linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70#include <linux/platform_device.h>
  71
  72#include "libata.h"
  73#include "libata-transport.h"
  74
  75/* debounce timing parameters in msecs { interval, duration, timeout } */
  76const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  77const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  78const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  79
  80const struct ata_port_operations ata_base_port_ops = {
  81        .prereset               = ata_std_prereset,
  82        .postreset              = ata_std_postreset,
  83        .error_handler          = ata_std_error_handler,
  84        .sched_eh               = ata_std_sched_eh,
  85        .end_eh                 = ata_std_end_eh,
  86};
  87
  88const struct ata_port_operations sata_port_ops = {
  89        .inherits               = &ata_base_port_ops,
  90
  91        .qc_defer               = ata_std_qc_defer,
  92        .hardreset              = sata_std_hardreset,
  93};
  94
  95static unsigned int ata_dev_init_params(struct ata_device *dev,
  96                                        u16 heads, u16 sectors);
  97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  98static void ata_dev_xfermask(struct ata_device *dev);
  99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 100
 101atomic_t ata_print_id = ATOMIC_INIT(0);
 102
 103struct ata_force_param {
 104        const char      *name;
 105        unsigned int    cbl;
 106        int             spd_limit;
 107        unsigned long   xfer_mask;
 108        unsigned int    horkage_on;
 109        unsigned int    horkage_off;
 110        unsigned int    lflags;
 111};
 112
 113struct ata_force_ent {
 114        int                     port;
 115        int                     device;
 116        struct ata_force_param  param;
 117};
 118
 119static struct ata_force_ent *ata_force_tbl;
 120static int ata_force_tbl_size;
 121
 122static char ata_force_param_buf[PAGE_SIZE] __initdata;
 123/* param_buf is thrown away after initialization, disallow read */
 124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 126
 127static int atapi_enabled = 1;
 128module_param(atapi_enabled, int, 0444);
 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 130
 131static int atapi_dmadir = 0;
 132module_param(atapi_dmadir, int, 0444);
 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 134
 135int atapi_passthru16 = 1;
 136module_param(atapi_passthru16, int, 0444);
 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 138
 139int libata_fua = 0;
 140module_param_named(fua, libata_fua, int, 0444);
 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 142
 143static int ata_ignore_hpa;
 144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 146
 147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 148module_param_named(dma, libata_dma_mask, int, 0444);
 149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 150
 151static int ata_probe_timeout;
 152module_param(ata_probe_timeout, int, 0444);
 153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 154
 155int libata_noacpi = 0;
 156module_param_named(noacpi, libata_noacpi, int, 0444);
 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 158
 159int libata_allow_tpm = 0;
 160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 162
 163static int atapi_an;
 164module_param(atapi_an, int, 0444);
 165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 166
 167MODULE_AUTHOR("Jeff Garzik");
 168MODULE_DESCRIPTION("Library module for ATA devices");
 169MODULE_LICENSE("GPL");
 170MODULE_VERSION(DRV_VERSION);
 171
 172
 173static bool ata_sstatus_online(u32 sstatus)
 174{
 175        return (sstatus & 0xf) == 0x3;
 176}
 177
 178/**
 179 *      ata_link_next - link iteration helper
 180 *      @link: the previous link, NULL to start
 181 *      @ap: ATA port containing links to iterate
 182 *      @mode: iteration mode, one of ATA_LITER_*
 183 *
 184 *      LOCKING:
 185 *      Host lock or EH context.
 186 *
 187 *      RETURNS:
 188 *      Pointer to the next link.
 189 */
 190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 191                               enum ata_link_iter_mode mode)
 192{
 193        BUG_ON(mode != ATA_LITER_EDGE &&
 194               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 195
 196        /* NULL link indicates start of iteration */
 197        if (!link)
 198                switch (mode) {
 199                case ATA_LITER_EDGE:
 200                case ATA_LITER_PMP_FIRST:
 201                        if (sata_pmp_attached(ap))
 202                                return ap->pmp_link;
 203                        /* fall through */
 204                case ATA_LITER_HOST_FIRST:
 205                        return &ap->link;
 206                }
 207
 208        /* we just iterated over the host link, what's next? */
 209        if (link == &ap->link)
 210                switch (mode) {
 211                case ATA_LITER_HOST_FIRST:
 212                        if (sata_pmp_attached(ap))
 213                                return ap->pmp_link;
 214                        /* fall through */
 215                case ATA_LITER_PMP_FIRST:
 216                        if (unlikely(ap->slave_link))
 217                                return ap->slave_link;
 218                        /* fall through */
 219                case ATA_LITER_EDGE:
 220                        return NULL;
 221                }
 222
 223        /* slave_link excludes PMP */
 224        if (unlikely(link == ap->slave_link))
 225                return NULL;
 226
 227        /* we were over a PMP link */
 228        if (++link < ap->pmp_link + ap->nr_pmp_links)
 229                return link;
 230
 231        if (mode == ATA_LITER_PMP_FIRST)
 232                return &ap->link;
 233
 234        return NULL;
 235}
 236
 237/**
 238 *      ata_dev_next - device iteration helper
 239 *      @dev: the previous device, NULL to start
 240 *      @link: ATA link containing devices to iterate
 241 *      @mode: iteration mode, one of ATA_DITER_*
 242 *
 243 *      LOCKING:
 244 *      Host lock or EH context.
 245 *
 246 *      RETURNS:
 247 *      Pointer to the next device.
 248 */
 249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 250                                enum ata_dev_iter_mode mode)
 251{
 252        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 253               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 254
 255        /* NULL dev indicates start of iteration */
 256        if (!dev)
 257                switch (mode) {
 258                case ATA_DITER_ENABLED:
 259                case ATA_DITER_ALL:
 260                        dev = link->device;
 261                        goto check;
 262                case ATA_DITER_ENABLED_REVERSE:
 263                case ATA_DITER_ALL_REVERSE:
 264                        dev = link->device + ata_link_max_devices(link) - 1;
 265                        goto check;
 266                }
 267
 268 next:
 269        /* move to the next one */
 270        switch (mode) {
 271        case ATA_DITER_ENABLED:
 272        case ATA_DITER_ALL:
 273                if (++dev < link->device + ata_link_max_devices(link))
 274                        goto check;
 275                return NULL;
 276        case ATA_DITER_ENABLED_REVERSE:
 277        case ATA_DITER_ALL_REVERSE:
 278                if (--dev >= link->device)
 279                        goto check;
 280                return NULL;
 281        }
 282
 283 check:
 284        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 285            !ata_dev_enabled(dev))
 286                goto next;
 287        return dev;
 288}
 289
 290/**
 291 *      ata_dev_phys_link - find physical link for a device
 292 *      @dev: ATA device to look up physical link for
 293 *
 294 *      Look up physical link which @dev is attached to.  Note that
 295 *      this is different from @dev->link only when @dev is on slave
 296 *      link.  For all other cases, it's the same as @dev->link.
 297 *
 298 *      LOCKING:
 299 *      Don't care.
 300 *
 301 *      RETURNS:
 302 *      Pointer to the found physical link.
 303 */
 304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 305{
 306        struct ata_port *ap = dev->link->ap;
 307
 308        if (!ap->slave_link)
 309                return dev->link;
 310        if (!dev->devno)
 311                return &ap->link;
 312        return ap->slave_link;
 313}
 314
 315/**
 316 *      ata_force_cbl - force cable type according to libata.force
 317 *      @ap: ATA port of interest
 318 *
 319 *      Force cable type according to libata.force and whine about it.
 320 *      The last entry which has matching port number is used, so it
 321 *      can be specified as part of device force parameters.  For
 322 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 323 *      same effect.
 324 *
 325 *      LOCKING:
 326 *      EH context.
