linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <asm-generic/pci-bridge.h>
  26#include <asm/setup.h>
  27#include "pci.h"
  28
  29const char *pci_power_names[] = {
  30        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  31};
  32EXPORT_SYMBOL_GPL(pci_power_names);
  33
  34int isa_dma_bridge_buggy;
  35EXPORT_SYMBOL(isa_dma_bridge_buggy);
  36
  37int pci_pci_problems;
  38EXPORT_SYMBOL(pci_pci_problems);
  39
  40unsigned int pci_pm_d3_delay;
  41
  42static void pci_pme_list_scan(struct work_struct *work);
  43
  44static LIST_HEAD(pci_pme_list);
  45static DEFINE_MUTEX(pci_pme_list_mutex);
  46static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  47
  48struct pci_pme_device {
  49        struct list_head list;
  50        struct pci_dev *dev;
  51};
  52
  53#define PME_TIMEOUT 1000 /* How long between PME checks */
  54
  55static void pci_dev_d3_sleep(struct pci_dev *dev)
  56{
  57        unsigned int delay = dev->d3_delay;
  58
  59        if (delay < pci_pm_d3_delay)
  60                delay = pci_pm_d3_delay;
  61
  62        msleep(delay);
  63}
  64
  65#ifdef CONFIG_PCI_DOMAINS
  66int pci_domains_supported = 1;
  67#endif
  68
  69#define DEFAULT_CARDBUS_IO_SIZE         (256)
  70#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  71/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  72unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  73unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  74
  75#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  76#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  77/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  78unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  79unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  80
  81enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  82
  83/*
  84 * The default CLS is used if arch didn't set CLS explicitly and not
  85 * all pci devices agree on the same value.  Arch can override either
  86 * the dfl or actual value as it sees fit.  Don't forget this is
  87 * measured in 32-bit words, not bytes.
  88 */
  89u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  90u8 pci_cache_line_size;
  91
  92/*
  93 * If we set up a device for bus mastering, we need to check the latency
  94 * timer as certain BIOSes forget to set it properly.
  95 */
  96unsigned int pcibios_max_latency = 255;
  97
  98/* If set, the PCIe ARI capability will not be used. */
  99static bool pcie_ari_disabled;
 100
 101/**
 102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 103 * @bus: pointer to PCI bus structure to search
 104 *
 105 * Given a PCI bus, returns the highest PCI bus number present in the set
 106 * including the given PCI bus and its list of child PCI buses.
 107 */
 108unsigned char pci_bus_max_busnr(struct pci_bus* bus)
 109{
 110        struct list_head *tmp;
 111        unsigned char max, n;
 112
 113        max = bus->busn_res.end;
 114        list_for_each(tmp, &bus->children) {
 115                n = pci_bus_max_busnr(pci_bus_b(tmp));
 116                if(n > max)
 117                        max = n;
 118        }
 119        return max;
 120}
 121EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 122
 123#ifdef CONFIG_HAS_IOMEM
 124void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 125{
 126        /*
 127         * Make sure the BAR is actually a memory resource, not an IO resource
 128         */
 129        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 130                WARN_ON(1);
 131                return NULL;
 132        }
 133        return ioremap_nocache(pci_resource_start(pdev, bar),
 134                                     pci_resource_len(pdev, bar));
 135}
 136EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 137#endif
 138
 139#define PCI_FIND_CAP_TTL        48
 140
 141static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 142                                   u8 pos, int cap, int *ttl)
 143{
 144        u8 id;
 145
 146        while ((*ttl)--) {
 147                pci_bus_read_config_byte(bus, devfn, pos, &pos);
 148                if (pos < 0x40)
 149                        break;
 150                pos &= ~3;
 151                pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 152                                         &id);
 153                if (id == 0xff)
 154                        break;
 155                if (id == cap)
 156                        return pos;
 157                pos += PCI_CAP_LIST_NEXT;
 158        }
 159        return 0;
 160}
 161
 162static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 163                               u8 pos, int cap)
 164{
 165        int ttl = PCI_FIND_CAP_TTL;
 166
 167        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 168}
 169
 170int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 171{
 172        return __pci_find_next_cap(dev->bus, dev->devfn,
 173                                   pos + PCI_CAP_LIST_NEXT, cap);
 174}
 175EXPORT_SYMBOL_GPL(pci_find_next_capability);
 176
 177static int __pci_bus_find_cap_start(struct pci_bus *bus,
 178                                    unsigned int devfn, u8 hdr_type)
 179{
 180        u16 status;
 181
 182        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 183        if (!(status & PCI_STATUS_CAP_LIST))
 184                return 0;
 185
 186        switch (hdr_type) {
 187        case PCI_HEADER_TYPE_NORMAL:
 188        case PCI_HEADER_TYPE_BRIDGE:
 189                return PCI_CAPABILITY_LIST;
 190        case PCI_HEADER_TYPE_CARDBUS:
 191                return PCI_CB_CAPABILITY_LIST;
 192        default:
 193                return 0;
 194        }
 195
 196        return 0;
 197}
 198
 199/**
 200 * pci_find_capability - query for devices' capabilities 
 201 * @dev: PCI device to query
 202 * @cap: capability code
 203 *
 204 * Tell if a device supports a given PCI capability.
 205 * Returns the address of the requested capability structure within the
 206 * device's PCI configuration space or 0 in case the device does not
 207 * support it.  Possible values for @cap:
 208 *
 209 *  %PCI_CAP_ID_PM           Power Management 
 210 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 211 *  %PCI_CAP_ID_VPD          Vital Product Data 
 212 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 213 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 214 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 215 *  %PCI_CAP_ID_PCIX         PCI-X
 216 *  %PCI_CAP_ID_EXP          PCI Express
 217 */
 218int pci_find_capability(struct pci_dev *dev, int cap)
 219{
 220        int pos;
 221
 222        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 223        if (pos)
 224                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 225
 226        return pos;
 227}
 228
 229/**
 230 * pci_bus_find_capability - query for devices' capabilities 
 231 * @bus:   the PCI bus to query
 232 * @devfn: PCI device to query
 233 * @cap:   capability code
 234 *
 235 * Like pci_find_capability() but works for pci devices that do not have a
 236 * pci_dev structure set up yet. 
 237 *
 238 * Returns the address of the requested capability structure within the
 239 * device's PCI configuration space or 0 in case the device does not
 240 * support it.
 241 */
 242int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 243{
 244        int pos;
 245        u8 hdr_type;
 246
 247        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 248
 249        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 250        if (pos)
 251                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 252
 253        return pos;
 254}
 255
 256/**
 257 * pci_find_next_ext_capability - Find an extended capability
 258 * @dev: PCI device to query
 259 * @start: address at which to start looking (0 to start at beginning of list)
 260 * @cap: capability code
 261 *
 262 * Returns the address of the next matching extended capability structure
 263 * within the device's PCI configuration space or 0 if the device does
 264 * not support it.  Some capabilities can occur several times, e.g., the
 265 * vendor-specific capability, and this provides a way to find them all.
 266 */
 267int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 268{
 269        u32 header;
 270        int ttl;
 271        int pos = PCI_CFG_SPACE_SIZE;
 272
 273        /* minimum 8 bytes per capability */
 274        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 275
 276        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 277                return 0;
 278
 279        if (start)
 280                pos = start;
 281
 282        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 283                return 0;
 284
 285        /*
 286         * If we have no capabilities, this is indicated by cap ID,
 287         * cap version and next pointer all being 0.
 288         */
 289        if (header == 0)
 290                return 0;
 291
 292        while (ttl-- > 0) {
 293                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 294                        return pos;
 295
 296                pos = PCI_EXT_CAP_NEXT(header);
 297                if (pos < PCI_CFG_SPACE_SIZE)
 298                        break;
 299
 300                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 301                        break;
 302        }
 303
 304        return 0;
 305}
 306EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 307
 308/**
 309 * pci_find_ext_capability - Find an extended capability
 310 * @dev: PCI device to query
 311 * @cap: capability code
 312 *
 313 * Returns the address of the requested extended capability structure
 314 * within the device's PCI configuration space or 0 if the device does
 315 * not support it.  Possible values for @cap:
 316 *
 317 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 318 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 319 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 320 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 321 */
 322int pci_find_ext_capability(struct pci_dev *dev, int cap)
 323{
 324        return pci_find_next_ext_capability(dev, 0, cap);
 325}
 326EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 327
 328static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 329{
 330        int rc, ttl = PCI_FIND_CAP_TTL;
 331        u8 cap, mask;
 332
 333        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 334                mask = HT_3BIT_CAP_MASK;
 335        else
 336                mask = HT_5BIT_CAP_MASK;
 337
 338        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 339                                      PCI_CAP_ID_HT, &ttl);
 340        while (pos) {
 341                rc = pci_read_config_byte(dev, pos + 3, &cap);
 342                if (rc != PCIBIOS_SUCCESSFUL)
 343                        return 0;
 344
 345                if ((cap & mask) == ht_cap)
 346                        return pos;
 347
 348                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 349                                              pos + PCI_CAP_LIST_NEXT,
 350                                              PCI_CAP_ID_HT, &ttl);
 351        }
 352
 353        return 0;
 354}
 355/**
 356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 357 * @dev: PCI device to query
 358 * @pos: Position from which to continue searching
 359 * @ht_cap: Hypertransport capability code
 360 *
 361 * To be used in conjunction with pci_find_ht_capability() to search for
 362 * all capabilities matching @ht_cap. @pos should always be a value returned
 363 * from pci_find_ht_capability().
 364 *
 365 * NB. To be 100% safe against broken PCI devices, the caller should take
 366 * steps to avoid an infinite loop.
 367 */
 368int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 369{
 370        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 371}
 372EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 373
 374/**
 375 * pci_find_ht_capability - query a device's Hypertransport capabilities
 376 * @dev: PCI device to query
 377 * @ht_cap: Hypertransport capability code
 378 *
 379 * Tell if a device supports a given Hypertransport capability.
 380 * Returns an address within the device's PCI configuration space
 381 * or 0 in case the device does not support the request capability.
 382 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 383 * which has a Hypertransport capability matching @ht_cap.
 384 */
 385int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 386{
 387        int pos;
 388
 389        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 390        if (pos)
 391                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 392
 393        return pos;
 394}
 395EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 396
 397/**
 398 * pci_find_parent_resource - return resource region of parent bus of given region
 399 * @dev: PCI device structure contains resources to be searched
 400 * @res: child resource record for which parent is sought
 401 *
 402 *  For given resource region of given device, return the resource
 403 *  region of parent bus the given region is contained in or where
 404 *  it should be allocated from.
 405 */
 406struct resource *
 407pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 408{
 409        const struct pci_bus *bus = dev->bus;
 410        int i;
 411        struct resource *best = NULL, *r;
 412
 413        pci_bus_for_each_resource(bus, r, i) {
 414                if (!r)
 415                        continue;
 416                if (res->start && !(res->start >= r->start && res->end <= r->end))
 417                        continue;       /* Not contained */
 418                if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
 419                        continue;       /* Wrong type */
 420                if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
 421                        return r;       /* Exact match */
 422                /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
 423                if (r->flags & IORESOURCE_PREFETCH)
 424                        continue;
 425                /* .. but we can put a prefetchable resource inside a non-prefetchable one */
 426                if (!best)
 427                        best = r;
 428        }
 429        return best;
 430}
 431
 432/**
 433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 434 * @dev: PCI device to have its BARs restored
 435 *
 436 * Restore the BAR values for a given device, so as to make it
 437 * accessible by its driver.
 438 */
 439static void
 440pci_restore_bars(struct pci_dev *dev)
 441{
 442        int i;
 443
 444        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 445                pci_update_resource(dev, i);
 446}
 447
 448static struct pci_platform_pm_ops *pci_platform_pm;
 449
 450int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 451{
 452        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 453            || !ops->sleep_wake)
 454                return -EINVAL;
 455        pci_platform_pm = ops;
 456        return 0;
 457}
 458
 459static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 460{
 461        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 462}
 463
 464static inline int platform_pci_set_power_state(struct pci_dev *dev,
 465                                                pci_power_t t)
 466{
 467        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 468}
 469
 470static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 471{
 472        return pci_platform_pm ?
 473                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 474}
 475
 476static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 477{
 478        return pci_platform_pm ?
 479                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 480}
 481
 482static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 483{
 484        return pci_platform_pm ?
 485                        pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 486}
 487
 488/**
 489 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 490 *                           given PCI device
 491 * @dev: PCI device to handle.
 492 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 493 *
 494 * RETURN VALUE:
 495 * -EINVAL if the requested state is invalid.
 496 * -EIO if device does not support PCI PM or its PM capabilities register has a
 497 * wrong version, or device doesn't support the requested state.
 498 * 0 if device already is in the requested state.
 499 * 0 if device's power state has been successfully changed.
 500 */
 501static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 502{
 503        u16 pmcsr;
 504        bool need_restore = false;
 505
 506        /* Check if we're already there */
 507        if (dev->current_state == state)
 508                return 0;
 509
 510        if (!dev->pm_cap)
 511                return -EIO;
 512
 513        if (state < PCI_D0 || state > PCI_D3hot)
 514                return -EINVAL;
 515
 516        /* Validate current state:
 517         * Can enter D0 from any state, but if we can only go deeper 
 518         * to sleep if we're already in a low power state
 519         */
 520        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 521            && dev->current_state > state) {
 522                dev_err(&dev->dev, "invalid power transition "
 523                        "(from state %d to %d)\n", dev->current_state, state);
 524                return -EINVAL;
 525        }
 526
 527        /* check if this device supports the desired state */
 528        if ((state == PCI_D1 && !dev->d1_support)
 529           || (state == PCI_D2 && !dev->d2_support))
 530                return -EIO;
 531
 532        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 533
 534        /* If we're (effectively) in D3, force entire word to 0.
 535         * This doesn't affect PME_Status, disables PME_En, and
 536         * sets PowerState to 0.
