linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6
   7struct sched_param {
   8        int sched_priority;
   9};
  10
  11#include <asm/param.h>  /* for HZ */
  12
  13#include <linux/capability.h>
  14#include <linux/threads.h>
  15#include <linux/kernel.h>
  16#include <linux/types.h>
  17#include <linux/timex.h>
  18#include <linux/jiffies.h>
  19#include <linux/rbtree.h>
  20#include <linux/thread_info.h>
  21#include <linux/cpumask.h>
  22#include <linux/errno.h>
  23#include <linux/nodemask.h>
  24#include <linux/mm_types.h>
  25
  26#include <asm/page.h>
  27#include <asm/ptrace.h>
  28#include <asm/cputime.h>
  29
  30#include <linux/smp.h>
  31#include <linux/sem.h>
  32#include <linux/signal.h>
  33#include <linux/compiler.h>
  34#include <linux/completion.h>
  35#include <linux/pid.h>
  36#include <linux/percpu.h>
  37#include <linux/topology.h>
  38#include <linux/proportions.h>
  39#include <linux/seccomp.h>
  40#include <linux/rcupdate.h>
  41#include <linux/rculist.h>
  42#include <linux/rtmutex.h>
  43
  44#include <linux/time.h>
  45#include <linux/param.h>
  46#include <linux/resource.h>
  47#include <linux/timer.h>
  48#include <linux/hrtimer.h>
  49#include <linux/task_io_accounting.h>
  50#include <linux/latencytop.h>
  51#include <linux/cred.h>
  52#include <linux/llist.h>
  53#include <linux/uidgid.h>
  54#include <linux/gfp.h>
  55
  56#include <asm/processor.h>
  57
  58struct exec_domain;
  59struct futex_pi_state;
  60struct robust_list_head;
  61struct bio_list;
  62struct fs_struct;
  63struct perf_event_context;
  64struct blk_plug;
  65
  66/*
  67 * List of flags we want to share for kernel threads,
  68 * if only because they are not used by them anyway.
  69 */
  70#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
  71
  72/*
  73 * These are the constant used to fake the fixed-point load-average
  74 * counting. Some notes:
  75 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
  76 *    a load-average precision of 10 bits integer + 11 bits fractional
  77 *  - if you want to count load-averages more often, you need more
  78 *    precision, or rounding will get you. With 2-second counting freq,
  79 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
  80 *    11 bit fractions.
  81 */
  82extern unsigned long avenrun[];         /* Load averages */
  83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
  84
  85#define FSHIFT          11              /* nr of bits of precision */
  86#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
  87#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
  88#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
  89#define EXP_5           2014            /* 1/exp(5sec/5min) */
  90#define EXP_15          2037            /* 1/exp(5sec/15min) */
  91
  92#define CALC_LOAD(load,exp,n) \
  93        load *= exp; \
  94        load += n*(FIXED_1-exp); \
  95        load >>= FSHIFT;
  96
  97extern unsigned long total_forks;
  98extern int nr_threads;
  99DECLARE_PER_CPU(unsigned long, process_counts);
 100extern int nr_processes(void);
 101extern unsigned long nr_running(void);
 102extern unsigned long nr_iowait(void);
 103extern unsigned long nr_iowait_cpu(int cpu);
 104extern unsigned long this_cpu_load(void);
 105
 106
 107extern void calc_global_load(unsigned long ticks);
 108extern void update_cpu_load_nohz(void);
 109
 110/* Notifier for when a task gets migrated to a new CPU */
 111struct task_migration_notifier {
 112        struct task_struct *task;
 113        int from_cpu;
 114        int to_cpu;
 115};
 116extern void register_task_migration_notifier(struct notifier_block *n);
 117
 118extern unsigned long get_parent_ip(unsigned long addr);
 119
 120extern void dump_cpu_task(int cpu);
 121
 122struct seq_file;
 123struct cfs_rq;
 124struct task_group;
 125#ifdef CONFIG_SCHED_DEBUG
 126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 127extern void proc_sched_set_task(struct task_struct *p);
 128extern void
 129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 130#else
 131static inline void
 132proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 133{
 134}
 135static inline void proc_sched_set_task(struct task_struct *p)
 136{
 137}
 138static inline void
 139print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 140{
 141}
 142#endif
 143
 144/*
 145 * Task state bitmask. NOTE! These bits are also
 146 * encoded in fs/proc/array.c: get_task_state().
 147 *
 148 * We have two separate sets of flags: task->state
 149 * is about runnability, while task->exit_state are
 150 * about the task exiting. Confusing, but this way
 151 * modifying one set can't modify the other one by
 152 * mistake.
 153 */
 154#define TASK_RUNNING            0
 155#define TASK_INTERRUPTIBLE      1
 156#define TASK_UNINTERRUPTIBLE    2
 157#define __TASK_STOPPED          4
 158#define __TASK_TRACED           8
 159/* in tsk->exit_state */
 160#define EXIT_ZOMBIE             16
 161#define EXIT_DEAD               32
 162/* in tsk->state again */
 163#define TASK_DEAD               64
 164#define TASK_WAKEKILL           128
 165#define TASK_WAKING             256
 166#define TASK_PARKED             512
 167#define TASK_STATE_MAX          1024
 168
 169#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 170
 171extern char ___assert_task_state[1 - 2*!!(
 172                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 173
 174/* Convenience macros for the sake of set_task_state */
 175#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 176#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 177#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 178
 179/* Convenience macros for the sake of wake_up */
 180#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 181#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 182
 183/* get_task_state() */
 184#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 185                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 186                                 __TASK_TRACED)
 187
 188#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 189#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 190#define task_is_dead(task)      ((task)->exit_state != 0)
 191#define task_is_stopped_or_traced(task) \
 192                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 193#define task_contributes_to_load(task)  \
 194                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 195                                 (task->flags & PF_FROZEN) == 0)
 196
 197#define __set_task_state(tsk, state_value)              \
 198        do { (tsk)->state = (state_value); } while (0)
 199#define set_task_state(tsk, state_value)                \
 200        set_mb((tsk)->state, (state_value))
 201
 202/*
 203 * set_current_state() includes a barrier so that the write of current->state
 204 * is correctly serialised wrt the caller's subsequent test of whether to
 205 * actually sleep:
 206 *
 207 *      set_current_state(TASK_UNINTERRUPTIBLE);
 208 *      if (do_i_need_to_sleep())
 209 *              schedule();
 210 *
 211 * If the caller does not need such serialisation then use __set_current_state()
 212 */
 213#define __set_current_state(state_value)                        \
 214        do { current->state = (state_value); } while (0)
 215#define set_current_state(state_value)          \
 216        set_mb(current->state, (state_value))
 217
 218/* Task command name length */
 219#define TASK_COMM_LEN 16
 220
 221#include <linux/spinlock.h>
 222
 223/*
 224 * This serializes "schedule()" and also protects
 225 * the run-queue from deletions/modifications (but
 226 * _adding_ to the beginning of the run-queue has
 227 * a separate lock).
 228 */
 229extern rwlock_t tasklist_lock;
 230extern spinlock_t mmlist_lock;
 231
 232struct task_struct;
 233
 234#ifdef CONFIG_PROVE_RCU
 235extern int lockdep_tasklist_lock_is_held(void);
 236#endif /* #ifdef CONFIG_PROVE_RCU */
 237
 238extern void sched_init(void);
 239extern void sched_init_smp(void);
 240extern asmlinkage void schedule_tail(struct task_struct *prev);
 241extern void init_idle(struct task_struct *idle, int cpu);
 242extern void init_idle_bootup_task(struct task_struct *idle);
 243
 244extern int runqueue_is_locked(int cpu);
 245
 246#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 247extern void nohz_balance_enter_idle(int cpu);
 248extern void set_cpu_sd_state_idle(void);
 249extern int get_nohz_timer_target(void);
 250#else
 251static inline void nohz_balance_enter_idle(int cpu) { }
 252static inline void set_cpu_sd_state_idle(void) { }
 253#endif
 254
 255/*
 256 * Only dump TASK_* tasks. (0 for all tasks)
 257 */
 258extern void show_state_filter(unsigned long state_filter);
 259
 260static inline void show_state(void)
 261{
 262        show_state_filter(0);
 263}
 264
 265extern void show_regs(struct pt_regs *);
 266
 267/*
 268 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 269 * task), SP is the stack pointer of the first frame that should be shown in the back
 270 * trace (or NULL if the entire call-chain of the task should be shown).