 327 */
 328void ata_force_cbl(struct ata_port *ap)
 329{
 330        int i;
 331
 332        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 333                const struct ata_force_ent *fe = &ata_force_tbl[i];
 334
 335                if (fe->port != -1 && fe->port != ap->print_id)
 336                        continue;
 337
 338                if (fe->param.cbl == ATA_CBL_NONE)
 339                        continue;
 340
 341                ap->cbl = fe->param.cbl;
 342                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 343                return;
 344        }
 345}
 346
 347/**
 348 *      ata_force_link_limits - force link limits according to libata.force
 349 *      @link: ATA link of interest
 350 *
 351 *      Force link flags and SATA spd limit according to libata.force
 352 *      and whine about it.  When only the port part is specified
 353 *      (e.g. 1:), the limit applies to all links connected to both
 354 *      the host link and all fan-out ports connected via PMP.  If the
 355 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 356 *      first fan-out link not the host link.  Device number 15 always
 357 *      points to the host link whether PMP is attached or not.  If the
 358 *      controller has slave link, device number 16 points to it.
 359 *
 360 *      LOCKING:
 361 *      EH context.
 362 */
 363static void ata_force_link_limits(struct ata_link *link)
 364{
 365        bool did_spd = false;
 366        int linkno = link->pmp;
 367        int i;
 368
 369        if (ata_is_host_link(link))
 370                linkno += 15;
 371
 372        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 373                const struct ata_force_ent *fe = &ata_force_tbl[i];
 374
 375                if (fe->port != -1 && fe->port != link->ap->print_id)
 376                        continue;
 377
 378                if (fe->device != -1 && fe->device != linkno)
 379                        continue;
 380
 381                /* only honor the first spd limit */
 382                if (!did_spd && fe->param.spd_limit) {
 383                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 384                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 385                                        fe->param.name);
 386                        did_spd = true;
 387                }
 388
 389                /* let lflags stack */
 390                if (fe->param.lflags) {
 391                        link->flags |= fe->param.lflags;
 392                        ata_link_notice(link,
 393                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 394                                        fe->param.lflags, link->flags);
 395                }
 396        }
 397}
 398
 399/**
 400 *      ata_force_xfermask - force xfermask according to libata.force
 401 *      @dev: ATA device of interest
 402 *
 403 *      Force xfer_mask according to libata.force and whine about it.
 404 *      For consistency with link selection, device number 15 selects
 405 *      the first device connected to the host link.
 406 *
 407 *      LOCKING:
 408 *      EH context.
 409 */
 410static void ata_force_xfermask(struct ata_device *dev)
 411{
 412        int devno = dev->link->pmp + dev->devno;
 413        int alt_devno = devno;
 414        int i;
 415
 416        /* allow n.15/16 for devices attached to host port */
 417        if (ata_is_host_link(dev->link))
 418                alt_devno += 15;
 419
 420        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 421                const struct ata_force_ent *fe = &ata_force_tbl[i];
 422                unsigned long pio_mask, mwdma_mask, udma_mask;
 423
 424                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 425                        continue;
 426
 427                if (fe->device != -1 && fe->device != devno &&
 428                    fe->device != alt_devno)
 429                        continue;
 430
 431                if (!fe->param.xfer_mask)
 432                        continue;
 433
 434                ata_unpack_xfermask(fe->param.xfer_mask,
 435                                    &pio_mask, &mwdma_mask, &udma_mask);
 436                if (udma_mask)
 437                        dev->udma_mask = udma_mask;
 438                else if (mwdma_mask) {
 439                        dev->udma_mask = 0;
 440                        dev->mwdma_mask = mwdma_mask;
 441                } else {
 442                        dev->udma_mask = 0;
 443                        dev->mwdma_mask = 0;
 444                        dev->pio_mask = pio_mask;
 445                }
 446
 447                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 448                               fe->param.name);
 449                return;
 450        }
 451}
 452
 453/**
 454 *      ata_force_horkage - force horkage according to libata.force
 455 *      @dev: ATA device of interest
 456 *
 457 *      Force horkage according to libata.force and whine about it.
 458 *      For consistency with link selection, device number 15 selects
 459 *      the first device connected to the host link.
 460 *
 461 *      LOCKING:
 462 *      EH context.
 463 */
 464static void ata_force_horkage(struct ata_device *dev)
 465{
 466        int devno = dev->link->pmp + dev->devno;
 467        int alt_devno = devno;
 468        int i;
 469
 470        /* allow n.15/16 for devices attached to host port */
 471        if (ata_is_host_link(dev->link))
 472                alt_devno += 15;
 473
 474        for (i = 0; i < ata_force_tbl_size; i++) {
 475                const struct ata_force_ent *fe = &ata_force_tbl[i];
 476
 477                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 478                        continue;
 479
 480                if (fe->device != -1 && fe->device != devno &&
 481                    fe->device != alt_devno)
 482                        continue;
 483
 484                if (!(~dev->horkage & fe->param.horkage_on) &&
 485                    !(dev->horkage & fe->param.horkage_off))
 486                        continue;
 487
 488                dev->horkage |= fe->param.horkage_on;
 489                dev->horkage &= ~fe->param.horkage_off;
 490
 491                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 492                               fe->param.name);
 493        }
 494}
 495
 496/**
 497 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 498 *      @opcode: SCSI opcode
 499 *
 500 *      Determine ATAPI command type from @opcode.
 501 *
 502 *      LOCKING:
 503 *      None.
 504 *
 505 *      RETURNS:
 506 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 507 */
 508int atapi_cmd_type(u8 opcode)
 509{
 510        switch (opcode) {
 511        case GPCMD_READ_10:
 512        case GPCMD_READ_12:
 513                return ATAPI_READ;
 514
 515        case GPCMD_WRITE_10:
 516        case GPCMD_WRITE_12:
 517        case GPCMD_WRITE_AND_VERIFY_10:
 518                return ATAPI_WRITE;
 519
 520        case GPCMD_READ_CD:
 521        case GPCMD_READ_CD_MSF:
 522                return ATAPI_READ_CD;
 523
 524        case ATA_16:
 525        case ATA_12:
 526                if (atapi_passthru16)
 527                        return ATAPI_PASS_THRU;
 528                /* fall thru */
 529        default:
 530                return ATAPI_MISC;
 531        }
 532}
 533
 534/**
 535 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 536 *      @tf: Taskfile to convert
 537 *      @pmp: Port multiplier port
 538 *      @is_cmd: This FIS is for command
 539 *      @fis: Buffer into which data will output
 540 *
 541 *      Converts a standard ATA taskfile to a Serial ATA
 542 *      FIS structure (Register - Host to Device).
 543 *
 544 *      LOCKING:
 545 *      Inherited from caller.
 546 */
 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 548{
 549        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 550        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 551        if (is_cmd)
 552                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 553
 554        fis[2] = tf->command;
 555        fis[3] = tf->feature;
 556
 557        fis[4] = tf->lbal;
 558        fis[5] = tf->lbam;
 559        fis[6] = tf->lbah;
 560        fis[7] = tf->device;
 561
 562        fis[8] = tf->hob_lbal;
 563        fis[9] = tf->hob_lbam;
 564        fis[10] = tf->hob_lbah;
 565        fis[11] = tf->hob_feature;
 566
 567        fis[12] = tf->nsect;
 568        fis[13] = tf->hob_nsect;
 569        fis[14] = 0;
 570        fis[15] = tf->ctl;
 571
 572        fis[16] = 0;
 573        fis[17] = 0;
 574        fis[18] = 0;
 575        fis[19] = 0;
 576}
 577
 578/**
 579 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 580 *      @fis: Buffer from which data will be input
 581 *      @tf: Taskfile to output
 582 *
 583 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 584 *
 585 *      LOCKING:
 586 *      Inherited from caller.