 537         */
 538        switch (dev->current_state) {
 539        case PCI_D0:
 540        case PCI_D1:
 541        case PCI_D2:
 542                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 543                pmcsr |= state;
 544                break;
 545        case PCI_D3hot:
 546        case PCI_D3cold:
 547        case PCI_UNKNOWN: /* Boot-up */
 548                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 549                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 550                        need_restore = true;
 551                /* Fall-through: force to D0 */
 552        default:
 553                pmcsr = 0;
 554                break;
 555        }
 556
 557        /* enter specified state */
 558        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 559
 560        /* Mandatory power management transition delays */
 561        /* see PCI PM 1.1 5.6.1 table 18 */
 562        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 563                pci_dev_d3_sleep(dev);
 564        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 565                udelay(PCI_PM_D2_DELAY);
 566
 567        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 568        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 569        if (dev->current_state != state && printk_ratelimit())
 570                dev_info(&dev->dev, "Refused to change power state, "
 571                        "currently in D%d\n", dev->current_state);
 572
 573        /*
 574         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 575         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 576         * from D3hot to D0 _may_ perform an internal reset, thereby
 577         * going to "D0 Uninitialized" rather than "D0 Initialized".
 578         * For example, at least some versions of the 3c905B and the
 579         * 3c556B exhibit this behaviour.
 580         *
 581         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 582         * devices in a D3hot state at boot.  Consequently, we need to
 583         * restore at least the BARs so that the device will be
 584         * accessible to its driver.
 585         */
 586        if (need_restore)
 587                pci_restore_bars(dev);
 588
 589        if (dev->bus->self)
 590                pcie_aspm_pm_state_change(dev->bus->self);
 591
 592        return 0;
 593}
 594
 595/**
 596 * pci_update_current_state - Read PCI power state of given device from its
 597 *                            PCI PM registers and cache it
 598 * @dev: PCI device to handle.
 599 * @state: State to cache in case the device doesn't have the PM capability
 600 */
 601void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 602{
 603        if (dev->pm_cap) {
 604                u16 pmcsr;
 605
 606                /*
 607                 * Configuration space is not accessible for device in
 608                 * D3cold, so just keep or set D3cold for safety
 609                 */
 610                if (dev->current_state == PCI_D3cold)
 611                        return;
 612                if (state == PCI_D3cold) {
 613                        dev->current_state = PCI_D3cold;
 614                        return;
 615                }
 616                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 617                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 618        } else {
 619                dev->current_state = state;
 620        }
 621}
 622
 623/**
 624 * pci_power_up - Put the given device into D0 forcibly
 625 * @dev: PCI device to power up
 626 */
 627void pci_power_up(struct pci_dev *dev)
 628{
 629        if (platform_pci_power_manageable(dev))
 630                platform_pci_set_power_state(dev, PCI_D0);
 631
 632        pci_raw_set_power_state(dev, PCI_D0);
 633        pci_update_current_state(dev, PCI_D0);
 634}
 635
 636/**
 637 * pci_platform_power_transition - Use platform to change device power state
 638 * @dev: PCI device to handle.
 639 * @state: State to put the device into.
 640 */
 641static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 642{
 643        int error;
 644
 645        if (platform_pci_power_manageable(dev)) {
 646                error = platform_pci_set_power_state(dev, state);
 647                if (!error)
 648                        pci_update_current_state(dev, state);
 649        } else
 650                error = -ENODEV;
 651
 652        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 653                dev->current_state = PCI_D0;
 654
 655        return error;
 656}
 657
 658/**
 659 * __pci_start_power_transition - Start power transition of a PCI device
 660 * @dev: PCI device to handle.
 661 * @state: State to put the device into.
 662 */
 663static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 664{
 665        if (state == PCI_D0) {
 666                pci_platform_power_transition(dev, PCI_D0);
 667                /*
 668                 * Mandatory power management transition delays, see
 669                 * PCI Express Base Specification Revision 2.0 Section
 670                 * 6.6.1: Conventional Reset.  Do not delay for
 671                 * devices powered on/off by corresponding bridge,
 672                 * because have already delayed for the bridge.
 673                 */
 674                if (dev->runtime_d3cold) {
 675                        msleep(dev->d3cold_delay);
 676                        /*
 677                         * When powering on a bridge from D3cold, the
 678                         * whole hierarchy may be powered on into
 679                         * D0uninitialized state, resume them to give
 680                         * them a chance to suspend again
 681                         */
 682                        pci_wakeup_bus(dev->subordinate);
 683                }
 684        }
 685}
 686
 687/**
 688 * __pci_dev_set_current_state - Set current state of a PCI device
 689 * @dev: Device to handle
 690 * @data: pointer to state to be set
 691 */
 692static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 693{
 694        pci_power_t state = *(pci_power_t *)data;
 695
 696        dev->current_state = state;
 697        return 0;
 698}
 699
 700/**
 701 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 702 * @bus: Top bus of the subtree to walk.
 703 * @state: state to be set
 704 */
 705static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 706{
 707        if (bus)
 708                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 709}
 710
 711/**
 712 * __pci_complete_power_transition - Complete power transition of a PCI device
 713 * @dev: PCI device to handle.
 714 * @state: State to put the device into.
 715 *
 716 * This function should not be called directly by device drivers.
 717 */
 718int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 719{
 720        int ret;
 721
 722        if (state <= PCI_D0)
 723                return -EINVAL;
 724        ret = pci_platform_power_transition(dev, state);
 725        /* Power off the bridge may power off the whole hierarchy */
 726        if (!ret && state == PCI_D3cold)
 727                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 728        return ret;
 729}
 730EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 731
 732/**
 733 * pci_set_power_state - Set the power state of a PCI device
 734 * @dev: PCI device to handle.
 735 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 736 *
 737 * Transition a device to a new power state, using the platform firmware and/or
 738 * the device's PCI PM registers.
 739 *
 740 * RETURN VALUE:
 741 * -EINVAL if the requested state is invalid.
 742 * -EIO if device does not support PCI PM or its PM capabilities register has a
 743 * wrong version, or device doesn't support the requested state.
 744 * 0 if device already is in the requested state.
 745 * 0 if device's power state has been successfully changed.
 746 */
 747int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 748{
 749        int error;
 750
 751        /* bound the state we're entering */
 752        if (state > PCI_D3cold)
 753                state = PCI_D3cold;
 754        else if (state < PCI_D0)
 755                state = PCI_D0;
 756        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 757                /*
 758                 * If the device or the parent bridge do not support PCI PM,
 759                 * ignore the request if we're doing anything other than putting
 760                 * it into D0 (which would only happen on boot).
 761                 */
 762                return 0;
 763
 764        /* Check if we're already there */
 765        if (dev->current_state == state)
 766                return 0;
 767
 768        __pci_start_power_transition(dev, state);
 769
 770        /* This device is quirked not to be put into D3, so
 771           don't put it in D3 */
 772        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 773                return 0;
 774
 775        /*
 776         * To put device in D3cold, we put device into D3hot in native
 777         * way, then put device into D3cold with platform ops
 778         */
 779        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 780                                        PCI_D3hot : state);
 781
 782        if (!__pci_complete_power_transition(dev, state))
 783                error = 0;
 784        /*
 785         * When aspm_policy is "powersave" this call ensures
 786         * that ASPM is configured.
 787         */
 788        if (!error && dev->bus->self)
 789                pcie_aspm_powersave_config_link(dev->bus->self);
 790
 791        return error;
 792}
 793
 794/**
 795 * pci_choose_state - Choose the power state of a PCI device
 796 * @dev: PCI device to be suspended
 797 * @state: target sleep state for the whole system. This is the value
 798 *      that is passed to suspend() function.
 799 *
 800 * Returns PCI power state suitable for given device and given system
 801 * message.
 802 */
 803
 804pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 805{
 806        pci_power_t ret;
 807
 808        if (!pci_find_capability(dev, PCI_CAP_ID_PM))
 809                return PCI_D0;
 810
 811        ret = platform_pci_choose_state(dev);
 812        if (ret != PCI_POWER_ERROR)
 813                return ret;
 814
 815        switch (state.event) {
 816        case PM_EVENT_ON:
 817                return PCI_D0;
 818        case PM_EVENT_FREEZE:
 819        case PM_EVENT_PRETHAW:
 820                /* REVISIT both freeze and pre-thaw "should" use D0 */
 821        case PM_EVENT_SUSPEND:
 822        case PM_EVENT_HIBERNATE:
 823                return PCI_D3hot;
 824        default:
 825                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 826                         state.event);
 827                BUG();
 828        }
 829        return PCI_D0;
 830}
 831
 832EXPORT_SYMBOL(pci_choose_state);
 833
 834#define PCI_EXP_SAVE_REGS       7
 835
 836
 837static struct pci_cap_saved_state *pci_find_saved_cap(
 838        struct pci_dev *pci_dev, char cap)
 839{
 840        struct pci_cap_saved_state *tmp;
 841
 842        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 843                if (tmp->cap.cap_nr == cap)
 844                        return tmp;
 845        }
 846        return NULL;
 847}
 848
 849static int pci_save_pcie_state(struct pci_dev *dev)
 850{
 851        int i = 0;
 852        struct pci_cap_saved_state *save_state;
 853        u16 *cap;
 854
 855        if (!pci_is_pcie(dev))
 856                return 0;
 857
 858        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 859        if (!save_state) {
 860                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 861                return -ENOMEM;
 862        }
 863
 864        cap = (u16 *)&save_state->cap.data[0];
 865        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 866        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 867        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 868        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 869        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 870        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 871        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 872
 873        return 0;
 874}
 875
 876static void pci_restore_pcie_state(struct pci_dev *dev)
 877{
 878        int i = 0;
 879        struct pci_cap_saved_state *save_state;
 880        u16 *cap;
 881
 882        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 883        if (!save_state)
 884                return;
 885
 886        cap = (u16 *)&save_state->cap.data[0];
 887        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 888        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 889        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 890        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 891        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 892        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 893        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 894}
 895
 896
 897static int pci_save_pcix_state(struct pci_dev *dev)
 898{
 899        int pos;
 900        struct pci_cap_saved_state *save_state;
 901
 902        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 903        if (pos <= 0)
 904                return 0;
 905
 906        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 907        if (!save_state) {
 908                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 909                return -ENOMEM;
 910        }
 911
 912        pci_read_config_word(dev, pos + PCI_X_CMD,
 913                             (u16 *)save_state->cap.data);
 914
 915        return 0;
 916}
 917
 918static void pci_restore_pcix_state(struct pci_dev *dev)
 919{
 920        int i = 0, pos;
 921        struct pci_cap_saved_state *save_state;
 922        u16 *cap;
 923
 924        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 925        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 926        if (!save_state || pos <= 0)
 927                return;
 928        cap = (u16 *)&save_state->cap.data[0];
 929
 930        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 931}
 932
 933
 934/**
 935 * pci_save_state - save the PCI configuration space of a device before suspending
 936 * @dev: - PCI device that we're dealing with
 937 */
 938int
 939pci_save_state(struct pci_dev *dev)
 940{
 941        int i;
 942        /* XXX: 100% dword access ok here? */
 943        for (i = 0; i < 16; i++)
 944                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 945        dev->state_saved = true;
 946        if ((i = pci_save_pcie_state(dev)) != 0)
 947                return i;
 948        if ((i = pci_save_pcix_state(dev)) != 0)
 949                return i;
 950        return 0;
 951}
 952
 953static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
 954                                     u32 saved_val, int retry)
 955{
 956        u32 val;
 957
 958        pci_read_config_dword(pdev, offset, &val);
 959        if (val == saved_val)
 960                return;
 961
 962        for (;;) {
 963                dev_dbg(&pdev->dev, "restoring config space at offset "
 964                        "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
 965                pci_write_config_dword(pdev, offset, saved_val);
 966                if (retry-- <= 0)
 967                        return;
 968
 969                pci_read_config_dword(pdev, offset, &val);
 970                if (val == saved_val)
 971                        return;
 972
 973                mdelay(1);
 974        }
 975}
 976
 977static void pci_restore_config_space_range(struct pci_dev *pdev,
 978                                           int start, int end, int retry)
 979{
 980        int index;
 981
 982        for (index = end; index >= start; index--)
 983                pci_restore_config_dword(pdev, 4 * index,
 984                                         pdev->saved_config_space[index],
 985                                         retry);
 986}
 987
 988static void pci_restore_config_space(struct pci_dev *pdev)
 989{
 990        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
 991                pci_restore_config_space_range(pdev, 10, 15, 0);
 992                /* Restore BARs before the command register. */
 993                pci_restore_config_space_range(pdev, 4, 9, 10);
 994                pci_restore_config_space_range(pdev, 0, 3, 0);
 995        } else {
 996                pci_restore_config_space_range(pdev, 0, 15, 0);
 997        }
 998}
 999
1000/** 
1001 * pci_restore_state - Restore the saved state of a PCI device
1002 * @dev: - PCI device that we're dealing with
1003 */
1004void pci_restore_state(struct pci_dev *dev)
1005{
1006        if (!dev->state_saved)
1007                return;
1008
1009        /* PCI Express register must be restored first */
1010        pci_restore_pcie_state(dev);
1011        pci_restore_ats_state(dev);
1012
1013        pci_restore_config_space(dev);
1014
1015        pci_restore_pcix_state(dev);
1016        pci_restore_msi_state(dev);
1017        pci_restore_iov_state(dev);
1018
1019        dev->state_saved = false;
1020}
1021
1022struct pci_saved_state {
1023        u32 config_space[16];
1024        struct pci_cap_saved_data cap[0];
1025};
1026
1027/**
1028 * pci_store_saved_state - Allocate and return an opaque struct containing
1029 *                         the device saved state.
1030 * @dev: PCI device that we're dealing with
1031 *
1032 * Rerturn NULL if no state or error.
