linux/drivers/power/ab8500_fg.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) ST-Ericsson AB 2012
   3 *
   4 * Main and Back-up battery management driver.
   5 *
   6 * Note: Backup battery management is required in case of Li-Ion battery and not
   7 * for capacitive battery. HREF boards have capacitive battery and hence backup
   8 * battery management is not used and the supported code is available in this
   9 * driver.
  10 *
  11 * License Terms: GNU General Public License v2
  12 * Author:
  13 *      Johan Palsson <johan.palsson@stericsson.com>
  14 *      Karl Komierowski <karl.komierowski@stericsson.com>
  15 *      Arun R Murthy <arun.murthy@stericsson.com>
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/device.h>
  21#include <linux/interrupt.h>
  22#include <linux/platform_device.h>
  23#include <linux/power_supply.h>
  24#include <linux/kobject.h>
  25#include <linux/slab.h>
  26#include <linux/delay.h>
  27#include <linux/time.h>
  28#include <linux/of.h>
  29#include <linux/completion.h>
  30#include <linux/mfd/core.h>
  31#include <linux/mfd/abx500.h>
  32#include <linux/mfd/abx500/ab8500.h>
  33#include <linux/mfd/abx500/ab8500-bm.h>
  34#include <linux/mfd/abx500/ab8500-gpadc.h>
  35#include <linux/kernel.h>
  36
  37#define MILLI_TO_MICRO                  1000
  38#define FG_LSB_IN_MA                    1627
  39#define QLSB_NANO_AMP_HOURS_X10         1129
  40#define INS_CURR_TIMEOUT                (3 * HZ)
  41
  42#define SEC_TO_SAMPLE(S)                (S * 4)
  43
  44#define NBR_AVG_SAMPLES                 20
  45
  46#define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
  47
  48#define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
  49#define BATT_OK_MIN                     2360 /* mV */
  50#define BATT_OK_INCREMENT               50 /* mV */
  51#define BATT_OK_MAX_NR_INCREMENTS       0xE
  52
  53/* FG constants */
  54#define BATT_OVV                        0x01
  55
  56#define interpolate(x, x1, y1, x2, y2) \
  57        ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
  58
  59#define to_ab8500_fg_device_info(x) container_of((x), \
  60        struct ab8500_fg, fg_psy);
  61
  62/**
  63 * struct ab8500_fg_interrupts - ab8500 fg interupts
  64 * @name:       name of the interrupt
  65 * @isr         function pointer to the isr
  66 */
  67struct ab8500_fg_interrupts {
  68        char *name;
  69        irqreturn_t (*isr)(int irq, void *data);
  70};
  71
  72enum ab8500_fg_discharge_state {
  73        AB8500_FG_DISCHARGE_INIT,
  74        AB8500_FG_DISCHARGE_INITMEASURING,
  75        AB8500_FG_DISCHARGE_INIT_RECOVERY,
  76        AB8500_FG_DISCHARGE_RECOVERY,
  77        AB8500_FG_DISCHARGE_READOUT_INIT,
  78        AB8500_FG_DISCHARGE_READOUT,
  79        AB8500_FG_DISCHARGE_WAKEUP,
  80};
  81
  82static char *discharge_state[] = {
  83        "DISCHARGE_INIT",
  84        "DISCHARGE_INITMEASURING",
  85        "DISCHARGE_INIT_RECOVERY",
  86        "DISCHARGE_RECOVERY",
  87        "DISCHARGE_READOUT_INIT",
  88        "DISCHARGE_READOUT",
  89        "DISCHARGE_WAKEUP",
  90};
  91
  92enum ab8500_fg_charge_state {
  93        AB8500_FG_CHARGE_INIT,
  94        AB8500_FG_CHARGE_READOUT,
  95};
  96
  97static char *charge_state[] = {
  98        "CHARGE_INIT",
  99        "CHARGE_READOUT",
 100};
 101
 102enum ab8500_fg_calibration_state {
 103        AB8500_FG_CALIB_INIT,
 104        AB8500_FG_CALIB_WAIT,
 105        AB8500_FG_CALIB_END,
 106};
 107
 108struct ab8500_fg_avg_cap {
 109        int avg;
 110        int samples[NBR_AVG_SAMPLES];
 111        __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
 112        int pos;
 113        int nbr_samples;
 114        int sum;
 115};
 116
 117struct ab8500_fg_cap_scaling {
 118        bool enable;
 119        int cap_to_scale[2];
 120        int disable_cap_level;
 121        int scaled_cap;
 122};
 123
 124struct ab8500_fg_battery_capacity {
 125        int max_mah_design;
 126        int max_mah;
 127        int mah;
 128        int permille;
 129        int level;
 130        int prev_mah;
 131        int prev_percent;
 132        int prev_level;
 133        int user_mah;
 134        struct ab8500_fg_cap_scaling cap_scale;
 135};
 136
 137struct ab8500_fg_flags {
 138        bool fg_enabled;
 139        bool conv_done;
 140        bool charging;
 141        bool fully_charged;
 142        bool force_full;
 143        bool low_bat_delay;
 144        bool low_bat;
 145        bool bat_ovv;
 146        bool batt_unknown;
 147        bool calibrate;
 148        bool user_cap;
 149        bool batt_id_received;
 150};
 151
 152struct inst_curr_result_list {
 153        struct list_head list;
 154        int *result;
 155};
 156
 157/**
 158 * struct ab8500_fg - ab8500 FG device information
 159 * @dev:                Pointer to the structure device
 160 * @node:               a list of AB8500 FGs, hence prepared for reentrance
 161 * @irq                 holds the CCEOC interrupt number
 162 * @vbat:               Battery voltage in mV
 163 * @vbat_nom:           Nominal battery voltage in mV
 164 * @inst_curr:          Instantenous battery current in mA
 165 * @avg_curr:           Average battery current in mA
 166 * @bat_temp            battery temperature
 167 * @fg_samples:         Number of samples used in the FG accumulation
 168 * @accu_charge:        Accumulated charge from the last conversion
 169 * @recovery_cnt:       Counter for recovery mode
 170 * @high_curr_cnt:      Counter for high current mode
 171 * @init_cnt:           Counter for init mode
 172 * @low_bat_cnt         Counter for number of consecutive low battery measures
 173 * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
 174 * @recovery_needed:    Indicate if recovery is needed
 175 * @high_curr_mode:     Indicate if we're in high current mode
 176 * @init_capacity:      Indicate if initial capacity measuring should be done
 177 * @turn_off_fg:        True if fg was off before current measurement
 178 * @calib_state         State during offset calibration
 179 * @discharge_state:    Current discharge state
 180 * @charge_state:       Current charge state
 181 * @ab8500_fg_started   Completion struct used for the instant current start
 182 * @ab8500_fg_complete  Completion struct used for the instant current reading
 183 * @flags:              Structure for information about events triggered
 184 * @bat_cap:            Structure for battery capacity specific parameters
 185 * @avg_cap:            Average capacity filter
 186 * @parent:             Pointer to the struct ab8500
 187 * @gpadc:              Pointer to the struct gpadc
 188 * @bm:                 Platform specific battery management information
 189 * @fg_psy:             Structure that holds the FG specific battery properties
 190 * @fg_wq:              Work queue for running the FG algorithm
 191 * @fg_periodic_work:   Work to run the FG algorithm periodically
 192 * @fg_low_bat_work:    Work to check low bat condition
 193 * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
 194 * @fg_work:            Work to run the FG algorithm instantly
 195 * @fg_acc_cur_work:    Work to read the FG accumulator
 196 * @fg_check_hw_failure_work:   Work for checking HW state
 197 * @cc_lock:            Mutex for locking the CC
 198 * @fg_kobject:         Structure of type kobject
 199 */
 200struct ab8500_fg {
 201        struct device *dev;
 202        struct list_head node;
 203        int irq;
 204        int vbat;
 205        int vbat_nom;
 206        int inst_curr;
 207        int avg_curr;
 208        int bat_temp;
 209        int fg_samples;
 210        int accu_charge;
 211        int recovery_cnt;
 212        int high_curr_cnt;
 213        int init_cnt;
 214        int low_bat_cnt;
 215        int nbr_cceoc_irq_cnt;
 216        bool recovery_needed;
 217        bool high_curr_mode;
 218        bool init_capacity;
 219        bool turn_off_fg;
 220        enum ab8500_fg_calibration_state calib_state;
 221        enum ab8500_fg_discharge_state discharge_state;
 222        enum ab8500_fg_charge_state charge_state;
 223        struct completion ab8500_fg_started;
 224        struct completion ab8500_fg_complete;
 225        struct ab8500_fg_flags flags;
 226        struct ab8500_fg_battery_capacity bat_cap;
 227        struct ab8500_fg_avg_cap avg_cap;
 228        struct ab8500 *parent;
 229        struct ab8500_gpadc *gpadc;
 230        struct abx500_bm_data *bm;
 231        struct power_supply fg_psy;
 232        struct workqueue_struct *fg_wq;
 233        struct delayed_work fg_periodic_work;
 234        struct delayed_work fg_low_bat_work;
 235        struct delayed_work fg_reinit_work;
 236        struct work_struct fg_work;
 237        struct work_struct fg_acc_cur_work;
 238        struct delayed_work fg_check_hw_failure_work;
 239        struct mutex cc_lock;
 240        struct kobject fg_kobject;
 241};
 242static LIST_HEAD(ab8500_fg_list);
 243
 244/**
 245 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
 246 * (i.e. the first fuel gauge in the instance list)
 247 */
 248struct ab8500_fg *ab8500_fg_get(void)
 249{
 250        struct ab8500_fg *fg;
 251
 252        if (list_empty(&ab8500_fg_list))
 253                return NULL;
 254
 255        fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
 256        return fg;
 257}
 258
 259/* Main battery properties */
 260static enum power_supply_property ab8500_fg_props[] = {
 261        POWER_SUPPLY_PROP_VOLTAGE_NOW,
 262        POWER_SUPPLY_PROP_CURRENT_NOW,
 263        POWER_SUPPLY_PROP_CURRENT_AVG,
 264        POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 265        POWER_SUPPLY_PROP_ENERGY_FULL,
 266        POWER_SUPPLY_PROP_ENERGY_NOW,
 267        POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 268        POWER_SUPPLY_PROP_CHARGE_FULL,
 269        POWER_SUPPLY_PROP_CHARGE_NOW,
 270        POWER_SUPPLY_PROP_CAPACITY,
 271        POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 272};
 273
 274/*
 275 * This array maps the raw hex value to lowbat voltage used by the AB8500
 276 * Values taken from the UM0836
 277 */
 278static int ab8500_fg_lowbat_voltage_map[] = {
 279        2300 ,
 280        2325 ,
 281        2350 ,
 282        2375 ,
 283        2400 ,
 284        2425 ,
 285        2450 ,
 286        2475 ,
 287        2500 ,
 288        2525 ,
 289        2550 ,
 290        2575 ,
 291        2600 ,
 292        2625 ,
 293        2650 ,
 294        2675 ,
 295        2700 ,
 296        2725 ,
 297        2750 ,
 298        2775 ,
 299        2800 ,
 300        2825 ,
 301        2850 ,
 302        2875 ,
 303        2900 ,
 304        2925 ,
 305        2950 ,
 306        2975 ,
 307        3000 ,
 308        3025 ,
 309        3050 ,
 310        3075 ,
 311        3100 ,
 312        3125 ,
 313        3150 ,
 314        3175 ,
 315        3200 ,
 316        3225 ,
 317        3250 ,
 318        3275 ,
 319        3300 ,
 320        3325 ,
 321        3350 ,
 322        3375 ,
 323        3400 ,
 324        3425 ,
 325        3450 ,
 326        3475 ,
 327        3500 ,
 328        3525 ,
 329        3550 ,
 330        3575 ,
 331        3600 ,
 332        3625 ,
 333        3650 ,
 334        3675 ,
 335        3700 ,
 336        3725 ,
 337        3750 ,
 338        3775 ,
 339        3800 ,
 340        3825 ,
 341        3850 ,
 342        3850 ,
 343};
 344
 345static u8 ab8500_volt_to_regval(int voltage)
 346{
 347        int i;
 348
 349        if (voltage < ab8500_fg_lowbat_voltage_map[0])
 350                return 0;
 351
 352        for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
 353                if (voltage < ab8500_fg_lowbat_voltage_map[i])
 354                        return (u8) i - 1;
 355        }
 356
 357        /* If not captured above, return index of last element */
 358        return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
 359}
 360
 361/**
 362 * ab8500_fg_is_low_curr() - Low or high current mode
 363 * @di:         pointer to the ab8500_fg structure
 364 * @curr:       the current to base or our decision on
 365 *
 366 * Low current mode if the current consumption is below a certain threshold
 367 */
 368static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
 369{
 370        /*
 371         * We want to know if we're in low current mode
 372         */
 373        if (curr > -di->bm->fg_params->high_curr_threshold)
 374                return true;
 375        else
 376                return false;
 377}
 378
 379/**
 380 * ab8500_fg_add_cap_sample() - Add capacity to average filter
 381 * @di:         pointer to the ab8500_fg structure
 382 * @sample:     the capacity in mAh to add to the filter
 383 *
 384 * A capacity is added to the filter and a new mean capacity is calculated and
 385 * returned
 386 */
 387static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
 388{
 389        struct timespec ts;
 390        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 391
 392        getnstimeofday(&ts);
 393
 394        do {