 587 */
 588
 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 590{
 591        tf->command     = fis[2];       /* status */
 592        tf->feature     = fis[3];       /* error */
 593
 594        tf->lbal        = fis[4];
 595        tf->lbam        = fis[5];
 596        tf->lbah        = fis[6];
 597        tf->device      = fis[7];
 598
 599        tf->hob_lbal    = fis[8];
 600        tf->hob_lbam    = fis[9];
 601        tf->hob_lbah    = fis[10];
 602
 603        tf->nsect       = fis[12];
 604        tf->hob_nsect   = fis[13];
 605}
 606
 607static const u8 ata_rw_cmds[] = {
 608        /* pio multi */
 609        ATA_CMD_READ_MULTI,
 610        ATA_CMD_WRITE_MULTI,
 611        ATA_CMD_READ_MULTI_EXT,
 612        ATA_CMD_WRITE_MULTI_EXT,
 613        0,
 614        0,
 615        0,
 616        ATA_CMD_WRITE_MULTI_FUA_EXT,
 617        /* pio */
 618        ATA_CMD_PIO_READ,
 619        ATA_CMD_PIO_WRITE,
 620        ATA_CMD_PIO_READ_EXT,
 621        ATA_CMD_PIO_WRITE_EXT,
 622        0,
 623        0,
 624        0,
 625        0,
 626        /* dma */
 627        ATA_CMD_READ,
 628        ATA_CMD_WRITE,
 629        ATA_CMD_READ_EXT,
 630        ATA_CMD_WRITE_EXT,
 631        0,
 632        0,
 633        0,
 634        ATA_CMD_WRITE_FUA_EXT
 635};
 636
 637/**
 638 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 639 *      @tf: command to examine and configure
 640 *      @dev: device tf belongs to
 641 *
 642 *      Examine the device configuration and tf->flags to calculate
 643 *      the proper read/write commands and protocol to use.
 644 *
 645 *      LOCKING:
 646 *      caller.
 647 */
 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 649{
 650        u8 cmd;
 651
 652        int index, fua, lba48, write;
 653
 654        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 655        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 656        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 657
 658        if (dev->flags & ATA_DFLAG_PIO) {
 659                tf->protocol = ATA_PROT_PIO;
 660                index = dev->multi_count ? 0 : 8;
 661        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 662                /* Unable to use DMA due to host limitation */
 663                tf->protocol = ATA_PROT_PIO;
 664                index = dev->multi_count ? 0 : 8;
 665        } else {
 666                tf->protocol = ATA_PROT_DMA;
 667                index = 16;
 668        }
 669
 670        cmd = ata_rw_cmds[index + fua + lba48 + write];
 671        if (cmd) {
 672                tf->command = cmd;
 673                return 0;
 674        }
 675        return -1;
 676}
 677
 678/**
 679 *      ata_tf_read_block - Read block address from ATA taskfile
 680 *      @tf: ATA taskfile of interest
 681 *      @dev: ATA device @tf belongs to
 682 *
 683 *      LOCKING:
 684 *      None.
 685 *
 686 *      Read block address from @tf.  This function can handle all
 687 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 688 *      flags select the address format to use.
 689 *
 690 *      RETURNS:
 691 *      Block address read from @tf.
 692 */
 693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 694{
 695        u64 block = 0;
 696
 697        if (tf->flags & ATA_TFLAG_LBA) {
 698                if (tf->flags & ATA_TFLAG_LBA48) {
 699                        block |= (u64)tf->hob_lbah << 40;
 700                        block |= (u64)tf->hob_lbam << 32;
 701                        block |= (u64)tf->hob_lbal << 24;
 702                } else
 703                        block |= (tf->device & 0xf) << 24;
 704
 705                block |= tf->lbah << 16;
 706                block |= tf->lbam << 8;
 707                block |= tf->lbal;
 708        } else {
 709                u32 cyl, head, sect;
 710
 711                cyl = tf->lbam | (tf->lbah << 8);
 712                head = tf->device & 0xf;
 713                sect = tf->lbal;
 714
 715                if (!sect) {
 716                        ata_dev_warn(dev,
 717                                     "device reported invalid CHS sector 0\n");
 718                        sect = 1; /* oh well */
 719                }
 720
 721                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 722        }
 723
 724        return block;
 725}
 726
 727/**
 728 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 729 *      @tf: Target ATA taskfile
 730 *      @dev: ATA device @tf belongs to
 731 *      @block: Block address
 732 *      @n_block: Number of blocks
 733 *      @tf_flags: RW/FUA etc...
 734 *      @tag: tag
 735 *
 736 *      LOCKING:
 737 *      None.
 738 *
 739 *      Build ATA taskfile @tf for read/write request described by
 740 *      @block, @n_block, @tf_flags and @tag on @dev.
 741 *
 742 *      RETURNS:
 743 *
 744 *      0 on success, -ERANGE if the request is too large for @dev,
 745 *      -EINVAL if the request is invalid.
 746 */
 747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 748                    u64 block, u32 n_block, unsigned int tf_flags,
 749                    unsigned int tag)
 750{
 751        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 752        tf->flags |= tf_flags;
 753
 754        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 755                /* yay, NCQ */
 756                if (!lba_48_ok(block, n_block))
 757                        return -ERANGE;
 758
 759                tf->protocol = ATA_PROT_NCQ;
 760                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 761
 762                if (tf->flags & ATA_TFLAG_WRITE)
 763                        tf->command = ATA_CMD_FPDMA_WRITE;
 764                else
 765                        tf->command = ATA_CMD_FPDMA_READ;
 766
 767                tf->nsect = tag << 3;
 768                tf->hob_feature = (n_block >> 8) & 0xff;
 769                tf->feature = n_block & 0xff;
 770
 771                tf->hob_lbah = (block >> 40) & 0xff;
 772                tf->hob_lbam = (block >> 32) & 0xff;
 773                tf->hob_lbal = (block >> 24) & 0xff;
 774                tf->lbah = (block >> 16) & 0xff;
 775                tf->lbam = (block >> 8) & 0xff;
 776                tf->lbal = block & 0xff;
 777
 778                tf->device = ATA_LBA;
 779                if (tf->flags & ATA_TFLAG_FUA)
 780                        tf->device |= 1 << 7;
 781        } else if (dev->flags & ATA_DFLAG_LBA) {
 782                tf->flags |= ATA_TFLAG_LBA;
 783
 784                if (lba_28_ok(block, n_block)) {
 785                        /* use LBA28 */
 786                        tf->device |= (block >> 24) & 0xf;
 787                } else if (lba_48_ok(block, n_block)) {
 788                        if (!(dev->flags & ATA_DFLAG_LBA48))
 789                                return -ERANGE;
 790
 791                        /* use LBA48 */
 792                        tf->flags |= ATA_TFLAG_LBA48;
 793
 794                        tf->hob_nsect = (n_block >> 8) & 0xff;
 795
 796                        tf->hob_lbah = (block >> 40) & 0xff;
 797                        tf->hob_lbam = (block >> 32) & 0xff;
 798                        tf->hob_lbal = (block >> 24) & 0xff;
 799                } else
 800                        /* request too large even for LBA48 */
 801                        return -ERANGE;
 802
 803                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 804                        return -EINVAL;
 805
 806                tf->nsect = n_block & 0xff;
 807
 808                tf->lbah = (block >> 16) & 0xff;
 809                tf->lbam = (block >> 8) & 0xff;
 810                tf->lbal = block & 0xff;
 811
 812                tf->device |= ATA_LBA;
 813        } else {
 814                /* CHS */
 815                u32 sect, head, cyl, track;
 816
 817                /* The request -may- be too large for CHS addressing. */
 818                if (!lba_28_ok(block, n_block))
 819                        return -ERANGE;
 820
 821                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 822                        return -EINVAL;
 823
 824                /* Convert LBA to CHS */
 825                track = (u32)block / dev->sectors;
 826                cyl   = track / dev->heads;
 827                head  = track % dev->heads;
 828                sect  = (u32)block % dev->sectors + 1;
 829
 830                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 831                        (u32)block, track, cyl, head, sect);
 832
 833                /* Check whether the converted CHS can fit.
