        if (likely(!ctx || !ctx->in_syscall))
2752                return NULL;
2753        return &ctx->killed_trees;
2754}
2755
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.