linux/drivers/base/memory.c
<<
>>
Prefs
   1/*
   2 * Memory subsystem support
   3 *
   4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
   5 *            Dave Hansen <haveblue@us.ibm.com>
   6 *
   7 * This file provides the necessary infrastructure to represent
   8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
   9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
  10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/topology.h>
  16#include <linux/capability.h>
  17#include <linux/device.h>
  18#include <linux/memory.h>
  19#include <linux/kobject.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/mm.h>
  22#include <linux/mutex.h>
  23#include <linux/stat.h>
  24#include <linux/slab.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/uaccess.h>
  28
  29static DEFINE_MUTEX(mem_sysfs_mutex);
  30
  31#define MEMORY_CLASS_NAME       "memory"
  32
  33static int sections_per_block;
  34
  35static inline int base_memory_block_id(int section_nr)
  36{
  37        return section_nr / sections_per_block;
  38}
  39
  40static struct bus_type memory_subsys = {
  41        .name = MEMORY_CLASS_NAME,
  42        .dev_name = MEMORY_CLASS_NAME,
  43};
  44
  45static BLOCKING_NOTIFIER_HEAD(memory_chain);
  46
  47int register_memory_notifier(struct notifier_block *nb)
  48{
  49        return blocking_notifier_chain_register(&memory_chain, nb);
  50}
  51EXPORT_SYMBOL(register_memory_notifier);
  52
  53void unregister_memory_notifier(struct notifier_block *nb)
  54{
  55        blocking_notifier_chain_unregister(&memory_chain, nb);
  56}
  57EXPORT_SYMBOL(unregister_memory_notifier);
  58
  59static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
  60
  61int register_memory_isolate_notifier(struct notifier_block *nb)
  62{
  63        return atomic_notifier_chain_register(&memory_isolate_chain, nb);
  64}
  65EXPORT_SYMBOL(register_memory_isolate_notifier);
  66
  67void unregister_memory_isolate_notifier(struct notifier_block *nb)
  68{
  69        atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
  70}
  71EXPORT_SYMBOL(unregister_memory_isolate_notifier);
  72
  73static void memory_block_release(struct device *dev)
  74{
  75        struct memory_block *mem = container_of(dev, struct memory_block, dev);
  76
  77        kfree(mem);
  78}
  79
  80/*
  81 * register_memory - Setup a sysfs device for a memory block
  82 */
  83static
  84int register_memory(struct memory_block *memory)
  85{
  86        int error;
  87
  88        memory->dev.bus = &memory_subsys;
  89        memory->dev.id = memory->start_section_nr / sections_per_block;
  90        memory->dev.release = memory_block_release;
  91
  92        error = device_register(&memory->dev);
  93        return error;
  94}
  95
  96static void
  97unregister_memory(struct memory_block *memory)
  98{
  99        BUG_ON(memory->dev.bus != &memory_subsys);
 100
 101        /* drop the ref. we got in remove_memory_block() */
 102        kobject_put(&memory->dev.kobj);
 103        device_unregister(&memory->dev);
 104}
 105
 106unsigned long __weak memory_block_size_bytes(void)
 107{
 108        return MIN_MEMORY_BLOCK_SIZE;
 109}
 110
 111static unsigned long get_memory_block_size(void)
 112{
 113        unsigned long block_sz;
 114
 115        block_sz = memory_block_size_bytes();
 116
 117        /* Validate blk_sz is a power of 2 and not less than section size */
 118        if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
 119                WARN_ON(1);
 120                block_sz = MIN_MEMORY_BLOCK_SIZE;
 121        }
 122
 123        return block_sz;
 124}
 125
 126/*
 127 * use this as the physical section index that this memsection
 128 * uses.
 129 */
 130
 131static ssize_t show_mem_start_phys_index(struct device *dev,
 132                        struct device_attribute *attr, char *buf)
 133{
 134        struct memory_block *mem =
 135                container_of(dev, struct memory_block, dev);
 136        unsigned long phys_index;
 137
 138        phys_index = mem->start_section_nr / sections_per_block;
 139        return sprintf(buf, "%08lx\n", phys_index);
 140}
 141
 142static ssize_t show_mem_end_phys_index(struct device *dev,
 143                        struct device_attribute *attr, char *buf)
 144{
 145        struct memory_block *mem =
 146                container_of(dev, struct memory_block, dev);
 147        unsigned long phys_index;
 148
 149        phys_index = mem->end_section_nr / sections_per_block;
 150        return sprintf(buf, "%08lx\n", phys_index);
 151}
 152
 153/*
 154 * Show whether the section of memory is likely to be hot-removable
 155 */
 156static ssize_t show_mem_removable(struct device *dev,
 157                        struct device_attribute *attr, char *buf)
 158{
 159        unsigned long i, pfn;
 160        int ret = 1;
 161        struct memory_block *mem =
 162                container_of(dev, struct memory_block, dev);
 163
 164        for (i = 0; i < sections_per_block; i++) {
 165                pfn = section_nr_to_pfn(mem->start_section_nr + i);
 166                ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
 167        }
 168
 169        return sprintf(buf, "%d\n", ret);
 170}
 171
 172/*
 173 * online, offline, going offline, etc.