 271 */
 272extern void show_stack(struct task_struct *task, unsigned long *sp);
 273
 274void io_schedule(void);
 275long io_schedule_timeout(long timeout);
 276
 277extern void cpu_init (void);
 278extern void trap_init(void);
 279extern void update_process_times(int user);
 280extern void scheduler_tick(void);
 281
 282extern void sched_show_task(struct task_struct *p);
 283
 284#ifdef CONFIG_LOCKUP_DETECTOR
 285extern void touch_softlockup_watchdog(void);
 286extern void touch_softlockup_watchdog_sync(void);
 287extern void touch_all_softlockup_watchdogs(void);
 288extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 289                                  void __user *buffer,
 290                                  size_t *lenp, loff_t *ppos);
 291extern unsigned int  softlockup_panic;
 292void lockup_detector_init(void);
 293#else
 294static inline void touch_softlockup_watchdog(void)
 295{
 296}
 297static inline void touch_softlockup_watchdog_sync(void)
 298{
 299}
 300static inline void touch_all_softlockup_watchdogs(void)
 301{
 302}
 303static inline void lockup_detector_init(void)
 304{
 305}
 306#endif
 307
 308/* Attach to any functions which should be ignored in wchan output. */
 309#define __sched         __attribute__((__section__(".sched.text")))
 310
 311/* Linker adds these: start and end of __sched functions */
 312extern char __sched_text_start[], __sched_text_end[];
 313
 314/* Is this address in the __sched functions? */
 315extern int in_sched_functions(unsigned long addr);
 316
 317#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 318extern signed long schedule_timeout(signed long timeout);
 319extern signed long schedule_timeout_interruptible(signed long timeout);
 320extern signed long schedule_timeout_killable(signed long timeout);
 321extern signed long schedule_timeout_uninterruptible(signed long timeout);
 322asmlinkage void schedule(void);
 323extern void schedule_preempt_disabled(void);
 324extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
 325
 326struct nsproxy;
 327struct user_namespace;
 328
 329#include <linux/aio.h>
 330
 331#ifdef CONFIG_MMU
 332extern void arch_pick_mmap_layout(struct mm_struct *mm);
 333extern unsigned long
 334arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 335                       unsigned long, unsigned long);
 336extern unsigned long
 337arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 338                          unsigned long len, unsigned long pgoff,
 339                          unsigned long flags);
 340extern void arch_unmap_area(struct mm_struct *, unsigned long);
 341extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 342#else
 343static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 344#endif
 345
 346
 347extern void set_dumpable(struct mm_struct *mm, int value);
 348extern int get_dumpable(struct mm_struct *mm);
 349
 350/* mm flags */
 351/* dumpable bits */
 352#define MMF_DUMPABLE      0  /* core dump is permitted */
 353#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 354
 355#define MMF_DUMPABLE_BITS 2
 356#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 357
 358/* coredump filter bits */
 359#define MMF_DUMP_ANON_PRIVATE   2
 360#define MMF_DUMP_ANON_SHARED    3
 361#define MMF_DUMP_MAPPED_PRIVATE 4
 362#define MMF_DUMP_MAPPED_SHARED  5
 363#define MMF_DUMP_ELF_HEADERS    6
 364#define MMF_DUMP_HUGETLB_PRIVATE 7
 365#define MMF_DUMP_HUGETLB_SHARED  8
 366
 367#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 368#define MMF_DUMP_FILTER_BITS    7
 369#define MMF_DUMP_FILTER_MASK \
 370        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 371#define MMF_DUMP_FILTER_DEFAULT \
 372        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 373         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 374
 375#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 376# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 377#else
 378# define MMF_DUMP_MASK_DEFAULT_ELF      0
 379#endif
 380                                        /* leave room for more dump flags */
 381#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 382#define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
 383#define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
 384
 385#define MMF_HAS_UPROBES         19      /* has uprobes */
 386#define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
 387
 388#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 389
 390struct sighand_struct {
 391        atomic_t                count;
 392        struct k_sigaction      action[_NSIG];
 393        spinlock_t              siglock;
 394        wait_queue_head_t       signalfd_wqh;
 395};
 396
 397struct pacct_struct {
 398        int                     ac_flag;
 399        long                    ac_exitcode;
 400        unsigned long           ac_mem;
 401        cputime_t               ac_utime, ac_stime;
 402        unsigned long           ac_minflt, ac_majflt;
 403};
 404
 405struct cpu_itimer {
 406        cputime_t expires;
 407        cputime_t incr;
 408        u32 error;
 409        u32 incr_error;
 410};
 411
 412/**
 413 * struct cputime - snaphsot of system and user cputime
 414 * @utime: time spent in user mode
 415 * @stime: time spent in system mode
 416 *
 417 * Gathers a generic snapshot of user and system time.
 418 */
 419struct cputime {
 420        cputime_t utime;
 421        cputime_t stime;
 422};
 423
 424/**
 425 * struct task_cputime - collected CPU time counts
 426 * @utime:              time spent in user mode, in &cputime_t units
 427 * @stime:              time spent in kernel mode, in &cputime_t units
 428 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 429 *
 430 * This is an extension of struct cputime that includes the total runtime
 431 * spent by the task from the scheduler point of view.
 432 *
 433 * As a result, this structure groups together three kinds of CPU time
 434 * that are tracked for threads and thread groups.  Most things considering
 435 * CPU time want to group these counts together and treat all three
 436 * of them in parallel.
 437 */
 438struct task_cputime {
 439        cputime_t utime;
 440        cputime_t stime;
 441        unsigned long long sum_exec_runtime;
 442};
 443/* Alternate field names when used to cache expirations. */
 444#define prof_exp        stime
 445#define virt_exp        utime
 446#define sched_exp       sum_exec_runtime
 447
 448#define INIT_CPUTIME    \
 449        (struct task_cputime) {                                 \
 450                .utime = 0,                                     \
 451                .stime = 0,                                     \
 452                .sum_exec_runtime = 0,                          \
 453        }
 454
 455/*
 456 * Disable preemption until the scheduler is running.
 457 * Reset by start_kernel()->sched_init()->init_idle().
 458 *
 459 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 460 * before the scheduler is active -- see should_resched().
 461 */
 462#define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
 463
 464/**
 465 * struct thread_group_cputimer - thread group interval timer counts
 466 * @cputime:            thread group interval timers.
 467 * @running:            non-zero when there are timers running and
 468 *                      @cputime receives updates.
 469 * @lock:               lock for fields in this struct.
 470 *
 471 * This structure contains the version of task_cputime, above, that is
 472 * used for thread group CPU timer calculations.
 473 */
 474struct thread_group_cputimer {
 475        struct task_cputime cputime;
 476        int running;
 477        raw_spinlock_t lock;
 478};
 479
 480#include <linux/rwsem.h>
 481struct autogroup;
 482
 483/*
 484 * NOTE! "signal_struct" does not have its own
 485 * locking, because a shared signal_struct always
 486 * implies a shared sighand_struct, so locking
 487 * sighand_struct is always a proper superset of
 488 * the locking of signal_struct.
 489 */
 490struct signal_struct {
 491        atomic_t                sigcnt;
 492        atomic_t                live;
 493        int                     nr_threads;
 494
 495        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 496
 497        /* current thread group signal load-balancing target: */
 498        struct task_struct      *curr_target;
 499
 500        /* shared signal handling: */
 501        struct sigpending       shared_pending;
 502
 503        /* thread group exit support */
 504        int                     group_exit_code;
 505        /* overloaded:
 506         * - notify group_exit_task when ->count is equal to notify_count
 507         * - everyone except group_exit_task is stopped during signal delivery
 508         *   of fatal signals, group_exit_task processes the signal.
 509         */
 510        int                     notify_count;
 511        struct task_struct      *group_exit_task;
 512
 513        /* thread group stop support, overloads group_exit_code too */
 514        int                     group_stop_count;
 515        unsigned int            flags; /* see SIGNAL_* flags below */
 516
 517        /*
 518         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 519         * manager, to re-parent orphan (double-forking) child processes
 520         * to this process instead of 'init'. The service manager is
 521         * able to receive SIGCHLD signals and is able to investigate
 522         * the process until it calls wait(). All children of this
 523         * process will inherit a flag if they should look for a
 524         * child_subreaper process at exit.
 525         */
 526        unsigned int            is_child_subreaper:1;
 527        unsigned int            has_child_subreaper:1;
 528
 529        /* POSIX.1b Interval Timers */
 530        struct list_head posix_timers;
 531
 532        /* ITIMER_REAL timer for the process */
 533        struct hrtimer real_timer;
 534        struct pid *leader_pid;
 535        ktime_t it_real_incr;
 536
 537        /*
 538         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 539         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 540         * values are defined to 0 and 1 respectively
 541         */
 542        struct cpu_itimer it[2];
 543
 544        /*
 545         * Thread group totals for process CPU timers.
 546         * See thread_group_cputimer(), et al, for details.
 547         */
 548        struct thread_group_cputimer cputimer;
 549
 550        /* Earliest-expiration cache. */
 551        struct task_cputime cputime_expires;
 552
 553        struct list_head cpu_timers[3];
 554
 555        struct pid *tty_old_pgrp;
 556
 557        /* boolean value for session group leader */
 558        int leader;
 559
 560        struct tty_struct *tty; /* NULL if no tty */
 561
 562#ifdef CONFIG_SCHED_AUTOGROUP
 563        struct autogroup *autogroup;
 564#endif
 565        /*
 566         * Cumulative resource counters for dead threads in the group,
 567         * and for reaped dead child processes forked by this group.
 568         * Live threads maintain their own counters and add to these
 569         * in __exit_signal, except for the group leader.
 570         */
 571        cputime_t utime, stime, cutime, cstime;
 572        cputime_t gtime;
 573        cputime_t cgtime;
 574#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 575        struct cputime prev_cputime;
 576#endif
 577        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 578        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 579        unsigned long inblock, oublock, cinblock, coublock;
 580        unsigned long maxrss, cmaxrss;
 581        struct task_io_accounting ioac;
 582
 583        /*
 584         * Cumulative ns of schedule CPU time fo dead threads in the
 585         * group, not including a zombie group leader, (This only differs
 586         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 587         * other than jiffies.)
 588         */
 589        unsigned long long sum_sched_runtime;
 590
 591        /*
 592         * We don't bother to synchronize most readers of this at all,
 593         * because there is no reader checking a limit that actually needs
 594         * to get both rlim_cur and rlim_max atomically, and either one
 595         * alone is a single word that can safely be read normally.
 596         * getrlimit/setrlimit use task_lock(current->group_leader) to
 597         * protect this instead of the siglock, because they really
 598         * have no need to disable irqs.
 599         */
 600        struct rlimit rlim[RLIM_NLIMITS];
 601
 602#ifdef CONFIG_BSD_PROCESS_ACCT
 603        struct pacct_struct pacct;      /* per-process accounting information */
 604#endif
 605#ifdef CONFIG_TASKSTATS
 606        struct taskstats *stats;
 607#endif
 608#ifdef CONFIG_AUDIT
 609        unsigned audit_tty;
 610        struct tty_audit_buf *tty_audit_buf;
 611#endif
 612#ifdef CONFIG_CGROUPS
 613        /*
 614         * group_rwsem prevents new tasks from entering the threadgroup and
 615         * member tasks from exiting,a more specifically, setting of
 616         * PF_EXITING.  fork and exit paths are protected with this rwsem
 617         * using threadgroup_change_begin/end().  Users which require
 618         * threadgroup to remain stable should use threadgroup_[un]lock()
 619         * which also takes care of exec path.  Currently, cgroup is the
 620         * only user.
 621         */
 622        struct rw_semaphore group_rwsem;
 623#endif
 624
 625        oom_flags_t oom_flags;
 626        short oom_score_adj;            /* OOM kill score adjustment */
 627        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 628                                         * Only settable by CAP_SYS_RESOURCE. */
 629
 630        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 631                                         * credential calculations
 632                                         * (notably. ptrace) */
 633};
 634
 635/*
 636 * Bits in flags field of signal_struct.
 637 */
 638#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 639#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 640#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 641/*
 642 * Pending notifications to parent.
 643 */
 644#define SIGNAL_CLD_STOPPED      0x00000010
 645#define SIGNAL_CLD_CONTINUED    0x00000020
 646#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 647
 648#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 649
 650/* If true, all threads except ->group_exit_task have pending SIGKILL */
 651static inline int signal_group_exit(const struct signal_struct *sig)
 652{
 653        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 654                (sig->group_exit_task != NULL);
 655}
 656
 657/*
 658 * Some day this will be a full-fledged user tracking system..