 395                avg->sum += sample - avg->samples[avg->pos];
 396                avg->samples[avg->pos] = sample;
 397                avg->time_stamps[avg->pos] = ts.tv_sec;
 398                avg->pos++;
 399
 400                if (avg->pos == NBR_AVG_SAMPLES)
 401                        avg->pos = 0;
 402
 403                if (avg->nbr_samples < NBR_AVG_SAMPLES)
 404                        avg->nbr_samples++;
 405
 406                /*
 407                 * Check the time stamp for each sample. If too old,
 408                 * replace with latest sample
 409                 */
 410        } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
 411
 412        avg->avg = avg->sum / avg->nbr_samples;
 413
 414        return avg->avg;
 415}
 416
 417/**
 418 * ab8500_fg_clear_cap_samples() - Clear average filter
 419 * @di:         pointer to the ab8500_fg structure
 420 *
 421 * The capacity filter is is reset to zero.
 422 */
 423static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
 424{
 425        int i;
 426        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 427
 428        avg->pos = 0;
 429        avg->nbr_samples = 0;
 430        avg->sum = 0;
 431        avg->avg = 0;
 432
 433        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 434                avg->samples[i] = 0;
 435                avg->time_stamps[i] = 0;
 436        }
 437}
 438
 439/**
 440 * ab8500_fg_fill_cap_sample() - Fill average filter
 441 * @di:         pointer to the ab8500_fg structure
 442 * @sample:     the capacity in mAh to fill the filter with
 443 *
 444 * The capacity filter is filled with a capacity in mAh
 445 */
 446static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
 447{
 448        int i;
 449        struct timespec ts;
 450        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 451
 452        getnstimeofday(&ts);
 453
 454        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 455                avg->samples[i] = sample;
 456                avg->time_stamps[i] = ts.tv_sec;
 457        }
 458
 459        avg->pos = 0;
 460        avg->nbr_samples = NBR_AVG_SAMPLES;
 461        avg->sum = sample * NBR_AVG_SAMPLES;
 462        avg->avg = sample;
 463}
 464
 465/**
 466 * ab8500_fg_coulomb_counter() - enable coulomb counter
 467 * @di:         pointer to the ab8500_fg structure
 468 * @enable:     enable/disable
 469 *
 470 * Enable/Disable coulomb counter.
 471 * On failure returns negative value.
 472 */
 473static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
 474{
 475        int ret = 0;
 476        mutex_lock(&di->cc_lock);
 477        if (enable) {
 478                /* To be able to reprogram the number of samples, we have to
 479                 * first stop the CC and then enable it again */
 480                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 481                        AB8500_RTC_CC_CONF_REG, 0x00);
 482                if (ret)
 483                        goto cc_err;
 484
 485                /* Program the samples */
 486                ret = abx500_set_register_interruptible(di->dev,
 487                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 488                        di->fg_samples);
 489                if (ret)
 490                        goto cc_err;
 491
 492                /* Start the CC */
 493                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 494                        AB8500_RTC_CC_CONF_REG,
 495                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 496                if (ret)
 497                        goto cc_err;
 498
 499                di->flags.fg_enabled = true;
 500        } else {
 501                /* Clear any pending read requests */
 502                ret = abx500_mask_and_set_register_interruptible(di->dev,
 503                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 504                        (RESET_ACCU | READ_REQ), 0);
 505                if (ret)
 506                        goto cc_err;
 507
 508                ret = abx500_set_register_interruptible(di->dev,
 509                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
 510                if (ret)
 511                        goto cc_err;
 512
 513                /* Stop the CC */
 514                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 515                        AB8500_RTC_CC_CONF_REG, 0);
 516                if (ret)
 517                        goto cc_err;
 518
 519                di->flags.fg_enabled = false;
 520
 521        }
 522        dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
 523                enable, di->fg_samples);
 524
 525        mutex_unlock(&di->cc_lock);
 526
 527        return ret;
 528cc_err:
 529        dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
 530        mutex_unlock(&di->cc_lock);
 531        return ret;
 532}
 533
 534/**
 535 * ab8500_fg_inst_curr_start() - start battery instantaneous current
 536 * @di:         pointer to the ab8500_fg structure
 537 *
 538 * Returns 0 or error code
 539 * Note: This is part "one" and has to be called before
 540 * ab8500_fg_inst_curr_finalize()
 541 */
 542int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
 543{
 544        u8 reg_val;
 545        int ret;
 546
 547        mutex_lock(&di->cc_lock);
 548
 549        di->nbr_cceoc_irq_cnt = 0;
 550        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 551                AB8500_RTC_CC_CONF_REG, &reg_val);
 552        if (ret < 0)
 553                goto fail;
 554
 555        if (!(reg_val & CC_PWR_UP_ENA)) {
 556                dev_dbg(di->dev, "%s Enable FG\n", __func__);
 557                di->turn_off_fg = true;
 558
 559                /* Program the samples */
 560                ret = abx500_set_register_interruptible(di->dev,
 561                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 562                        SEC_TO_SAMPLE(10));
 563                if (ret)
 564                        goto fail;
 565
 566                /* Start the CC */
 567                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 568                        AB8500_RTC_CC_CONF_REG,
 569                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 570                if (ret)
 571                        goto fail;
 572        } else {
 573                di->turn_off_fg = false;
 574        }
 575
 576        /* Return and WFI */
 577        INIT_COMPLETION(di->ab8500_fg_started);
 578        INIT_COMPLETION(di->ab8500_fg_complete);
 579        enable_irq(di->irq);
 580
 581        /* Note: cc_lock is still locked */
 582        return 0;
 583fail:
 584        mutex_unlock(&di->cc_lock);
 585        return ret;
 586}
 587
 588/**
 589 * ab8500_fg_inst_curr_started() - check if fg conversion has started
 590 * @di:         pointer to the ab8500_fg structure
 591 *
 592 * Returns 1 if conversion started, 0 if still waiting
 593 */
 594int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
 595{
 596        return completion_done(&di->ab8500_fg_started);
 597}
 598
 599/**
 600 * ab8500_fg_inst_curr_done() - check if fg conversion is done
 601 * @di:         pointer to the ab8500_fg structure
 602 *
 603 * Returns 1 if conversion done, 0 if still waiting
 604 */
 605int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
 606{
 607        return completion_done(&di->ab8500_fg_complete);
 608}
 609
 610/**
 611 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
 612 * @di:         pointer to the ab8500_fg structure
 613 * @res:        battery instantenous current(on success)
 614 *
 615 * Returns 0 or an error code
 616 * Note: This is part "two" and has to be called at earliest 250 ms
 617 * after ab8500_fg_inst_curr_start()
 618 */
 619int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
 620{
 621        u8 low, high;
 622        int val;
 623        int ret;
 624        int timeout;
 625
 626        if (!completion_done(&di->ab8500_fg_complete)) {
 627                timeout = wait_for_completion_timeout(
 628                        &di->ab8500_fg_complete,
 629                        INS_CURR_TIMEOUT);
 630                dev_dbg(di->dev, "Finalize time: %d ms\n",
 631                        ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
 632                if (!timeout) {
 633                        ret = -ETIME;
 634                        disable_irq(di->irq);
 635                        di->nbr_cceoc_irq_cnt = 0;
 636                        dev_err(di->dev, "completion timed out [%d]\n",
 637                                __LINE__);
 638                        goto fail;
 639                }
 640        }
 641
 642        disable_irq(di->irq);
 643        di->nbr_cceoc_irq_cnt = 0;
 644
 645        ret = abx500_mask_and_set_register_interruptible(di->dev,
 646                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 647                        READ_REQ, READ_REQ);
 648
 649        /* 100uS between read request and read is needed */
 650        usleep_range(100, 100);
 651
 652        /* Read CC Sample conversion value Low and high */
 653        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 654                AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
 655        if (ret < 0)
 656                goto fail;
 657
 658        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 659                AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
 660        if (ret < 0)
 661                goto fail;
 662
 663        /*
 664         * negative value for Discharging
 665         * convert 2's compliment into decimal
 666         */
 667        if (high & 0x10)
 668                val = (low | (high << 8) | 0xFFFFE000);
 669        else
 670                val = (low | (high << 8));
 671
 672        /*
 673         * Convert to unit value in mA
 674         * Full scale input voltage is
 675         * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
 676         * Given a 250ms conversion cycle time the LSB corresponds
 677         * to 112.9 nAh. Convert to current by dividing by the conversion
 678         * time in hours (250ms = 1 / (3600 * 4)h)
 679         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 680         */
 681        val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
 682                (1000 * di->bm->fg_res);
 683
 684        if (di->turn_off_fg) {
 685                dev_dbg(di->dev, "%s Disable FG\n", __func__);
 686
 687                /* Clear any pending read requests */
 688                ret = abx500_set_register_interruptible(di->dev,
 689                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
 690                if (ret)
 691                        goto fail;
 692
 693                /* Stop the CC */
 694                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 695                        AB8500_RTC_CC_CONF_REG, 0);
 696                if (ret)
 697                        goto fail;
 698        }
 699        mutex_unlock(&di->cc_lock);
 700        (*res) = val;
 701
 702        return 0;
 703fail:
 704        mutex_unlock(&di->cc_lock);
 705        return ret;
 706}
 707
 708/**
 709 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
 710 * @di:         pointer to the ab8500_fg structure
 711 * @res:        battery instantenous current(on success)
 712 *
 713 * Returns 0 else error code
 714 */
 715int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
 716{
 717        int ret;
 718        int timeout;
 719        int res = 0;
 720
 721        ret = ab8500_fg_inst_curr_start(di);
 722        if (ret) {
 723                dev_err(di->dev, "Failed to initialize fg_inst\n");
 724                return 0;
 725        }
 726
 727        /* Wait for CC to actually start */
 728        if (!completion_done(&di->ab8500_fg_started)) {
 729                timeout = wait_for_completion_timeout(
 730                        &di->ab8500_fg_started,
 731                        INS_CURR_TIMEOUT);
 732                dev_dbg(di->dev, "Start time: %d ms\n",
 733                        ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
 734                if (!timeout) {
 735                        ret = -ETIME;
 736                        dev_err(di->dev, "completion timed out [%d]\n",
 737                                __LINE__);
 738                        goto fail;
 739                }
 740        }
 741
 742        ret = ab8500_fg_inst_curr_finalize(di, &res);
 743        if (ret) {
 744                dev_err(di->dev, "Failed to finalize fg_inst\n");
 745                return 0;
 746        }
 747
 748        dev_dbg(di->dev, "%s instant current: %d", __func__, res);
 749        return res;
 750fail:
 751        disable_irq(di->irq);
 752        mutex_unlock(&di->cc_lock);
 753        return ret;
 754}
 755
 756/**
 757 * ab8500_fg_acc_cur_work() - average battery current
 758 * @work:       pointer to the work_struct structure
 759 *
 760 * Updated the average battery current obtained from the
 761 * coulomb counter.