 174 */
 175static ssize_t show_mem_state(struct device *dev,
 176                        struct device_attribute *attr, char *buf)
 177{
 178        struct memory_block *mem =
 179                container_of(dev, struct memory_block, dev);
 180        ssize_t len = 0;
 181
 182        /*
 183         * We can probably put these states in a nice little array
 184         * so that they're not open-coded
 185         */
 186        switch (mem->state) {
 187                case MEM_ONLINE:
 188                        len = sprintf(buf, "online\n");
 189                        break;
 190                case MEM_OFFLINE:
 191                        len = sprintf(buf, "offline\n");
 192                        break;
 193                case MEM_GOING_OFFLINE:
 194                        len = sprintf(buf, "going-offline\n");
 195                        break;
 196                default:
 197                        len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
 198                                        mem->state);
 199                        WARN_ON(1);
 200                        break;
 201        }
 202
 203        return len;
 204}
 205
 206int memory_notify(unsigned long val, void *v)
 207{
 208        return blocking_notifier_call_chain(&memory_chain, val, v);
 209}
 210
 211int memory_isolate_notify(unsigned long val, void *v)
 212{
 213        return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
 214}
 215
 216/*
 217 * The probe routines leave the pages reserved, just as the bootmem code does.
 218 * Make sure they're still that way.
 219 */
 220static bool pages_correctly_reserved(unsigned long start_pfn,
 221                                        unsigned long nr_pages)
 222{
 223        int i, j;
 224        struct page *page;
 225        unsigned long pfn = start_pfn;
 226
 227        /*
 228         * memmap between sections is not contiguous except with
 229         * SPARSEMEM_VMEMMAP. We lookup the page once per section
 230         * and assume memmap is contiguous within each section
 231         */
 232        for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
 233                if (WARN_ON_ONCE(!pfn_valid(pfn)))
 234                        return false;
 235                page = pfn_to_page(pfn);
 236
 237                for (j = 0; j < PAGES_PER_SECTION; j++) {
 238                        if (PageReserved(page + j))
 239                                continue;
 240
 241                        printk(KERN_WARNING "section number %ld page number %d "
 242                                "not reserved, was it already online?\n",
 243                                pfn_to_section_nr(pfn), j);
 244
 245                        return false;
 246                }
 247        }
 248
 249        return true;
 250}
 251
 252/*
 253 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 254 * OK to have direct references to sparsemem variables in here.
 255 */
 256static int
 257memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
 258{
 259        unsigned long start_pfn;
 260        unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 261        struct page *first_page;
 262        int ret;
 263
 264        first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
 265        start_pfn = page_to_pfn(first_page);
 266
 267        switch (action) {
 268                case MEM_ONLINE:
 269                        if (!pages_correctly_reserved(start_pfn, nr_pages))
 270                                return -EBUSY;
 271
 272                        ret = online_pages(start_pfn, nr_pages, online_type);
 273                        break;
 274                case MEM_OFFLINE:
 275                        ret = offline_pages(start_pfn, nr_pages);
 276                        break;
 277                default:
 278                        WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
 279                             "%ld\n", __func__, phys_index, action, action);
 280                        ret = -EINVAL;
 281        }
 282
 283        return ret;
 284}
 285
 286static int __memory_block_change_state(struct memory_block *mem,
 287                unsigned long to_state, unsigned long from_state_req,
 288                int online_type)
 289{
 290        int ret = 0;
 291
 292        if (mem->state != from_state_req) {
 293                ret = -EINVAL;
 294                goto out;
 295        }
 296
 297        if (to_state == MEM_OFFLINE)