 659 */
 660struct user_struct {
 661        atomic_t __count;       /* reference count */
 662        atomic_t processes;     /* How many processes does this user have? */
 663        atomic_t files;         /* How many open files does this user have? */
 664        atomic_t sigpending;    /* How many pending signals does this user have? */
 665#ifdef CONFIG_INOTIFY_USER
 666        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 667        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 668#endif
 669#ifdef CONFIG_FANOTIFY
 670        atomic_t fanotify_listeners;
 671#endif
 672#ifdef CONFIG_EPOLL
 673        atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 674#endif
 675#ifdef CONFIG_POSIX_MQUEUE
 676        /* protected by mq_lock */
 677        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 678#endif
 679        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 680
 681#ifdef CONFIG_KEYS
 682        struct key *uid_keyring;        /* UID specific keyring */
 683        struct key *session_keyring;    /* UID's default session keyring */
 684#endif
 685
 686        /* Hash table maintenance information */
 687        struct hlist_node uidhash_node;
 688        kuid_t uid;
 689
 690#ifdef CONFIG_PERF_EVENTS
 691        atomic_long_t locked_vm;
 692#endif
 693};
 694
 695extern int uids_sysfs_init(void);
 696
 697extern struct user_struct *find_user(kuid_t);
 698
 699extern struct user_struct root_user;
 700#define INIT_USER (&root_user)
 701
 702
 703struct backing_dev_info;
 704struct reclaim_state;
 705
 706#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 707struct sched_info {
 708        /* cumulative counters */
 709        unsigned long pcount;         /* # of times run on this cpu */
 710        unsigned long long run_delay; /* time spent waiting on a runqueue */
 711
 712        /* timestamps */
 713        unsigned long long last_arrival,/* when we last ran on a cpu */
 714                           last_queued; /* when we were last queued to run */
 715};
 716#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 717
 718#ifdef CONFIG_TASK_DELAY_ACCT
 719struct task_delay_info {
 720        spinlock_t      lock;
 721        unsigned int    flags;  /* Private per-task flags */
 722
 723        /* For each stat XXX, add following, aligned appropriately
 724         *
 725         * struct timespec XXX_start, XXX_end;
 726         * u64 XXX_delay;
 727         * u32 XXX_count;
 728         *
 729         * Atomicity of updates to XXX_delay, XXX_count protected by
 730         * single lock above (split into XXX_lock if contention is an issue).
 731         */
 732
 733        /*
 734         * XXX_count is incremented on every XXX operation, the delay
 735         * associated with the operation is added to XXX_delay.
 736         * XXX_delay contains the accumulated delay time in nanoseconds.
 737         */
 738        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 739        u64 blkio_delay;        /* wait for sync block io completion */
 740        u64 swapin_delay;       /* wait for swapin block io completion */
 741        u32 blkio_count;        /* total count of the number of sync block */
 742                                /* io operations performed */
 743        u32 swapin_count;       /* total count of the number of swapin block */
 744                                /* io operations performed */
 745
 746        struct timespec freepages_start, freepages_end;
 747        u64 freepages_delay;    /* wait for memory reclaim */
 748        u32 freepages_count;    /* total count of memory reclaim */
 749};
 750#endif  /* CONFIG_TASK_DELAY_ACCT */
 751
 752static inline int sched_info_on(void)
 753{
 754#ifdef CONFIG_SCHEDSTATS
 755        return 1;
 756#elif defined(CONFIG_TASK_DELAY_ACCT)
 757        extern int delayacct_on;
 758        return delayacct_on;
 759#else
 760        return 0;
 761#endif
 762}
 763
 764enum cpu_idle_type {
 765        CPU_IDLE,
 766        CPU_NOT_IDLE,
 767        CPU_NEWLY_IDLE,
 768        CPU_MAX_IDLE_TYPES
 769};
 770
 771/*
 772 * Increase resolution of nice-level calculations for 64-bit architectures.
 773 * The extra resolution improves shares distribution and load balancing of
 774 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 775 * hierarchies, especially on larger systems. This is not a user-visible change
 776 * and does not change the user-interface for setting shares/weights.
 777 *
 778 * We increase resolution only if we have enough bits to allow this increased
 779 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
 780 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
 781 * increased costs.
 782 */
 783#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
 784# define SCHED_LOAD_RESOLUTION  10
 785# define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
 786# define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
 787#else
 788# define SCHED_LOAD_RESOLUTION  0
 789# define scale_load(w)          (w)
 790# define scale_load_down(w)     (w)
 791#endif
 792
 793#define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
 794#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 795
 796/*
 797 * Increase resolution of cpu_power calculations
 798 */
 799#define SCHED_POWER_SHIFT       10
 800#define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
 801
 802/*
 803 * sched-domains (multiprocessor balancing) declarations:
 804 */
 805#ifdef CONFIG_SMP
 806#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
 807#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
 808#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
 809#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
 810#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
 811#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
 812#define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
 813#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
 814#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
 815#define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
 816#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
 817#define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
 818
 819extern int __weak arch_sd_sibiling_asym_packing(void);
 820
 821struct sched_group_power {
 822        atomic_t ref;
 823        /*
 824         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 825         * single CPU.
 826         */
 827        unsigned int power, power_orig;
 828        unsigned long next_update;
 829        /*
 830         * Number of busy cpus in this group.
 831         */
 832        atomic_t nr_busy_cpus;
 833
 834        unsigned long cpumask[0]; /* iteration mask */
 835};
 836
 837struct sched_group {
 838        struct sched_group *next;       /* Must be a circular list */
 839        atomic_t ref;
 840
 841        unsigned int group_weight;
 842        struct sched_group_power *sgp;
 843
 844        /*
 845         * The CPUs this group covers.
 846         *
 847         * NOTE: this field is variable length. (Allocated dynamically
 848         * by attaching extra space to the end of the structure,
 849         * depending on how many CPUs the kernel has booted up with)
 850         */
 851        unsigned long cpumask[0];
 852};
 853
 854static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 855{
 856        return to_cpumask(sg->cpumask);
 857}
 858
 859/*
 860 * cpumask masking which cpus in the group are allowed to iterate up the domain
 861 * tree.
 862 */
 863static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 864{
 865        return to_cpumask(sg->sgp->cpumask);
 866}
 867
 868/**
 869 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 870 * @group: The group whose first cpu is to be returned.
 871 */
 872static inline unsigned int group_first_cpu(struct sched_group *group)
 873{
 874        return cpumask_first(sched_group_cpus(group));
 875}
 876
 877struct sched_domain_attr {
 878        int relax_domain_level;
 879};
 880
 881#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 882        .relax_domain_level = -1,                       \
 883}
 884
 885extern int sched_domain_level_max;
 886
 887struct sched_domain {
 888        /* These fields must be setup */
 889        struct sched_domain *parent;    /* top domain must be null terminated */
 890        struct sched_domain *child;     /* bottom domain must be null terminated */
 891        struct sched_group *groups;     /* the balancing groups of the domain */
 892        unsigned long min_interval;     /* Minimum balance interval ms */
 893        unsigned long max_interval;     /* Maximum balance interval ms */
 894        unsigned int busy_factor;       /* less balancing by factor if busy */
 895        unsigned int imbalance_pct;     /* No balance until over watermark */
 896        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 897        unsigned int busy_idx;
 898        unsigned int idle_idx;
 899        unsigned int newidle_idx;
 900        unsigned int wake_idx;
 901        unsigned int forkexec_idx;
 902        unsigned int smt_gain;
 903        int flags;                      /* See SD_* */
 904        int level;
 905
 906        /* Runtime fields. */
 907        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 908        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 909        unsigned int nr_balance_failed; /* initialise to 0 */
 910
 911        u64 last_update;
 912
 913#ifdef CONFIG_SCHEDSTATS
 914        /* load_balance() stats */
 915        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 916        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 917        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 918        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 919        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 920        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 921        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 922        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 923
 924        /* Active load balancing */
 925        unsigned int alb_count;
 926        unsigned int alb_failed;
 927        unsigned int alb_pushed;
 928
 929        /* SD_BALANCE_EXEC stats */
 930        unsigned int sbe_count;
 931        unsigned int sbe_balanced;
 932        unsigned int sbe_pushed;
 933
 934        /* SD_BALANCE_FORK stats */
 935        unsigned int sbf_count;
 936        unsigned int sbf_balanced;
 937        unsigned int sbf_pushed;
 938
 939        /* try_to_wake_up() stats */
 940        unsigned int ttwu_wake_remote;
 941        unsigned int ttwu_move_affine;
 942        unsigned int ttwu_move_balance;
 943#endif
 944#ifdef CONFIG_SCHED_DEBUG
 945        char *name;
 946#endif
 947        union {
 948                void *private;          /* used during construction */
 949                struct rcu_head rcu;    /* used during destruction */
 950        };
 951
 952        unsigned int span_weight;
 953        /*
 954         * Span of all CPUs in this domain.