 834                   Cylinder: 0-65535
 835                   Head: 0-15
 836                   Sector: 1-255*/
 837                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 838                        return -ERANGE;
 839
 840                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 841                tf->lbal = sect;
 842                tf->lbam = cyl;
 843                tf->lbah = cyl >> 8;
 844                tf->device |= head;
 845        }
 846
 847        return 0;
 848}
 849
 850/**
 851 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 852 *      @pio_mask: pio_mask
 853 *      @mwdma_mask: mwdma_mask
 854 *      @udma_mask: udma_mask
 855 *
 856 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 857 *      unsigned int xfer_mask.
 858 *
 859 *      LOCKING:
 860 *      None.
 861 *
 862 *      RETURNS:
 863 *      Packed xfer_mask.
 864 */
 865unsigned long ata_pack_xfermask(unsigned long pio_mask,
 866                                unsigned long mwdma_mask,
 867                                unsigned long udma_mask)
 868{
 869        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 870                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 871                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 872}
 873
 874/**
 875 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 876 *      @xfer_mask: xfer_mask to unpack
 877 *      @pio_mask: resulting pio_mask
 878 *      @mwdma_mask: resulting mwdma_mask
 879 *      @udma_mask: resulting udma_mask
 880 *
 881 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 882 *      Any NULL distination masks will be ignored.
 883 */
 884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 885                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 886{
 887        if (pio_mask)
 888                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 889        if (mwdma_mask)
 890                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 891        if (udma_mask)
 892                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 893}
 894
 895static const struct ata_xfer_ent {
 896        int shift, bits;
 897        u8 base;
 898} ata_xfer_tbl[] = {
 899        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 900        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 901        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 902        { -1, },
 903};
 904
 905/**
 906 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 907 *      @xfer_mask: xfer_mask of interest
 908 *
 909 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 910 *      bit of @xfer_mask is considered.
 911 *
 912 *      LOCKING:
 913 *      None.
 914 *
 915 *      RETURNS:
 916 *      Matching XFER_* value, 0xff if no match found.
 917 */
 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 919{
 920        int highbit = fls(xfer_mask) - 1;
 921        const struct ata_xfer_ent *ent;
 922
 923        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 924                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 925                        return ent->base + highbit - ent->shift;
 926        return 0xff;
 927}
 928
 929/**
 930 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 931 *      @xfer_mode: XFER_* of interest
 932 *
 933 *      Return matching xfer_mask for @xfer_mode.
 934 *
 935 *      LOCKING:
 936 *      None.
 937 *
 938 *      RETURNS:
 939 *      Matching xfer_mask, 0 if no match found.
 940 */
 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 942{
 943        const struct ata_xfer_ent *ent;
 944
 945        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 946                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 947                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 948                                & ~((1 << ent->shift) - 1);
 949        return 0;
 950}
 951
 952/**
 953 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 954 *      @xfer_mode: XFER_* of interest
 955 *
 956 *      Return matching xfer_shift for @xfer_mode.
 957 *
 958 *      LOCKING:
 959 *      None.
 960 *
 961 *      RETURNS:
 962 *      Matching xfer_shift, -1 if no match found.
 963 */
 964int ata_xfer_mode2shift(unsigned long xfer_mode)
 965{
 966        const struct ata_xfer_ent *ent;
 967
 968        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 969                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 970                        return ent->shift;
 971        return -1;
 972}
 973
 974/**
 975 *      ata_mode_string - convert xfer_mask to string
 976 *      @xfer_mask: mask of bits supported; only highest bit counts.
 977 *
 978 *      Determine string which represents the highest speed
 979 *      (highest bit in @modemask).
 980 *
 981 *      LOCKING:
 982 *      None.
 983 *
 984 *      RETURNS:
 985 *      Constant C string representing highest speed listed in
 986 *      @mode_mask, or the constant C string "<n/a>".
 987 */
 988const char *ata_mode_string(unsigned long xfer_mask)
 989{
 990        static const char * const xfer_mode_str[] = {
 991                "PIO0",
 992                "PIO1",
 993                "PIO2",
 994                "PIO3",
 995                "PIO4",
 996                "PIO5",
 997                "PIO6",
 998                "MWDMA0",
 999                "MWDMA1",
1000                "MWDMA2",
1001                "MWDMA3",
1002                "MWDMA4",
1003                "UDMA/16",
1004                "UDMA/25",
1005                "UDMA/33",
1006                "UDMA/44",
1007                "UDMA/66",
1008                "UDMA/100",
1009                "UDMA/133",
1010                "UDMA7",
1011        };
1012        int highbit;
1013
1014        highbit = fls(xfer_mask) - 1;
1015        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016                return xfer_mode_str[highbit];
1017        return "<n/a>";
1018}
1019
1020const char *sata_spd_string(unsigned int spd)
1021{
1022        static const char * const spd_str[] = {
1023                "1.5 Gbps",
1024                "3.0 Gbps",
1025                "6.0 Gbps",
1026        };
1027
1028        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029                return "<unknown>";
1030        return spd_str[spd - 1];
1031}
1032
1033/**
1034 *      ata_dev_classify - determine device type based on ATA-spec signature
1035 *      @tf: ATA taskfile register set for device to be identified
1036 *
1037 *      Determine from taskfile register contents whether a device is
1038 *      ATA or ATAPI, as per "Signature and persistence" section
1039 *      of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 *      LOCKING:
1042 *      None.
1043 *
1044 *      RETURNS:
1045 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 *      %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049{
1050        /* Apple's open source Darwin code hints that some devices only
1051         * put a proper signature into the LBA mid/high registers,
1052         * So, we only check those.  It's sufficient for uniqueness.
1053         *
1054         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055         * signatures for ATA and ATAPI devices attached on SerialATA,
1056         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057         * spec has never mentioned about using different signatures
1058         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059         * Multiplier specification began to use 0x69/0x96 to identify
1060         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062         * 0x69/0x96 shortly and described them as reserved for
1063         * SerialATA.
1064         *
1065         * We follow the current spec and consider that 0x69/0x96
1066         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068         * SEMB signature.  This is worked around in
1069         * ata_dev_read_id().
1070         */
1071        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072                DPRINTK("found ATA device by sig\n");
1073                return ATA_DEV_ATA;
1074        }
1075
1076        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077                DPRINTK("found ATAPI device by sig\n");
1078                return ATA_DEV_ATAPI;
1079        }
1080
1081        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082                DPRINTK("found PMP device by sig\n");
1083                return ATA_DEV_PMP;
1084        }
1085
1086        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088                return ATA_DEV_SEMB;
1089        }
1090
1091        DPRINTK("unknown device\n");
1092        return ATA_DEV_UNKNOWN;
1093}
1094
1095/**
1096 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1097 *      @id: IDENTIFY DEVICE results we will examine
1098 *      @s: string into which data is output
1099 *      @ofs: offset into identify device page
1100 *      @len: length of string to return. must be an even number.
1101 *
1102 *      The strings in the IDENTIFY DEVICE page are broken up into
1103 *      16-bit chunks.  Run through the string, and output each
1104 *      8-bit chunk linearly, regardless of platform.
1105 *
1106 *      LOCKING:
1107 *      caller.
1108 */
1109
1110void ata_id_string(const u16 *id, unsigned char *s,
1111                   unsigned int ofs, unsigned int len)
1112{
1113        unsigned int c;
1114
1115        BUG_ON(len & 1);
1116
1117        while (len > 0) {
1118                c = id[ofs] >> 8;
1119                *s = c;
1120                s++;
1121
1122                c = id[ofs] & 0xff;
1123                *s = c;
1124                s++;
1125
1126                ofs++;
1127                len -= 2;
1128        }
1129}
1130
1131/**
1132 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 *      @id: IDENTIFY DEVICE results we will examine
1134 *      @s: string into which data is output
1135 *      @ofs: offset into identify device page
1136 *      @len: length of string to return. must be an odd number.