 762 */
 763static void ab8500_fg_acc_cur_work(struct work_struct *work)
 764{
 765        int val;
 766        int ret;
 767        u8 low, med, high;
 768
 769        struct ab8500_fg *di = container_of(work,
 770                struct ab8500_fg, fg_acc_cur_work);
 771
 772        mutex_lock(&di->cc_lock);
 773        ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 774                AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
 775        if (ret)
 776                goto exit;
 777
 778        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 779                AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
 780        if (ret < 0)
 781                goto exit;
 782
 783        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 784                AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
 785        if (ret < 0)
 786                goto exit;
 787
 788        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 789                AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
 790        if (ret < 0)
 791                goto exit;
 792
 793        /* Check for sign bit in case of negative value, 2's compliment */
 794        if (high & 0x10)
 795                val = (low | (med << 8) | (high << 16) | 0xFFE00000);
 796        else
 797                val = (low | (med << 8) | (high << 16));
 798
 799        /*
 800         * Convert to uAh
 801         * Given a 250ms conversion cycle time the LSB corresponds
 802         * to 112.9 nAh.
 803         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 804         */
 805        di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
 806                (100 * di->bm->fg_res);
 807
 808        /*
 809         * Convert to unit value in mA
 810         * by dividing by the conversion
 811         * time in hours (= samples / (3600 * 4)h)
 812         * and multiply with 1000
 813         */
 814        di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
 815                (1000 * di->bm->fg_res * (di->fg_samples / 4));
 816
 817        di->flags.conv_done = true;
 818
 819        mutex_unlock(&di->cc_lock);
 820
 821        queue_work(di->fg_wq, &di->fg_work);
 822
 823        dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
 824                                di->bm->fg_res, di->fg_samples, val, di->accu_charge);
 825        return;
 826exit:
 827        dev_err(di->dev,
 828                "Failed to read or write gas gauge registers\n");
 829        mutex_unlock(&di->cc_lock);
 830        queue_work(di->fg_wq, &di->fg_work);
 831}
 832
 833/**
 834 * ab8500_fg_bat_voltage() - get battery voltage
 835 * @di:         pointer to the ab8500_fg structure
 836 *
 837 * Returns battery voltage(on success) else error code
 838 */
 839static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
 840{
 841        int vbat;
 842        static int prev;
 843
 844        vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
 845        if (vbat < 0) {
 846                dev_err(di->dev,
 847                        "%s gpadc conversion failed, using previous value\n",
 848                        __func__);
 849                return prev;
 850        }
 851
 852        prev = vbat;
 853        return vbat;
 854}
 855
 856/**
 857 * ab8500_fg_volt_to_capacity() - Voltage based capacity
 858 * @di:         pointer to the ab8500_fg structure
 859 * @voltage:    The voltage to convert to a capacity
 860 *
 861 * Returns battery capacity in per mille based on voltage
 862 */
 863static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
 864{
 865        int i, tbl_size;
 866        struct abx500_v_to_cap *tbl;
 867        int cap = 0;
 868
 869        tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
 870        tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
 871
 872        for (i = 0; i < tbl_size; ++i) {
 873                if (voltage > tbl[i].voltage)
 874                        break;
 875        }
 876
 877        if ((i > 0) && (i < tbl_size)) {
 878                cap = interpolate(voltage,
 879                        tbl[i].voltage,
 880                        tbl[i].capacity * 10,
 881                        tbl[i-1].voltage,
 882                        tbl[i-1].capacity * 10);
 883        } else if (i == 0) {
 884                cap = 1000;
 885        } else {
 886                cap = 0;
 887        }
 888
 889        dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
 890                __func__, voltage, cap);
 891
 892        return cap;
 893}
 894
 895/**
 896 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
 897 * @di:         pointer to the ab8500_fg structure
 898 *
 899 * Returns battery capacity based on battery voltage that is not compensated
 900 * for the voltage drop due to the load
 901 */
 902static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
 903{
 904        di->vbat = ab8500_fg_bat_voltage(di);
 905        return ab8500_fg_volt_to_capacity(di, di->vbat);
 906}
 907
 908/**
 909 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
 910 * @di:         pointer to the ab8500_fg structure
 911 *
 912 * Returns battery inner resistance added with the fuel gauge resistor value
 913 * to get the total resistance in the whole link from gnd to bat+ node.
 914 */
 915static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
 916{
 917        int i, tbl_size;
 918        struct batres_vs_temp *tbl;
 919        int resist = 0;
 920
 921        tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
 922        tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
 923
 924        for (i = 0; i < tbl_size; ++i) {
 925                if (di->bat_temp / 10 > tbl[i].temp)
 926                        break;
 927        }
 928
 929        if ((i > 0) && (i < tbl_size)) {
 930                resist = interpolate(di->bat_temp / 10,
 931                        tbl[i].temp,
 932                        tbl[i].resist,
 933                        tbl[i-1].temp,
 934                        tbl[i-1].resist);
 935        } else if (i == 0) {
 936                resist = tbl[0].resist;
 937        } else {
 938                resist = tbl[tbl_size - 1].resist;
 939        }
 940
 941        dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
 942            " fg resistance %d, total: %d (mOhm)\n",
 943                __func__, di->bat_temp, resist, di->bm->fg_res / 10,
 944                (di->bm->fg_res / 10) + resist);
 945
 946        /* fg_res variable is in 0.1mOhm */
 947        resist += di->bm->fg_res / 10;
 948
 949        return resist;
 950}
 951
 952/**
 953 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
 954 * @di:         pointer to the ab8500_fg structure
 955 *
 956 * Returns battery capacity based on battery voltage that is load compensated
 957 * for the voltage drop
 958 */
 959static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
 960{
 961        int vbat_comp, res;
 962        int i = 0;
 963        int vbat = 0;
 964
 965        ab8500_fg_inst_curr_start(di);
 966
 967        do {
 968                vbat += ab8500_fg_bat_voltage(di);
 969                i++;
 970                usleep_range(5000, 6000);
 971        } while (!ab8500_fg_inst_curr_done(di));
 972
 973        ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
 974
 975        di->vbat = vbat / i;
 976        res = ab8500_fg_battery_resistance(di);
 977
 978        /* Use Ohms law to get the load compensated voltage */
 979        vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
 980
 981        dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
 982                "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
 983                __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
 984
 985        return ab8500_fg_volt_to_capacity(di, vbat_comp);
 986}
 987
 988/**
 989 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
 990 * @di:         pointer to the ab8500_fg structure
 991 * @cap_mah:    capacity in mAh
 992 *
 993 * Converts capacity in mAh to capacity in permille
 994 */
 995static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
 996{
 997        return (cap_mah * 1000) / di->bat_cap.max_mah_design;
 998}
 999
1000/**
1001 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1002 * @di:         pointer to the ab8500_fg structure
1003 * @cap_pm:     capacity in permille
1004 *
1005 * Converts capacity in permille to capacity in mAh
1006 */
1007static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1008{
1009        return cap_pm * di->bat_cap.max_mah_design / 1000;
1010}
1011
1012/**
1013 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1014 * @di:         pointer to the ab8500_fg structure
1015 * @cap_mah:    capacity in mAh
1016 *
1017 * Converts capacity in mAh to capacity in uWh
1018 */
1019static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1020{
1021        u64 div_res;
1022        u32 div_rem;
1023
1024        div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1025        div_rem = do_div(div_res, 1000);
1026
1027        /* Make sure to round upwards if necessary */
1028        if (div_rem >= 1000 / 2)
1029                div_res++;
1030
1031        return (int) div_res;
1032}
1033
1034/**
1035 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1036 * @di:         pointer to the ab8500_fg structure
1037 *
1038 * Return the capacity in mAh based on previous calculated capcity and the FG
1039 * accumulator register value. The filter is filled with this capacity
1040 */
1041static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1042{
1043        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1044                __func__,
1045                di->bat_cap.mah,
1046                di->accu_charge);
1047
1048        /* Capacity should not be less than 0 */
1049        if (di->bat_cap.mah + di->accu_charge > 0)
1050                di->bat_cap.mah += di->accu_charge;
1051        else
1052                di->bat_cap.mah = 0;
1053        /*
1054         * We force capacity to 100% once when the algorithm
1055         * reports that it's full.