 955         *
 956         * NOTE: this field is variable length. (Allocated dynamically
 957         * by attaching extra space to the end of the structure,
 958         * depending on how many CPUs the kernel has booted up with)
 959         */
 960        unsigned long span[0];
 961};
 962
 963static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 964{
 965        return to_cpumask(sd->span);
 966}
 967
 968extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 969                                    struct sched_domain_attr *dattr_new);
 970
 971/* Allocate an array of sched domains, for partition_sched_domains(). */
 972cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 973void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 974
 975/* Test a flag in parent sched domain */
 976static inline int test_sd_parent(struct sched_domain *sd, int flag)
 977{
 978        if (sd->parent && (sd->parent->flags & flag))
 979                return 1;
 980
 981        return 0;
 982}
 983
 984unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
 985unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
 986
 987bool cpus_share_cache(int this_cpu, int that_cpu);
 988
 989#else /* CONFIG_SMP */
 990
 991struct sched_domain_attr;
 992
 993static inline void
 994partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 995                        struct sched_domain_attr *dattr_new)
 996{
 997}
 998
 999static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1000{
1001        return true;
1002}
1003
1004#endif  /* !CONFIG_SMP */
1005
1006
1007struct io_context;                      /* See blkdev.h */
1008
1009
1010#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011extern void prefetch_stack(struct task_struct *t);
1012#else
1013static inline void prefetch_stack(struct task_struct *t) { }
1014#endif
1015
1016struct audit_context;           /* See audit.c */
1017struct mempolicy;
1018struct pipe_inode_info;
1019struct uts_namespace;
1020
1021struct rq;
1022struct sched_domain;
1023
1024/*
1025 * wake flags
1026 */
1027#define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1028#define WF_FORK         0x02            /* child wakeup after fork */
1029#define WF_MIGRATED     0x04            /* internal use, task got migrated */
1030
1031#define ENQUEUE_WAKEUP          1
1032#define ENQUEUE_HEAD            2
1033#ifdef CONFIG_SMP
1034#define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
1035#else
1036#define ENQUEUE_WAKING          0
1037#endif
1038
1039#define DEQUEUE_SLEEP           1
1040
1041struct sched_class {
1042        const struct sched_class *next;
1043
1044        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1045        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1046        void (*yield_task) (struct rq *rq);
1047        bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1048
1049        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1050
1051        struct task_struct * (*pick_next_task) (struct rq *rq);
1052        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1053
1054#ifdef CONFIG_SMP
1055        int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1056        void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1057
1058        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1059        void (*post_schedule) (struct rq *this_rq);
1060        void (*task_waking) (struct task_struct *task);
1061        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1062
1063        void (*set_cpus_allowed)(struct task_struct *p,
1064                                 const struct cpumask *newmask);
1065
1066        void (*rq_online)(struct rq *rq);
1067        void (*rq_offline)(struct rq *rq);
1068#endif
1069
1070        void (*set_curr_task) (struct rq *rq);
1071        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1072        void (*task_fork) (struct task_struct *p);
1073
1074        void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1075        void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1076        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1077                             int oldprio);
1078
1079        unsigned int (*get_rr_interval) (struct rq *rq,
1080                                         struct task_struct *task);
1081
1082#ifdef CONFIG_FAIR_GROUP_SCHED
1083        void (*task_move_group) (struct task_struct *p, int on_rq);
1084#endif
1085};
1086
1087struct load_weight {
1088        unsigned long weight, inv_weight;
1089};
1090
1091struct sched_avg {
1092        /*
1093         * These sums represent an infinite geometric series and so are bound
1094         * above by 1024/(1-y).  Thus we only need a u32 to store them for for all
1095         * choices of y < 1-2^(-32)*1024.
1096         */
1097        u32 runnable_avg_sum, runnable_avg_period;
1098        u64 last_runnable_update;
1099        s64 decay_count;
1100        unsigned long load_avg_contrib;
1101};
1102
1103#ifdef CONFIG_SCHEDSTATS
1104struct sched_statistics {
1105        u64                     wait_start;
1106        u64                     wait_max;
1107        u64                     wait_count;
1108        u64                     wait_sum;
1109        u64                     iowait_count;
1110        u64                     iowait_sum;
1111
1112        u64                     sleep_start;
1113        u64                     sleep_max;
1114        s64                     sum_sleep_runtime;
1115
1116        u64                     block_start;
1117        u64                     block_max;
1118        u64                     exec_max;
1119        u64                     slice_max;
1120
1121        u64                     nr_migrations_cold;
1122        u64                     nr_failed_migrations_affine;
1123        u64                     nr_failed_migrations_running;
1124        u64                     nr_failed_migrations_hot;
1125        u64                     nr_forced_migrations;
1126
1127        u64                     nr_wakeups;
1128        u64                     nr_wakeups_sync;
1129        u64                     nr_wakeups_migrate;
1130        u64                     nr_wakeups_local;
1131        u64                     nr_wakeups_remote;
1132        u64                     nr_wakeups_affine;
1133        u64                     nr_wakeups_affine_attempts;
1134        u64                     nr_wakeups_passive;
1135        u64                     nr_wakeups_idle;
1136};
1137#endif
1138
1139struct sched_entity {
1140        struct load_weight      load;           /* for load-balancing */
1141        struct rb_node          run_node;
1142        struct list_head        group_node;
1143        unsigned int            on_rq;
1144
1145        u64                     exec_start;
1146        u64                     sum_exec_runtime;
1147        u64                     vruntime;
1148        u64                     prev_sum_exec_runtime;
1149
1150        u64                     nr_migrations;
1151
1152#ifdef CONFIG_SCHEDSTATS
1153        struct sched_statistics statistics;
1154#endif
1155
1156#ifdef CONFIG_FAIR_GROUP_SCHED
1157        struct sched_entity     *parent;
1158        /* rq on which this entity is (to be) queued: */
1159        struct cfs_rq           *cfs_rq;
1160        /* rq "owned" by this entity/group: */
1161        struct cfs_rq           *my_q;
1162#endif
1163
1164/*
1165 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1166 * removed when useful for applications beyond shares distribution (e.g.
1167 * load-balance).
1168 */
1169#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1170        /* Per-entity load-tracking */
1171        struct sched_avg        avg;
1172#endif
1173};
1174
1175struct sched_rt_entity {
1176        struct list_head run_list;
1177        unsigned long timeout;
1178        unsigned long watchdog_stamp;
1179        unsigned int time_slice;
1180
1181        struct sched_rt_entity *back;
1182#ifdef CONFIG_RT_GROUP_SCHED
1183        struct sched_rt_entity  *parent;
1184        /* rq on which this entity is (to be) queued: */
1185        struct rt_rq            *rt_rq;
1186        /* rq "owned" by this entity/group: */
1187        struct rt_rq            *my_q;
1188#endif
1189};
1190
1191
1192struct rcu_node;
1193
1194enum perf_event_task_context {
1195        perf_invalid_context = -1,
1196        perf_hw_context = 0,
1197        perf_sw_context,
1198        perf_nr_task_contexts,
1199};
1200
1201struct task_struct {
1202        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1203        void *stack;
1204        atomic_t usage;
1205        unsigned int flags;     /* per process flags, defined below */
1206        unsigned int ptrace;
1207
1208#ifdef CONFIG_SMP
1209        struct llist_node wake_entry;
1210        int on_cpu;
1211#endif
1212        int on_rq;
1213
1214        int prio, static_prio, normal_prio;
1215        unsigned int rt_priority;
1216        const struct sched_class *sched_class;
1217        struct sched_entity se;
1218        struct sched_rt_entity rt;
1219#ifdef CONFIG_CGROUP_SCHED
1220        struct task_group *sched_task_group;
1221#endif
1222
1223#ifdef CONFIG_PREEMPT_NOTIFIERS
1224        /* list of struct preempt_notifier: */
1225        struct hlist_head preempt_notifiers;
1226#endif
1227
1228        /*
1229         * fpu_counter contains the number of consecutive context switches
1230         * that the FPU is used. If this is over a threshold, the lazy fpu
1231         * saving becomes unlazy to save the trap. This is an unsigned char
1232         * so that after 256 times the counter wraps and the behavior turns
1233         * lazy again; this to deal with bursty apps that only use FPU for
1234         * a short time
1235         */
1236        unsigned char fpu_counter;
1237#ifdef CONFIG_BLK_DEV_IO_TRACE
1238        unsigned int btrace_seq;
1239#endif
1240
1241        unsigned int policy;
1242        int nr_cpus_allowed;
1243        cpumask_t cpus_allowed;
1244
1245#ifdef CONFIG_PREEMPT_RCU
1246        int rcu_read_lock_nesting;
1247        char rcu_read_unlock_special;
1248        struct list_head rcu_node_entry;
1249#endif /* #ifdef CONFIG_PREEMPT_RCU */
1250#ifdef CONFIG_TREE_PREEMPT_RCU
1251        struct rcu_node *rcu_blocked_node;
1252#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1253#ifdef CONFIG_RCU_BOOST
1254        struct rt_mutex *rcu_boost_mutex;
1255#endif /* #ifdef CONFIG_RCU_BOOST */
1256
1257#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1258        struct sched_info sched_info;
1259#endif
1260
1261        struct list_head tasks;
1262#ifdef CONFIG_SMP
1263        struct plist_node pushable_tasks;
1264#endif
1265
1266        struct mm_struct *mm, *active_mm;
1267#ifdef CONFIG_COMPAT_BRK
1268        unsigned brk_randomized:1;
1269#endif
1270#if defined(SPLIT_RSS_COUNTING)
1271        struct task_rss_stat    rss_stat;
1272#endif
1273/* task state */
1274        int exit_state;
1275        int exit_code, exit_signal;
1276        int pdeath_signal;  /*  The signal sent when the parent dies  */
1277        unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1278        /* ??? */
1279        unsigned int personality;
1280        unsigned did_exec:1;
1281        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1282                                 * execve */
1283        unsigned in_iowait:1;
1284
1285        /* task may not gain privileges */
1286        unsigned no_new_privs:1;
1287
1288        /* Revert to default priority/policy when forking */
1289        unsigned sched_reset_on_fork:1;
1290        unsigned sched_contributes_to_load:1;
1291
1292        pid_t pid;
1293        pid_t tgid;
1294
1295#ifdef CONFIG_CC_STACKPROTECTOR
1296        /* Canary value for the -fstack-protector gcc feature */
1297        unsigned long stack_canary;
1298#endif
1299        /*
1300         * pointers to (original) parent process, youngest child, younger sibling,
1301         * older sibling, respectively.  (p->father can be replaced with
1302         * p->real_parent->pid)
1303         */
1304        struct task_struct __rcu *real_parent; /* real parent process */
1305        struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1306        /*
1307         * children/sibling forms the list of my natural children
1308         */
1309        struct list_head children;      /* list of my children */
1310        struct list_head sibling;       /* linkage in my parent's children list */
1311        struct task_struct *group_leader;       /* threadgroup leader */
1312
1313        /*
1314         * ptraced is the list of tasks this task is using ptrace on.
1315         * This includes both natural children and PTRACE_ATTACH targets.