 298                mem->state = MEM_GOING_OFFLINE;
 299
 300        ret = memory_block_action(mem->start_section_nr, to_state, online_type);
 301
 302        if (ret) {
 303                mem->state = from_state_req;
 304                goto out;
 305        }
 306
 307        mem->state = to_state;
 308        switch (mem->state) {
 309        case MEM_OFFLINE:
 310                kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
 311                break;
 312        case MEM_ONLINE:
 313                kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
 314                break;
 315        default:
 316                break;
 317        }
 318out:
 319        return ret;
 320}
 321
 322static int memory_block_change_state(struct memory_block *mem,
 323                unsigned long to_state, unsigned long from_state_req,
 324                int online_type)
 325{
 326        int ret;
 327
 328        mutex_lock(&mem->state_mutex);
 329        ret = __memory_block_change_state(mem, to_state, from_state_req,
 330                                          online_type);
 331        mutex_unlock(&mem->state_mutex);
 332
 333        return ret;
 334}
 335static ssize_t
 336store_mem_state(struct device *dev,
 337                struct device_attribute *attr, const char *buf, size_t count)
 338{
 339        struct memory_block *mem;
 340        int ret = -EINVAL;
 341
 342        mem = container_of(dev, struct memory_block, dev);
 343
 344        if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
 345                ret = memory_block_change_state(mem, MEM_ONLINE,
 346                                                MEM_OFFLINE, ONLINE_KERNEL);
 347        else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
 348                ret = memory_block_change_state(mem, MEM_ONLINE,
 349                                                MEM_OFFLINE, ONLINE_MOVABLE);
 350        else if (!strncmp(buf, "online", min_t(int, count, 6)))
 351                ret = memory_block_change_state(mem, MEM_ONLINE,
 352                                                MEM_OFFLINE, ONLINE_KEEP);
 353        else if(!strncmp(buf, "offline", min_t(int, count, 7)))
 354                ret = memory_block_change_state(mem, MEM_OFFLINE,
 355                                                MEM_ONLINE, -1);
 356
 357        if (ret)
 358                return ret;
 359        return count;
 360}
 361
 362/*
 363 * phys_device is a bad name for this.  What I really want
 364 * is a way to differentiate between memory ranges that
 365 * are part of physical devices that constitute
 366 * a complete removable unit or fru.
 367 * i.e. do these ranges belong to the same physical device,
 368 * s.t. if I offline all of these sections I can then
 369 * remove the physical device?
 370 */
 371static ssize_t show_phys_device(struct device *dev,
 372                                struct device_attribute *attr, char *buf)
 373{
 374        struct memory_block *mem =
 375                container_of(dev, struct memory_block, dev);
 376        return sprintf(buf, "%d\n", mem->phys_device);
 377}
 378
 379static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
 380static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
 381static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
 382static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
 383static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
 384
 385#define mem_create_simple_file(mem, attr_name)  \
 386        device_create_file(&mem->dev, &dev_attr_##attr_name)
 387#define mem_remove_simple_file(mem, attr_name)  \
 388        device_remove_file(&mem->dev, &dev_attr_##attr_name)
 389
 390/*
 391 * Block size attribute stuff
 392 */
 393static ssize_t
 394print_block_size(struct device *dev, struct device_attribute *attr,
 395                 char *buf)
 396{
 397        return sprintf(buf, "%lx\n", get_memory_block_size());
 398}
 399
 400static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
 401
 402static int block_size_init(void)
 403{
 404        return device_create_file(memory_subsys.dev_root,
 405                                  &dev_attr_block_size_bytes);
 406}
 407
 408/*
 409 * Some architectures will have custom drivers to do this, and
 410 * will not need to do it from userspace.  The fake hot-add code
 411 * as well as ppc64 will do all of their discovery in userspace
 412 * and will require this interface.