1056         */
1057        if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1058                di->flags.force_full) {
1059                di->bat_cap.mah = di->bat_cap.max_mah_design;
1060        }
1061
1062        ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1063        di->bat_cap.permille =
1064                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1065
1066        /* We need to update battery voltage and inst current when charging */
1067        di->vbat = ab8500_fg_bat_voltage(di);
1068        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1069
1070        return di->bat_cap.mah;
1071}
1072
1073/**
1074 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1075 * @di:         pointer to the ab8500_fg structure
1076 * @comp:       if voltage should be load compensated before capacity calc
1077 *
1078 * Return the capacity in mAh based on the battery voltage. The voltage can
1079 * either be load compensated or not. This value is added to the filter and a
1080 * new mean value is calculated and returned.
1081 */
1082static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1083{
1084        int permille, mah;
1085
1086        if (comp)
1087                permille = ab8500_fg_load_comp_volt_to_capacity(di);
1088        else
1089                permille = ab8500_fg_uncomp_volt_to_capacity(di);
1090
1091        mah = ab8500_fg_convert_permille_to_mah(di, permille);
1092
1093        di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1094        di->bat_cap.permille =
1095                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1096
1097        return di->bat_cap.mah;
1098}
1099
1100/**
1101 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1102 * @di:         pointer to the ab8500_fg structure
1103 *
1104 * Return the capacity in mAh based on previous calculated capcity and the FG
1105 * accumulator register value. This value is added to the filter and a
1106 * new mean value is calculated and returned.
1107 */
1108static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1109{
1110        int permille_volt, permille;
1111
1112        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1113                __func__,
1114                di->bat_cap.mah,
1115                di->accu_charge);
1116
1117        /* Capacity should not be less than 0 */
1118        if (di->bat_cap.mah + di->accu_charge > 0)
1119                di->bat_cap.mah += di->accu_charge;
1120        else
1121                di->bat_cap.mah = 0;
1122
1123        if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1124                di->bat_cap.mah = di->bat_cap.max_mah_design;
1125
1126        /*
1127         * Check against voltage based capacity. It can not be lower
1128         * than what the uncompensated voltage says
1129         */
1130        permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1131        permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1132
1133        if (permille < permille_volt) {
1134                di->bat_cap.permille = permille_volt;
1135                di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1136                        di->bat_cap.permille);
1137
1138                dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1139                        __func__,
1140                        permille,
1141                        permille_volt);
1142
1143                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144        } else {
1145                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1146                di->bat_cap.permille =
1147                        ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1148        }
1149
1150        return di->bat_cap.mah;
1151}
1152
1153/**
1154 * ab8500_fg_capacity_level() - Get the battery capacity level
1155 * @di:         pointer to the ab8500_fg structure
1156 *
1157 * Get the battery capacity level based on the capacity in percent
1158 */
1159static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1160{
1161        int ret, percent;
1162
1163        percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1164
1165        if (percent <= di->bm->cap_levels->critical ||
1166                di->flags.low_bat)
1167                ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1168        else if (percent <= di->bm->cap_levels->low)
1169                ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1170        else if (percent <= di->bm->cap_levels->normal)
1171                ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1172        else if (percent <= di->bm->cap_levels->high)
1173                ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1174        else
1175                ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1176
1177        return ret;
1178}
1179
1180/**
1181 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1182 * @di:         pointer to the ab8500_fg structure
1183 *
1184 * Calculates the capacity to be shown to upper layers. Scales the capacity
1185 * to have 100% as a reference from the actual capacity upon removal of charger
1186 * when charging is in maintenance mode.
1187 */
1188static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1189{
1190        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1191        int capacity = di->bat_cap.prev_percent;
1192
1193        if (!cs->enable)
1194                return capacity;
1195
1196        /*
1197         * As long as we are in fully charge mode scale the capacity
1198         * to show 100%.
1199         */
1200        if (di->flags.fully_charged) {
1201                cs->cap_to_scale[0] = 100;
1202                cs->cap_to_scale[1] =
1203                        max(capacity, di->bm->fg_params->maint_thres);
1204                dev_dbg(di->dev, "Scale cap with %d/%d\n",
1205                         cs->cap_to_scale[0], cs->cap_to_scale[1]);
1206        }
1207
1208        /* Calculates the scaled capacity. */
1209        if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1210                                        && (cs->cap_to_scale[1] > 0))
1211                capacity = min(100,
1212                                 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1213                                                 cs->cap_to_scale[0],
1214                                                 cs->cap_to_scale[1]));
1215
1216        if (di->flags.charging) {
1217                if (capacity < cs->disable_cap_level) {
1218                        cs->disable_cap_level = capacity;
1219                        dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1220                                cs->disable_cap_level);
1221                } else if (!di->flags.fully_charged) {
1222                        if (di->bat_cap.prev_percent >=
1223                            cs->disable_cap_level) {
1224                                dev_dbg(di->dev, "Disabling scaled capacity\n");
1225                                cs->enable = false;
1226                                capacity = di->bat_cap.prev_percent;
1227                        } else {
1228                                dev_dbg(di->dev,
1229                                        "Waiting in cap to level %d%%\n",
1230                                        cs->disable_cap_level);
1231                                capacity = cs->disable_cap_level;
1232                        }
1233                }
1234        }
1235
1236        return capacity;
1237}
1238
1239/**
1240 * ab8500_fg_update_cap_scalers() - Capacity scaling
1241 * @di:         pointer to the ab8500_fg structure
1242 *
1243 * To be called when state change from charge<->discharge to update
1244 * the capacity scalers.
1245 */
1246static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1247{
1248        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1249
1250        if (!cs->enable)
1251                return;
1252        if (di->flags.charging) {
1253                di->bat_cap.cap_scale.disable_cap_level =
1254                        di->bat_cap.cap_scale.scaled_cap;
1255                dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1256                                di->bat_cap.cap_scale.disable_cap_level);
1257        } else {
1258                if (cs->scaled_cap != 100) {
1259                        cs->cap_to_scale[0] = cs->scaled_cap;
1260                        cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1261                } else {
1262                        cs->cap_to_scale[0] = 100;
1263                        cs->cap_to_scale[1] =
1264                                max(di->bat_cap.prev_percent,
1265                                    di->bm->fg_params->maint_thres);
1266                }
1267
1268                dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1269                                cs->cap_to_scale[0], cs->cap_to_scale[1]);
1270        }
1271}
1272
1273/**
1274 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1275 * @di:         pointer to the ab8500_fg structure
1276 * @init:       capacity is allowed to go up in init mode
1277 *
1278 * Check if capacity or capacity limit has changed and notify the system
1279 * about it using the power_supply framework
1280 */
1281static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1282{
1283        bool changed = false;
1284        int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1285
1286        di->bat_cap.level = ab8500_fg_capacity_level(di);
1287
1288        if (di->bat_cap.level != di->bat_cap.prev_level) {
1289                /*
1290                 * We do not allow reported capacity level to go up
1291                 * unless we're charging or if we're in init
1292                 */
1293                if (!(!di->flags.charging && di->bat_cap.level >
1294                        di->bat_cap.prev_level) || init) {
1295                        dev_dbg(di->dev, "level changed from %d to %d\n",
1296                                di->bat_cap.prev_level,
1297                                di->bat_cap.level);
1298                        di->bat_cap.prev_level = di->bat_cap.level;
1299                        changed = true;
1300                } else {
1301                        dev_dbg(di->dev, "level not allowed to go up "
1302                                "since no charger is connected: %d to %d\n",
1303                                di->bat_cap.prev_level,
1304                                di->bat_cap.level);
1305                }
1306        }
1307
1308        /*
1309         * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1310         * shutdown
1311         */
1312        if (di->flags.low_bat) {
1313                dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1314                di->bat_cap.prev_percent = 0;
1315                di->bat_cap.permille = 0;
1316                percent = 0;
1317                di->bat_cap.prev_mah = 0;
1318                di->bat_cap.mah = 0;
1319                changed = true;
1320        } else if (di->flags.fully_charged) {
1321                /*
1322                 * We report 100% if algorithm reported fully charged
1323                 * and show 100% during maintenance charging (scaling).
1324                 */
1325                if (di->flags.force_full) {
1326                        di->bat_cap.prev_percent = percent;
1327                        di->bat_cap.prev_mah = di->bat_cap.mah;
1328
1329                        changed = true;
1330
1331                        if (!di->bat_cap.cap_scale.enable &&
1332                                                di->bm->capacity_scaling) {
1333                                di->bat_cap.cap_scale.enable = true;
1334                                di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1335                                di->bat_cap.cap_scale.cap_to_scale[1] =
1336                                                di->bat_cap.prev_percent;
1337                                di->bat_cap.cap_scale.disable_cap_level = 100;
1338                        }
1339                } else if (di->bat_cap.prev_percent != percent) {
1340                        dev_dbg(di->dev,
1341                                "battery reported full "
1342                                "but capacity dropping: %d\n",
1343                                percent);
1344                        di->bat_cap.prev_percent = percent;
1345                        di->bat_cap.prev_mah = di->bat_cap.mah;
1346
1347                        changed = true;
1348                }
1349        } else if (di->bat_cap.prev_percent != percent) {
1350                if (percent == 0) {
1351                        /*
1352                         * We will not report 0% unless we've got
1353                         * the LOW_BAT IRQ, no matter what the FG
1354                         * algorithm says.