1033 */
1034struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1035{
1036        struct pci_saved_state *state;
1037        struct pci_cap_saved_state *tmp;
1038        struct pci_cap_saved_data *cap;
1039        size_t size;
1040
1041        if (!dev->state_saved)
1042                return NULL;
1043
1044        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1045
1046        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1047                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1048
1049        state = kzalloc(size, GFP_KERNEL);
1050        if (!state)
1051                return NULL;
1052
1053        memcpy(state->config_space, dev->saved_config_space,
1054               sizeof(state->config_space));
1055
1056        cap = state->cap;
1057        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1058                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059                memcpy(cap, &tmp->cap, len);
1060                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1061        }
1062        /* Empty cap_save terminates list */
1063
1064        return state;
1065}
1066EXPORT_SYMBOL_GPL(pci_store_saved_state);
1067
1068/**
1069 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1070 * @dev: PCI device that we're dealing with
1071 * @state: Saved state returned from pci_store_saved_state()
1072 */
1073int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1074{
1075        struct pci_cap_saved_data *cap;
1076
1077        dev->state_saved = false;
1078
1079        if (!state)
1080                return 0;
1081
1082        memcpy(dev->saved_config_space, state->config_space,
1083               sizeof(state->config_space));
1084
1085        cap = state->cap;
1086        while (cap->size) {
1087                struct pci_cap_saved_state *tmp;
1088
1089                tmp = pci_find_saved_cap(dev, cap->cap_nr);
1090                if (!tmp || tmp->cap.size != cap->size)
1091                        return -EINVAL;
1092
1093                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1094                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1095                       sizeof(struct pci_cap_saved_data) + cap->size);
1096        }
1097
1098        dev->state_saved = true;
1099        return 0;
1100}
1101EXPORT_SYMBOL_GPL(pci_load_saved_state);
1102
1103/**
1104 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1105 *                                 and free the memory allocated for it.
1106 * @dev: PCI device that we're dealing with
1107 * @state: Pointer to saved state returned from pci_store_saved_state()
1108 */
1109int pci_load_and_free_saved_state(struct pci_dev *dev,
1110                                  struct pci_saved_state **state)
1111{
1112        int ret = pci_load_saved_state(dev, *state);
1113        kfree(*state);
1114        *state = NULL;
1115        return ret;
1116}
1117EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1118
1119static int do_pci_enable_device(struct pci_dev *dev, int bars)
1120{
1121        int err;
1122
1123        err = pci_set_power_state(dev, PCI_D0);
1124        if (err < 0 && err != -EIO)
1125                return err;
1126        err = pcibios_enable_device(dev, bars);
1127        if (err < 0)
1128                return err;
1129        pci_fixup_device(pci_fixup_enable, dev);
1130
1131        return 0;
1132}
1133
1134/**
1135 * pci_reenable_device - Resume abandoned device
1136 * @dev: PCI device to be resumed
1137 *
1138 *  Note this function is a backend of pci_default_resume and is not supposed
1139 *  to be called by normal code, write proper resume handler and use it instead.
1140 */
1141int pci_reenable_device(struct pci_dev *dev)
1142{
1143        if (pci_is_enabled(dev))
1144                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1145        return 0;
1146}
1147
1148static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1149{
1150        int err;
1151        int i, bars = 0;
1152
1153        /*
1154         * Power state could be unknown at this point, either due to a fresh
1155         * boot or a device removal call.  So get the current power state
1156         * so that things like MSI message writing will behave as expected
1157         * (e.g. if the device really is in D0 at enable time).
1158         */
1159        if (dev->pm_cap) {
1160                u16 pmcsr;
1161                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163        }
1164
1165        if (atomic_inc_return(&dev->enable_cnt) > 1)
1166                return 0;               /* already enabled */
1167
1168        /* only skip sriov related */
1169        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1170                if (dev->resource[i].flags & flags)
1171                        bars |= (1 << i);
1172        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1173                if (dev->resource[i].flags & flags)
1174                        bars |= (1 << i);
1175
1176        err = do_pci_enable_device(dev, bars);
1177        if (err < 0)
1178                atomic_dec(&dev->enable_cnt);
1179        return err;
1180}
1181
1182/**
1183 * pci_enable_device_io - Initialize a device for use with IO space
1184 * @dev: PCI device to be initialized
1185 *
1186 *  Initialize device before it's used by a driver. Ask low-level code
1187 *  to enable I/O resources. Wake up the device if it was suspended.
1188 *  Beware, this function can fail.
1189 */
1190int pci_enable_device_io(struct pci_dev *dev)
1191{
1192        return pci_enable_device_flags(dev, IORESOURCE_IO);
1193}
1194
1195/**
1196 * pci_enable_device_mem - Initialize a device for use with Memory space
1197 * @dev: PCI device to be initialized
1198 *
1199 *  Initialize device before it's used by a driver. Ask low-level code
1200 *  to enable Memory resources. Wake up the device if it was suspended.
1201 *  Beware, this function can fail.
1202 */
1203int pci_enable_device_mem(struct pci_dev *dev)
1204{
1205        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1206}
1207
1208/**
1209 * pci_enable_device - Initialize device before it's used by a driver.
1210 * @dev: PCI device to be initialized
1211 *
1212 *  Initialize device before it's used by a driver. Ask low-level code
1213 *  to enable I/O and memory. Wake up the device if it was suspended.
1214 *  Beware, this function can fail.
1215 *
1216 *  Note we don't actually enable the device many times if we call
1217 *  this function repeatedly (we just increment the count).
1218 */
1219int pci_enable_device(struct pci_dev *dev)
1220{
1221        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1222}
1223
1224/*
1225 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1226 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1227 * there's no need to track it separately.  pci_devres is initialized
1228 * when a device is enabled using managed PCI device enable interface.
1229 */
1230struct pci_devres {
1231        unsigned int enabled:1;
1232        unsigned int pinned:1;
1233        unsigned int orig_intx:1;
1234        unsigned int restore_intx:1;
1235        u32 region_mask;
1236};
1237
1238static void pcim_release(struct device *gendev, void *res)
1239{
1240        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1241        struct pci_devres *this = res;
1242        int i;
1243
1244        if (dev->msi_enabled)
1245                pci_disable_msi(dev);
1246        if (dev->msix_enabled)
1247                pci_disable_msix(dev);
1248
1249        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1250                if (this->region_mask & (1 << i))
1251                        pci_release_region(dev, i);
1252
1253        if (this->restore_intx)
1254                pci_intx(dev, this->orig_intx);
1255
1256        if (this->enabled && !this->pinned)
1257                pci_disable_device(dev);
1258}
1259
1260static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1261{
1262        struct pci_devres *dr, *new_dr;
1263
1264        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1265        if (dr)
1266                return dr;
1267
1268        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1269        if (!new_dr)
1270                return NULL;
1271        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1272}
1273
1274static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1275{
1276        if (pci_is_managed(pdev))
1277                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1278        return NULL;
1279}
1280
1281/**
1282 * pcim_enable_device - Managed pci_enable_device()
1283 * @pdev: PCI device to be initialized
1284 *
1285 * Managed pci_enable_device().
1286 */
1287int pcim_enable_device(struct pci_dev *pdev)
1288{
1289        struct pci_devres *dr;
1290        int rc;
1291
1292        dr = get_pci_dr(pdev);
1293        if (unlikely(!dr))
1294                return -ENOMEM;
1295        if (dr->enabled)
1296                return 0;
1297
1298        rc = pci_enable_device(pdev);
1299        if (!rc) {
1300                pdev->is_managed = 1;
1301                dr->enabled = 1;
1302        }
1303        return rc;
1304}
1305
1306/**
1307 * pcim_pin_device - Pin managed PCI device
1308 * @pdev: PCI device to pin
1309 *
1310 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1311 * driver detach.  @pdev must have been enabled with
1312 * pcim_enable_device().
1313 */
1314void pcim_pin_device(struct pci_dev *pdev)
1315{
1316        struct pci_devres *dr;
1317
1318        dr = find_pci_dr(pdev);
1319        WARN_ON(!dr || !dr->enabled);
1320        if (dr)
1321                dr->pinned = 1;
1322}
1323
1324/*
1325 * pcibios_add_device - provide arch specific hooks when adding device dev
1326 * @dev: the PCI device being added
1327 *
1328 * Permits the platform to provide architecture specific functionality when
1329 * devices are added. This is the default implementation. Architecture
1330 * implementations can override this.
1331 */
1332int __weak pcibios_add_device (struct pci_dev *dev)
1333{
1334        return 0;
1335}
1336
1337/**
1338 * pcibios_disable_device - disable arch specific PCI resources for device dev
1339 * @dev: the PCI device to disable
1340 *
1341 * Disables architecture specific PCI resources for the device. This
1342 * is the default implementation. Architecture implementations can
1343 * override this.
1344 */
1345void __weak pcibios_disable_device (struct pci_dev *dev) {}
1346
1347static void do_pci_disable_device(struct pci_dev *dev)
1348{
1349        u16 pci_command;
1350
1351        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1352        if (pci_command & PCI_COMMAND_MASTER) {
1353                pci_command &= ~PCI_COMMAND_MASTER;
1354                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1355        }
1356
1357        pcibios_disable_device(dev);
1358}
1359
1360/**
1361 * pci_disable_enabled_device - Disable device without updating enable_cnt
1362 * @dev: PCI device to disable
1363 *
1364 * NOTE: This function is a backend of PCI power management routines and is
1365 * not supposed to be called drivers.
1366 */
1367void pci_disable_enabled_device(struct pci_dev *dev)
1368{
1369        if (pci_is_enabled(dev))
1370                do_pci_disable_device(dev);
1371}
1372
1373/**
1374 * pci_disable_device - Disable PCI device after use
1375 * @dev: PCI device to be disabled
1376 *
1377 * Signal to the system that the PCI device is not in use by the system
1378 * anymore.  This only involves disabling PCI bus-mastering, if active.
1379 *
1380 * Note we don't actually disable the device until all callers of
1381 * pci_enable_device() have called pci_disable_device().
1382 */
1383void
1384pci_disable_device(struct pci_dev *dev)
1385{
1386        struct pci_devres *dr;
1387
1388        dr = find_pci_dr(dev);
1389        if (dr)
1390                dr->enabled = 0;
1391
1392        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1393                      "disabling already-disabled device");
1394
1395        if (atomic_dec_return(&dev->enable_cnt) != 0)
1396                return;
1397
1398        do_pci_disable_device(dev);
1399
1400        dev->is_busmaster = 0;
1401}
1402
1403/**
1404 * pcibios_set_pcie_reset_state - set reset state for device dev
1405 * @dev: the PCIe device reset
1406 * @state: Reset state to enter into
1407 *
1408 *
1409 * Sets the PCIe reset state for the device. This is the default
1410 * implementation. Architecture implementations can override this.
1411 */
1412int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1413                                        enum pcie_reset_state state)
1414{
1415        return -EINVAL;
1416}
1417
1418/**
1419 * pci_set_pcie_reset_state - set reset state for device dev
1420 * @dev: the PCIe device reset
1421 * @state: Reset state to enter into
1422 *
1423 *
1424 * Sets the PCI reset state for the device.
1425 */
1426int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1427{
1428        return pcibios_set_pcie_reset_state(dev, state);
1429}
1430
1431/**
1432 * pci_check_pme_status - Check if given device has generated PME.
1433 * @dev: Device to check.
1434 *
1435 * Check the PME status of the device and if set, clear it and clear PME enable
1436 * (if set).  Return 'true' if PME status and PME enable were both set or
1437 * 'false' otherwise.
1438 */
1439bool pci_check_pme_status(struct pci_dev *dev)
1440{
1441        int pmcsr_pos;
1442        u16 pmcsr;
1443        bool ret = false;
1444
1445        if (!dev->pm_cap)
1446                return false;
1447
1448        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1449        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1450        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1451                return false;
1452
1453        /* Clear PME status. */
1454        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1455        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1456                /* Disable PME to avoid interrupt flood. */
1457                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1458                ret = true;
1459        }
1460
1461        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1462
1463        return ret;
1464}
1465
1466/**
1467 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1468 * @dev: Device to handle.
1469 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1470 *
1471 * Check if @dev has generated PME and queue a resume request for it in that
1472 * case.
1473 */
1474static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1475{
1476        if (pme_poll_reset && dev->pme_poll)
1477                dev->pme_poll = false;
1478
1479        if (pci_check_pme_status(dev)) {
1480                pci_wakeup_event(dev);
1481                pm_request_resume(&dev->dev);
1482        }
1483        return 0;
1484}
1485
1486/**
1487 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1488 * @bus: Top bus of the subtree to walk.
1489 */
1490void pci_pme_wakeup_bus(struct pci_bus *bus)
1491{
1492        if (bus)
1493                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1494}
1495
1496/**
1497 * pci_wakeup - Wake up a PCI device
1498 * @pci_dev: Device to handle.
1499 * @ign: ignored parameter
1500 */
1501static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1502{
1503        pci_wakeup_event(pci_dev);
1504        pm_request_resume(&pci_dev->dev);
1505        return 0;
1506}
1507
1508/**
1509 * pci_wakeup_bus - Walk given bus and wake up devices on it
1510 * @bus: Top bus of the subtree to walk.
1511 */
1512void pci_wakeup_bus(struct pci_bus *bus)
1513{
1514        if (bus)
1515                pci_walk_bus(bus, pci_wakeup, NULL);
1516}
1517
1518/**
1519 * pci_pme_capable - check the capability of PCI device to generate PME#
1520 * @dev: PCI device to handle.
1521 * @state: PCI state from which device will issue PME#.
1522 */
1523bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1524{
1525        if (!dev->pm_cap)
1526                return false;
1527
1528        return !!(dev->pme_support & (1 << state));
1529}
1530
1531static void pci_pme_list_scan(struct work_struct *work)
1532{
1533        struct pci_pme_device *pme_dev, *n;
1534
1535        mutex_lock(&pci_pme_list_mutex);
1536        if (!list_empty(&pci_pme_list)) {
1537                list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1538                        if (pme_dev->dev->pme_poll) {
1539                                struct pci_dev *bridge;
1540
1541                                bridge = pme_dev->dev->bus->self;
1542                                /*
1543                                 * If bridge is in low power state, the
1544                                 * configuration space of subordinate devices
1545                                 * may be not accessible
1546                                 */
1547                                if (bridge && bridge->current_state != PCI_D0)
1548                                        continue;
1549                                pci_pme_wakeup(pme_dev->dev, NULL);
1550                        } else {
1551                                list_del(&pme_dev->list);
1552                                kfree(pme_dev);
1553                        }
1554                }
1555                if (!list_empty(&pci_pme_list))
1556                        schedule_delayed_work(&pci_pme_work,
1557                                              msecs_to_jiffies(PME_TIMEOUT));
1558        }
1559        mutex_unlock(&pci_pme_list_mutex);
1560}
1561
1562/**
1563 * pci_pme_active - enable or disable PCI device's PME# function
1564 * @dev: PCI device to handle.