1316         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1317         */
1318        struct list_head ptraced;
1319        struct list_head ptrace_entry;
1320
1321        /* PID/PID hash table linkage. */
1322        struct pid_link pids[PIDTYPE_MAX];
1323        struct list_head thread_group;
1324
1325        struct completion *vfork_done;          /* for vfork() */
1326        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1327        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1328
1329        cputime_t utime, stime, utimescaled, stimescaled;
1330        cputime_t gtime;
1331#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1332        struct cputime prev_cputime;
1333#endif
1334#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1335        seqlock_t vtime_seqlock;
1336        unsigned long long vtime_snap;
1337        enum {
1338                VTIME_SLEEPING = 0,
1339                VTIME_USER,
1340                VTIME_SYS,
1341        } vtime_snap_whence;
1342#endif
1343        unsigned long nvcsw, nivcsw; /* context switch counts */
1344        struct timespec start_time;             /* monotonic time */
1345        struct timespec real_start_time;        /* boot based time */
1346/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1347        unsigned long min_flt, maj_flt;
1348
1349        struct task_cputime cputime_expires;
1350        struct list_head cpu_timers[3];
1351
1352/* process credentials */
1353        const struct cred __rcu *real_cred; /* objective and real subjective task
1354                                         * credentials (COW) */
1355        const struct cred __rcu *cred;  /* effective (overridable) subjective task
1356                                         * credentials (COW) */
1357        char comm[TASK_COMM_LEN]; /* executable name excluding path
1358                                     - access with [gs]et_task_comm (which lock
1359                                       it with task_lock())
1360                                     - initialized normally by setup_new_exec */
1361/* file system info */
1362        int link_count, total_link_count;
1363#ifdef CONFIG_SYSVIPC
1364/* ipc stuff */
1365        struct sysv_sem sysvsem;
1366#endif
1367#ifdef CONFIG_DETECT_HUNG_TASK
1368/* hung task detection */
1369        unsigned long last_switch_count;
1370#endif
1371/* CPU-specific state of this task */
1372        struct thread_struct thread;
1373/* filesystem information */
1374        struct fs_struct *fs;
1375/* open file information */
1376        struct files_struct *files;
1377/* namespaces */
1378        struct nsproxy *nsproxy;
1379/* signal handlers */
1380        struct signal_struct *signal;
1381        struct sighand_struct *sighand;
1382
1383        sigset_t blocked, real_blocked;
1384        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1385        struct sigpending pending;
1386
1387        unsigned long sas_ss_sp;
1388        size_t sas_ss_size;
1389        int (*notifier)(void *priv);
1390        void *notifier_data;
1391        sigset_t *notifier_mask;
1392        struct callback_head *task_works;
1393
1394        struct audit_context *audit_context;
1395#ifdef CONFIG_AUDITSYSCALL
1396        kuid_t loginuid;
1397        unsigned int sessionid;
1398#endif
1399        struct seccomp seccomp;
1400
1401/* Thread group tracking */
1402        u32 parent_exec_id;
1403        u32 self_exec_id;
1404/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1405 * mempolicy */
1406        spinlock_t alloc_lock;
1407
1408        /* Protection of the PI data structures: */
1409        raw_spinlock_t pi_lock;
1410
1411#ifdef CONFIG_RT_MUTEXES
1412        /* PI waiters blocked on a rt_mutex held by this task */
1413        struct plist_head pi_waiters;
1414        /* Deadlock detection and priority inheritance handling */
1415        struct rt_mutex_waiter *pi_blocked_on;
1416#endif
1417
1418#ifdef CONFIG_DEBUG_MUTEXES
1419        /* mutex deadlock detection */
1420        struct mutex_waiter *blocked_on;
1421#endif
1422#ifdef CONFIG_TRACE_IRQFLAGS
1423        unsigned int irq_events;
1424        unsigned long hardirq_enable_ip;
1425        unsigned long hardirq_disable_ip;
1426        unsigned int hardirq_enable_event;
1427        unsigned int hardirq_disable_event;
1428        int hardirqs_enabled;
1429        int hardirq_context;
1430        unsigned long softirq_disable_ip;
1431        unsigned long softirq_enable_ip;
1432        unsigned int softirq_disable_event;
1433        unsigned int softirq_enable_event;
1434        int softirqs_enabled;
1435        int softirq_context;
1436#endif
1437#ifdef CONFIG_LOCKDEP
1438# define MAX_LOCK_DEPTH 48UL
1439        u64 curr_chain_key;
1440        int lockdep_depth;
1441        unsigned int lockdep_recursion;
1442        struct held_lock held_locks[MAX_LOCK_DEPTH];
1443        gfp_t lockdep_reclaim_gfp;
1444#endif
1445
1446/* journalling filesystem info */
1447        void *journal_info;
1448
1449/* stacked block device info */
1450        struct bio_list *bio_list;
1451
1452#ifdef CONFIG_BLOCK
1453/* stack plugging */
1454        struct blk_plug *plug;
1455#endif
1456
1457/* VM state */
1458        struct reclaim_state *reclaim_state;
1459
1460        struct backing_dev_info *backing_dev_info;
1461
1462        struct io_context *io_context;
1463
1464        unsigned long ptrace_message;
1465        siginfo_t *last_siginfo; /* For ptrace use.  */
1466        struct task_io_accounting ioac;
1467#if defined(CONFIG_TASK_XACCT)
1468        u64 acct_rss_mem1;      /* accumulated rss usage */
1469        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1470        cputime_t acct_timexpd; /* stime + utime since last update */
1471#endif
1472#ifdef CONFIG_CPUSETS
1473        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1474        seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1475        int cpuset_mem_spread_rotor;
1476        int cpuset_slab_spread_rotor;
1477#endif
1478#ifdef CONFIG_CGROUPS
1479        /* Control Group info protected by css_set_lock */
1480        struct css_set __rcu *cgroups;
1481        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1482        struct list_head cg_list;
1483#endif
1484#ifdef CONFIG_FUTEX
1485        struct robust_list_head __user *robust_list;
1486#ifdef CONFIG_COMPAT
1487        struct compat_robust_list_head __user *compat_robust_list;
1488#endif
1489        struct list_head pi_state_list;
1490        struct futex_pi_state *pi_state_cache;
1491#endif
1492#ifdef CONFIG_PERF_EVENTS
1493        struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1494        struct mutex perf_event_mutex;
1495        struct list_head perf_event_list;
1496#endif
1497#ifdef CONFIG_NUMA
1498        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1499        short il_next;
1500        short pref_node_fork;
1501#endif
1502#ifdef CONFIG_NUMA_BALANCING
1503        int numa_scan_seq;
1504        int numa_migrate_seq;
1505        unsigned int numa_scan_period;
1506        u64 node_stamp;                 /* migration stamp  */
1507        struct callback_head numa_work;
1508#endif /* CONFIG_NUMA_BALANCING */
1509
1510        struct rcu_head rcu;
1511
1512        /*
1513         * cache last used pipe for splice
1514         */
1515        struct pipe_inode_info *splice_pipe;
1516
1517        struct page_frag task_frag;
1518
1519#ifdef  CONFIG_TASK_DELAY_ACCT
1520        struct task_delay_info *delays;
1521#endif
1522#ifdef CONFIG_FAULT_INJECTION
1523        int make_it_fail;
1524#endif
1525        /*
1526         * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1527         * balance_dirty_pages() for some dirty throttling pause
1528         */
1529        int nr_dirtied;
1530        int nr_dirtied_pause;
1531        unsigned long dirty_paused_when; /* start of a write-and-pause period */
1532
1533#ifdef CONFIG_LATENCYTOP
1534        int latency_record_count;
1535        struct latency_record latency_record[LT_SAVECOUNT];
1536#endif
1537        /*
1538         * time slack values; these are used to round up poll() and
1539         * select() etc timeout values. These are in nanoseconds.
1540         */
1541        unsigned long timer_slack_ns;
1542        unsigned long default_timer_slack_ns;
1543
1544#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1545        /* Index of current stored address in ret_stack */
1546        int curr_ret_stack;
1547        /* Stack of return addresses for return function tracing */
1548        struct ftrace_ret_stack *ret_stack;
1549        /* time stamp for last schedule */
1550        unsigned long long ftrace_timestamp;
1551        /*
1552         * Number of functions that haven't been traced
1553         * because of depth overrun.
1554         */
1555        atomic_t trace_overrun;
1556        /* Pause for the tracing */
1557        atomic_t tracing_graph_pause;
1558#endif
1559#ifdef CONFIG_TRACING
1560        /* state flags for use by tracers */
1561        unsigned long trace;
1562        /* bitmask and counter of trace recursion */
1563        unsigned long trace_recursion;
1564#endif /* CONFIG_TRACING */
1565#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1566        struct memcg_batch_info {
1567                int do_batch;   /* incremented when batch uncharge started */
1568                struct mem_cgroup *memcg; /* target memcg of uncharge */
1569                unsigned long nr_pages; /* uncharged usage */
1570                unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1571        } memcg_batch;
1572        unsigned int memcg_kmem_skip_account;
1573#endif
1574#ifdef CONFIG_HAVE_HW_BREAKPOINT
1575        atomic_t ptrace_bp_refcnt;
1576#endif
1577#ifdef CONFIG_UPROBES
1578        struct uprobe_task *utask;
1579#endif
1580};
1581
1582/* Future-safe accessor for struct task_struct's cpus_allowed. */
1583#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1584
1585#ifdef CONFIG_NUMA_BALANCING
1586extern void task_numa_fault(int node, int pages, bool migrated);
1587extern void set_numabalancing_state(bool enabled);
1588#else
1589static inline void task_numa_fault(int node, int pages, bool migrated)
1590{
1591}
1592static inline void set_numabalancing_state(bool enabled)
1593{
1594}
1595#endif
1596
1597static inline struct pid *task_pid(struct task_struct *task)
1598{
1599        return task->pids[PIDTYPE_PID].pid;
1600}
1601
1602static inline struct pid *task_tgid(struct task_struct *task)
1603{
1604        return task->group_leader->pids[PIDTYPE_PID].pid;
1605}
1606
1607/*
1608 * Without tasklist or rcu lock it is not safe to dereference
1609 * the result of task_pgrp/task_session even if task == current,
1610 * we can race with another thread doing sys_setsid/sys_setpgid.
1611 */
1612static inline struct pid *task_pgrp(struct task_struct *task)
1613{
1614        return task->group_leader->pids[PIDTYPE_PGID].pid;
1615}
1616
1617static inline struct pid *task_session(struct task_struct *task)
1618{
1619        return task->group_leader->pids[PIDTYPE_SID].pid;
1620}
1621
1622struct pid_namespace;
1623
1624/*
1625 * the helpers to get the task's different pids as they are seen
1626 * from various namespaces
1627 *
1628 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1629 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1630 *                     current.
1631 * task_xid_nr_ns()  : id seen from the ns specified;
1632 *
1633 * set_task_vxid()   : assigns a virtual id to a task;
1634 *
1635 * see also pid_nr() etc in include/linux/pid.h
1636 */
1637pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1638                        struct pid_namespace *ns);
1639
1640static inline pid_t task_pid_nr(struct task_struct *tsk)
1641{
1642        return tsk->pid;
1643}
1644
1645static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1646                                        struct pid_namespace *ns)
1647{
1648        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1649}
1650
1651static inline pid_t task_pid_vnr(struct task_struct *tsk)
1652{
1653        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1654}
1655
1656
1657static inline pid_t task_tgid_nr(struct task_struct *tsk)
1658{
1659        return tsk->tgid;
1660}
1661
1662pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1663
1664static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1665{
1666        return pid_vnr(task_tgid(tsk));
1667}
1668
1669
1670static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1671                                        struct pid_namespace *ns)
1672{
1673        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1674}
1675
1676static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1677{
1678        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1679}
1680
1681
1682static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1683                                        struct pid_namespace *ns)
1684{
1685        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1686}
1687
1688static inline pid_t task_session_vnr(struct task_struct *tsk)
1689{
1690        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1691}
1692
1693/* obsolete, do not use */
1694static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1695{
1696        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1697}
1698
1699/**
1700 * pid_alive - check that a task structure is not stale
1701 * @p: Task structure to be checked.