1355                         */
1356                        di->bat_cap.prev_percent = 1;
1357                        di->bat_cap.permille = 1;
1358                        di->bat_cap.prev_mah = 1;
1359                        di->bat_cap.mah = 1;
1360                        percent = 1;
1361
1362                        changed = true;
1363                } else if (!(!di->flags.charging &&
1364                        percent > di->bat_cap.prev_percent) || init) {
1365                        /*
1366                         * We do not allow reported capacity to go up
1367                         * unless we're charging or if we're in init
1368                         */
1369                        dev_dbg(di->dev,
1370                                "capacity changed from %d to %d (%d)\n",
1371                                di->bat_cap.prev_percent,
1372                                percent,
1373                                di->bat_cap.permille);
1374                        di->bat_cap.prev_percent = percent;
1375                        di->bat_cap.prev_mah = di->bat_cap.mah;
1376
1377                        changed = true;
1378                } else {
1379                        dev_dbg(di->dev, "capacity not allowed to go up since "
1380                                "no charger is connected: %d to %d (%d)\n",
1381                                di->bat_cap.prev_percent,
1382                                percent,
1383                                di->bat_cap.permille);
1384                }
1385        }
1386
1387        if (changed) {
1388                if (di->bm->capacity_scaling) {
1389                        di->bat_cap.cap_scale.scaled_cap =
1390                                ab8500_fg_calculate_scaled_capacity(di);
1391
1392                        dev_info(di->dev, "capacity=%d (%d)\n",
1393                                di->bat_cap.prev_percent,
1394                                di->bat_cap.cap_scale.scaled_cap);
1395                }
1396                power_supply_changed(&di->fg_psy);
1397                if (di->flags.fully_charged && di->flags.force_full) {
1398                        dev_dbg(di->dev, "Battery full, notifying.\n");
1399                        di->flags.force_full = false;
1400                        sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1401                }
1402                sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1403        }
1404}
1405
1406static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1407        enum ab8500_fg_charge_state new_state)
1408{
1409        dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1410                di->charge_state,
1411                charge_state[di->charge_state],
1412                new_state,
1413                charge_state[new_state]);
1414
1415        di->charge_state = new_state;
1416}
1417
1418static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1419        enum ab8500_fg_discharge_state new_state)
1420{
1421        dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1422                di->discharge_state,
1423                discharge_state[di->discharge_state],
1424                new_state,
1425                discharge_state[new_state]);
1426
1427        di->discharge_state = new_state;
1428}
1429
1430/**
1431 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1432 * @di:         pointer to the ab8500_fg structure
1433 *
1434 * Battery capacity calculation state machine for when we're charging
1435 */
1436static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1437{
1438        /*
1439         * If we change to discharge mode
1440         * we should start with recovery
1441         */
1442        if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1443                ab8500_fg_discharge_state_to(di,
1444                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1445
1446        switch (di->charge_state) {
1447        case AB8500_FG_CHARGE_INIT:
1448                di->fg_samples = SEC_TO_SAMPLE(
1449                        di->bm->fg_params->accu_charging);
1450
1451                ab8500_fg_coulomb_counter(di, true);
1452                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1453
1454                break;
1455
1456        case AB8500_FG_CHARGE_READOUT:
1457                /*
1458                 * Read the FG and calculate the new capacity
1459                 */
1460                mutex_lock(&di->cc_lock);
1461                if (!di->flags.conv_done && !di->flags.force_full) {
1462                        /* Wasn't the CC IRQ that got us here */
1463                        mutex_unlock(&di->cc_lock);
1464                        dev_dbg(di->dev, "%s CC conv not done\n",
1465                                __func__);
1466
1467                        break;
1468                }
1469                di->flags.conv_done = false;
1470                mutex_unlock(&di->cc_lock);
1471
1472                ab8500_fg_calc_cap_charging(di);
1473
1474                break;
1475
1476        default:
1477                break;
1478        }
1479
1480        /* Check capacity limits */
1481        ab8500_fg_check_capacity_limits(di, false);
1482}
1483
1484static void force_capacity(struct ab8500_fg *di)
1485{
1486        int cap;
1487
1488        ab8500_fg_clear_cap_samples(di);
1489        cap = di->bat_cap.user_mah;
1490        if (cap > di->bat_cap.max_mah_design) {
1491                dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1492                        " %d\n", cap, di->bat_cap.max_mah_design);
1493                cap = di->bat_cap.max_mah_design;
1494        }
1495        ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1496        di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1497        di->bat_cap.mah = cap;
1498        ab8500_fg_check_capacity_limits(di, true);
1499}
1500
1501static bool check_sysfs_capacity(struct ab8500_fg *di)
1502{
1503        int cap, lower, upper;
1504        int cap_permille;
1505
1506        cap = di->bat_cap.user_mah;
1507
1508        cap_permille = ab8500_fg_convert_mah_to_permille(di,
1509                di->bat_cap.user_mah);
1510
1511        lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1512        upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1513
1514        if (lower < 0)
1515                lower = 0;
1516        /* 1000 is permille, -> 100 percent */
1517        if (upper > 1000)
1518                upper = 1000;
1519
1520        dev_dbg(di->dev, "Capacity limits:"
1521                " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1522                lower, cap_permille, upper, cap, di->bat_cap.mah);
1523
1524        /* If within limits, use the saved capacity and exit estimation...*/
1525        if (cap_permille > lower && cap_permille < upper) {
1526                dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1527                force_capacity(di);
1528                return true;
1529        }
1530        dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1531        return false;
1532}
1533
1534/**
1535 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1536 * @di:         pointer to the ab8500_fg structure
1537 *
1538 * Battery capacity calculation state machine for when we're discharging
1539 */
1540static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1541{
1542        int sleep_time;
1543
1544        /* If we change to charge mode we should start with init */
1545        if (di->charge_state != AB8500_FG_CHARGE_INIT)
1546                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1547
1548        switch (di->discharge_state) {
1549        case AB8500_FG_DISCHARGE_INIT:
1550                /* We use the FG IRQ to work on */
1551                di->init_cnt = 0;
1552                di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1553                ab8500_fg_coulomb_counter(di, true);
1554                ab8500_fg_discharge_state_to(di,
1555                        AB8500_FG_DISCHARGE_INITMEASURING);
1556
1557                /* Intentional fallthrough */
1558        case AB8500_FG_DISCHARGE_INITMEASURING:
1559                /*
1560                 * Discard a number of samples during startup.
1561                 * After that, use compensated voltage for a few
1562                 * samples to get an initial capacity.
1563                 * Then go to READOUT
1564                 */
1565                sleep_time = di->bm->fg_params->init_timer;
1566
1567                /* Discard the first [x] seconds */
1568                if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1569                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1570
1571                        ab8500_fg_check_capacity_limits(di, true);
1572                }
1573
1574                di->init_cnt += sleep_time;
1575                if (di->init_cnt > di->bm->fg_params->init_total_time)
1576                        ab8500_fg_discharge_state_to(di,
1577                                AB8500_FG_DISCHARGE_READOUT_INIT);
1578
1579                break;
1580
1581        case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1582                di->recovery_cnt = 0;
1583                di->recovery_needed = true;
1584                ab8500_fg_discharge_state_to(di,
1585                        AB8500_FG_DISCHARGE_RECOVERY);
1586
1587                /* Intentional fallthrough */
1588
1589        case AB8500_FG_DISCHARGE_RECOVERY:
1590                sleep_time = di->bm->fg_params->recovery_sleep_timer;
1591
1592                /*
1593                 * We should check the power consumption
1594                 * If low, go to READOUT (after x min) or
1595                 * RECOVERY_SLEEP if time left.
1596                 * If high, go to READOUT
1597                 */
1598                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1599
1600                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1601                        if (di->recovery_cnt >
1602                                di->bm->fg_params->recovery_total_time) {
1603                                di->fg_samples = SEC_TO_SAMPLE(
1604                                        di->bm->fg_params->accu_high_curr);
1605                                ab8500_fg_coulomb_counter(di, true);
1606                                ab8500_fg_discharge_state_to(di,
1607                                        AB8500_FG_DISCHARGE_READOUT);
1608                                di->recovery_needed = false;
1609                        } else {
1610                                queue_delayed_work(di->fg_wq,
1611                                        &di->fg_periodic_work,
1612                                        sleep_time * HZ);
1613                        }
1614                        di->recovery_cnt += sleep_time;
1615                } else {
1616                        di->fg_samples = SEC_TO_SAMPLE(
1617                                di->bm->fg_params->accu_high_curr);
1618                        ab8500_fg_coulomb_counter(di, true);
1619                        ab8500_fg_discharge_state_to(di,
1620                                AB8500_FG_DISCHARGE_READOUT);
1621                }
1622                break;
1623
1624        case AB8500_FG_DISCHARGE_READOUT_INIT:
1625                di->fg_samples = SEC_TO_SAMPLE(
1626                        di->bm->fg_params->accu_high_curr);
1627                ab8500_fg_coulomb_counter(di, true);
1628                ab8500_fg_discharge_state_to(di,
1629                                AB8500_FG_DISCHARGE_READOUT);
1630                break;
1631
1632        case AB8500_FG_DISCHARGE_READOUT:
1633                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1634
1635                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1636                        /* Detect mode change */
1637                        if (di->high_curr_mode) {
1638                                di->high_curr_mode = false;
1639                                di->high_curr_cnt = 0;
1640                        }
1641
1642                        if (di->recovery_needed) {
1643                                ab8500_fg_discharge_state_to(di,
1644                                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1645
1646                                queue_delayed_work(di->fg_wq,
1647                                        &di->fg_periodic_work, 0);
1648
1649                                break;
1650                        }
1651
1652                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1653                } else {
1654                        mutex_lock(&di->cc_lock);
1655                        if (!di->flags.conv_done) {
1656                                /* Wasn't the CC IRQ that got us here */
1657                                mutex_unlock(&di->cc_lock);
1658                                dev_dbg(di->dev, "%s CC conv not done\n",
1659                                        __func__);
1660
1661                                break;
1662                        }
1663                        di->flags.conv_done = false;
1664                        mutex_unlock(&di->cc_lock);
1665
1666                        /* Detect mode change */
1667                        if (!di->high_curr_mode) {
1668                                di->high_curr_mode = true;
1669                                di->high_curr_cnt = 0;
1670                        }
1671
1672                        di->high_curr_cnt +=
1673                                di->bm->fg_params->accu_high_curr;
1674                        if (di->high_curr_cnt >
1675                                di->bm->fg_params->high_curr_time)
1676                                di->recovery_needed = true;
1677
1678                        ab8500_fg_calc_cap_discharge_fg(di);
1679                }
1680
1681                ab8500_fg_check_capacity_limits(di, false);
1682
1683                break;
1684
1685        case AB8500_FG_DISCHARGE_WAKEUP:
1686                ab8500_fg_coulomb_counter(di, true);
1687                ab8500_fg_calc_cap_discharge_voltage(di, true);
1688
1689                di->fg_samples = SEC_TO_SAMPLE(
1690                        di->bm->fg_params->accu_high_curr);
1691                ab8500_fg_coulomb_counter(di, true);
1692                ab8500_fg_discharge_state_to(di,
1693                                AB8500_FG_DISCHARGE_READOUT);
1694
1695                ab8500_fg_check_capacity_limits(di, false);
1696
1697                break;
1698
1699        default:
1700                break;
1701        }
1702}
1703
1704/**
1705 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1706 * @di:         pointer to the ab8500_fg structure
1707 *
1708 */
1709static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1710{
1711        int ret;
1712
1713        switch (di->calib_state) {
1714        case AB8500_FG_CALIB_INIT:
1715                dev_dbg(di->dev, "Calibration ongoing...\n");
1716
1717                ret = abx500_mask_and_set_register_interruptible(di->dev,
1718                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1719                        CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1720                if (ret < 0)
1721                        goto err;
1722
1723                ret = abx500_mask_and_set_register_interruptible(di->dev,
1724                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1725                        CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1726                if (ret < 0)
1727                        goto err;
1728                di->calib_state = AB8500_FG_CALIB_WAIT;
1729                break;
1730        case AB8500_FG_CALIB_END:
1731                ret = abx500_mask_and_set_register_interruptible(di->dev,
1732                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1733                        CC_MUXOFFSET, CC_MUXOFFSET);
1734                if (ret < 0)
1735                        goto err;
1736                di->flags.calibrate = false;
1737                dev_dbg(di->dev, "Calibration done...\n");
1738                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1739                break;
1740        case AB8500_FG_CALIB_WAIT:
1741                dev_dbg(di->dev, "Calibration WFI\n");
1742        default:
1743                break;
1744        }
1745        return;
1746err:
1747        /* Something went wrong, don't calibrate then */
1748        dev_err(di->dev, "failed to calibrate the CC\n");
1749        di->flags.calibrate = false;
1750        di->calib_state = AB8500_FG_CALIB_INIT;
1751        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1752}
1753
1754/**
1755 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1756 * @di:         pointer to the ab8500_fg structure
1757 *
1758 * Entry point for the battery capacity calculation state machine
1759 */
1760static void ab8500_fg_algorithm(struct ab8500_fg *di)
1761{
1762        if (di->flags.calibrate)
1763                ab8500_fg_algorithm_calibrate(di);
1764        else {
1765                if (di->flags.charging)
1766                        ab8500_fg_algorithm_charging(di);
1767                else
1768                        ab8500_fg_algorithm_discharging(di);
1769        }
1770
1771        dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1772                "%d %d %d %d %d %d %d\n",
1773                di->bat_cap.max_mah_design,
1774                di->bat_cap.mah,
1775                di->bat_cap.permille,
1776                di->bat_cap.level,
1777                di->bat_cap.prev_mah,
1778                di->bat_cap.prev_percent,
1779                di->bat_cap.prev_level,
1780                di->vbat,
1781                di->inst_curr,
1782                di->avg_curr,
1783                di->accu_charge,
1784                di->flags.charging,
1785                di->charge_state,
1786                di->discharge_state,
1787                di->high_curr_mode,
1788                di->recovery_needed);
1789}
1790
1791/**
1792 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1793 * @work:       pointer to the work_struct structure
1794 *
1795 * Work queue function for periodic work
1796 */
1797static void ab8500_fg_periodic_work(struct work_struct *work)
1798{
1799        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1800                fg_periodic_work.work);
1801
1802        if (di->init_capacity) {
1803                /* Get an initial capacity calculation */
1804                ab8500_fg_calc_cap_discharge_voltage(di, true);
1805                ab8500_fg_check_capacity_limits(di, true);
1806                di->init_capacity = false;
1807
1808                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1809        } else if (di->flags.user_cap) {
1810                if (check_sysfs_capacity(di)) {
1811                        ab8500_fg_check_capacity_limits(di, true);
1812                        if (di->flags.charging)
1813                                ab8500_fg_charge_state_to(di,
1814                                        AB8500_FG_CHARGE_INIT);
1815                        else
1816                                ab8500_fg_discharge_state_to(di,
1817                                        AB8500_FG_DISCHARGE_READOUT_INIT);
1818                }
1819                di->flags.user_cap = false;
1820                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1821        } else
1822                ab8500_fg_algorithm(di);
1823
1824}
1825
1826/**
1827 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1828 * @work:       pointer to the work_struct structure
1829 *
1830 * Work queue function for checking the OVV_BAT condition
1831 */
1832static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1833{
1834        int ret;
1835        u8 reg_value;
1836
1837        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1838                fg_check_hw_failure_work.work);
1839
1840        /*
1841         * If we have had a battery over-voltage situation,
1842         * check ovv-bit to see if it should be reset.