1137 *
1138 *      This function is identical to ata_id_string except that it
1139 *      trims trailing spaces and terminates the resulting string with
1140 *      null.  @len must be actual maximum length (even number) + 1.
1141 *
1142 *      LOCKING:
1143 *      caller.
1144 */
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146                     unsigned int ofs, unsigned int len)
1147{
1148        unsigned char *p;
1149
1150        ata_id_string(id, s, ofs, len - 1);
1151
1152        p = s + strnlen(s, len - 1);
1153        while (p > s && p[-1] == ' ')
1154                p--;
1155        *p = '\0';
1156}
1157
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160        if (ata_id_has_lba(id)) {
1161                if (ata_id_has_lba48(id))
1162                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163                else
1164                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165        } else {
1166                if (ata_id_current_chs_valid(id))
1167                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168                               id[ATA_ID_CUR_SECTORS];
1169                else
1170                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171                               id[ATA_ID_SECTORS];
1172        }
1173}
1174
1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176{
1177        u64 sectors = 0;
1178
1179        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182        sectors |= (tf->lbah & 0xff) << 16;
1183        sectors |= (tf->lbam & 0xff) << 8;
1184        sectors |= (tf->lbal & 0xff);
1185
1186        return sectors;
1187}
1188
1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190{
1191        u64 sectors = 0;
1192
1193        sectors |= (tf->device & 0x0f) << 24;
1194        sectors |= (tf->lbah & 0xff) << 16;
1195        sectors |= (tf->lbam & 0xff) << 8;
1196        sectors |= (tf->lbal & 0xff);
1197
1198        return sectors;
1199}
1200
1201/**
1202 *      ata_read_native_max_address - Read native max address
1203 *      @dev: target device
1204 *      @max_sectors: out parameter for the result native max address
1205 *
1206 *      Perform an LBA48 or LBA28 native size query upon the device in
1207 *      question.
1208 *
1209 *      RETURNS:
1210 *      0 on success, -EACCES if command is aborted by the drive.
1211 *      -EIO on other errors.
1212 */
1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214{
1215        unsigned int err_mask;
1216        struct ata_taskfile tf;
1217        int lba48 = ata_id_has_lba48(dev->id);
1218
1219        ata_tf_init(dev, &tf);
1220
1221        /* always clear all address registers */
1222        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224        if (lba48) {
1225                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226                tf.flags |= ATA_TFLAG_LBA48;
1227        } else
1228                tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230        tf.protocol |= ATA_PROT_NODATA;
1231        tf.device |= ATA_LBA;
1232
1233        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234        if (err_mask) {
1235                ata_dev_warn(dev,
1236                             "failed to read native max address (err_mask=0x%x)\n",
1237                             err_mask);
1238                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239                        return -EACCES;
1240                return -EIO;
1241        }
1242
1243        if (lba48)
1244                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245        else
1246                *max_sectors = ata_tf_to_lba(&tf) + 1;
1247        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248                (*max_sectors)--;
1249        return 0;
1250}
1251
1252/**
1253 *      ata_set_max_sectors - Set max sectors
1254 *      @dev: target device
1255 *      @new_sectors: new max sectors value to set for the device
1256 *
1257 *      Set max sectors of @dev to @new_sectors.
1258 *
1259 *      RETURNS:
1260 *      0 on success, -EACCES if command is aborted or denied (due to
1261 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1262 *      errors.
1263 */
1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265{
1266        unsigned int err_mask;
1267        struct ata_taskfile tf;
1268        int lba48 = ata_id_has_lba48(dev->id);
1269
1270        new_sectors--;
1271
1272        ata_tf_init(dev, &tf);
1273
1274        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276        if (lba48) {
1277                tf.command = ATA_CMD_SET_MAX_EXT;
1278                tf.flags |= ATA_TFLAG_LBA48;
1279
1280                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283        } else {
1284                tf.command = ATA_CMD_SET_MAX;
1285
1286                tf.device |= (new_sectors >> 24) & 0xf;
1287        }
1288
1289        tf.protocol |= ATA_PROT_NODATA;
1290        tf.device |= ATA_LBA;
1291
1292        tf.lbal = (new_sectors >> 0) & 0xff;
1293        tf.lbam = (new_sectors >> 8) & 0xff;
1294        tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297        if (err_mask) {
1298                ata_dev_warn(dev,
1299                             "failed to set max address (err_mask=0x%x)\n",
1300                             err_mask);
1301                if (err_mask == AC_ERR_DEV &&
1302                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303                        return -EACCES;
1304                return -EIO;
1305        }
1306
1307        return 0;
1308}
1309
1310/**
1311 *      ata_hpa_resize          -       Resize a device with an HPA set
1312 *      @dev: Device to resize
1313 *
1314 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 *      it if required to the full size of the media. The caller must check
1316 *      the drive has the HPA feature set enabled.
1317 *
1318 *      RETURNS:
1319 *      0 on success, -errno on failure.
1320 */
1321static int ata_hpa_resize(struct ata_device *dev)
1322{
1323        struct ata_eh_context *ehc = &dev->link->eh_context;
1324        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326        u64 sectors = ata_id_n_sectors(dev->id);
1327        u64 native_sectors;
1328        int rc;
1329
1330        /* do we need to do it? */
1331        if (dev->class != ATA_DEV_ATA ||
1332            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334                return 0;
1335
1336        /* read native max address */
1337        rc = ata_read_native_max_address(dev, &native_sectors);
1338        if (rc) {
1339                /* If device aborted the command or HPA isn't going to
1340                 * be unlocked, skip HPA resizing.
1341                 */
1342                if (rc == -EACCES || !unlock_hpa) {
1343                        ata_dev_warn(dev,
1344                                     "HPA support seems broken, skipping HPA handling\n");
1345                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347                        /* we can continue if device aborted the command */
1348                        if (rc == -EACCES)
1349                                rc = 0;
1350                }
1351
1352                return rc;
1353        }
1354        dev->n_native_sectors = native_sectors;
1355
1356        /* nothing to do? */
1357        if (native_sectors <= sectors || !unlock_hpa) {
1358                if (!print_info || native_sectors == sectors)
1359                        return 0;
1360
1361                if (native_sectors > sectors)
1362                        ata_dev_info(dev,
1363                                "HPA detected: current %llu, native %llu\n",
1364                                (unsigned long long)sectors,
1365                                (unsigned long long)native_sectors);
1366                else if (native_sectors < sectors)
1367                        ata_dev_warn(dev,
1368                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1369                                (unsigned long long)native_sectors,
1370                                (unsigned long long)sectors);
1371                return 0;
1372        }
1373
1374        /* let's unlock HPA */
1375        rc = ata_set_max_sectors(dev, native_sectors);
1376        if (rc == -EACCES) {
1377                /* if device aborted the command, skip HPA resizing */
1378                ata_dev_warn(dev,
1379                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380                             (unsigned long long)sectors,
1381                             (unsigned long long)native_sectors);
1382                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383                return 0;
1384        } else if (rc)
1385                return rc;
1386
1387        /* re-read IDENTIFY data */
1388        rc = ata_dev_reread_id(dev, 0);
1389        if (rc) {
1390                ata_dev_err(dev,
1391                            "failed to re-read IDENTIFY data after HPA resizing\n");
1392                return rc;
1393        }
1394
1395        if (print_info) {
1396                u64 new_sectors = ata_id_n_sectors(dev->id);
1397                ata_dev_info(dev,
1398                        "HPA unlocked: %llu -> %llu, native %llu\n",
1399                        (unsigned long long)sectors,
1400                        (unsigned long long)new_sectors,
1401                        (unsigned long long)native_sectors);
1402        }
1403
1404        return 0;
1405}
1406
1407/**
1408 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1409 *      @id: IDENTIFY DEVICE page to dump
1410 *
1411 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 *      page.
1413 *
1414 *      LOCKING:
1415 *      caller.