1565 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1566 *
1567 * The caller must verify that the device is capable of generating PME# before
1568 * calling this function with @enable equal to 'true'.
1569 */
1570void pci_pme_active(struct pci_dev *dev, bool enable)
1571{
1572        u16 pmcsr;
1573
1574        if (!dev->pm_cap)
1575                return;
1576
1577        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1578        /* Clear PME_Status by writing 1 to it and enable PME# */
1579        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1580        if (!enable)
1581                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582
1583        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1584
1585        /*
1586         * PCI (as opposed to PCIe) PME requires that the device have
1587         * its PME# line hooked up correctly. Not all hardware vendors
1588         * do this, so the PME never gets delivered and the device
1589         * remains asleep. The easiest way around this is to
1590         * periodically walk the list of suspended devices and check
1591         * whether any have their PME flag set. The assumption is that
1592         * we'll wake up often enough anyway that this won't be a huge
1593         * hit, and the power savings from the devices will still be a
1594         * win.
1595         *
1596         * Although PCIe uses in-band PME message instead of PME# line
1597         * to report PME, PME does not work for some PCIe devices in
1598         * reality.  For example, there are devices that set their PME
1599         * status bits, but don't really bother to send a PME message;
1600         * there are PCI Express Root Ports that don't bother to
1601         * trigger interrupts when they receive PME messages from the
1602         * devices below.  So PME poll is used for PCIe devices too.
1603         */
1604
1605        if (dev->pme_poll) {
1606                struct pci_pme_device *pme_dev;
1607                if (enable) {
1608                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1609                                          GFP_KERNEL);
1610                        if (!pme_dev)
1611                                goto out;
1612                        pme_dev->dev = dev;
1613                        mutex_lock(&pci_pme_list_mutex);
1614                        list_add(&pme_dev->list, &pci_pme_list);
1615                        if (list_is_singular(&pci_pme_list))
1616                                schedule_delayed_work(&pci_pme_work,
1617                                                      msecs_to_jiffies(PME_TIMEOUT));
1618                        mutex_unlock(&pci_pme_list_mutex);
1619                } else {
1620                        mutex_lock(&pci_pme_list_mutex);
1621                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1622                                if (pme_dev->dev == dev) {
1623                                        list_del(&pme_dev->list);
1624                                        kfree(pme_dev);
1625                                        break;
1626                                }
1627                        }
1628                        mutex_unlock(&pci_pme_list_mutex);
1629                }
1630        }
1631
1632out:
1633        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1634}
1635
1636/**
1637 * __pci_enable_wake - enable PCI device as wakeup event source
1638 * @dev: PCI device affected
1639 * @state: PCI state from which device will issue wakeup events
1640 * @runtime: True if the events are to be generated at run time
1641 * @enable: True to enable event generation; false to disable
1642 *
1643 * This enables the device as a wakeup event source, or disables it.
1644 * When such events involves platform-specific hooks, those hooks are
1645 * called automatically by this routine.
1646 *
1647 * Devices with legacy power management (no standard PCI PM capabilities)
1648 * always require such platform hooks.
1649 *
1650 * RETURN VALUE:
1651 * 0 is returned on success
1652 * -EINVAL is returned if device is not supposed to wake up the system
1653 * Error code depending on the platform is returned if both the platform and
1654 * the native mechanism fail to enable the generation of wake-up events
1655 */
1656int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1657                      bool runtime, bool enable)
1658{
1659        int ret = 0;
1660
1661        if (enable && !runtime && !device_may_wakeup(&dev->dev))
1662                return -EINVAL;
1663
1664        /* Don't do the same thing twice in a row for one device. */
1665        if (!!enable == !!dev->wakeup_prepared)
1666                return 0;
1667
1668        /*
1669         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1670         * Anderson we should be doing PME# wake enable followed by ACPI wake
1671         * enable.  To disable wake-up we call the platform first, for symmetry.
1672         */
1673
1674        if (enable) {
1675                int error;
1676
1677                if (pci_pme_capable(dev, state))
1678                        pci_pme_active(dev, true);
1679                else
1680                        ret = 1;
1681                error = runtime ? platform_pci_run_wake(dev, true) :
1682                                        platform_pci_sleep_wake(dev, true);
1683                if (ret)
1684                        ret = error;
1685                if (!ret)
1686                        dev->wakeup_prepared = true;
1687        } else {
1688                if (runtime)
1689                        platform_pci_run_wake(dev, false);
1690                else
1691                        platform_pci_sleep_wake(dev, false);
1692                pci_pme_active(dev, false);
1693                dev->wakeup_prepared = false;
1694        }
1695
1696        return ret;
1697}
1698EXPORT_SYMBOL(__pci_enable_wake);
1699
1700/**
1701 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1702 * @dev: PCI device to prepare
1703 * @enable: True to enable wake-up event generation; false to disable
1704 *
1705 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1706 * and this function allows them to set that up cleanly - pci_enable_wake()
1707 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1708 * ordering constraints.
1709 *
1710 * This function only returns error code if the device is not capable of
1711 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1712 * enable wake-up power for it.
1713 */
1714int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1715{
1716        return pci_pme_capable(dev, PCI_D3cold) ?
1717                        pci_enable_wake(dev, PCI_D3cold, enable) :
1718                        pci_enable_wake(dev, PCI_D3hot, enable);
1719}
1720
1721/**
1722 * pci_target_state - find an appropriate low power state for a given PCI dev
1723 * @dev: PCI device
1724 *
1725 * Use underlying platform code to find a supported low power state for @dev.
1726 * If the platform can't manage @dev, return the deepest state from which it
1727 * can generate wake events, based on any available PME info.
1728 */
1729pci_power_t pci_target_state(struct pci_dev *dev)
1730{
1731        pci_power_t target_state = PCI_D3hot;
1732
1733        if (platform_pci_power_manageable(dev)) {
1734                /*
1735                 * Call the platform to choose the target state of the device
1736                 * and enable wake-up from this state if supported.
1737                 */
1738                pci_power_t state = platform_pci_choose_state(dev);
1739
1740                switch (state) {
1741                case PCI_POWER_ERROR:
1742                case PCI_UNKNOWN:
1743                        break;
1744                case PCI_D1:
1745                case PCI_D2:
1746                        if (pci_no_d1d2(dev))
1747                                break;
1748                default:
1749                        target_state = state;
1750                }
1751        } else if (!dev->pm_cap) {
1752                target_state = PCI_D0;
1753        } else if (device_may_wakeup(&dev->dev)) {
1754                /*
1755                 * Find the deepest state from which the device can generate
1756                 * wake-up events, make it the target state and enable device
1757                 * to generate PME#.
1758                 */
1759                if (dev->pme_support) {
1760                        while (target_state
1761                              && !(dev->pme_support & (1 << target_state)))
1762                                target_state--;
1763                }
1764        }
1765
1766        return target_state;
1767}
1768
1769/**
1770 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1771 * @dev: Device to handle.
1772 *
1773 * Choose the power state appropriate for the device depending on whether
1774 * it can wake up the system and/or is power manageable by the platform
1775 * (PCI_D3hot is the default) and put the device into that state.
1776 */
1777int pci_prepare_to_sleep(struct pci_dev *dev)
1778{
1779        pci_power_t target_state = pci_target_state(dev);
1780        int error;
1781
1782        if (target_state == PCI_POWER_ERROR)
1783                return -EIO;
1784
1785        /* D3cold during system suspend/hibernate is not supported */
1786        if (target_state > PCI_D3hot)
1787                target_state = PCI_D3hot;
1788
1789        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1790
1791        error = pci_set_power_state(dev, target_state);
1792
1793        if (error)
1794                pci_enable_wake(dev, target_state, false);
1795
1796        return error;
1797}
1798
1799/**
1800 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1801 * @dev: Device to handle.
1802 *
1803 * Disable device's system wake-up capability and put it into D0.
1804 */
1805int pci_back_from_sleep(struct pci_dev *dev)
1806{
1807        pci_enable_wake(dev, PCI_D0, false);
1808        return pci_set_power_state(dev, PCI_D0);
1809}
1810
1811/**
1812 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1813 * @dev: PCI device being suspended.
1814 *
1815 * Prepare @dev to generate wake-up events at run time and put it into a low
1816 * power state.
1817 */
1818int pci_finish_runtime_suspend(struct pci_dev *dev)
1819{
1820        pci_power_t target_state = pci_target_state(dev);
1821        int error;
1822
1823        if (target_state == PCI_POWER_ERROR)
1824                return -EIO;
1825
1826        dev->runtime_d3cold = target_state == PCI_D3cold;
1827
1828        __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1829
1830        error = pci_set_power_state(dev, target_state);
1831
1832        if (error) {
1833                __pci_enable_wake(dev, target_state, true, false);
1834                dev->runtime_d3cold = false;
1835        }
1836
1837        return error;
1838}
1839
1840/**
1841 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1842 * @dev: Device to check.
1843 *
1844 * Return true if the device itself is cabable of generating wake-up events
1845 * (through the platform or using the native PCIe PME) or if the device supports
1846 * PME and one of its upstream bridges can generate wake-up events.
1847 */
1848bool pci_dev_run_wake(struct pci_dev *dev)
1849{
1850        struct pci_bus *bus = dev->bus;
1851
1852        if (device_run_wake(&dev->dev))
1853                return true;
1854
1855        if (!dev->pme_support)
1856                return false;
1857
1858        while (bus->parent) {
1859                struct pci_dev *bridge = bus->self;
1860
1861                if (device_run_wake(&bridge->dev))
1862                        return true;
1863
1864                bus = bus->parent;
1865        }
1866
1867        /* We have reached the root bus. */
1868        if (bus->bridge)
1869                return device_run_wake(bus->bridge);
1870
1871        return false;
1872}
1873EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1874
1875void pci_config_pm_runtime_get(struct pci_dev *pdev)
1876{
1877        struct device *dev = &pdev->dev;
1878        struct device *parent = dev->parent;
1879
1880        if (parent)
1881                pm_runtime_get_sync(parent);
1882        pm_runtime_get_noresume(dev);
1883        /*
1884         * pdev->current_state is set to PCI_D3cold during suspending,
1885         * so wait until suspending completes
1886         */
1887        pm_runtime_barrier(dev);
1888        /*
1889         * Only need to resume devices in D3cold, because config
1890         * registers are still accessible for devices suspended but
1891         * not in D3cold.
1892         */
1893        if (pdev->current_state == PCI_D3cold)
1894                pm_runtime_resume(dev);
1895}
1896
1897void pci_config_pm_runtime_put(struct pci_dev *pdev)
1898{
1899        struct device *dev = &pdev->dev;
1900        struct device *parent = dev->parent;
1901
1902        pm_runtime_put(dev);
1903        if (parent)
1904                pm_runtime_put_sync(parent);
1905}
1906
1907/**
1908 * pci_pm_init - Initialize PM functions of given PCI device
1909 * @dev: PCI device to handle.
1910 */
1911void pci_pm_init(struct pci_dev *dev)
1912{
1913        int pm;
1914        u16 pmc;
1915
1916        pm_runtime_forbid(&dev->dev);
1917        pm_runtime_set_active(&dev->dev);
1918        pm_runtime_enable(&dev->dev);
1919        device_enable_async_suspend(&dev->dev);
1920        dev->wakeup_prepared = false;
1921
1922        dev->pm_cap = 0;
1923
1924        /* find PCI PM capability in list */
1925        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1926        if (!pm)
1927                return;
1928        /* Check device's ability to generate PME# */
1929        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1930
1931        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1932                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1933                        pmc & PCI_PM_CAP_VER_MASK);
1934                return;
1935        }
1936
1937        dev->pm_cap = pm;
1938        dev->d3_delay = PCI_PM_D3_WAIT;
1939        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1940        dev->d3cold_allowed = true;
1941
1942        dev->d1_support = false;
1943        dev->d2_support = false;
1944        if (!pci_no_d1d2(dev)) {
1945                if (pmc & PCI_PM_CAP_D1)
1946                        dev->d1_support = true;
1947                if (pmc & PCI_PM_CAP_D2)
1948                        dev->d2_support = true;
1949
1950                if (dev->d1_support || dev->d2_support)
1951                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1952                                   dev->d1_support ? " D1" : "",
1953                                   dev->d2_support ? " D2" : "");
1954        }
1955
1956        pmc &= PCI_PM_CAP_PME_MASK;
1957        if (pmc) {
1958                dev_printk(KERN_DEBUG, &dev->dev,
1959                         "PME# supported from%s%s%s%s%s\n",
1960                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1961                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1962                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1963                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1964                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1965                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1966                dev->pme_poll = true;
1967                /*
1968                 * Make device's PM flags reflect the wake-up capability, but
1969                 * let the user space enable it to wake up the system as needed.