1843         */
1844        ret = abx500_get_register_interruptible(di->dev,
1845                AB8500_CHARGER, AB8500_CH_STAT_REG,
1846                &reg_value);
1847        if (ret < 0) {
1848                dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1849                return;
1850        }
1851        if ((reg_value & BATT_OVV) == BATT_OVV) {
1852                if (!di->flags.bat_ovv) {
1853                        dev_dbg(di->dev, "Battery OVV\n");
1854                        di->flags.bat_ovv = true;
1855                        power_supply_changed(&di->fg_psy);
1856                }
1857                /* Not yet recovered from ovv, reschedule this test */
1858                queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1859                                   HZ);
1860                } else {
1861                        dev_dbg(di->dev, "Battery recovered from OVV\n");
1862                        di->flags.bat_ovv = false;
1863                        power_supply_changed(&di->fg_psy);
1864        }
1865}
1866
1867/**
1868 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1869 * @work:       pointer to the work_struct structure
1870 *
1871 * Work queue function for checking the LOW_BAT condition
1872 */
1873static void ab8500_fg_low_bat_work(struct work_struct *work)
1874{
1875        int vbat;
1876
1877        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1878                fg_low_bat_work.work);
1879
1880        vbat = ab8500_fg_bat_voltage(di);
1881
1882        /* Check if LOW_BAT still fulfilled */
1883        if (vbat < di->bm->fg_params->lowbat_threshold) {
1884                /* Is it time to shut down? */
1885                if (di->low_bat_cnt < 1) {
1886                        di->flags.low_bat = true;
1887                        dev_warn(di->dev, "Shut down pending...\n");
1888                } else {
1889                        /*
1890                        * Else we need to re-schedule this check to be able to detect
1891                        * if the voltage increases again during charging or
1892                        * due to decreasing load.
1893                        */
1894                        di->low_bat_cnt--;
1895                        dev_warn(di->dev, "Battery voltage still LOW\n");
1896                        queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1897                                round_jiffies(LOW_BAT_CHECK_INTERVAL));
1898                }
1899        } else {
1900                di->flags.low_bat_delay = false;
1901                di->low_bat_cnt = 10;
1902                dev_warn(di->dev, "Battery voltage OK again\n");
1903        }
1904
1905        /* This is needed to dispatch LOW_BAT */
1906        ab8500_fg_check_capacity_limits(di, false);
1907}
1908
1909/**
1910 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1911 * to the target voltage.
1912 * @di:       pointer to the ab8500_fg structure
1913 * @target    target voltage
1914 *
1915 * Returns bit pattern closest to the target voltage
1916 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1917 */
1918
1919static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1920{
1921        if (target > BATT_OK_MIN +
1922                (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1923                return BATT_OK_MAX_NR_INCREMENTS;
1924        if (target < BATT_OK_MIN)
1925                return 0;
1926        return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1927}
1928
1929/**
1930 * ab8500_fg_battok_init_hw_register - init battok levels
1931 * @di:       pointer to the ab8500_fg structure
1932 *
1933 */
1934
1935static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1936{
1937        int selected;
1938        int sel0;
1939        int sel1;
1940        int cbp_sel0;
1941        int cbp_sel1;
1942        int ret;
1943        int new_val;
1944
1945        sel0 = di->bm->fg_params->battok_falling_th_sel0;
1946        sel1 = di->bm->fg_params->battok_raising_th_sel1;
1947
1948        cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1949        cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1950
1951        selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1952
1953        if (selected != sel0)
1954                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1955                        sel0, selected, cbp_sel0);
1956
1957        selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1958
1959        if (selected != sel1)
1960                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1961                        sel1, selected, cbp_sel1);
1962
1963        new_val = cbp_sel0 | (cbp_sel1 << 4);
1964
1965        dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1966        ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1967                AB8500_BATT_OK_REG, new_val);
1968        return ret;
1969}
1970
1971/**
1972 * ab8500_fg_instant_work() - Run the FG state machine instantly
1973 * @work:       pointer to the work_struct structure
1974 *
1975 * Work queue function for instant work
1976 */
1977static void ab8500_fg_instant_work(struct work_struct *work)
1978{
1979        struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1980
1981        ab8500_fg_algorithm(di);
1982}
1983
1984/**
1985 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1986 * @irq:       interrupt number
1987 * @_di:       pointer to the ab8500_fg structure
1988 *
1989 * Returns IRQ status(IRQ_HANDLED)
1990 */
1991static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1992{
1993        struct ab8500_fg *di = _di;
1994        if (!di->nbr_cceoc_irq_cnt) {
1995                di->nbr_cceoc_irq_cnt++;
1996                complete(&di->ab8500_fg_started);
1997        } else {
1998                di->nbr_cceoc_irq_cnt = 0;
1999                complete(&di->ab8500_fg_complete);
2000        }
2001        return IRQ_HANDLED;
2002}
2003
2004/**
2005 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2006 * @irq:       interrupt number
2007 * @_di:       pointer to the ab8500_fg structure
2008 *
2009 * Returns IRQ status(IRQ_HANDLED)
2010 */
2011static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2012{
2013        struct ab8500_fg *di = _di;
2014        di->calib_state = AB8500_FG_CALIB_END;
2015        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2016        return IRQ_HANDLED;
2017}
2018
2019/**
2020 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2021 * @irq:       interrupt number
2022 * @_di:       pointer to the ab8500_fg structure
2023 *
2024 * Returns IRQ status(IRQ_HANDLED)
2025 */
2026static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2027{
2028        struct ab8500_fg *di = _di;
2029
2030        queue_work(di->fg_wq, &di->fg_acc_cur_work);
2031
2032        return IRQ_HANDLED;
2033}
2034
2035/**
2036 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2037 * @irq:       interrupt number
2038 * @_di:       pointer to the ab8500_fg structure
2039 *
2040 * Returns IRQ status(IRQ_HANDLED)
2041 */
2042static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2043{
2044        struct ab8500_fg *di = _di;
2045
2046        dev_dbg(di->dev, "Battery OVV\n");
2047
2048        /* Schedule a new HW failure check */
2049        queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2050
2051        return IRQ_HANDLED;
2052}
2053
2054/**
2055 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2056 * @irq:       interrupt number
2057 * @_di:       pointer to the ab8500_fg structure
2058 *
2059 * Returns IRQ status(IRQ_HANDLED)
2060 */
2061static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2062{
2063        struct ab8500_fg *di = _di;
2064
2065        /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2066        if (!di->flags.low_bat_delay) {
2067                dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2068                di->flags.low_bat_delay = true;
2069                /*
2070                 * Start a timer to check LOW_BAT again after some time
2071                 * This is done to avoid shutdown on single voltage dips
2072                 */
2073                queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2074                        round_jiffies(LOW_BAT_CHECK_INTERVAL));
2075        }
2076        return IRQ_HANDLED;
2077}
2078
2079/**
2080 * ab8500_fg_get_property() - get the fg properties
2081 * @psy:        pointer to the power_supply structure
2082 * @psp:        pointer to the power_supply_property structure
2083 * @val:        pointer to the power_supply_propval union
2084 *
2085 * This function gets called when an application tries to get the
2086 * fg properties by reading the sysfs files.