 413 */
 414#ifdef CONFIG_ARCH_MEMORY_PROBE
 415static ssize_t
 416memory_probe_store(struct device *dev, struct device_attribute *attr,
 417                   const char *buf, size_t count)
 418{
 419        u64 phys_addr;
 420        int nid;
 421        int i, ret;
 422        unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
 423
 424        phys_addr = simple_strtoull(buf, NULL, 0);
 425
 426        if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
 427                return -EINVAL;
 428
 429        for (i = 0; i < sections_per_block; i++) {
 430                nid = memory_add_physaddr_to_nid(phys_addr);
 431                ret = add_memory(nid, phys_addr,
 432                                 PAGES_PER_SECTION << PAGE_SHIFT);
 433                if (ret)
 434                        goto out;
 435
 436                phys_addr += MIN_MEMORY_BLOCK_SIZE;
 437        }
 438
 439        ret = count;
 440out:
 441        return ret;
 442}
 443static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
 444
 445static int memory_probe_init(void)
 446{
 447        return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
 448}
 449#else
 450static inline int memory_probe_init(void)
 451{
 452        return 0;
 453}
 454#endif
 455
 456#ifdef CONFIG_MEMORY_FAILURE
 457/*
 458 * Support for offlining pages of memory
 459 */
 460
 461/* Soft offline a page */
 462static ssize_t
 463store_soft_offline_page(struct device *dev,
 464                        struct device_attribute *attr,
 465                        const char *buf, size_t count)
 466{
 467        int ret;
 468        u64 pfn;
 469        if (!capable(CAP_SYS_ADMIN))
 470                return -EPERM;
 471        if (strict_strtoull(buf, 0, &pfn) < 0)
 472                return -EINVAL;
 473        pfn >>= PAGE_SHIFT;
 474        if (!pfn_valid(pfn))
 475                return -ENXIO;
 476        ret = soft_offline_page(pfn_to_page(pfn), 0);
 477        return ret == 0 ? count : ret;
 478}
 479
 480/* Forcibly offline a page, including killing processes. */
 481static ssize_t
 482store_hard_offline_page(struct device *dev,
 483                        struct device_attribute *attr,
 484                        const char *buf, size_t count)
 485{
 486        int ret;
 487        u64 pfn;
 488        if (!capable(CAP_SYS_ADMIN))
 489                return -EPERM;
 490        if (strict_strtoull(buf, 0, &pfn) < 0)
 491                return -EINVAL;
 492        pfn >>= PAGE_SHIFT;
 493        ret = memory_failure(pfn, 0, 0);
 494        return ret ? ret : count;
 495}
 496
 497static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
 498static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
 499
 500static __init int memory_fail_init(void)
 501{
 502        int err;
 503
 504        err = device_create_file(memory_subsys.dev_root,
 505                                &dev_attr_soft_offline_page);
 506        if (!err)
 507                err = device_create_file(memory_subsys.dev_root,
 508                                &dev_attr_hard_offline_page);
 509        return err;
 510}
 511#else
 512static inline int memory_fail_init(void)
 513{
 514        return 0;
 515}
 516#endif
 517
 518/*
 519 * Note that phys_device is optional.  It is here to allow for
 520 * differentiation between which *physical* devices each
 521 * section belongs to...
 522 */
 523int __weak arch_get_memory_phys_device(unsigned long start_pfn)
 524{
 525        return 0;
 526}
 527
 528/*
 529 * A reference for the returned object is held and the reference for the
 530 * hinted object is released.
 531 */
 532struct memory_block *find_memory_block_hinted(struct mem_section *section,
 533                                              struct memory_block *hint)
 534{
 535        int block_id = base_memory_block_id(__section_nr(section));
 536        struct device *hintdev = hint ? &hint->dev : NULL;
 537        struct device *dev;
 538
 539        dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
 540        if (hint)
 541                put_device(&hint->dev);
 542        if (!dev)
 543                return NULL;
 544        return container_of(dev, struct memory_block, dev);
 545}
 546
 547/*
 548 * For now, we have a linear search to go find the appropriate
 549 * memory_block corresponding to a particular phys_index. If
 550 * this gets to be a real problem, we can always use a radix
 551 * tree or something here.
 552 *
 553 * This could be made generic for all device subsystems.
 554 */
 555struct memory_block *find_memory_block(struct mem_section *section)
 556{
 557        return find_memory_block_hinted(section, NULL);
 558}
 559
 560static int init_memory_block(struct memory_block **memory,
 561                             struct mem_section *section, unsigned long state)
 562{
 563        struct memory_block *mem;
 564        unsigned long start_pfn;
 565        int scn_nr;
 566        int ret = 0;
 567
 568        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 569        if (!mem)
 570                return -ENOMEM;
 571
 572        scn_nr = __section_nr(section);
 573        mem->start_section_nr =
 574                        base_memory_block_id(scn_nr) * sections_per_block;
 575        mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
 576        mem->state = state;
 577        mem->section_count++;
 578        mutex_init(&mem->state_mutex);
 579        start_pfn = section_nr_to_pfn(mem->start_section_nr);
 580        mem->phys_device = arch_get_memory_phys_device(start_pfn);
 581
 582        ret = register_memory(mem);
 583        if (!ret)
 584                ret = mem_create_simple_file(mem, phys_index);
 585        if (!ret)