1970                 */
1971                device_set_wakeup_capable(&dev->dev, true);
1972                /* Disable the PME# generation functionality */
1973                pci_pme_active(dev, false);
1974        } else {
1975                dev->pme_support = 0;
1976        }
1977}
1978
1979static void pci_add_saved_cap(struct pci_dev *pci_dev,
1980        struct pci_cap_saved_state *new_cap)
1981{
1982        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1983}
1984
1985/**
1986 * pci_add_save_buffer - allocate buffer for saving given capability registers
1987 * @dev: the PCI device
1988 * @cap: the capability to allocate the buffer for
1989 * @size: requested size of the buffer
1990 */
1991static int pci_add_cap_save_buffer(
1992        struct pci_dev *dev, char cap, unsigned int size)
1993{
1994        int pos;
1995        struct pci_cap_saved_state *save_state;
1996
1997        pos = pci_find_capability(dev, cap);
1998        if (pos <= 0)
1999                return 0;
2000
2001        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2002        if (!save_state)
2003                return -ENOMEM;
2004
2005        save_state->cap.cap_nr = cap;
2006        save_state->cap.size = size;
2007        pci_add_saved_cap(dev, save_state);
2008
2009        return 0;
2010}
2011
2012/**
2013 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2014 * @dev: the PCI device
2015 */
2016void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2017{
2018        int error;
2019
2020        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2021                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2022        if (error)
2023                dev_err(&dev->dev,
2024                        "unable to preallocate PCI Express save buffer\n");
2025
2026        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2027        if (error)
2028                dev_err(&dev->dev,
2029                        "unable to preallocate PCI-X save buffer\n");
2030}
2031
2032void pci_free_cap_save_buffers(struct pci_dev *dev)
2033{
2034        struct pci_cap_saved_state *tmp;
2035        struct hlist_node *n;
2036
2037        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2038                kfree(tmp);
2039}
2040
2041/**
2042 * pci_configure_ari - enable or disable ARI forwarding
2043 * @dev: the PCI device
2044 *
2045 * If @dev and its upstream bridge both support ARI, enable ARI in the
2046 * bridge.  Otherwise, disable ARI in the bridge.
2047 */
2048void pci_configure_ari(struct pci_dev *dev)
2049{
2050        u32 cap;
2051        struct pci_dev *bridge;
2052
2053        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2054                return;
2055
2056        bridge = dev->bus->self;
2057        if (!bridge)
2058                return;
2059
2060        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2061        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2062                return;
2063
2064        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2065                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2066                                         PCI_EXP_DEVCTL2_ARI);
2067                bridge->ari_enabled = 1;
2068        } else {
2069                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2070                                           PCI_EXP_DEVCTL2_ARI);
2071                bridge->ari_enabled = 0;
2072        }
2073}
2074
2075/**
2076 * pci_enable_ido - enable ID-based Ordering on a device
2077 * @dev: the PCI device
2078 * @type: which types of IDO to enable
2079 *
2080 * Enable ID-based ordering on @dev.  @type can contain the bits
2081 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2082 * which types of transactions are allowed to be re-ordered.
2083 */
2084void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2085{
2086        u16 ctrl = 0;
2087
2088        if (type & PCI_EXP_IDO_REQUEST)
2089                ctrl |= PCI_EXP_IDO_REQ_EN;
2090        if (type & PCI_EXP_IDO_COMPLETION)
2091                ctrl |= PCI_EXP_IDO_CMP_EN;
2092        if (ctrl)
2093                pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2094}
2095EXPORT_SYMBOL(pci_enable_ido);
2096
2097/**
2098 * pci_disable_ido - disable ID-based ordering on a device
2099 * @dev: the PCI device
2100 * @type: which types of IDO to disable
2101 */
2102void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2103{
2104        u16 ctrl = 0;
2105
2106        if (type & PCI_EXP_IDO_REQUEST)
2107                ctrl |= PCI_EXP_IDO_REQ_EN;
2108        if (type & PCI_EXP_IDO_COMPLETION)
2109                ctrl |= PCI_EXP_IDO_CMP_EN;
2110        if (ctrl)
2111                pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2112}
2113EXPORT_SYMBOL(pci_disable_ido);
2114
2115/**
2116 * pci_enable_obff - enable optimized buffer flush/fill
2117 * @dev: PCI device
2118 * @type: type of signaling to use
2119 *
2120 * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2121 * signaling if possible, falling back to message signaling only if
2122 * WAKE# isn't supported.  @type should indicate whether the PCIe link
2123 * be brought out of L0s or L1 to send the message.  It should be either
2124 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2125 *
2126 * If your device can benefit from receiving all messages, even at the
2127 * power cost of bringing the link back up from a low power state, use
2128 * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2129 * preferred type).
2130 *
2131 * RETURNS:
2132 * Zero on success, appropriate error number on failure.
2133 */
2134int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2135{
2136        u32 cap;
2137        u16 ctrl;
2138        int ret;
2139
2140        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2141        if (!(cap & PCI_EXP_OBFF_MASK))
2142                return -ENOTSUPP; /* no OBFF support at all */
2143
2144        /* Make sure the topology supports OBFF as well */
2145        if (dev->bus->self) {
2146                ret = pci_enable_obff(dev->bus->self, type);
2147                if (ret)
2148                        return ret;
2149        }
2150
2151        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2152        if (cap & PCI_EXP_OBFF_WAKE)
2153                ctrl |= PCI_EXP_OBFF_WAKE_EN;
2154        else {
2155                switch (type) {
2156                case PCI_EXP_OBFF_SIGNAL_L0:
2157                        if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2158                                ctrl |= PCI_EXP_OBFF_MSGA_EN;
2159                        break;
2160                case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2161                        ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2162                        ctrl |= PCI_EXP_OBFF_MSGB_EN;
2163                        break;
2164                default:
2165                        WARN(1, "bad OBFF signal type\n");
2166                        return -ENOTSUPP;
2167                }
2168        }
2169        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2170
2171        return 0;
2172}
2173EXPORT_SYMBOL(pci_enable_obff);
2174
2175/**
2176 * pci_disable_obff - disable optimized buffer flush/fill
2177 * @dev: PCI device
2178 *
2179 * Disable OBFF on @dev.
2180 */
2181void pci_disable_obff(struct pci_dev *dev)
2182{
2183        pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2184}
2185EXPORT_SYMBOL(pci_disable_obff);
2186
2187/**
2188 * pci_ltr_supported - check whether a device supports LTR
2189 * @dev: PCI device
2190 *
2191 * RETURNS:
2192 * True if @dev supports latency tolerance reporting, false otherwise.
2193 */
2194static bool pci_ltr_supported(struct pci_dev *dev)
2195{
2196        u32 cap;
2197
2198        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2199
2200        return cap & PCI_EXP_DEVCAP2_LTR;
2201}
2202
2203/**
2204 * pci_enable_ltr - enable latency tolerance reporting
2205 * @dev: PCI device
2206 *
2207 * Enable LTR on @dev if possible, which means enabling it first on
2208 * upstream ports.
2209 *
2210 * RETURNS:
2211 * Zero on success, errno on failure.
2212 */
2213int pci_enable_ltr(struct pci_dev *dev)
2214{
2215        int ret;
2216
2217        /* Only primary function can enable/disable LTR */
2218        if (PCI_FUNC(dev->devfn) != 0)
2219                return -EINVAL;
2220
2221        if (!pci_ltr_supported(dev))
2222                return -ENOTSUPP;
2223
2224        /* Enable upstream ports first */
2225        if (dev->bus->self) {
2226                ret = pci_enable_ltr(dev->bus->self);
2227                if (ret)
2228                        return ret;
2229        }
2230
2231        return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2232}
2233EXPORT_SYMBOL(pci_enable_ltr);
2234
2235/**
2236 * pci_disable_ltr - disable latency tolerance reporting
2237 * @dev: PCI device
2238 */
2239void pci_disable_ltr(struct pci_dev *dev)
2240{
2241        /* Only primary function can enable/disable LTR */
2242        if (PCI_FUNC(dev->devfn) != 0)
2243                return;
2244
2245        if (!pci_ltr_supported(dev))
2246                return;
2247
2248        pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2249}
2250EXPORT_SYMBOL(pci_disable_ltr);
2251
2252static int __pci_ltr_scale(int *val)
2253{
2254        int scale = 0;
2255
2256        while (*val > 1023) {
2257                *val = (*val + 31) / 32;
2258                scale++;
2259        }
2260        return scale;
2261}
2262
2263/**
2264 * pci_set_ltr - set LTR latency values
2265 * @dev: PCI device
2266 * @snoop_lat_ns: snoop latency in nanoseconds
2267 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2268 *
2269 * Figure out the scale and set the LTR values accordingly.
2270 */
2271int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2272{
2273        int pos, ret, snoop_scale, nosnoop_scale;
2274        u16 val;
2275
2276        if (!pci_ltr_supported(dev))
2277                return -ENOTSUPP;
2278
2279        snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2280        nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2281
2282        if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2283            nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2284                return -EINVAL;
2285
2286        if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2287            (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2288                return -EINVAL;
2289
2290        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2291        if (!pos)
2292                return -ENOTSUPP;
2293
2294        val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2295        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2296        if (ret != 4)
2297                return -EIO;
2298
2299        val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2300        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2301        if (ret != 4)
2302                return -EIO;
2303
2304        return 0;
2305}
2306EXPORT_SYMBOL(pci_set_ltr);
2307
2308static int pci_acs_enable;
2309
2310/**
2311 * pci_request_acs - ask for ACS to be enabled if supported
2312 */
2313void pci_request_acs(void)
2314{
2315        pci_acs_enable = 1;
2316}
2317
2318/**
2319 * pci_enable_acs - enable ACS if hardware support it
2320 * @dev: the PCI device
2321 */
2322void pci_enable_acs(struct pci_dev *dev)
2323{
2324        int pos;
2325        u16 cap;
2326        u16 ctrl;
2327
2328        if (!pci_acs_enable)
2329                return;
2330
2331        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2332        if (!pos)
2333                return;
2334
2335        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2336        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2337
2338        /* Source Validation */
2339        ctrl |= (cap & PCI_ACS_SV);
2340
2341        /* P2P Request Redirect */
2342        ctrl |= (cap & PCI_ACS_RR);
2343
2344        /* P2P Completion Redirect */
2345        ctrl |= (cap & PCI_ACS_CR);
2346
2347        /* Upstream Forwarding */
2348        ctrl |= (cap & PCI_ACS_UF);
2349
2350        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2351}
2352
2353/**
2354 * pci_acs_enabled - test ACS against required flags for a given device
2355 * @pdev: device to test
2356 * @acs_flags: required PCI ACS flags
2357 *
2358 * Return true if the device supports the provided flags.  Automatically
2359 * filters out flags that are not implemented on multifunction devices.
2360 */
2361bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2362{
2363        int pos, ret;
2364        u16 ctrl;
2365
2366        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2367        if (ret >= 0)
2368                return ret > 0;
2369
2370        if (!pci_is_pcie(pdev))
2371                return false;
2372
2373        /* Filter out flags not applicable to multifunction */
2374        if (pdev->multifunction)
2375                acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2376                              PCI_ACS_EC | PCI_ACS_DT);
2377
2378        if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2379            pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2380            pdev->multifunction) {
2381                pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2382                if (!pos)
2383                        return false;
2384
2385                pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2386                if ((ctrl & acs_flags) != acs_flags)
2387                        return false;
2388        }
2389
2390        return true;
2391}
2392
2393/**
2394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2395 * @start: starting downstream device
2396 * @end: ending upstream device or NULL to search to the root bus
2397 * @acs_flags: required flags
2398 *
2399 * Walk up a device tree from start to end testing PCI ACS support.  If
2400 * any step along the way does not support the required flags, return false.
2401 */
2402bool pci_acs_path_enabled(struct pci_dev *start,
2403                          struct pci_dev *end, u16 acs_flags)
2404{
2405        struct pci_dev *pdev, *parent = start;
2406
2407        do {
2408                pdev = parent;
2409
2410                if (!pci_acs_enabled(pdev, acs_flags))
2411                        return false;
2412
2413                if (pci_is_root_bus(pdev->bus))
2414                        return (end == NULL);
2415
2416                parent = pdev->bus->self;
2417        } while (pdev != end);
2418
2419        return true;
2420}
2421
2422/**
2423 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2424 * @dev: the PCI device
2425 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2426 *
2427 * Perform INTx swizzling for a device behind one level of bridge.  This is
2428 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2429 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2430 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2431 * the PCI Express Base Specification, Revision 2.1)
2432 */
2433u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2434{
2435        int slot;
2436
2437        if (pci_ari_enabled(dev->bus))
2438                slot = 0;
2439        else
2440                slot = PCI_SLOT(dev->devfn);
2441
2442        return (((pin - 1) + slot) % 4) + 1;
2443}
2444
2445int
2446pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2447{
2448        u8 pin;
2449
2450        pin = dev->pin;
2451        if (!pin)
2452                return -1;
2453
2454        while (!pci_is_root_bus(dev->bus)) {
2455                pin = pci_swizzle_interrupt_pin(dev, pin);
2456                dev = dev->bus->self;
2457        }
2458        *bridge = dev;
2459        return pin;
2460}
2461
2462/**
2463 * pci_common_swizzle - swizzle INTx all the way to root bridge
2464 * @dev: the PCI device
2465 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2466 *
2467 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2468 * bridges all the way up to a PCI root bus.
2469 */
2470u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2471{
2472        u8 pin = *pinp;
2473
2474        while (!pci_is_root_bus(dev->bus)) {
2475                pin = pci_swizzle_interrupt_pin(dev, pin);
2476                dev = dev->bus->self;
2477        }
2478        *pinp = pin;
2479        return PCI_SLOT(dev->devfn);
2480}
2481
2482/**
2483 *      pci_release_region - Release a PCI bar
2484 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2485 *      @bar: BAR to release
2486 *
2487 *      Releases the PCI I/O and memory resources previously reserved by a
2488 *      successful call to pci_request_region.  Call this function only
2489 *      after all use of the PCI regions has ceased.
2490 */
2491void pci_release_region(struct pci_dev *pdev, int bar)
2492{
2493        struct pci_devres *dr;
2494
2495        if (pci_resource_len(pdev, bar) == 0)
2496                return;
2497        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2498                release_region(pci_resource_start(pdev, bar),
2499                                pci_resource_len(pdev, bar));
2500        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2501                release_mem_region(pci_resource_start(pdev, bar),
2502                                pci_resource_len(pdev, bar));
2503
2504        dr = find_pci_dr(pdev);
2505        if (dr)
2506                dr->region_mask &= ~(1 << bar);
2507}
2508
2509/**
2510 *      __pci_request_region - Reserved PCI I/O and memory resource
2511 *      @pdev: PCI device whose resources are to be reserved
2512 *      @bar: BAR to be reserved
2513 *      @res_name: Name to be associated with resource.
2514 *      @exclusive: whether the region access is exclusive or not
2515 *
2516 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2517 *      being reserved by owner @res_name.  Do not access any
2518 *      address inside the PCI regions unless this call returns
2519 *      successfully.