1416 */
1417
1418static inline void ata_dump_id(const u16 *id)
1419{
1420        DPRINTK("49==0x%04x  "
1421                "53==0x%04x  "
1422                "63==0x%04x  "
1423                "64==0x%04x  "
1424                "75==0x%04x  \n",
1425                id[49],
1426                id[53],
1427                id[63],
1428                id[64],
1429                id[75]);
1430        DPRINTK("80==0x%04x  "
1431                "81==0x%04x  "
1432                "82==0x%04x  "
1433                "83==0x%04x  "
1434                "84==0x%04x  \n",
1435                id[80],
1436                id[81],
1437                id[82],
1438                id[83],
1439                id[84]);
1440        DPRINTK("88==0x%04x  "
1441                "93==0x%04x\n",
1442                id[88],
1443                id[93]);
1444}
1445
1446/**
1447 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 *      @id: IDENTIFY data to compute xfer mask from
1449 *
1450 *      Compute the xfermask for this device. This is not as trivial
1451 *      as it seems if we must consider early devices correctly.
1452 *
1453 *      FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 *      LOCKING:
1456 *      None.
1457 *
1458 *      RETURNS:
1459 *      Computed xfermask
1460 */
1461unsigned long ata_id_xfermask(const u16 *id)
1462{
1463        unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465        /* Usual case. Word 53 indicates word 64 is valid */
1466        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468                pio_mask <<= 3;
1469                pio_mask |= 0x7;
1470        } else {
1471                /* If word 64 isn't valid then Word 51 high byte holds
1472                 * the PIO timing number for the maximum. Turn it into
1473                 * a mask.
1474                 */
1475                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476                if (mode < 5)   /* Valid PIO range */
1477                        pio_mask = (2 << mode) - 1;
1478                else
1479                        pio_mask = 1;
1480
1481                /* But wait.. there's more. Design your standards by
1482                 * committee and you too can get a free iordy field to
1483                 * process. However its the speeds not the modes that
1484                 * are supported... Note drivers using the timing API
1485                 * will get this right anyway
1486                 */
1487        }
1488
1489        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491        if (ata_id_is_cfa(id)) {
1492                /*
1493                 *      Process compact flash extended modes
1494                 */
1495                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498                if (pio)
1499                        pio_mask |= (1 << 5);
1500                if (pio > 1)
1501                        pio_mask |= (1 << 6);
1502                if (dma)
1503                        mwdma_mask |= (1 << 3);
1504                if (dma > 1)
1505                        mwdma_mask |= (1 << 4);
1506        }
1507
1508        udma_mask = 0;
1509        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516{
1517        struct completion *waiting = qc->private_data;
1518
1519        complete(waiting);
1520}
1521
1522/**
1523 *      ata_exec_internal_sg - execute libata internal command
1524 *      @dev: Device to which the command is sent
1525 *      @tf: Taskfile registers for the command and the result
1526 *      @cdb: CDB for packet command
1527 *      @dma_dir: Data tranfer direction of the command
1528 *      @sgl: sg list for the data buffer of the command
1529 *      @n_elem: Number of sg entries
1530 *      @timeout: Timeout in msecs (0 for default)
1531 *
1532 *      Executes libata internal command with timeout.  @tf contains
1533 *      command on entry and result on return.  Timeout and error
1534 *      conditions are reported via return value.  No recovery action
1535 *      is taken after a command times out.  It's caller's duty to
1536 *      clean up after timeout.
1537 *
1538 *      LOCKING:
1539 *      None.  Should be called with kernel context, might sleep.
1540 *
1541 *      RETURNS:
1542 *      Zero on success, AC_ERR_* mask on failure
1543 */
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545                              struct ata_taskfile *tf, const u8 *cdb,
1546                              int dma_dir, struct scatterlist *sgl,
1547                              unsigned int n_elem, unsigned long timeout)
1548{
1549        struct ata_link *link = dev->link;
1550        struct ata_port *ap = link->ap;
1551        u8 command = tf->command;
1552        int auto_timeout = 0;
1553        struct ata_queued_cmd *qc;
1554        unsigned int tag, preempted_tag;
1555        u32 preempted_sactive, preempted_qc_active;
1556        int preempted_nr_active_links;
1557        DECLARE_COMPLETION_ONSTACK(wait);
1558        unsigned long flags;
1559        unsigned int err_mask;
1560        int rc;
1561
1562        spin_lock_irqsave(ap->lock, flags);
1563
1564        /* no internal command while frozen */
1565        if (ap->pflags & ATA_PFLAG_FROZEN) {
1566                spin_unlock_irqrestore(ap->lock, flags);
1567                return AC_ERR_SYSTEM;
1568        }
1569
1570        /* initialize internal qc */
1571
1572        /* XXX: Tag 0 is used for drivers with legacy EH as some
1573         * drivers choke if any other tag is given.  This breaks
1574         * ata_tag_internal() test for those drivers.  Don't use new
1575         * EH stuff without converting to it.
1576         */
1577        if (ap->ops->error_handler)
1578                tag = ATA_TAG_INTERNAL;
1579        else
1580                tag = 0;
1581
1582        if (test_and_set_bit(tag, &ap->qc_allocated))
1583                BUG();
1584        qc = __ata_qc_from_tag(ap, tag);
1585
1586        qc->tag = tag;
1587        qc->scsicmd = NULL;
1588        qc->ap = ap;
1589        qc->dev = dev;
1590        ata_qc_reinit(qc);
1591
1592        preempted_tag = link->active_tag;
1593        preempted_sactive = link->sactive;
1594        preempted_qc_active = ap->qc_active;
1595        preempted_nr_active_links = ap->nr_active_links;
1596        link->active_tag = ATA_TAG_POISON;
1597        link->sactive = 0;
1598        ap->qc_active = 0;
1599        ap->nr_active_links = 0;
1600
1601        /* prepare & issue qc */
1602        qc->tf = *tf;
1603        if (cdb)
1604                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605        qc->flags |= ATA_QCFLAG_RESULT_TF;
1606        qc->dma_dir = dma_dir;
1607        if (dma_dir != DMA_NONE) {
1608                unsigned int i, buflen = 0;
1609                struct scatterlist *sg;
1610
1611                for_each_sg(sgl, sg, n_elem, i)
1612                        buflen += sg->length;
1613
1614                ata_sg_init(qc, sgl, n_elem);
1615                qc->nbytes = buflen;
1616        }
1617
1618        qc->private_data = &wait;
1619        qc->complete_fn = ata_qc_complete_internal;
1620
1621        ata_qc_issue(qc);
1622
1623        spin_unlock_irqrestore(ap->lock, flags);
1624
1625        if (!timeout) {
1626                if (ata_probe_timeout)
1627                        timeout = ata_probe_timeout * 1000;
1628                else {
1629                        timeout = ata_internal_cmd_timeout(dev, command);
1630                        auto_timeout = 1;
1631                }
1632        }
1633
1634        if (ap->ops->error_handler)
1635                ata_eh_release(ap);
1636
1637        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1638
1639        if (ap->ops->error_handler)
1640                ata_eh_acquire(ap);
1641
1642        ata_sff_flush_pio_task(ap);
1643
1644        if (!rc) {
1645                spin_lock_irqsave(ap->lock, flags);
1646
1647                /* We're racing with irq here.  If we lose, the
1648                 * following test prevents us from completing the qc
1649                 * twice.  If we win, the port is frozen and will be
1650                 * cleaned up by ->post_internal_cmd().