1702 *
1703 * Test if a process is not yet dead (at most zombie state)
1704 * If pid_alive fails, then pointers within the task structure
1705 * can be stale and must not be dereferenced.
1706 */
1707static inline int pid_alive(struct task_struct *p)
1708{
1709        return p->pids[PIDTYPE_PID].pid != NULL;
1710}
1711
1712/**
1713 * is_global_init - check if a task structure is init
1714 * @tsk: Task structure to be checked.
1715 *
1716 * Check if a task structure is the first user space task the kernel created.
1717 */
1718static inline int is_global_init(struct task_struct *tsk)
1719{
1720        return tsk->pid == 1;
1721}
1722
1723extern struct pid *cad_pid;
1724
1725extern void free_task(struct task_struct *tsk);
1726#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1727
1728extern void __put_task_struct(struct task_struct *t);
1729
1730static inline void put_task_struct(struct task_struct *t)
1731{
1732        if (atomic_dec_and_test(&t->usage))
1733                __put_task_struct(t);
1734}
1735
1736#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1737extern void task_cputime(struct task_struct *t,
1738                         cputime_t *utime, cputime_t *stime);
1739extern void task_cputime_scaled(struct task_struct *t,
1740                                cputime_t *utimescaled, cputime_t *stimescaled);
1741extern cputime_t task_gtime(struct task_struct *t);
1742#else
1743static inline void task_cputime(struct task_struct *t,
1744                                cputime_t *utime, cputime_t *stime)
1745{
1746        if (utime)
1747                *utime = t->utime;
1748        if (stime)
1749                *stime = t->stime;
1750}
1751
1752static inline void task_cputime_scaled(struct task_struct *t,
1753                                       cputime_t *utimescaled,
1754                                       cputime_t *stimescaled)
1755{
1756        if (utimescaled)
1757                *utimescaled = t->utimescaled;
1758        if (stimescaled)
1759                *stimescaled = t->stimescaled;
1760}
1761
1762static inline cputime_t task_gtime(struct task_struct *t)
1763{
1764        return t->gtime;
1765}
1766#endif
1767extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1768extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1769
1770/*
1771 * Per process flags
1772 */
1773#define PF_EXITING      0x00000004      /* getting shut down */
1774#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1775#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1776#define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1777#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1778#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1779#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1780#define PF_DUMPCORE     0x00000200      /* dumped core */
1781#define PF_SIGNALED     0x00000400      /* killed by a signal */
1782#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1783#define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1784#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1785#define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1786#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1787#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1788#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1789#define PF_KSWAPD       0x00040000      /* I am kswapd */
1790#define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1791#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1792#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1793#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1794#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1795#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1796#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1797#define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1798#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1799#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1800#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1801#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1802
1803/*
1804 * Only the _current_ task can read/write to tsk->flags, but other
1805 * tasks can access tsk->flags in readonly mode for example
1806 * with tsk_used_math (like during threaded core dumping).
1807 * There is however an exception to this rule during ptrace
1808 * or during fork: the ptracer task is allowed to write to the
1809 * child->flags of its traced child (same goes for fork, the parent
1810 * can write to the child->flags), because we're guaranteed the
1811 * child is not running and in turn not changing child->flags
1812 * at the same time the parent does it.
1813 */
1814#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1815#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1816#define clear_used_math() clear_stopped_child_used_math(current)
1817#define set_used_math() set_stopped_child_used_math(current)
1818#define conditional_stopped_child_used_math(condition, child) \
1819        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1820#define conditional_used_math(condition) \
1821        conditional_stopped_child_used_math(condition, current)
1822#define copy_to_stopped_child_used_math(child) \
1823        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1824/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1825#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1826#define used_math() tsk_used_math(current)
1827
1828/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1829static inline gfp_t memalloc_noio_flags(gfp_t flags)
1830{
1831        if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1832                flags &= ~__GFP_IO;
1833        return flags;
1834}
1835
1836static inline unsigned int memalloc_noio_save(void)
1837{
1838        unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1839        current->flags |= PF_MEMALLOC_NOIO;
1840        return flags;
1841}
1842
1843static inline void memalloc_noio_restore(unsigned int flags)
1844{
1845        current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1846}
1847
1848/*
1849 * task->jobctl flags
1850 */
1851#define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1852
1853#define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1854#define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1855#define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1856#define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1857#define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1858#define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1859#define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1860
1861#define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1862#define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1863#define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1864#define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1865#define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1866#define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1867#define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1868
1869#define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1870#define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1871
1872extern bool task_set_jobctl_pending(struct task_struct *task,
1873                                    unsigned int mask);
1874extern void task_clear_jobctl_trapping(struct task_struct *task);
1875extern void task_clear_jobctl_pending(struct task_struct *task,
1876                                      unsigned int mask);
1877
1878#ifdef CONFIG_PREEMPT_RCU
1879
1880#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1881#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1882
1883static inline void rcu_copy_process(struct task_struct *p)
1884{
1885        p->rcu_read_lock_nesting = 0;
1886        p->rcu_read_unlock_special = 0;
1887#ifdef CONFIG_TREE_PREEMPT_RCU
1888        p->rcu_blocked_node = NULL;
1889#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1890#ifdef CONFIG_RCU_BOOST
1891        p->rcu_boost_mutex = NULL;
1892#endif /* #ifdef CONFIG_RCU_BOOST */
1893        INIT_LIST_HEAD(&p->rcu_node_entry);
1894}
1895
1896#else
1897
1898static inline void rcu_copy_process(struct task_struct *p)
1899{
1900}
1901
1902#endif
1903
1904static inline void tsk_restore_flags(struct task_struct *task,
1905                                unsigned long orig_flags, unsigned long flags)
1906{
1907        task->flags &= ~flags;
1908        task->flags |= orig_flags & flags;
1909}
1910
1911#ifdef CONFIG_SMP
1912extern void do_set_cpus_allowed(struct task_struct *p,
1913                               const struct cpumask *new_mask);
1914
1915extern int set_cpus_allowed_ptr(struct task_struct *p,
1916                                const struct cpumask *new_mask);
1917#else
1918static inline void do_set_cpus_allowed(struct task_struct *p,
1919                                      const struct cpumask *new_mask)
1920{
1921}
1922static inline int set_cpus_allowed_ptr(struct task_struct *p,
1923                                       const struct cpumask *new_mask)
1924{
1925        if (!cpumask_test_cpu(0, new_mask))
1926                return -EINVAL;
1927        return 0;
1928}
1929#endif
1930
1931#ifdef CONFIG_NO_HZ
1932void calc_load_enter_idle(void);
1933void calc_load_exit_idle(void);
1934#else
1935static inline void calc_load_enter_idle(void) { }
1936static inline void calc_load_exit_idle(void) { }
1937#endif /* CONFIG_NO_HZ */
1938
1939#ifndef CONFIG_CPUMASK_OFFSTACK
1940static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1941{
1942        return set_cpus_allowed_ptr(p, &new_mask);
1943}
1944#endif
1945
1946/*
1947 * Do not use outside of architecture code which knows its limitations.
1948 *
1949 * sched_clock() has no promise of monotonicity or bounded drift between
1950 * CPUs, use (which you should not) requires disabling IRQs.
1951 *
1952 * Please use one of the three interfaces below.
1953 */
1954extern unsigned long long notrace sched_clock(void);
1955/*
1956 * See the comment in kernel/sched/clock.c
1957 */
1958extern u64 cpu_clock(int cpu);
1959extern u64 local_clock(void);
1960extern u64 sched_clock_cpu(int cpu);
1961
1962
1963extern void sched_clock_init(void);
1964
1965#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1966static inline void sched_clock_tick(void)
1967{
1968}
1969
1970static inline void sched_clock_idle_sleep_event(void)
1971{
1972}
1973
1974static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1975{
1976}
1977#else
1978/*
1979 * Architectures can set this to 1 if they have specified
1980 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1981 * but then during bootup it turns out that sched_clock()
1982 * is reliable after all:
1983 */
1984extern int sched_clock_stable;
1985
1986extern void sched_clock_tick(void);
1987extern void sched_clock_idle_sleep_event(void);
1988extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1989#endif
1990
1991#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1992/*
1993 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1994 * The reason for this explicit opt-in is not to have perf penalty with
1995 * slow sched_clocks.
1996 */
1997extern void enable_sched_clock_irqtime(void);
1998extern void disable_sched_clock_irqtime(void);
1999#else
2000static inline void enable_sched_clock_irqtime(void) {}
2001static inline void disable_sched_clock_irqtime(void) {}
2002#endif
2003
2004extern unsigned long long
2005task_sched_runtime(struct task_struct *task);
2006
2007/* sched_exec is called by processes performing an exec */
2008#ifdef CONFIG_SMP
2009extern void sched_exec(void);
2010#else
2011#define sched_exec()   {}
2012#endif
2013
2014extern void sched_clock_idle_sleep_event(void);
2015extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2016
2017#ifdef CONFIG_HOTPLUG_CPU
2018extern void idle_task_exit(void);
2019#else
2020static inline void idle_task_exit(void) {}
2021#endif
2022
2023#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2024extern void wake_up_idle_cpu(int cpu);
2025#else
2026static inline void wake_up_idle_cpu(int cpu) { }
2027#endif
2028
2029#ifdef CONFIG_SCHED_AUTOGROUP
2030extern void sched_autogroup_create_attach(struct task_struct *p);
2031extern void sched_autogroup_detach(struct task_struct *p);
2032extern void sched_autogroup_fork(struct signal_struct *sig);
2033extern void sched_autogroup_exit(struct signal_struct *sig);
2034#ifdef CONFIG_PROC_FS
2035extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2036extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2037#endif
2038#else
2039static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2040static inline void sched_autogroup_detach(struct task_struct *p) { }
2041static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2042static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2043#endif
2044
2045extern bool yield_to(struct task_struct *p, bool preempt);
2046extern void set_user_nice(struct task_struct *p, long nice);
2047extern int task_prio(const struct task_struct *p);
2048extern int task_nice(const struct task_struct *p);
2049extern int can_nice(const struct task_struct *p, const int nice);
2050extern int task_curr(const struct task_struct *p);
2051extern int idle_cpu(int cpu);
2052extern int sched_setscheduler(struct task_struct *, int,
2053                              const struct sched_param *);
2054extern int sched_setscheduler_nocheck(struct task_struct *, int,
2055                                      const struct sched_param *);
2056extern struct task_struct *idle_task(int cpu);
2057/**
2058 * is_idle_task - is the specified task an idle task?