2520 *
2521 *      If @exclusive is set, then the region is marked so that userspace
2522 *      is explicitly not allowed to map the resource via /dev/mem or
2523 *      sysfs MMIO access.
2524 *
2525 *      Returns 0 on success, or %EBUSY on error.  A warning
2526 *      message is also printed on failure.
2527 */
2528static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2529                                                                        int exclusive)
2530{
2531        struct pci_devres *dr;
2532
2533        if (pci_resource_len(pdev, bar) == 0)
2534                return 0;
2535                
2536        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2537                if (!request_region(pci_resource_start(pdev, bar),
2538                            pci_resource_len(pdev, bar), res_name))
2539                        goto err_out;
2540        }
2541        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2542                if (!__request_mem_region(pci_resource_start(pdev, bar),
2543                                        pci_resource_len(pdev, bar), res_name,
2544                                        exclusive))
2545                        goto err_out;
2546        }
2547
2548        dr = find_pci_dr(pdev);
2549        if (dr)
2550                dr->region_mask |= 1 << bar;
2551
2552        return 0;
2553
2554err_out:
2555        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2556                 &pdev->resource[bar]);
2557        return -EBUSY;
2558}
2559
2560/**
2561 *      pci_request_region - Reserve PCI I/O and memory resource
2562 *      @pdev: PCI device whose resources are to be reserved
2563 *      @bar: BAR to be reserved
2564 *      @res_name: Name to be associated with resource
2565 *
2566 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2567 *      being reserved by owner @res_name.  Do not access any
2568 *      address inside the PCI regions unless this call returns
2569 *      successfully.
2570 *
2571 *      Returns 0 on success, or %EBUSY on error.  A warning
2572 *      message is also printed on failure.
2573 */
2574int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2575{
2576        return __pci_request_region(pdev, bar, res_name, 0);
2577}
2578
2579/**
2580 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2581 *      @pdev: PCI device whose resources are to be reserved
2582 *      @bar: BAR to be reserved
2583 *      @res_name: Name to be associated with resource.
2584 *
2585 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2586 *      being reserved by owner @res_name.  Do not access any
2587 *      address inside the PCI regions unless this call returns
2588 *      successfully.
2589 *
2590 *      Returns 0 on success, or %EBUSY on error.  A warning
2591 *      message is also printed on failure.
2592 *
2593 *      The key difference that _exclusive makes it that userspace is
2594 *      explicitly not allowed to map the resource via /dev/mem or
2595 *      sysfs.
2596 */
2597int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2598{
2599        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2600}
2601/**
2602 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2603 * @pdev: PCI device whose resources were previously reserved
2604 * @bars: Bitmask of BARs to be released
2605 *
2606 * Release selected PCI I/O and memory resources previously reserved.
2607 * Call this function only after all use of the PCI regions has ceased.
2608 */
2609void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2610{
2611        int i;
2612
2613        for (i = 0; i < 6; i++)
2614                if (bars & (1 << i))
2615                        pci_release_region(pdev, i);
2616}
2617
2618int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2619                                 const char *res_name, int excl)
2620{
2621        int i;
2622
2623        for (i = 0; i < 6; i++)
2624                if (bars & (1 << i))
2625                        if (__pci_request_region(pdev, i, res_name, excl))
2626                                goto err_out;
2627        return 0;
2628
2629err_out:
2630        while(--i >= 0)
2631                if (bars & (1 << i))
2632                        pci_release_region(pdev, i);
2633
2634        return -EBUSY;
2635}
2636
2637
2638/**
2639 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2640 * @pdev: PCI device whose resources are to be reserved
2641 * @bars: Bitmask of BARs to be requested
2642 * @res_name: Name to be associated with resource
2643 */
2644int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2645                                 const char *res_name)
2646{
2647        return __pci_request_selected_regions(pdev, bars, res_name, 0);
2648}
2649
2650int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2651                                 int bars, const char *res_name)
2652{
2653        return __pci_request_selected_regions(pdev, bars, res_name,
2654                        IORESOURCE_EXCLUSIVE);
2655}
2656
2657/**
2658 *      pci_release_regions - Release reserved PCI I/O and memory resources
2659 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2660 *
2661 *      Releases all PCI I/O and memory resources previously reserved by a
2662 *      successful call to pci_request_regions.  Call this function only
2663 *      after all use of the PCI regions has ceased.
2664 */
2665
2666void pci_release_regions(struct pci_dev *pdev)
2667{
2668        pci_release_selected_regions(pdev, (1 << 6) - 1);
2669}
2670
2671/**
2672 *      pci_request_regions - Reserved PCI I/O and memory resources
2673 *      @pdev: PCI device whose resources are to be reserved
2674 *      @res_name: Name to be associated with resource.
2675 *
2676 *      Mark all PCI regions associated with PCI device @pdev as
2677 *      being reserved by owner @res_name.  Do not access any
2678 *      address inside the PCI regions unless this call returns
2679 *      successfully.
2680 *
2681 *      Returns 0 on success, or %EBUSY on error.  A warning
2682 *      message is also printed on failure.
2683 */
2684int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2685{
2686        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2687}
2688
2689/**
2690 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2691 *      @pdev: PCI device whose resources are to be reserved
2692 *      @res_name: Name to be associated with resource.
2693 *
2694 *      Mark all PCI regions associated with PCI device @pdev as
2695 *      being reserved by owner @res_name.  Do not access any
2696 *      address inside the PCI regions unless this call returns
2697 *      successfully.
2698 *
2699 *      pci_request_regions_exclusive() will mark the region so that
2700 *      /dev/mem and the sysfs MMIO access will not be allowed.
2701 *
2702 *      Returns 0 on success, or %EBUSY on error.  A warning
2703 *      message is also printed on failure.
2704 */
2705int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2706{
2707        return pci_request_selected_regions_exclusive(pdev,
2708                                        ((1 << 6) - 1), res_name);
2709}
2710
2711static void __pci_set_master(struct pci_dev *dev, bool enable)
2712{
2713        u16 old_cmd, cmd;
2714
2715        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2716        if (enable)
2717                cmd = old_cmd | PCI_COMMAND_MASTER;
2718        else
2719                cmd = old_cmd & ~PCI_COMMAND_MASTER;
2720        if (cmd != old_cmd) {
2721                dev_dbg(&dev->dev, "%s bus mastering\n",
2722                        enable ? "enabling" : "disabling");
2723                pci_write_config_word(dev, PCI_COMMAND, cmd);
2724        }
2725        dev->is_busmaster = enable;
2726}
2727
2728/**
2729 * pcibios_setup - process "pci=" kernel boot arguments
2730 * @str: string used to pass in "pci=" kernel boot arguments
2731 *
2732 * Process kernel boot arguments.  This is the default implementation.
2733 * Architecture specific implementations can override this as necessary.
2734 */
2735char * __weak __init pcibios_setup(char *str)
2736{
2737        return str;
2738}
2739
2740/**
2741 * pcibios_set_master - enable PCI bus-mastering for device dev
2742 * @dev: the PCI device to enable
2743 *
2744 * Enables PCI bus-mastering for the device.  This is the default
2745 * implementation.  Architecture specific implementations can override
2746 * this if necessary.
2747 */
2748void __weak pcibios_set_master(struct pci_dev *dev)
2749{
2750        u8 lat;
2751
2752        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2753        if (pci_is_pcie(dev))
2754                return;
2755
2756        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2757        if (lat < 16)
2758                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2759        else if (lat > pcibios_max_latency)
2760                lat = pcibios_max_latency;
2761        else
2762                return;
2763        dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2764        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2765}
2766
2767/**
2768 * pci_set_master - enables bus-mastering for device dev
2769 * @dev: the PCI device to enable
2770 *
2771 * Enables bus-mastering on the device and calls pcibios_set_master()
2772 * to do the needed arch specific settings.
2773 */
2774void pci_set_master(struct pci_dev *dev)
2775{
2776        __pci_set_master(dev, true);
2777        pcibios_set_master(dev);
2778}
2779
2780/**
2781 * pci_clear_master - disables bus-mastering for device dev
2782 * @dev: the PCI device to disable
2783 */
2784void pci_clear_master(struct pci_dev *dev)
2785{
2786        __pci_set_master(dev, false);
2787}
2788
2789/**
2790 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2791 * @dev: the PCI device for which MWI is to be enabled
2792 *
2793 * Helper function for pci_set_mwi.
2794 * Originally copied from drivers/net/acenic.c.
2795 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2796 *
2797 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2798 */
2799int pci_set_cacheline_size(struct pci_dev *dev)
2800{
2801        u8 cacheline_size;
2802
2803        if (!pci_cache_line_size)
2804                return -EINVAL;
2805
2806        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2807           equal to or multiple of the right value. */
2808        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2809        if (cacheline_size >= pci_cache_line_size &&
2810            (cacheline_size % pci_cache_line_size) == 0)
2811                return 0;
2812
2813        /* Write the correct value. */
2814        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2815        /* Read it back. */
2816        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2817        if (cacheline_size == pci_cache_line_size)
2818                return 0;
2819
2820        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2821                   "supported\n", pci_cache_line_size << 2);
2822
2823        return -EINVAL;
2824}
2825EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2826
2827#ifdef PCI_DISABLE_MWI
2828int pci_set_mwi(struct pci_dev *dev)
2829{
2830        return 0;
2831}
2832
2833int pci_try_set_mwi(struct pci_dev *dev)
2834{
2835        return 0;
2836}
2837
2838void pci_clear_mwi(struct pci_dev *dev)
2839{
2840}
2841
2842#else
2843
2844/**
2845 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2846 * @dev: the PCI device for which MWI is enabled
2847 *
2848 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2849 *
2850 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2851 */
2852int
2853pci_set_mwi(struct pci_dev *dev)
2854{
2855        int rc;
2856        u16 cmd;
2857
2858        rc = pci_set_cacheline_size(dev);
2859        if (rc)
2860                return rc;
2861
2862        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2863        if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2864                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2865                cmd |= PCI_COMMAND_INVALIDATE;
2866                pci_write_config_word(dev, PCI_COMMAND, cmd);
2867        }
2868        
2869        return 0;
2870}
2871
2872/**
2873 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2874 * @dev: the PCI device for which MWI is enabled
2875 *
2876 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2877 * Callers are not required to check the return value.
2878 *
2879 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2880 */
2881int pci_try_set_mwi(struct pci_dev *dev)
2882{
2883        int rc = pci_set_mwi(dev);
2884        return rc;
2885}
2886
2887/**
2888 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2889 * @dev: the PCI device to disable
2890 *
2891 * Disables PCI Memory-Write-Invalidate transaction on the device
2892 */
2893void
2894pci_clear_mwi(struct pci_dev *dev)
2895{
2896        u16 cmd;
2897
2898        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2899        if (cmd & PCI_COMMAND_INVALIDATE) {
2900                cmd &= ~PCI_COMMAND_INVALIDATE;
2901                pci_write_config_word(dev, PCI_COMMAND, cmd);
2902        }
2903}
2904#endif /* ! PCI_DISABLE_MWI */
2905
2906/**
2907 * pci_intx - enables/disables PCI INTx for device dev
2908 * @pdev: the PCI device to operate on
2909 * @enable: boolean: whether to enable or disable PCI INTx
2910 *
2911 * Enables/disables PCI INTx for device dev
2912 */
2913void
2914pci_intx(struct pci_dev *pdev, int enable)
2915{
2916        u16 pci_command, new;
2917
2918        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2919
2920        if (enable) {
2921                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2922        } else {
2923                new = pci_command | PCI_COMMAND_INTX_DISABLE;
2924        }
2925
2926        if (new != pci_command) {
2927                struct pci_devres *dr;
2928
2929                pci_write_config_word(pdev, PCI_COMMAND, new);
2930
2931                dr = find_pci_dr(pdev);
2932                if (dr && !dr->restore_intx) {
2933                        dr->restore_intx = 1;
2934                        dr->orig_intx = !enable;
2935                }
2936        }
2937}
2938
2939/**
2940 * pci_intx_mask_supported - probe for INTx masking support
2941 * @dev: the PCI device to operate on
2942 *
2943 * Check if the device dev support INTx masking via the config space
2944 * command word.
2945 */
2946bool pci_intx_mask_supported(struct pci_dev *dev)
2947{
2948        bool mask_supported = false;
2949        u16 orig, new;
2950
2951        if (dev->broken_intx_masking)
2952                return false;
2953
2954        pci_cfg_access_lock(dev);
2955
2956        pci_read_config_word(dev, PCI_COMMAND, &orig);
2957        pci_write_config_word(dev, PCI_COMMAND,
2958                              orig ^ PCI_COMMAND_INTX_DISABLE);
2959        pci_read_config_word(dev, PCI_COMMAND, &new);
2960
2961        /*
2962         * There's no way to protect against hardware bugs or detect them
2963         * reliably, but as long as we know what the value should be, let's
2964         * go ahead and check it.
2965         */
2966        if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2967                dev_err(&dev->dev, "Command register changed from "
2968                        "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2969        } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2970                mask_supported = true;
2971                pci_write_config_word(dev, PCI_COMMAND, orig);
2972        }
2973
2974        pci_cfg_access_unlock(dev);
2975        return mask_supported;
2976}
2977EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2978
2979static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2980{
2981        struct pci_bus *bus = dev->bus;
2982        bool mask_updated = true;
2983        u32 cmd_status_dword;
2984        u16 origcmd, newcmd;
2985        unsigned long flags;
2986        bool irq_pending;
2987
2988        /*
2989         * We do a single dword read to retrieve both command and status.
2990         * Document assumptions that make this possible.
2991         */
2992        BUILD_BUG_ON(PCI_COMMAND % 4);
2993        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2994
2995        raw_spin_lock_irqsave(&pci_lock, flags);
2996
2997        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2998
2999        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3000
3001        /*
3002         * Check interrupt status register to see whether our device
3003         * triggered the interrupt (when masking) or the next IRQ is
3004         * already pending (when unmasking).