1651                 */
1652                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1653                        qc->err_mask |= AC_ERR_TIMEOUT;
1654
1655                        if (ap->ops->error_handler)
1656                                ata_port_freeze(ap);
1657                        else
1658                                ata_qc_complete(qc);
1659
1660                        if (ata_msg_warn(ap))
1661                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1662                                             command);
1663                }
1664
1665                spin_unlock_irqrestore(ap->lock, flags);
1666        }
1667
1668        /* do post_internal_cmd */
1669        if (ap->ops->post_internal_cmd)
1670                ap->ops->post_internal_cmd(qc);
1671
1672        /* perform minimal error analysis */
1673        if (qc->flags & ATA_QCFLAG_FAILED) {
1674                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1675                        qc->err_mask |= AC_ERR_DEV;
1676
1677                if (!qc->err_mask)
1678                        qc->err_mask |= AC_ERR_OTHER;
1679
1680                if (qc->err_mask & ~AC_ERR_OTHER)
1681                        qc->err_mask &= ~AC_ERR_OTHER;
1682        }
1683
1684        /* finish up */
1685        spin_lock_irqsave(ap->lock, flags);
1686
1687        *tf = qc->result_tf;
1688        err_mask = qc->err_mask;
1689
1690        ata_qc_free(qc);
1691        link->active_tag = preempted_tag;
1692        link->sactive = preempted_sactive;
1693        ap->qc_active = preempted_qc_active;
1694        ap->nr_active_links = preempted_nr_active_links;
1695
1696        spin_unlock_irqrestore(ap->lock, flags);
1697
1698        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699                ata_internal_cmd_timed_out(dev, command);
1700
1701        return err_mask;
1702}
1703
1704/**
1705 *      ata_exec_internal - execute libata internal command
1706 *      @dev: Device to which the command is sent
1707 *      @tf: Taskfile registers for the command and the result
1708 *      @cdb: CDB for packet command
1709 *      @dma_dir: Data tranfer direction of the command
1710 *      @buf: Data buffer of the command
1711 *      @buflen: Length of data buffer
1712 *      @timeout: Timeout in msecs (0 for default)
1713 *
1714 *      Wrapper around ata_exec_internal_sg() which takes simple
1715 *      buffer instead of sg list.
1716 *
1717 *      LOCKING:
1718 *      None.  Should be called with kernel context, might sleep.
1719 *
1720 *      RETURNS:
1721 *      Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724                           struct ata_taskfile *tf, const u8 *cdb,
1725                           int dma_dir, void *buf, unsigned int buflen,
1726                           unsigned long timeout)
1727{
1728        struct scatterlist *psg = NULL, sg;
1729        unsigned int n_elem = 0;
1730
1731        if (dma_dir != DMA_NONE) {
1732                WARN_ON(!buf);
1733                sg_init_one(&sg, buf, buflen);
1734                psg = &sg;
1735                n_elem++;
1736        }
1737
1738        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739                                    timeout);
1740}
1741
1742/**
1743 *      ata_do_simple_cmd - execute simple internal command
1744 *      @dev: Device to which the command is sent
1745 *      @cmd: Opcode to execute
1746 *
1747 *      Execute a 'simple' command, that only consists of the opcode
1748 *      'cmd' itself, without filling any other registers
1749 *
1750 *      LOCKING:
1751 *      Kernel thread context (may sleep).
1752 *
1753 *      RETURNS:
1754 *      Zero on success, AC_ERR_* mask on failure
1755 */
1756unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1757{
1758        struct ata_taskfile tf;
1759
1760        ata_tf_init(dev, &tf);
1761
1762        tf.command = cmd;
1763        tf.flags |= ATA_TFLAG_DEVICE;
1764        tf.protocol = ATA_PROT_NODATA;
1765
1766        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1767}
1768
1769/**
1770 *      ata_pio_need_iordy      -       check if iordy needed
1771 *      @adev: ATA device
1772 *
1773 *      Check if the current speed of the device requires IORDY. Used
1774 *      by various controllers for chip configuration.
1775 */
1776unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1777{
1778        /* Don't set IORDY if we're preparing for reset.  IORDY may
1779         * lead to controller lock up on certain controllers if the
1780         * port is not occupied.  See bko#11703 for details.
1781         */
1782        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1783                return 0;
1784        /* Controller doesn't support IORDY.  Probably a pointless
1785         * check as the caller should know this.
1786         */
1787        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1788                return 0;
1789        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1790        if (ata_id_is_cfa(adev->id)
1791            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1792                return 0;
1793        /* PIO3 and higher it is mandatory */
1794        if (adev->pio_mode > XFER_PIO_2)
1795                return 1;
1796        /* We turn it on when possible */
1797        if (ata_id_has_iordy(adev->id))
1798                return 1;
1799        return 0;
1800}
1801
1802/**
1803 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1804 *      @adev: ATA device
1805 *
1806 *      Compute the highest mode possible if we are not using iordy. Return
1807 *      -1 if no iordy mode is available.
1808 */
1809static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1810{
1811        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1812        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1813                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1814                /* Is the speed faster than the drive allows non IORDY ? */
1815                if (pio) {
1816                        /* This is cycle times not frequency - watch the logic! */
1817                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1818                                return 3 << ATA_SHIFT_PIO;
1819                        return 7 << ATA_SHIFT_PIO;
1820                }
1821        }
1822        return 3 << ATA_SHIFT_PIO;
1823}
1824
1825/**
1826 *      ata_do_dev_read_id              -       default ID read method
1827 *      @dev: device
1828 *      @tf: proposed taskfile
1829 *      @id: data buffer
1830 *
1831 *      Issue the identify taskfile and hand back the buffer containing
1832 *      identify data. For some RAID controllers and for pre ATA devices
1833 *      this function is wrapped or replaced by the driver
1834 */
1835unsigned int ata_do_dev_read_id(struct ata_device *dev,
1836                                        struct ata_taskfile *tf, u16 *id)
1837{
1838        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1839                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1840}
1841
1842/**
1843 *      ata_dev_read_id - Read ID data from the specified device
1844 *      @dev: target device
1845 *      @p_class: pointer to class of the target device (may be changed)
1846 *      @flags: ATA_READID_* flags
1847 *      @id: buffer to read IDENTIFY data into
1848 *
1849 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1850 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1851 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1852 *      for pre-ATA4 drives.
1853 *
1854 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1855 *      now we abort if we hit that case.
1856 *
1857 *      LOCKING:
1858 *      Kernel thread context (may sleep)
1859 *
1860 *      RETURNS:
1861 *      0 on success, -errno otherwise.
1862 */
1863int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1864                    unsigned int flags, u16 *id)
1865{
1866        struct ata_port *ap = dev->link->ap;
1867        unsigned int class = *p_class;
1868        struct ata_taskfile tf;
1869        unsigned int err_mask = 0;
1870        const char *reason;
1871        bool is_semb = class == ATA_DEV_SEMB;
1872        int may_fallback = 1, tried_spinup = 0;
1873        int rc;
1874
1875        if (ata_msg_ctl(ap))
1876                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1877
1878retry:
1879        ata_tf_init(dev, &tf);
1880
1881        switch (class) {
1882        case ATA_DEV_SEMB:
1883                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1884        case ATA_DEV_ATA:
1885                tf.command = ATA_CMD_ID_ATA;
1886                break;
1887        case ATA_DEV_ATAPI:
1888                tf.command = ATA_CMD_ID_ATAPI;
1889                break;
1890        default:
1891                rc = -ENODEV;
1892                reason = "unsupported class";
1893                goto err_out;
1894        }
1895
1896        tf.protocol = ATA_PROT_PIO;
1897
1898        /* Some devices choke if TF registers contain garbage.  Make
1899         * sure those are properly initialized.
1900         */
1901        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903        /* Device presence detection is unreliable on some
1904         * controllers.  Always poll IDENTIFY if available.
1905         */
1906        tf.flags |= ATA_TFLAG_POLLING;
1907
1908        if (ap->ops->read_id)
1909                err_mask = ap->ops->read_id(dev, &tf, id);
1910        else
1911                err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913        if (err_mask) {
1914                if (err_mask & AC_ERR_NODEV_HINT) {
1915                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1916                        return -ENOENT;
1917                }
1918
1919                if (is_semb) {
1920                        ata_dev_info(dev,
1921                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922                        /* SEMB is not supported yet */
1923                        *p_class = ATA_DEV_SEMB_UNSUP;
1924                        return 0;
1925                }
1926
1927                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928                        /* Device or controller might have reported
1929                         * the wrong device class.  Give a shot at the
1930                         * other IDENTIFY if the current one is
1931                         * aborted by the device.