2059 * @p: the task in question.
2060 */
2061static inline bool is_idle_task(const struct task_struct *p)
2062{
2063        return p->pid == 0;
2064}
2065extern struct task_struct *curr_task(int cpu);
2066extern void set_curr_task(int cpu, struct task_struct *p);
2067
2068void yield(void);
2069
2070/*
2071 * The default (Linux) execution domain.
2072 */
2073extern struct exec_domain       default_exec_domain;
2074
2075union thread_union {
2076        struct thread_info thread_info;
2077        unsigned long stack[THREAD_SIZE/sizeof(long)];
2078};
2079
2080#ifndef __HAVE_ARCH_KSTACK_END
2081static inline int kstack_end(void *addr)
2082{
2083        /* Reliable end of stack detection:
2084         * Some APM bios versions misalign the stack
2085         */
2086        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2087}
2088#endif
2089
2090extern union thread_union init_thread_union;
2091extern struct task_struct init_task;
2092
2093extern struct   mm_struct init_mm;
2094
2095extern struct pid_namespace init_pid_ns;
2096
2097/*
2098 * find a task by one of its numerical ids
2099 *
2100 * find_task_by_pid_ns():
2101 *      finds a task by its pid in the specified namespace
2102 * find_task_by_vpid():
2103 *      finds a task by its virtual pid
2104 *
2105 * see also find_vpid() etc in include/linux/pid.h
2106 */
2107
2108extern struct task_struct *find_task_by_vpid(pid_t nr);
2109extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2110                struct pid_namespace *ns);
2111
2112extern void __set_special_pids(struct pid *pid);
2113
2114/* per-UID process charging. */
2115extern struct user_struct * alloc_uid(kuid_t);
2116static inline struct user_struct *get_uid(struct user_struct *u)
2117{
2118        atomic_inc(&u->__count);
2119        return u;
2120}
2121extern void free_uid(struct user_struct *);
2122
2123#include <asm/current.h>
2124
2125extern void xtime_update(unsigned long ticks);
2126
2127extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2128extern int wake_up_process(struct task_struct *tsk);
2129extern void wake_up_new_task(struct task_struct *tsk);
2130#ifdef CONFIG_SMP
2131 extern void kick_process(struct task_struct *tsk);
2132#else
2133 static inline void kick_process(struct task_struct *tsk) { }
2134#endif
2135extern void sched_fork(struct task_struct *p);
2136extern void sched_dead(struct task_struct *p);
2137
2138extern void proc_caches_init(void);
2139extern void flush_signals(struct task_struct *);
2140extern void __flush_signals(struct task_struct *);
2141extern void ignore_signals(struct task_struct *);
2142extern void flush_signal_handlers(struct task_struct *, int force_default);
2143extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2144
2145static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2146{
2147        unsigned long flags;
2148        int ret;
2149
2150        spin_lock_irqsave(&tsk->sighand->siglock, flags);
2151        ret = dequeue_signal(tsk, mask, info);
2152        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2153
2154        return ret;
2155}
2156
2157extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2158                              sigset_t *mask);
2159extern void unblock_all_signals(void);
2160extern void release_task(struct task_struct * p);
2161extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2162extern int force_sigsegv(int, struct task_struct *);
2163extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2164extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2165extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2166extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2167                                const struct cred *, u32);
2168extern int kill_pgrp(struct pid *pid, int sig, int priv);
2169extern int kill_pid(struct pid *pid, int sig, int priv);
2170extern int kill_proc_info(int, struct siginfo *, pid_t);
2171extern __must_check bool do_notify_parent(struct task_struct *, int);
2172extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2173extern void force_sig(int, struct task_struct *);
2174extern int send_sig(int, struct task_struct *, int);
2175extern int zap_other_threads(struct task_struct *p);
2176extern struct sigqueue *sigqueue_alloc(void);
2177extern void sigqueue_free(struct sigqueue *);
2178extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2179extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2180
2181static inline void restore_saved_sigmask(void)
2182{
2183        if (test_and_clear_restore_sigmask())
2184                __set_current_blocked(&current->saved_sigmask);
2185}
2186
2187static inline sigset_t *sigmask_to_save(void)
2188{
2189        sigset_t *res = &current->blocked;
2190        if (unlikely(test_restore_sigmask()))
2191                res = &current->saved_sigmask;
2192        return res;
2193}
2194
2195static inline int kill_cad_pid(int sig, int priv)
2196{
2197        return kill_pid(cad_pid, sig, priv);
2198}
2199
2200/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2201#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2202#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2203#define SEND_SIG_FORCED ((struct siginfo *) 2)
2204
2205/*
2206 * True if we are on the alternate signal stack.
2207 */
2208static inline int on_sig_stack(unsigned long sp)
2209{
2210#ifdef CONFIG_STACK_GROWSUP
2211        return sp >= current->sas_ss_sp &&
2212                sp - current->sas_ss_sp < current->sas_ss_size;
2213#else
2214        return sp > current->sas_ss_sp &&
2215                sp - current->sas_ss_sp <= current->sas_ss_size;
2216#endif
2217}
2218
2219static inline int sas_ss_flags(unsigned long sp)
2220{
2221        return (current->sas_ss_size == 0 ? SS_DISABLE
2222                : on_sig_stack(sp) ? SS_ONSTACK : 0);
2223}
2224
2225static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2226{
2227        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2228#ifdef CONFIG_STACK_GROWSUP
2229                return current->sas_ss_sp;
2230#else
2231                return current->sas_ss_sp + current->sas_ss_size;
2232#endif
2233        return sp;
2234}
2235
2236/*
2237 * Routines for handling mm_structs
2238 */
2239extern struct mm_struct * mm_alloc(void);
2240
2241/* mmdrop drops the mm and the page tables */
2242extern void __mmdrop(struct mm_struct *);
2243static inline void mmdrop(struct mm_struct * mm)
2244{
2245        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2246                __mmdrop(mm);
2247}
2248
2249/* mmput gets rid of the mappings and all user-space */
2250extern void mmput(struct mm_struct *);
2251/* Grab a reference to a task's mm, if it is not already going away */
2252extern struct mm_struct *get_task_mm(struct task_struct *task);
2253/*
2254 * Grab a reference to a task's mm, if it is not already going away
2255 * and ptrace_may_access with the mode parameter passed to it
2256 * succeeds.
2257 */
2258extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2259/* Remove the current tasks stale references to the old mm_struct */
2260extern void mm_release(struct task_struct *, struct mm_struct *);
2261/* Allocate a new mm structure and copy contents from tsk->mm */
2262extern struct mm_struct *dup_mm(struct task_struct *tsk);
2263
2264extern int copy_thread(unsigned long, unsigned long, unsigned long,
2265                        struct task_struct *);
2266extern void flush_thread(void);
2267extern void exit_thread(void);
2268
2269extern void exit_files(struct task_struct *);
2270extern void __cleanup_sighand(struct sighand_struct *);
2271
2272extern void exit_itimers(struct signal_struct *);
2273extern void flush_itimer_signals(void);
2274
2275extern void do_group_exit(int);
2276
2277extern int allow_signal(int);
2278extern int disallow_signal(int);
2279
2280extern int do_execve(const char *,
2281                     const char __user * const __user *,
2282                     const char __user * const __user *);
2283extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2284struct task_struct *fork_idle(int);
2285extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2286
2287extern void set_task_comm(struct task_struct *tsk, char *from);
2288extern char *get_task_comm(char *to, struct task_struct *tsk);
2289
2290#ifdef CONFIG_SMP
2291void scheduler_ipi(void);
2292extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2293#else
2294static inline void scheduler_ipi(void) { }
2295static inline unsigned long wait_task_inactive(struct task_struct *p,
2296                                               long match_state)
2297{
2298        return 1;
2299}
2300#endif
2301
2302#define next_task(p) \
2303        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2304
2305#define for_each_process(p) \
2306        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2307
2308extern bool current_is_single_threaded(void);
2309
2310/*
2311 * Careful: do_each_thread/while_each_thread is a double loop so
2312 *          'break' will not work as expected - use goto instead.
2313 */
2314#define do_each_thread(g, t) \
2315        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2316
2317#define while_each_thread(g, t) \
2318        while ((t = next_thread(t)) != g)
2319
2320static inline int get_nr_threads(struct task_struct *tsk)
2321{
2322        return tsk->signal->nr_threads;
2323}
2324
2325static inline bool thread_group_leader(struct task_struct *p)
2326{
2327        return p->exit_signal >= 0;
2328}
2329
2330/* Do to the insanities of de_thread it is possible for a process
2331 * to have the pid of the thread group leader without actually being
2332 * the thread group leader.  For iteration through the pids in proc
2333 * all we care about is that we have a task with the appropriate
2334 * pid, we don't actually care if we have the right task.
2335 */
2336static inline int has_group_leader_pid(struct task_struct *p)
2337{
2338        return p->pid == p->tgid;
2339}
2340
2341static inline
2342int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2343{
2344        return p1->tgid == p2->tgid;
2345}
2346
2347static inline struct task_struct *next_thread(const struct task_struct *p)
2348{
2349        return list_entry_rcu(p->thread_group.next,
2350                              struct task_struct, thread_group);
2351}
2352
2353static inline int thread_group_empty(struct task_struct *p)
2354{
2355        return list_empty(&p->thread_group);
2356}
2357
2358#define delay_group_leader(p) \
2359                (thread_group_leader(p) && !thread_group_empty(p))
2360
2361/*
2362 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2363 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2364 * pins the final release of task.io_context.  Also protects ->cpuset and
2365 * ->cgroup.subsys[]. And ->vfork_done.
2366 *
2367 * Nests both inside and outside of read_lock(&tasklist_lock).
2368 * It must not be nested with write_lock_irq(&tasklist_lock),
2369 * neither inside nor outside.