3005         */
3006        if (mask != irq_pending) {
3007                mask_updated = false;
3008                goto done;
3009        }
3010
3011        origcmd = cmd_status_dword;
3012        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3013        if (mask)
3014                newcmd |= PCI_COMMAND_INTX_DISABLE;
3015        if (newcmd != origcmd)
3016                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3017
3018done:
3019        raw_spin_unlock_irqrestore(&pci_lock, flags);
3020
3021        return mask_updated;
3022}
3023
3024/**
3025 * pci_check_and_mask_intx - mask INTx on pending interrupt
3026 * @dev: the PCI device to operate on
3027 *
3028 * Check if the device dev has its INTx line asserted, mask it and
3029 * return true in that case. False is returned if not interrupt was
3030 * pending.
3031 */
3032bool pci_check_and_mask_intx(struct pci_dev *dev)
3033{
3034        return pci_check_and_set_intx_mask(dev, true);
3035}
3036EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3037
3038/**
3039 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3040 * @dev: the PCI device to operate on
3041 *
3042 * Check if the device dev has its INTx line asserted, unmask it if not
3043 * and return true. False is returned and the mask remains active if
3044 * there was still an interrupt pending.
3045 */
3046bool pci_check_and_unmask_intx(struct pci_dev *dev)
3047{
3048        return pci_check_and_set_intx_mask(dev, false);
3049}
3050EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3051
3052/**
3053 * pci_msi_off - disables any msi or msix capabilities
3054 * @dev: the PCI device to operate on
3055 *
3056 * If you want to use msi see pci_enable_msi and friends.
3057 * This is a lower level primitive that allows us to disable
3058 * msi operation at the device level.
3059 */
3060void pci_msi_off(struct pci_dev *dev)
3061{
3062        int pos;
3063        u16 control;
3064
3065        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3066        if (pos) {
3067                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3068                control &= ~PCI_MSI_FLAGS_ENABLE;
3069                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3070        }
3071        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3072        if (pos) {
3073                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3074                control &= ~PCI_MSIX_FLAGS_ENABLE;
3075                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3076        }
3077}
3078EXPORT_SYMBOL_GPL(pci_msi_off);
3079
3080int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3081{
3082        return dma_set_max_seg_size(&dev->dev, size);
3083}
3084EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3085
3086int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3087{
3088        return dma_set_seg_boundary(&dev->dev, mask);
3089}
3090EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3091
3092static int pcie_flr(struct pci_dev *dev, int probe)
3093{
3094        int i;
3095        u32 cap;
3096        u16 status;
3097
3098        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3099        if (!(cap & PCI_EXP_DEVCAP_FLR))
3100                return -ENOTTY;
3101
3102        if (probe)
3103                return 0;
3104
3105        /* Wait for Transaction Pending bit clean */
3106        for (i = 0; i < 4; i++) {
3107                if (i)
3108                        msleep((1 << (i - 1)) * 100);
3109
3110                pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3111                if (!(status & PCI_EXP_DEVSTA_TRPND))
3112                        goto clear;
3113        }
3114
3115        dev_err(&dev->dev, "transaction is not cleared; "
3116                        "proceeding with reset anyway\n");
3117
3118clear:
3119        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3120
3121        msleep(100);
3122
3123        return 0;
3124}
3125
3126static int pci_af_flr(struct pci_dev *dev, int probe)
3127{
3128        int i;
3129        int pos;
3130        u8 cap;
3131        u8 status;
3132
3133        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3134        if (!pos)
3135                return -ENOTTY;
3136
3137        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3138        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3139                return -ENOTTY;
3140
3141        if (probe)
3142                return 0;
3143
3144        /* Wait for Transaction Pending bit clean */
3145        for (i = 0; i < 4; i++) {
3146                if (i)
3147                        msleep((1 << (i - 1)) * 100);
3148
3149                pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3150                if (!(status & PCI_AF_STATUS_TP))
3151                        goto clear;
3152        }
3153
3154        dev_err(&dev->dev, "transaction is not cleared; "
3155                        "proceeding with reset anyway\n");
3156
3157clear:
3158        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3159        msleep(100);
3160
3161        return 0;
3162}
3163
3164/**
3165 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3166 * @dev: Device to reset.
3167 * @probe: If set, only check if the device can be reset this way.
3168 *
3169 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3170 * unset, it will be reinitialized internally when going from PCI_D3hot to
3171 * PCI_D0.  If that's the case and the device is not in a low-power state
3172 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3173 *
3174 * NOTE: This causes the caller to sleep for twice the device power transition
3175 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3176 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3177 * Moreover, only devices in D0 can be reset by this function.
3178 */
3179static int pci_pm_reset(struct pci_dev *dev, int probe)
3180{
3181        u16 csr;
3182
3183        if (!dev->pm_cap)
3184                return -ENOTTY;
3185
3186        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3187        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3188                return -ENOTTY;
3189
3190        if (probe)
3191                return 0;
3192
3193        if (dev->current_state != PCI_D0)
3194                return -EINVAL;
3195
3196        csr &= ~PCI_PM_CTRL_STATE_MASK;
3197        csr |= PCI_D3hot;
3198        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3199        pci_dev_d3_sleep(dev);
3200
3201        csr &= ~PCI_PM_CTRL_STATE_MASK;
3202        csr |= PCI_D0;
3203        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3204        pci_dev_d3_sleep(dev);
3205
3206        return 0;
3207}
3208
3209static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3210{
3211        u16 ctrl;
3212        struct pci_dev *pdev;
3213
3214        if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3215                return -ENOTTY;
3216
3217        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3218                if (pdev != dev)
3219                        return -ENOTTY;
3220
3221        if (probe)
3222                return 0;
3223
3224        pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3225        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3226        pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3227        msleep(100);
3228
3229        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3230        pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3231        msleep(100);
3232
3233        return 0;
3234}
3235
3236static int __pci_dev_reset(struct pci_dev *dev, int probe)
3237{
3238        int rc;
3239
3240        might_sleep();
3241
3242        rc = pci_dev_specific_reset(dev, probe);
3243        if (rc != -ENOTTY)
3244                goto done;
3245
3246        rc = pcie_flr(dev, probe);
3247        if (rc != -ENOTTY)
3248                goto done;
3249
3250        rc = pci_af_flr(dev, probe);
3251        if (rc != -ENOTTY)
3252                goto done;
3253
3254        rc = pci_pm_reset(dev, probe);
3255        if (rc != -ENOTTY)
3256                goto done;
3257
3258        rc = pci_parent_bus_reset(dev, probe);
3259done:
3260        return rc;
3261}
3262
3263static int pci_dev_reset(struct pci_dev *dev, int probe)
3264{
3265        int rc;
3266
3267        if (!probe) {
3268                pci_cfg_access_lock(dev);
3269                /* block PM suspend, driver probe, etc. */
3270                device_lock(&dev->dev);
3271        }
3272
3273        rc = __pci_dev_reset(dev, probe);
3274
3275        if (!probe) {
3276                device_unlock(&dev->dev);
3277                pci_cfg_access_unlock(dev);
3278        }
3279        return rc;
3280}
3281/**
3282 * __pci_reset_function - reset a PCI device function
3283 * @dev: PCI device to reset
3284 *
3285 * Some devices allow an individual function to be reset without affecting
3286 * other functions in the same device.  The PCI device must be responsive
3287 * to PCI config space in order to use this function.
3288 *
3289 * The device function is presumed to be unused when this function is called.
3290 * Resetting the device will make the contents of PCI configuration space
3291 * random, so any caller of this must be prepared to reinitialise the
3292 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3293 * etc.
3294 *
3295 * Returns 0 if the device function was successfully reset or negative if the
3296 * device doesn't support resetting a single function.
3297 */
3298int __pci_reset_function(struct pci_dev *dev)
3299{
3300        return pci_dev_reset(dev, 0);
3301}
3302EXPORT_SYMBOL_GPL(__pci_reset_function);
3303
3304/**
3305 * __pci_reset_function_locked - reset a PCI device function while holding
3306 * the @dev mutex lock.
3307 * @dev: PCI device to reset
3308 *
3309 * Some devices allow an individual function to be reset without affecting
3310 * other functions in the same device.  The PCI device must be responsive
3311 * to PCI config space in order to use this function.
3312 *
3313 * The device function is presumed to be unused and the caller is holding
3314 * the device mutex lock when this function is called.
3315 * Resetting the device will make the contents of PCI configuration space
3316 * random, so any caller of this must be prepared to reinitialise the
3317 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3318 * etc.
3319 *
3320 * Returns 0 if the device function was successfully reset or negative if the
3321 * device doesn't support resetting a single function.
3322 */
3323int __pci_reset_function_locked(struct pci_dev *dev)
3324{
3325        return __pci_dev_reset(dev, 0);
3326}
3327EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3328
3329/**
3330 * pci_probe_reset_function - check whether the device can be safely reset
3331 * @dev: PCI device to reset
3332 *
3333 * Some devices allow an individual function to be reset without affecting
3334 * other functions in the same device.  The PCI device must be responsive
3335 * to PCI config space in order to use this function.
3336 *
3337 * Returns 0 if the device function can be reset or negative if the
3338 * device doesn't support resetting a single function.
3339 */
3340int pci_probe_reset_function(struct pci_dev *dev)
3341{
3342        return pci_dev_reset(dev, 1);
3343}
3344
3345/**
3346 * pci_reset_function - quiesce and reset a PCI device function
3347 * @dev: PCI device to reset
3348 *
3349 * Some devices allow an individual function to be reset without affecting
3350 * other functions in the same device.  The PCI device must be responsive
3351 * to PCI config space in order to use this function.
3352 *
3353 * This function does not just reset the PCI portion of a device, but
3354 * clears all the state associated with the device.  This function differs
3355 * from __pci_reset_function in that it saves and restores device state
3356 * over the reset.
3357 *
3358 * Returns 0 if the device function was successfully reset or negative if the
3359 * device doesn't support resetting a single function.
3360 */
3361int pci_reset_function(struct pci_dev *dev)
3362{
3363        int rc;
3364
3365        rc = pci_dev_reset(dev, 1);
3366        if (rc)
3367                return rc;
3368
3369        pci_save_state(dev);
3370
3371        /*
3372         * both INTx and MSI are disabled after the Interrupt Disable bit
3373         * is set and the Bus Master bit is cleared.
3374         */
3375        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3376
3377        rc = pci_dev_reset(dev, 0);
3378
3379        pci_restore_state(dev);
3380
3381        return rc;
3382}
3383EXPORT_SYMBOL_GPL(pci_reset_function);
3384
3385/**
3386 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3387 * @dev: PCI device to query
3388 *
3389 * Returns mmrbc: maximum designed memory read count in bytes
3390 *    or appropriate error value.
3391 */
3392int pcix_get_max_mmrbc(struct pci_dev *dev)
3393{
3394        int cap;
3395        u32 stat;
3396
3397        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3398        if (!cap)
3399                return -EINVAL;
3400
3401        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3402                return -EINVAL;
3403
3404        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3405}
3406EXPORT_SYMBOL(pcix_get_max_mmrbc);
3407
3408/**
3409 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3410 * @dev: PCI device to query
3411 *
3412 * Returns mmrbc: maximum memory read count in bytes
3413 *    or appropriate error value.
3414 */
3415int pcix_get_mmrbc(struct pci_dev *dev)
3416{
3417        int cap;
3418        u16 cmd;
3419
3420        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3421        if (!cap)
3422                return -EINVAL;
3423
3424        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3425                return -EINVAL;
3426
3427        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3428}
3429EXPORT_SYMBOL(pcix_get_mmrbc);
3430
3431/**
3432 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3433 * @dev: PCI device to query
3434 * @mmrbc: maximum memory read count in bytes
3435 *    valid values are 512, 1024, 2048, 4096
3436 *
3437 * If possible sets maximum memory read byte count, some bridges have erratas
3438 * that prevent this.
3439 */
3440int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3441{
3442        int cap;
3443        u32 stat, v, o;
3444        u16 cmd;
3445
3446        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3447                return -EINVAL;
3448
3449        v = ffs(mmrbc) - 10;
3450
3451        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3452        if (!cap)
3453                return -EINVAL;
3454
3455        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3456                return -EINVAL;
3457
3458        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3459                return -E2BIG;
3460
3461        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3462                return -EINVAL;
3463
3464        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3465        if (o != v) {
3466                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3467                        return -EIO;
3468
3469                cmd &= ~PCI_X_CMD_MAX_READ;
3470                cmd |= v << 2;
3471                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3472                        return -EIO;
3473        }
3474        return 0;
3475}
3476EXPORT_SYMBOL(pcix_set_mmrbc);
3477
3478/**
3479 * pcie_get_readrq - get PCI Express read request size
3480 * @dev: PCI device to query
3481 *
3482 * Returns maximum memory read request in bytes
3483 *    or appropriate error value.
3484 */
3485int pcie_get_readrq(struct pci_dev *dev)
3486{
3487        u16 ctl;
3488
3489        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3490
3491        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3492}
3493EXPORT_SYMBOL(pcie_get_readrq);
3494
3495/**
3496 * pcie_set_readrq - set PCI Express maximum memory read request
3497 * @dev: PCI device to query
3498 * @rq: maximum memory read count in bytes
3499 *    valid values are 128, 256, 512, 1024, 2048, 4096
3500 *
3501 * If possible sets maximum memory read request in bytes
3502 */
3503int pcie_set_readrq(struct pci_dev *dev, int rq)
3504{
3505        u16 v;
3506
3507        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3508                return -EINVAL;
3509
3510        /*
3511         * If using the "performance" PCIe config, we clamp the
3512         * read rq size to the max packet size to prevent the
3513         * host bridge generating requests larger than we can
3514         * cope with
3515         */
3516        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3517                int mps = pcie_get_mps(dev);
3518
3519                if (mps < 0)
3520                        return mps;
3521                if (mps < rq)
3522                        rq = mps;
3523        }
3524
3525        v = (ffs(rq) - 8) << 12;
3526
3527        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3528                                                  PCI_EXP_DEVCTL_READRQ, v);
3529}
3530EXPORT_SYMBOL(pcie_set_readrq);
3531
3532/**
3533 * pcie_get_mps - get PCI Express maximum payload size
3534 * @dev: PCI device to query
3535 *
3536 * Returns maximum payload size in bytes
3537 *    or appropriate error value.