2087 * voltage_now:         battery voltage
2088 * current_now:         battery instant current
2089 * current_avg:         battery average current
2090 * charge_full_design:  capacity where battery is considered full
2091 * charge_now:          battery capacity in nAh
2092 * capacity:            capacity in percent
2093 * capacity_level:      capacity level
2094 *
2095 * Returns error code in case of failure else 0 on success
2096 */
2097static int ab8500_fg_get_property(struct power_supply *psy,
2098        enum power_supply_property psp,
2099        union power_supply_propval *val)
2100{
2101        struct ab8500_fg *di;
2102
2103        di = to_ab8500_fg_device_info(psy);
2104
2105        /*
2106         * If battery is identified as unknown and charging of unknown
2107         * batteries is disabled, we always report 100% capacity and
2108         * capacity level UNKNOWN, since we can't calculate
2109         * remaining capacity
2110         */
2111
2112        switch (psp) {
2113        case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2114                if (di->flags.bat_ovv)
2115                        val->intval = BATT_OVV_VALUE * 1000;
2116                else
2117                        val->intval = di->vbat * 1000;
2118                break;
2119        case POWER_SUPPLY_PROP_CURRENT_NOW:
2120                val->intval = di->inst_curr * 1000;
2121                break;
2122        case POWER_SUPPLY_PROP_CURRENT_AVG:
2123                val->intval = di->avg_curr * 1000;
2124                break;
2125        case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2126                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2127                                di->bat_cap.max_mah_design);
2128                break;
2129        case POWER_SUPPLY_PROP_ENERGY_FULL:
2130                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2131                                di->bat_cap.max_mah);
2132                break;
2133        case POWER_SUPPLY_PROP_ENERGY_NOW:
2134                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2135                                di->flags.batt_id_received)
2136                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2137                                        di->bat_cap.max_mah);
2138                else
2139                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2140                                        di->bat_cap.prev_mah);
2141                break;
2142        case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2143                val->intval = di->bat_cap.max_mah_design;
2144                break;
2145        case POWER_SUPPLY_PROP_CHARGE_FULL:
2146                val->intval = di->bat_cap.max_mah;
2147                break;
2148        case POWER_SUPPLY_PROP_CHARGE_NOW:
2149                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150                                di->flags.batt_id_received)
2151                        val->intval = di->bat_cap.max_mah;
2152                else
2153                        val->intval = di->bat_cap.prev_mah;
2154                break;
2155        case POWER_SUPPLY_PROP_CAPACITY:
2156                if (di->bm->capacity_scaling)
2157                        val->intval = di->bat_cap.cap_scale.scaled_cap;
2158                else if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2159                                di->flags.batt_id_received)
2160                        val->intval = 100;
2161                else
2162                        val->intval = di->bat_cap.prev_percent;
2163                break;
2164        case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2165                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2166                                di->flags.batt_id_received)
2167                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2168                else
2169                        val->intval = di->bat_cap.prev_level;
2170                break;
2171        default:
2172                return -EINVAL;
2173        }
2174        return 0;
2175}
2176
2177static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2178{
2179        struct power_supply *psy;
2180        struct power_supply *ext;
2181        struct ab8500_fg *di;
2182        union power_supply_propval ret;
2183        int i, j;
2184        bool psy_found = false;
2185
2186        psy = (struct power_supply *)data;
2187        ext = dev_get_drvdata(dev);
2188        di = to_ab8500_fg_device_info(psy);
2189
2190        /*
2191         * For all psy where the name of your driver
2192         * appears in any supplied_to
2193         */
2194        for (i = 0; i < ext->num_supplicants; i++) {
2195                if (!strcmp(ext->supplied_to[i], psy->name))
2196                        psy_found = true;
2197        }
2198
2199        if (!psy_found)
2200                return 0;
2201
2202        /* Go through all properties for the psy */
2203        for (j = 0; j < ext->num_properties; j++) {
2204                enum power_supply_property prop;
2205                prop = ext->properties[j];
2206
2207                if (ext->get_property(ext, prop, &ret))
2208                        continue;
2209
2210                switch (prop) {
2211                case POWER_SUPPLY_PROP_STATUS:
2212                        switch (ext->type) {
2213                        case POWER_SUPPLY_TYPE_BATTERY:
2214                                switch (ret.intval) {
2215                                case POWER_SUPPLY_STATUS_UNKNOWN:
2216                                case POWER_SUPPLY_STATUS_DISCHARGING:
2217                                case POWER_SUPPLY_STATUS_NOT_CHARGING:
2218                                        if (!di->flags.charging)
2219                                                break;
2220                                        di->flags.charging = false;
2221                                        di->flags.fully_charged = false;
2222                                        if (di->bm->capacity_scaling)
2223                                                ab8500_fg_update_cap_scalers(di);
2224                                        queue_work(di->fg_wq, &di->fg_work);
2225                                        break;
2226                                case POWER_SUPPLY_STATUS_FULL:
2227                                        if (di->flags.fully_charged)
2228                                                break;
2229                                        di->flags.fully_charged = true;
2230                                        di->flags.force_full = true;
2231                                        /* Save current capacity as maximum */
2232                                        di->bat_cap.max_mah = di->bat_cap.mah;
2233                                        queue_work(di->fg_wq, &di->fg_work);
2234                                        break;
2235                                case POWER_SUPPLY_STATUS_CHARGING:
2236                                        if (di->flags.charging &&
2237                                                !di->flags.fully_charged)
2238                                                break;
2239                                        di->flags.charging = true;
2240                                        di->flags.fully_charged = false;
2241                                        if (di->bm->capacity_scaling)
2242                                                ab8500_fg_update_cap_scalers(di);
2243                                        queue_work(di->fg_wq, &di->fg_work);
2244                                        break;
2245                                };
2246                        default:
2247                                break;
2248                        };
2249                        break;
2250                case POWER_SUPPLY_PROP_TECHNOLOGY:
2251                        switch (ext->type) {
2252                        case POWER_SUPPLY_TYPE_BATTERY:
2253                                if (!di->flags.batt_id_received &&
2254                                    di->bm->batt_id != BATTERY_UNKNOWN) {
2255                                        const struct abx500_battery_type *b;
2256
2257                                        b = &(di->bm->bat_type[di->bm->batt_id]);
2258
2259                                        di->flags.batt_id_received = true;
2260
2261                                        di->bat_cap.max_mah_design =
2262                                                MILLI_TO_MICRO *
2263                                                b->charge_full_design;
2264
2265                                        di->bat_cap.max_mah =
2266                                                di->bat_cap.max_mah_design;
2267
2268                                        di->vbat_nom = b->nominal_voltage;
2269                                }
2270
2271                                if (ret.intval)
2272                                        di->flags.batt_unknown = false;
2273                                else
2274                                        di->flags.batt_unknown = true;
2275                                break;
2276                        default:
2277                                break;
2278                        }
2279                        break;
2280                case POWER_SUPPLY_PROP_TEMP:
2281                        switch (ext->type) {
2282                        case POWER_SUPPLY_TYPE_BATTERY:
2283                                if (di->flags.batt_id_received)
2284                                        di->bat_temp = ret.intval;
2285                                break;
2286                        default:
2287                                break;
2288                        }
2289                        break;
2290                default:
2291                        break;
2292                }
2293        }
2294        return 0;
2295}
2296
2297/**
2298 * ab8500_fg_init_hw_registers() - Set up FG related registers
2299 * @di:         pointer to the ab8500_fg structure
2300 *
2301 * Set up battery OVV, low battery voltage registers
2302 */
2303static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2304{
2305        int ret;
2306
2307        /* Set VBAT OVV threshold */
2308        ret = abx500_mask_and_set_register_interruptible(di->dev,
2309                AB8500_CHARGER,
2310                AB8500_BATT_OVV,
2311                BATT_OVV_TH_4P75,
2312                BATT_OVV_TH_4P75);
2313        if (ret) {
2314                dev_err(di->dev, "failed to set BATT_OVV\n");
2315                goto out;
2316        }
2317
2318        /* Enable VBAT OVV detection */
2319        ret = abx500_mask_and_set_register_interruptible(di->dev,
2320                AB8500_CHARGER,
2321                AB8500_BATT_OVV,
2322                BATT_OVV_ENA,
2323                BATT_OVV_ENA);
2324        if (ret) {
2325                dev_err(di->dev, "failed to enable BATT_OVV\n");
2326                goto out;
2327        }
2328
2329        /* Low Battery Voltage */
2330        ret = abx500_set_register_interruptible(di->dev,
2331                AB8500_SYS_CTRL2_BLOCK,
2332                AB8500_LOW_BAT_REG,
2333                ab8500_volt_to_regval(
2334                        di->bm->fg_params->lowbat_threshold) << 1 |
2335                LOW_BAT_ENABLE);
2336        if (ret) {
2337                dev_err(di->dev, "%s write failed\n", __func__);
2338                goto out;
2339        }
2340
2341        /* Battery OK threshold */
2342        ret = ab8500_fg_battok_init_hw_register(di);
2343        if (ret) {
2344                dev_err(di->dev, "BattOk init write failed.\n");
2345                goto out;
2346        }
2347out:
2348        return ret;
2349}
2350
2351/**
2352 * ab8500_fg_external_power_changed() - callback for power supply changes
2353 * @psy:       pointer to the structure power_supply
2354 *
2355 * This function is the entry point of the pointer external_power_changed
2356 * of the structure power_supply.
2357 * This function gets executed when there is a change in any external power
2358 * supply that this driver needs to be notified of.
2359 */
2360static void ab8500_fg_external_power_changed(struct power_supply *psy)
2361{
2362        struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2363
2364        class_for_each_device(power_supply_class, NULL,
2365                &di->fg_psy, ab8500_fg_get_ext_psy_data);
2366}
2367
2368/**
2369 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2370 * @work:       pointer to the work_struct structure
2371 *
2372 * Used to reset the current battery capacity to be able to
2373 * retrigger a new voltage base capacity calculation. For
2374 * test and verification purpose.
2375 */
2376static void ab8500_fg_reinit_work(struct work_struct *work)
2377{
2378        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2379                fg_reinit_work.work);
2380
2381        if (di->flags.calibrate == false) {
2382                dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2383                ab8500_fg_clear_cap_samples(di);
2384                ab8500_fg_calc_cap_discharge_voltage(di, true);
2385                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2386                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2387                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2388
2389        } else {
2390                dev_err(di->dev, "Residual offset calibration ongoing "
2391                        "retrying..\n");
2392                /* Wait one second until next try*/
2393                queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2394                        round_jiffies(1));
2395        }
2396}
2397
2398/**
2399 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2400 *
2401 * This function can be used to force the FG algorithm to recalculate a new
2402 * voltage based battery capacity.