2370 */
2371static inline void task_lock(struct task_struct *p)
2372{
2373        spin_lock(&p->alloc_lock);
2374}
2375
2376static inline void task_unlock(struct task_struct *p)
2377{
2378        spin_unlock(&p->alloc_lock);
2379}
2380
2381extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2382                                                        unsigned long *flags);
2383
2384static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2385                                                       unsigned long *flags)
2386{
2387        struct sighand_struct *ret;
2388
2389        ret = __lock_task_sighand(tsk, flags);
2390        (void)__cond_lock(&tsk->sighand->siglock, ret);
2391        return ret;
2392}
2393
2394static inline void unlock_task_sighand(struct task_struct *tsk,
2395                                                unsigned long *flags)
2396{
2397        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2398}
2399
2400#ifdef CONFIG_CGROUPS
2401static inline void threadgroup_change_begin(struct task_struct *tsk)
2402{
2403        down_read(&tsk->signal->group_rwsem);
2404}
2405static inline void threadgroup_change_end(struct task_struct *tsk)
2406{
2407        up_read(&tsk->signal->group_rwsem);
2408}
2409
2410/**
2411 * threadgroup_lock - lock threadgroup
2412 * @tsk: member task of the threadgroup to lock
2413 *
2414 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2415 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2416 * change ->group_leader/pid.  This is useful for cases where the threadgroup
2417 * needs to stay stable across blockable operations.
2418 *
2419 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2420 * synchronization.  While held, no new task will be added to threadgroup
2421 * and no existing live task will have its PF_EXITING set.
2422 *
2423 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2424 * sub-thread becomes a new leader.
2425 */
2426static inline void threadgroup_lock(struct task_struct *tsk)
2427{
2428        down_write(&tsk->signal->group_rwsem);
2429}
2430
2431/**
2432 * threadgroup_unlock - unlock threadgroup
2433 * @tsk: member task of the threadgroup to unlock
2434 *
2435 * Reverse threadgroup_lock().
2436 */
2437static inline void threadgroup_unlock(struct task_struct *tsk)
2438{
2439        up_write(&tsk->signal->group_rwsem);
2440}
2441#else
2442static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2443static inline void threadgroup_change_end(struct task_struct *tsk) {}
2444static inline void threadgroup_lock(struct task_struct *tsk) {}
2445static inline void threadgroup_unlock(struct task_struct *tsk) {}
2446#endif
2447
2448#ifndef __HAVE_THREAD_FUNCTIONS
2449
2450#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2451#define task_stack_page(task)   ((task)->stack)
2452
2453static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2454{
2455        *task_thread_info(p) = *task_thread_info(org);
2456        task_thread_info(p)->task = p;
2457}
2458
2459static inline unsigned long *end_of_stack(struct task_struct *p)
2460{
2461        return (unsigned long *)(task_thread_info(p) + 1);
2462}
2463
2464#endif
2465
2466static inline int object_is_on_stack(void *obj)
2467{
2468        void *stack = task_stack_page(current);
2469
2470        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2471}
2472
2473extern void thread_info_cache_init(void);
2474
2475#ifdef CONFIG_DEBUG_STACK_USAGE
2476static inline unsigned long stack_not_used(struct task_struct *p)
2477{
2478        unsigned long *n = end_of_stack(p);
2479
2480        do {    /* Skip over canary */
2481                n++;
2482        } while (!*n);
2483
2484        return (unsigned long)n - (unsigned long)end_of_stack(p);
2485}
2486#endif
2487
2488/* set thread flags in other task's structures
2489 * - see asm/thread_info.h for TIF_xxxx flags available
2490 */
2491static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2492{
2493        set_ti_thread_flag(task_thread_info(tsk), flag);
2494}
2495
2496static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2497{
2498        clear_ti_thread_flag(task_thread_info(tsk), flag);
2499}
2500
2501static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2502{
2503        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2504}
2505
2506static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2507{
2508        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2509}
2510
2511static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2512{
2513        return test_ti_thread_flag(task_thread_info(tsk), flag);
2514}
2515
2516static inline void set_tsk_need_resched(struct task_struct *tsk)
2517{
2518        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2519}
2520
2521static inline void clear_tsk_need_resched(struct task_struct *tsk)
2522{
2523        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2524}
2525
2526static inline int test_tsk_need_resched(struct task_struct *tsk)
2527{
2528        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2529}
2530
2531static inline int restart_syscall(void)
2532{
2533        set_tsk_thread_flag(current, TIF_SIGPENDING);
2534        return -ERESTARTNOINTR;
2535}
2536
2537static inline int signal_pending(struct task_struct *p)
2538{
2539        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2540}
2541
2542static inline int __fatal_signal_pending(struct task_struct *p)
2543{
2544        return unlikely(sigismember(&p->pending.signal, SIGKILL));
2545}
2546
2547static inline int fatal_signal_pending(struct task_struct *p)
2548{
2549        return signal_pending(p) && __fatal_signal_pending(p);
2550}
2551
2552static inline int signal_pending_state(long state, struct task_struct *p)
2553{
2554        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2555                return 0;
2556        if (!signal_pending(p))
2557                return 0;
2558
2559        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2560}
2561
2562static inline int need_resched(void)
2563{
2564        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2565}
2566
2567/*
2568 * cond_resched() and cond_resched_lock(): latency reduction via
2569 * explicit rescheduling in places that are safe. The return
2570 * value indicates whether a reschedule was done in fact.
2571 * cond_resched_lock() will drop the spinlock before scheduling,
2572 * cond_resched_softirq() will enable bhs before scheduling.
2573 */
2574extern int _cond_resched(void);
2575
2576#define cond_resched() ({                       \
2577        __might_sleep(__FILE__, __LINE__, 0);   \
2578        _cond_resched();                        \
2579})
2580
2581extern int __cond_resched_lock(spinlock_t *lock);
2582
2583#ifdef CONFIG_PREEMPT_COUNT
2584#define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2585#else
2586#define PREEMPT_LOCK_OFFSET     0
2587#endif
2588
2589#define cond_resched_lock(lock) ({                              \
2590        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2591        __cond_resched_lock(lock);                              \
2592})
2593
2594extern int __cond_resched_softirq(void);
2595
2596#define cond_resched_softirq() ({                                       \
2597        __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2598        __cond_resched_softirq();                                       \
2599})
2600
2601/*
2602 * Does a critical section need to be broken due to another
2603 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2604 * but a general need for low latency)
2605 */
2606static inline int spin_needbreak(spinlock_t *lock)
2607{
2608#ifdef CONFIG_PREEMPT
2609        return spin_is_contended(lock);
2610#else
2611        return 0;
2612#endif
2613}
2614
2615/*
2616 * Thread group CPU time accounting.
2617 */
2618void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2619void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2620
2621static inline void thread_group_cputime_init(struct signal_struct *sig)
2622{
2623        raw_spin_lock_init(&sig->cputimer.lock);
2624}
2625
2626/*
2627 * Reevaluate whether the task has signals pending delivery.
2628 * Wake the task if so.
2629 * This is required every time the blocked sigset_t changes.
2630 * callers must hold sighand->siglock.
2631 */
2632extern void recalc_sigpending_and_wake(struct task_struct *t);
2633extern void recalc_sigpending(void);
2634
2635extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2636
2637static inline void signal_wake_up(struct task_struct *t, bool resume)
2638{
2639        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2640}
2641static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2642{
2643        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2644}
2645
2646/*
2647 * Wrappers for p->thread_info->cpu access. No-op on UP.
2648 */
2649#ifdef CONFIG_SMP
2650
2651static inline unsigned int task_cpu(const struct task_struct *p)
2652{
2653        return task_thread_info(p)->cpu;
2654}
2655
2656extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2657
2658#else
2659
2660static inline unsigned int task_cpu(const struct task_struct *p)
2661{
2662        return 0;
2663}
2664
2665static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2666{
2667}
2668
2669#endif /* CONFIG_SMP */
2670
2671extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2672extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2673
2674#ifdef CONFIG_CGROUP_SCHED
2675
2676extern struct task_group root_task_group;
2677
2678extern struct task_group *sched_create_group(struct task_group *parent);
2679extern void sched_online_group(struct task_group *tg,
2680                               struct task_group *parent);
2681extern void sched_destroy_group(struct task_group *tg);
2682extern void sched_offline_group(struct task_group *tg);
2683extern void sched_move_task(struct task_struct *tsk);
2684#ifdef CONFIG_FAIR_GROUP_SCHED
2685extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2686extern unsigned long sched_group_shares(struct task_group *tg);
2687#endif
2688#ifdef CONFIG_RT_GROUP_SCHED
2689extern int sched_group_set_rt_runtime(struct task_group *tg,
2690                                      long rt_runtime_us);
2691extern long sched_group_rt_runtime(struct task_group *tg);
2692extern int sched_group_set_rt_period(struct task_group *tg,
2693                                      long rt_period_us);
2694extern long sched_group_rt_period(struct task_group *tg);
2695extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2696#endif
2697#endif /* CONFIG_CGROUP_SCHED */
2698
2699extern int task_can_switch_user(struct user_struct *up,
2700                                        struct task_struct *tsk);
2701
2702#ifdef CONFIG_TASK_XACCT
2703static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2704{
2705        tsk->ioac.rchar += amt;
2706}
2707
2708static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2709{
2710        tsk->ioac.wchar += amt;
2711}
2712
2713static inline void inc_syscr(struct task_struct *tsk)
2714{
2715        tsk->ioac.syscr++;
2716}
2717
2718static inline void inc_syscw(struct task_struct *tsk)
2719{
2720        tsk->ioac.syscw++;
2721}
2722#else
2723static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2724{
2725}
2726
2727static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2728{
2729}
2730
2731static inline void inc_syscr(struct task_struct *tsk)
2732{
2733}
2734
2735static inline void inc_syscw(struct task_struct *tsk)
2736{
2737}
2738#endif
2739
2740#ifndef TASK_SIZE_OF
2741#define TASK_SIZE_OF(tsk)       TASK_SIZE
2742#endif
2743
2744#ifdef CONFIG_MM_OWNER
2745extern void mm_update_next_owner(struct mm_struct *mm);
2746extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2747#else
2748static inline void mm_update_next_owner(struct mm_struct *mm)
2749{
2750}
2751
2752static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2753{
2754}
2755#endif /* CONFIG_MM_OWNER */
2756
2757static inline unsigned long task_rlimit(const struct task_struct *tsk,
2758                unsigned int limit)
2759{
2760        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2761}
2762
2763static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2764                unsigned int limit)
2765{
2766        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2767}
2768
2769static inline unsigned long rlimit(unsigned int limit)
2770{
2771        return task_rlimit(current, limit);
2772}
2773
2774static inline unsigned long rlimit_max(unsigned int limit)
2775{
2776        return task_rlimit_max(current, limit);
2777}
2778
2779#endif
2780
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.