 586                ret = mem_create_simple_file(mem, end_phys_index);
 587        if (!ret)
 588                ret = mem_create_simple_file(mem, state);
 589        if (!ret)
 590                ret = mem_create_simple_file(mem, phys_device);
 591        if (!ret)
 592                ret = mem_create_simple_file(mem, removable);
 593
 594        *memory = mem;
 595        return ret;
 596}
 597
 598static int add_memory_section(int nid, struct mem_section *section,
 599                        struct memory_block **mem_p,
 600                        unsigned long state, enum mem_add_context context)
 601{
 602        struct memory_block *mem = NULL;
 603        int scn_nr = __section_nr(section);
 604        int ret = 0;
 605
 606        mutex_lock(&mem_sysfs_mutex);
 607
 608        if (context == BOOT) {
 609                /* same memory block ? */
 610                if (mem_p && *mem_p)
 611                        if (scn_nr >= (*mem_p)->start_section_nr &&
 612                            scn_nr <= (*mem_p)->end_section_nr) {
 613                                mem = *mem_p;
 614                                kobject_get(&mem->dev.kobj);
 615                        }
 616        } else
 617                mem = find_memory_block(section);
 618
 619        if (mem) {
 620                mem->section_count++;
 621                kobject_put(&mem->dev.kobj);
 622        } else {
 623                ret = init_memory_block(&mem, section, state);
 624                /* store memory_block pointer for next loop */
 625                if (!ret && context == BOOT)
 626                        if (mem_p)
 627                                *mem_p = mem;
 628        }
 629
 630        if (!ret) {
 631                if (context == HOTPLUG &&
 632                    mem->section_count == sections_per_block)
 633                        ret = register_mem_sect_under_node(mem, nid);
 634        }
 635
 636        mutex_unlock(&mem_sysfs_mutex);
 637        return ret;
 638}
 639
 640int remove_memory_block(unsigned long node_id, struct mem_section *section,
 641                int phys_device)
 642{
 643        struct memory_block *mem;
 644
 645        mutex_lock(&mem_sysfs_mutex);
 646        mem = find_memory_block(section);
 647        unregister_mem_sect_under_nodes(mem, __section_nr(section));
 648
 649        mem->section_count--;
 650        if (mem->section_count == 0) {
 651                mem_remove_simple_file(mem, phys_index);
 652                mem_remove_simple_file(mem, end_phys_index);
 653                mem_remove_simple_file(mem, state);
 654                mem_remove_simple_file(mem, phys_device);
 655                mem_remove_simple_file(mem, removable);
 656                unregister_memory(mem);
 657        } else
 658                kobject_put(&mem->dev.kobj);
 659
 660        mutex_unlock(&mem_sysfs_mutex);
 661        return 0;
 662}
 663
 664/*
 665 * need an interface for the VM to add new memory regions,
 666 * but without onlining it.
 667 */
 668int register_new_memory(int nid, struct mem_section *section)
 669{
 670        return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
 671}
 672
 673int unregister_memory_section(struct mem_section *section)
 674{
 675        if (!present_section(section))
 676                return -EINVAL;
 677
 678        return remove_memory_block(0, section, 0);
 679}
 680
 681/*
 682 * offline one memory block. If the memory block has been offlined, do nothing.
 683 */
 684int offline_memory_block(struct memory_block *mem)
 685{
 686        int ret = 0;
 687
 688        mutex_lock(&mem->state_mutex);
 689        if (mem->state != MEM_OFFLINE)
 690                ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
 691        mutex_unlock(&mem->state_mutex);
 692
 693        return ret;
 694}
 695
 696/* return true if the memory block is offlined, otherwise, return false */
 697bool is_memblock_offlined(struct memory_block *mem)
 698{
 699        return mem->state == MEM_OFFLINE;
 700}
 701
 702/*
 703 * Initialize the sysfs support for memory devices...
 704 */
 705int __init memory_dev_init(void)
 706{
 707        unsigned int i;
 708        int ret;
 709        int err;
 710        unsigned long block_sz;
 711        struct memory_block *mem = NULL;
 712
 713        ret = subsys_system_register(&memory_subsys, NULL);
 714        if (ret)
 715                goto out;
 716
 717        block_sz = get_memory_block_size();
 718        sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
 719
 720        /*
 721         * Create entries for memory sections that were found
 722         * during boot and have been initialized
 723         */
 724        for (i = 0; i < NR_MEM_SECTIONS; i++) {
 725                if (!present_section_nr(i))
 726                        continue;
 727                /* don't need to reuse memory_block if only one per block */
 728                err = add_memory_section(0, __nr_to_section(i),
 729                                 (sections_per_block == 1) ? NULL : &mem,
 730                                         MEM_ONLINE,
 731                                         BOOT);
 732                if (!ret)
 733                        ret = err;
 734        }
 735
 736        err = memory_probe_init();
 737        if (!ret)
 738                ret = err;
 739        err = memory_fail_init();
 740        if (!ret)
 741                ret = err;
 742        err = block_size_init();
 743        if (!ret)
 744                ret = err;
 745out:
 746        if (ret)
 747                printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
 748        return ret;
 749}
 750
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.