2403 */
2404void ab8500_fg_reinit(void)
2405{
2406        struct ab8500_fg *di = ab8500_fg_get();
2407        /* User won't be notified if a null pointer returned. */
2408        if (di != NULL)
2409                queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2410}
2411
2412/* Exposure to the sysfs interface */
2413
2414struct ab8500_fg_sysfs_entry {
2415        struct attribute attr;
2416        ssize_t (*show)(struct ab8500_fg *, char *);
2417        ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2418};
2419
2420static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2421{
2422        return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2423}
2424
2425static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2426                                 size_t count)
2427{
2428        unsigned long charge_full;
2429        ssize_t ret = -EINVAL;
2430
2431        ret = strict_strtoul(buf, 10, &charge_full);
2432
2433        dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2434
2435        if (!ret) {
2436                di->bat_cap.max_mah = (int) charge_full;
2437                ret = count;
2438        }
2439        return ret;
2440}
2441
2442static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2443{
2444        return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2445}
2446
2447static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2448                                 size_t count)
2449{
2450        unsigned long charge_now;
2451        ssize_t ret;
2452
2453        ret = strict_strtoul(buf, 10, &charge_now);
2454
2455        dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2456                ret, charge_now, di->bat_cap.prev_mah);
2457
2458        if (!ret) {
2459                di->bat_cap.user_mah = (int) charge_now;
2460                di->flags.user_cap = true;
2461                ret = count;
2462                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2463        }
2464        return ret;
2465}
2466
2467static struct ab8500_fg_sysfs_entry charge_full_attr =
2468        __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2469
2470static struct ab8500_fg_sysfs_entry charge_now_attr =
2471        __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2472
2473static ssize_t
2474ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2475{
2476        struct ab8500_fg_sysfs_entry *entry;
2477        struct ab8500_fg *di;
2478
2479        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2480        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2481
2482        if (!entry->show)
2483                return -EIO;
2484
2485        return entry->show(di, buf);
2486}
2487static ssize_t
2488ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2489                size_t count)
2490{
2491        struct ab8500_fg_sysfs_entry *entry;
2492        struct ab8500_fg *di;
2493
2494        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2495        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2496
2497        if (!entry->store)
2498                return -EIO;
2499
2500        return entry->store(di, buf, count);
2501}
2502
2503static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2504        .show = ab8500_fg_show,
2505        .store = ab8500_fg_store,
2506};
2507
2508static struct attribute *ab8500_fg_attrs[] = {
2509        &charge_full_attr.attr,
2510        &charge_now_attr.attr,
2511        NULL,
2512};
2513
2514static struct kobj_type ab8500_fg_ktype = {
2515        .sysfs_ops = &ab8500_fg_sysfs_ops,
2516        .default_attrs = ab8500_fg_attrs,
2517};
2518
2519/**
2520 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2521 * @di:                pointer to the struct ab8500_chargalg
2522 *
2523 * This function removes the entry in sysfs.
2524 */
2525static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2526{
2527        kobject_del(&di->fg_kobject);
2528}
2529
2530/**
2531 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2532 * @di:                pointer to the struct ab8500_chargalg
2533 *
2534 * This function adds an entry in sysfs.
2535 * Returns error code in case of failure else 0(on success)
2536 */
2537static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2538{
2539        int ret = 0;
2540
2541        ret = kobject_init_and_add(&di->fg_kobject,
2542                &ab8500_fg_ktype,
2543                NULL, "battery");
2544        if (ret < 0)
2545                dev_err(di->dev, "failed to create sysfs entry\n");
2546
2547        return ret;
2548}
2549/* Exposure to the sysfs interface <<END>> */
2550
2551#if defined(CONFIG_PM)
2552static int ab8500_fg_resume(struct platform_device *pdev)
2553{
2554        struct ab8500_fg *di = platform_get_drvdata(pdev);
2555
2556        /*
2557         * Change state if we're not charging. If we're charging we will wake
2558         * up on the FG IRQ
2559         */
2560        if (!di->flags.charging) {
2561                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2562                queue_work(di->fg_wq, &di->fg_work);
2563        }
2564
2565        return 0;
2566}
2567
2568static int ab8500_fg_suspend(struct platform_device *pdev,
2569        pm_message_t state)
2570{
2571        struct ab8500_fg *di = platform_get_drvdata(pdev);
2572
2573        flush_delayed_work(&di->fg_periodic_work);
2574        flush_work(&di->fg_work);
2575        flush_work(&di->fg_acc_cur_work);
2576        flush_delayed_work(&di->fg_reinit_work);
2577        flush_delayed_work(&di->fg_low_bat_work);
2578        flush_delayed_work(&di->fg_check_hw_failure_work);
2579
2580        /*
2581         * If the FG is enabled we will disable it before going to suspend
2582         * only if we're not charging
2583         */
2584        if (di->flags.fg_enabled && !di->flags.charging)
2585                ab8500_fg_coulomb_counter(di, false);
2586
2587        return 0;
2588}
2589#else
2590#define ab8500_fg_suspend      NULL
2591#define ab8500_fg_resume       NULL
2592#endif
2593
2594static int ab8500_fg_remove(struct platform_device *pdev)
2595{
2596        int ret = 0;
2597        struct ab8500_fg *di = platform_get_drvdata(pdev);
2598
2599        list_del(&di->node);
2600
2601        /* Disable coulomb counter */
2602        ret = ab8500_fg_coulomb_counter(di, false);
2603        if (ret)
2604                dev_err(di->dev, "failed to disable coulomb counter\n");
2605
2606        destroy_workqueue(di->fg_wq);
2607        ab8500_fg_sysfs_exit(di);
2608
2609        flush_scheduled_work();
2610        power_supply_unregister(&di->fg_psy);
2611        platform_set_drvdata(pdev, NULL);
2612        return ret;
2613}
2614
2615/* ab8500 fg driver interrupts and their respective isr */
2616static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2617        {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2618        {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2619        {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2620        {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2621        {"CCEOC", ab8500_fg_cc_data_end_handler},
2622};
2623
2624static char *supply_interface[] = {
2625        "ab8500_chargalg",
2626        "ab8500_usb",
2627};
2628
2629static int ab8500_fg_probe(struct platform_device *pdev)
2630{
2631        struct device_node *np = pdev->dev.of_node;
2632        struct abx500_bm_data *plat = pdev->dev.platform_data;
2633        struct ab8500_fg *di;
2634        int i, irq;
2635        int ret = 0;
2636
2637        di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2638        if (!di) {
2639                dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
2640                return -ENOMEM;
2641        }
2642
2643        if (!plat) {
2644                dev_err(&pdev->dev, "no battery management data supplied\n");
2645                return -EINVAL;
2646        }
2647        di->bm = plat;
2648
2649        if (np) {
2650                ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
2651                if (ret) {
2652                        dev_err(&pdev->dev, "failed to get battery information\n");
2653                        return ret;
2654                }
2655        }
2656
2657        mutex_init(&di->cc_lock);
2658
2659        /* get parent data */
2660        di->dev = &pdev->dev;
2661        di->parent = dev_get_drvdata(pdev->dev.parent);
2662        di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2663
2664        di->fg_psy.name = "ab8500_fg";
2665        di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2666        di->fg_psy.properties = ab8500_fg_props;
2667        di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2668        di->fg_psy.get_property = ab8500_fg_get_property;
2669        di->fg_psy.supplied_to = supply_interface;
2670        di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
2671        di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2672
2673        di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2674                di->bm->bat_type[di->bm->batt_id].charge_full_design;
2675
2676        di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2677
2678        di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
2679
2680        di->init_capacity = true;
2681
2682        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2683        ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2684
2685        /* Create a work queue for running the FG algorithm */
2686        di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2687        if (di->fg_wq == NULL) {
2688                dev_err(di->dev, "failed to create work queue\n");
2689                return -ENOMEM;
2690        }
2691
2692        /* Init work for running the fg algorithm instantly */
2693        INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2694
2695        /* Init work for getting the battery accumulated current */
2696        INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2697
2698        /* Init work for reinitialising the fg algorithm */
2699        INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
2700                ab8500_fg_reinit_work);
2701
2702        /* Work delayed Queue to run the state machine */
2703        INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
2704                ab8500_fg_periodic_work);
2705
2706        /* Work to check low battery condition */
2707        INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
2708                ab8500_fg_low_bat_work);
2709
2710        /* Init work for HW failure check */
2711        INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
2712                ab8500_fg_check_hw_failure_work);
2713
2714        /* Reset battery low voltage flag */
2715        di->flags.low_bat = false;
2716
2717        /* Initialize low battery counter */
2718        di->low_bat_cnt = 10;
2719
2720        /* Initialize OVV, and other registers */
2721        ret = ab8500_fg_init_hw_registers(di);
2722        if (ret) {
2723                dev_err(di->dev, "failed to initialize registers\n");
2724                goto free_inst_curr_wq;
2725        }
2726
2727        /* Consider battery unknown until we're informed otherwise */
2728        di->flags.batt_unknown = true;
2729        di->flags.batt_id_received = false;
2730
2731        /* Register FG power supply class */
2732        ret = power_supply_register(di->dev, &di->fg_psy);
2733        if (ret) {
2734                dev_err(di->dev, "failed to register FG psy\n");
2735                goto free_inst_curr_wq;
2736        }
2737
2738        di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
2739        ab8500_fg_coulomb_counter(di, true);
2740
2741        /*
2742         * Initialize completion used to notify completion and start
2743         * of inst current
2744         */
2745        init_completion(&di->ab8500_fg_started);
2746        init_completion(&di->ab8500_fg_complete);
2747
2748        /* Register interrupts */
2749        for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2750                irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2751                ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2752                        IRQF_SHARED | IRQF_NO_SUSPEND,
2753                        ab8500_fg_irq[i].name, di);
2754
2755                if (ret != 0) {
2756                        dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2757                                , ab8500_fg_irq[i].name, irq, ret);
2758                        goto free_irq;
2759                }
2760                dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2761                        ab8500_fg_irq[i].name, irq, ret);
2762        }
2763        di->irq = platform_get_irq_byname(pdev, "CCEOC");
2764        disable_irq(di->irq);
2765        di->nbr_cceoc_irq_cnt = 0;
2766
2767        platform_set_drvdata(pdev, di);
2768
2769        ret = ab8500_fg_sysfs_init(di);
2770        if (ret) {
2771                dev_err(di->dev, "failed to create sysfs entry\n");
2772                goto free_irq;
2773        }
2774
2775        /* Calibrate the fg first time */
2776        di->flags.calibrate = true;
2777        di->calib_state = AB8500_FG_CALIB_INIT;
2778
2779        /* Use room temp as default value until we get an update from driver. */
2780        di->bat_temp = 210;
2781
2782        /* Run the FG algorithm */
2783        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2784
2785        list_add_tail(&di->node, &ab8500_fg_list);
2786
2787        return ret;
2788
2789free_irq:
2790        power_supply_unregister(&di->fg_psy);
2791
2792        /* We also have to free all successfully registered irqs */
2793        for (i = i - 1; i >= 0; i--) {
2794                irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2795                free_irq(irq, di);
2796        }
2797free_inst_curr_wq:
2798        destroy_workqueue(di->fg_wq);
2799        return ret;
2800}
2801
2802static const struct of_device_id ab8500_fg_match[] = {
2803        { .compatible = "stericsson,ab8500-fg", },
2804        { },
2805};
2806
2807static struct platform_driver ab8500_fg_driver = {
2808        .probe = ab8500_fg_probe,
2809        .remove = ab8500_fg_remove,
2810        .suspend = ab8500_fg_suspend,
2811        .resume = ab8500_fg_resume,
2812        .driver = {
2813                .name = "ab8500-fg",
2814                .owner = THIS_MODULE,
2815                .of_match_table = ab8500_fg_match,
2816        },
2817};
2818
2819static int __init ab8500_fg_init(void)
2820{
2821        return platform_driver_register(&ab8500_fg_driver);
2822}
2823
2824static void __exit ab8500_fg_exit(void)
2825{
2826        platform_driver_unregister(&ab8500_fg_driver);
2827}
2828
2829subsys_initcall_sync(ab8500_fg_init);
2830module_exit(ab8500_fg_exit);
2831
2832MODULE_LICENSE("GPL v2");
2833MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2834MODULE_ALIAS("platform:ab8500-fg");
2835MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
2836
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.