3538 */
3539int pcie_get_mps(struct pci_dev *dev)
3540{
3541        u16 ctl;
3542
3543        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3544
3545        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3546}
3547
3548/**
3549 * pcie_set_mps - set PCI Express maximum payload size
3550 * @dev: PCI device to query
3551 * @mps: maximum payload size in bytes
3552 *    valid values are 128, 256, 512, 1024, 2048, 4096
3553 *
3554 * If possible sets maximum payload size
3555 */
3556int pcie_set_mps(struct pci_dev *dev, int mps)
3557{
3558        u16 v;
3559
3560        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3561                return -EINVAL;
3562
3563        v = ffs(mps) - 8;
3564        if (v > dev->pcie_mpss) 
3565                return -EINVAL;
3566        v <<= 5;
3567
3568        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3569                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
3570}
3571
3572/**
3573 * pci_select_bars - Make BAR mask from the type of resource
3574 * @dev: the PCI device for which BAR mask is made
3575 * @flags: resource type mask to be selected
3576 *
3577 * This helper routine makes bar mask from the type of resource.
3578 */
3579int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3580{
3581        int i, bars = 0;
3582        for (i = 0; i < PCI_NUM_RESOURCES; i++)
3583                if (pci_resource_flags(dev, i) & flags)
3584                        bars |= (1 << i);
3585        return bars;
3586}
3587
3588/**
3589 * pci_resource_bar - get position of the BAR associated with a resource
3590 * @dev: the PCI device
3591 * @resno: the resource number
3592 * @type: the BAR type to be filled in
3593 *
3594 * Returns BAR position in config space, or 0 if the BAR is invalid.
3595 */
3596int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3597{
3598        int reg;
3599
3600        if (resno < PCI_ROM_RESOURCE) {
3601                *type = pci_bar_unknown;
3602                return PCI_BASE_ADDRESS_0 + 4 * resno;
3603        } else if (resno == PCI_ROM_RESOURCE) {
3604                *type = pci_bar_mem32;
3605                return dev->rom_base_reg;
3606        } else if (resno < PCI_BRIDGE_RESOURCES) {
3607                /* device specific resource */
3608                reg = pci_iov_resource_bar(dev, resno, type);
3609                if (reg)
3610                        return reg;
3611        }
3612
3613        dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3614        return 0;
3615}
3616
3617/* Some architectures require additional programming to enable VGA */
3618static arch_set_vga_state_t arch_set_vga_state;
3619
3620void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3621{
3622        arch_set_vga_state = func;      /* NULL disables */
3623}
3624
3625static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3626                      unsigned int command_bits, u32 flags)
3627{
3628        if (arch_set_vga_state)
3629                return arch_set_vga_state(dev, decode, command_bits,
3630                                                flags);
3631        return 0;
3632}
3633
3634/**
3635 * pci_set_vga_state - set VGA decode state on device and parents if requested
3636 * @dev: the PCI device
3637 * @decode: true = enable decoding, false = disable decoding
3638 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3639 * @flags: traverse ancestors and change bridges
3640 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3641 */
3642int pci_set_vga_state(struct pci_dev *dev, bool decode,
3643                      unsigned int command_bits, u32 flags)
3644{
3645        struct pci_bus *bus;
3646        struct pci_dev *bridge;
3647        u16 cmd;
3648        int rc;
3649
3650        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3651
3652        /* ARCH specific VGA enables */
3653        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3654        if (rc)
3655                return rc;
3656
3657        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3658                pci_read_config_word(dev, PCI_COMMAND, &cmd);
3659                if (decode == true)
3660                        cmd |= command_bits;
3661                else
3662                        cmd &= ~command_bits;
3663                pci_write_config_word(dev, PCI_COMMAND, cmd);
3664        }
3665
3666        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3667                return 0;
3668
3669        bus = dev->bus;
3670        while (bus) {
3671                bridge = bus->self;
3672                if (bridge) {
3673                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3674                                             &cmd);
3675                        if (decode == true)
3676                                cmd |= PCI_BRIDGE_CTL_VGA;
3677                        else
3678                                cmd &= ~PCI_BRIDGE_CTL_VGA;
3679                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3680                                              cmd);
3681                }
3682                bus = bus->parent;
3683        }
3684        return 0;
3685}
3686
3687#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3688static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3689static DEFINE_SPINLOCK(resource_alignment_lock);
3690
3691/**
3692 * pci_specified_resource_alignment - get resource alignment specified by user.
3693 * @dev: the PCI device to get
3694 *
3695 * RETURNS: Resource alignment if it is specified.
3696 *          Zero if it is not specified.
3697 */
3698resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3699{
3700        int seg, bus, slot, func, align_order, count;
3701        resource_size_t align = 0;
3702        char *p;
3703
3704        spin_lock(&resource_alignment_lock);
3705        p = resource_alignment_param;
3706        while (*p) {
3707                count = 0;
3708                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3709                                                        p[count] == '@') {
3710                        p += count + 1;
3711                } else {
3712                        align_order = -1;
3713                }
3714                if (sscanf(p, "%x:%x:%x.%x%n",
3715                        &seg, &bus, &slot, &func, &count) != 4) {
3716                        seg = 0;
3717                        if (sscanf(p, "%x:%x.%x%n",
3718                                        &bus, &slot, &func, &count) != 3) {
3719                                /* Invalid format */
3720                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3721                                        p);
3722                                break;
3723                        }
3724                }
3725                p += count;
3726                if (seg == pci_domain_nr(dev->bus) &&
3727                        bus == dev->bus->number &&
3728                        slot == PCI_SLOT(dev->devfn) &&
3729                        func == PCI_FUNC(dev->devfn)) {
3730                        if (align_order == -1) {
3731                                align = PAGE_SIZE;
3732                        } else {
3733                                align = 1 << align_order;
3734                        }
3735                        /* Found */
3736                        break;
3737                }
3738                if (*p != ';' && *p != ',') {
3739                        /* End of param or invalid format */
3740                        break;
3741                }
3742                p++;
3743        }
3744        spin_unlock(&resource_alignment_lock);
3745        return align;
3746}
3747
3748/*
3749 * This function disables memory decoding and releases memory resources
3750 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3751 * It also rounds up size to specified alignment.
3752 * Later on, the kernel will assign page-aligned memory resource back
3753 * to the device.
3754 */
3755void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3756{
3757        int i;
3758        struct resource *r;
3759        resource_size_t align, size;
3760        u16 command;
3761
3762        /* check if specified PCI is target device to reassign */
3763        align = pci_specified_resource_alignment(dev);
3764        if (!align)
3765                return;
3766
3767        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3768            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3769                dev_warn(&dev->dev,
3770                        "Can't reassign resources to host bridge.\n");
3771                return;
3772        }
3773
3774        dev_info(&dev->dev,
3775                "Disabling memory decoding and releasing memory resources.\n");
3776        pci_read_config_word(dev, PCI_COMMAND, &command);
3777        command &= ~PCI_COMMAND_MEMORY;
3778        pci_write_config_word(dev, PCI_COMMAND, command);
3779
3780        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3781                r = &dev->resource[i];
3782                if (!(r->flags & IORESOURCE_MEM))
3783                        continue;
3784                size = resource_size(r);
3785                if (size < align) {
3786                        size = align;
3787                        dev_info(&dev->dev,
3788                                "Rounding up size of resource #%d to %#llx.\n",
3789                                i, (unsigned long long)size);
3790                }
3791                r->end = size - 1;
3792                r->start = 0;
3793        }
3794        /* Need to disable bridge's resource window,
3795         * to enable the kernel to reassign new resource
3796         * window later on.
3797         */
3798        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3799            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3800                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3801                        r = &dev->resource[i];
3802                        if (!(r->flags & IORESOURCE_MEM))
3803                                continue;
3804                        r->end = resource_size(r) - 1;
3805                        r->start = 0;
3806                }
3807                pci_disable_bridge_window(dev);
3808        }
3809}
3810
3811ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3812{
3813        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3814                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3815        spin_lock(&resource_alignment_lock);
3816        strncpy(resource_alignment_param, buf, count);
3817        resource_alignment_param[count] = '\0';
3818        spin_unlock(&resource_alignment_lock);
3819        return count;
3820}
3821
3822ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3823{
3824        size_t count;
3825        spin_lock(&resource_alignment_lock);
3826        count = snprintf(buf, size, "%s", resource_alignment_param);
3827        spin_unlock(&resource_alignment_lock);
3828        return count;
3829}
3830
3831static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3832{
3833        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3834}
3835
3836static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3837                                        const char *buf, size_t count)
3838{
3839        return pci_set_resource_alignment_param(buf, count);
3840}
3841
3842BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3843                                        pci_resource_alignment_store);
3844
3845static int __init pci_resource_alignment_sysfs_init(void)
3846{
3847        return bus_create_file(&pci_bus_type,
3848                                        &bus_attr_resource_alignment);
3849}
3850
3851late_initcall(pci_resource_alignment_sysfs_init);
3852
3853static void pci_no_domains(void)
3854{
3855#ifdef CONFIG_PCI_DOMAINS
3856        pci_domains_supported = 0;
3857#endif
3858}
3859
3860/**
3861 * pci_ext_cfg_avail - can we access extended PCI config space?
3862 *
3863 * Returns 1 if we can access PCI extended config space (offsets
3864 * greater than 0xff). This is the default implementation. Architecture
3865 * implementations can override this.
3866 */
3867int __weak pci_ext_cfg_avail(void)
3868{
3869        return 1;
3870}
3871
3872void __weak pci_fixup_cardbus(struct pci_bus *bus)
3873{
3874}
3875EXPORT_SYMBOL(pci_fixup_cardbus);
3876
3877static int __init pci_setup(char *str)
3878{
3879        while (str) {
3880                char *k = strchr(str, ',');
3881                if (k)
3882                        *k++ = 0;
3883                if (*str && (str = pcibios_setup(str)) && *str) {
3884                        if (!strcmp(str, "nomsi")) {
3885                                pci_no_msi();
3886                        } else if (!strcmp(str, "noaer")) {
3887                                pci_no_aer();
3888                        } else if (!strncmp(str, "realloc=", 8)) {
3889                                pci_realloc_get_opt(str + 8);
3890                        } else if (!strncmp(str, "realloc", 7)) {
3891                                pci_realloc_get_opt("on");
3892                        } else if (!strcmp(str, "nodomains")) {
3893                                pci_no_domains();
3894                        } else if (!strncmp(str, "noari", 5)) {
3895                                pcie_ari_disabled = true;
3896                        } else if (!strncmp(str, "cbiosize=", 9)) {
3897                                pci_cardbus_io_size = memparse(str + 9, &str);
3898                        } else if (!strncmp(str, "cbmemsize=", 10)) {
3899                                pci_cardbus_mem_size = memparse(str + 10, &str);
3900                        } else if (!strncmp(str, "resource_alignment=", 19)) {
3901                                pci_set_resource_alignment_param(str + 19,
3902                                                        strlen(str + 19));
3903                        } else if (!strncmp(str, "ecrc=", 5)) {
3904                                pcie_ecrc_get_policy(str + 5);
3905                        } else if (!strncmp(str, "hpiosize=", 9)) {
3906                                pci_hotplug_io_size = memparse(str + 9, &str);
3907                        } else if (!strncmp(str, "hpmemsize=", 10)) {
3908                                pci_hotplug_mem_size = memparse(str + 10, &str);
3909                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3910                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
3911                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3912                                pcie_bus_config = PCIE_BUS_SAFE;
3913                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3914                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
3915                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3916                                pcie_bus_config = PCIE_BUS_PEER2PEER;
3917                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
3918                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3919                        } else {
3920                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
3921                                                str);
3922                        }
3923                }
3924                str = k;
3925        }
3926        return 0;
3927}
3928early_param("pci", pci_setup);
3929
3930EXPORT_SYMBOL(pci_reenable_device);
3931EXPORT_SYMBOL(pci_enable_device_io);
3932EXPORT_SYMBOL(pci_enable_device_mem);
3933EXPORT_SYMBOL(pci_enable_device);
3934EXPORT_SYMBOL(pcim_enable_device);
3935EXPORT_SYMBOL(pcim_pin_device);
3936EXPORT_SYMBOL(pci_disable_device);
3937EXPORT_SYMBOL(pci_find_capability);
3938EXPORT_SYMBOL(pci_bus_find_capability);
3939EXPORT_SYMBOL(pci_release_regions);
3940EXPORT_SYMBOL(pci_request_regions);
3941EXPORT_SYMBOL(pci_request_regions_exclusive);
3942EXPORT_SYMBOL(pci_release_region);
3943EXPORT_SYMBOL(pci_request_region);
3944EXPORT_SYMBOL(pci_request_region_exclusive);
3945EXPORT_SYMBOL(pci_release_selected_regions);
3946EXPORT_SYMBOL(pci_request_selected_regions);
3947EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3948EXPORT_SYMBOL(pci_set_master);
3949EXPORT_SYMBOL(pci_clear_master);
3950EXPORT_SYMBOL(pci_set_mwi);
3951EXPORT_SYMBOL(pci_try_set_mwi);
3952EXPORT_SYMBOL(pci_clear_mwi);
3953EXPORT_SYMBOL_GPL(pci_intx);
3954EXPORT_SYMBOL(pci_assign_resource);
3955EXPORT_SYMBOL(pci_find_parent_resource);
3956EXPORT_SYMBOL(pci_select_bars);
3957
3958EXPORT_SYMBOL(pci_set_power_state);
3959EXPORT_SYMBOL(pci_save_state);
3960EXPORT_SYMBOL(pci_restore_state);
3961EXPORT_SYMBOL(pci_pme_capable);
3962EXPORT_SYMBOL(pci_pme_active);
3963EXPORT_SYMBOL(pci_wake_from_d3);
3964EXPORT_SYMBOL(pci_target_state);
3965EXPORT_SYMBOL(pci_prepare_to_sleep);
3966EXPORT_SYMBOL(pci_back_from_sleep);
3967EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3968
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.