1932                         */
1933                        if (may_fallback) {
1934                                may_fallback = 0;
1935
1936                                if (class == ATA_DEV_ATA)
1937                                        class = ATA_DEV_ATAPI;
1938                                else
1939                                        class = ATA_DEV_ATA;
1940                                goto retry;
1941                        }
1942
1943                        /* Control reaches here iff the device aborted
1944                         * both flavors of IDENTIFYs which happens
1945                         * sometimes with phantom devices.
1946                         */
1947                        ata_dev_dbg(dev,
1948                                    "both IDENTIFYs aborted, assuming NODEV\n");
1949                        return -ENOENT;
1950                }
1951
1952                rc = -EIO;
1953                reason = "I/O error";
1954                goto err_out;
1955        }
1956
1957        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959                            "class=%d may_fallback=%d tried_spinup=%d\n",
1960                            class, may_fallback, tried_spinup);
1961                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963        }
1964
1965        /* Falling back doesn't make sense if ID data was read
1966         * successfully at least once.
1967         */
1968        may_fallback = 0;
1969
1970        swap_buf_le16(id, ATA_ID_WORDS);
1971
1972        /* sanity check */
1973        rc = -EINVAL;
1974        reason = "device reports invalid type";
1975
1976        if (class == ATA_DEV_ATA) {
1977                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978                        goto err_out;
1979                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980                                                        ata_id_is_ata(id)) {
1981                        ata_dev_dbg(dev,
1982                                "host indicates ignore ATA devices, ignored\n");
1983                        return -ENOENT;
1984                }
1985        } else {
1986                if (ata_id_is_ata(id))
1987                        goto err_out;
1988        }
1989
1990        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991                tried_spinup = 1;
1992                /*
1993                 * Drive powered-up in standby mode, and requires a specific
1994                 * SET_FEATURES spin-up subcommand before it will accept
1995                 * anything other than the original IDENTIFY command.
1996                 */
1997                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998                if (err_mask && id[2] != 0x738c) {
1999                        rc = -EIO;
2000                        reason = "SPINUP failed";
2001                        goto err_out;
2002                }
2003                /*
2004                 * If the drive initially returned incomplete IDENTIFY info,
2005                 * we now must reissue the IDENTIFY command.
2006                 */
2007                if (id[2] == 0x37c8)
2008                        goto retry;
2009        }
2010
2011        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2012                /*
2013                 * The exact sequence expected by certain pre-ATA4 drives is:
2014                 * SRST RESET
2015                 * IDENTIFY (optional in early ATA)
2016                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017                 * anything else..
2018                 * Some drives were very specific about that exact sequence.
2019                 *
2020                 * Note that ATA4 says lba is mandatory so the second check
2021                 * should never trigger.
2022                 */
2023                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025                        if (err_mask) {
2026                                rc = -EIO;
2027                                reason = "INIT_DEV_PARAMS failed";
2028                                goto err_out;
2029                        }
2030
2031                        /* current CHS translation info (id[53-58]) might be
2032                         * changed. reread the identify device info.
2033                         */
2034                        flags &= ~ATA_READID_POSTRESET;
2035                        goto retry;
2036                }
2037        }
2038
2039        *p_class = class;
2040
2041        return 0;
2042
2043 err_out:
2044        if (ata_msg_warn(ap))
2045                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046                             reason, err_mask);
2047        return rc;
2048}
2049
2050static int ata_do_link_spd_horkage(struct ata_device *dev)
2051{
2052        struct ata_link *plink = ata_dev_phys_link(dev);
2053        u32 target, target_limit;
2054
2055        if (!sata_scr_valid(plink))
2056                return 0;
2057
2058        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059                target = 1;
2060        else
2061                return 0;
2062
2063        target_limit = (1 << target) - 1;
2064
2065        /* if already on stricter limit, no need to push further */
2066        if (plink->sata_spd_limit <= target_limit)
2067                return 0;
2068
2069        plink->sata_spd_limit = target_limit;
2070
2071        /* Request another EH round by returning -EAGAIN if link is
2072         * going faster than the target speed.  Forward progress is
2073         * guaranteed by setting sata_spd_limit to target_limit above.
2074         */
2075        if (plink->sata_spd > target) {
2076                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077                             sata_spd_string(target));
2078                return -EAGAIN;
2079        }
2080        return 0;
2081}
2082
2083static inline u8 ata_dev_knobble(struct ata_device *dev)
2084{
2085        struct ata_port *ap = dev->link->ap;
2086
2087        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088                return 0;
2089
2090        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2091}
2092
2093static int ata_dev_config_ncq(struct ata_device *dev,
2094                               char *desc, size_t desc_sz)
2095{
2096        struct ata_port *ap = dev->link->ap;
2097        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2098        unsigned int err_mask;
2099        char *aa_desc = "";
2100
2101        if (!ata_id_has_ncq(dev->id)) {
2102                desc[0] = '\0';
2103                return 0;
2104        }
2105        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2106                snprintf(desc, desc_sz, "NCQ (not used)");
2107                return 0;
2108        }
2109        if (ap->flags & ATA_FLAG_NCQ) {
2110                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2111                dev->flags |= ATA_DFLAG_NCQ;
2112        }
2113
2114        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2115                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2116                ata_id_has_fpdma_aa(dev->id)) {
2117                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2118                        SATA_FPDMA_AA);
2119                if (err_mask) {
2120                        ata_dev_err(dev,
2121                                    "failed to enable AA (error_mask=0x%x)\n",
2122                                    err_mask);
2123                        if (err_mask != AC_ERR_DEV) {
2124                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2125                                return -EIO;
2126                        }
2127                } else
2128                        aa_desc = ", AA";
2129        }
2130
2131        if (hdepth >= ddepth)
2132                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2133        else
2134                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2135                        ddepth, aa_desc);
2136        return 0;
2137}
2138
2139/**
2140 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2141 *      @dev: Target device to configure
2142 *
2143 *      Configure @dev according to @dev->id.  Generic and low-level
2144 *      driver specific fixups are also applied.
2145 *
2146 *      LOCKING:
2147 *      Kernel thread context (may sleep)
2148 *
2149 *      RETURNS:
2150 *      0 on success, -errno otherwise
2151 */
2152int ata_dev_configure(struct ata_device *dev)
2153{
2154        struct ata_port *ap = dev->link->ap;
2155        struct ata_eh_context *ehc = &dev->link->eh_context;
2156        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2157        const u16 *id = dev->id;
2158        unsigned long xfer_mask;
2159        unsigned int err_mask;
2160        char revbuf[7];         /* XYZ-99\0 */
2161        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2162        char modelbuf[ATA_ID_PROD_LEN+1];
2163        int rc;
2164
2165        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2166                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2167                return 0;
2168        }
2169
2170        if (ata_msg_probe(ap))
2171                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2172
2173        /* set horkage */
2174        dev->horkage |= ata_dev_blacklisted(dev);
2175        ata_force_horkage(dev);
2176
2177        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2178                ata_dev_info(dev, "unsupported device, disabling\n");
2179                ata_dev_disable(dev);
2180                return 0;
2181        }
2182
2183        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2184            dev->class == ATA_DEV_ATAPI) {
2185                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2186                             atapi_enabled ? "not supported with this driver"
2187                             : "disabled");
2188                ata_dev_disable(dev);
2189                return 0;
2190        }
2191
2192        rc = ata_do_link_spd_horkage(dev);
2193        if (rc)
2194                return rc;
2195
2196        /* let ACPI work its magic */
2197        rc = ata_acpi_on_devcfg(dev);
2198        if (rc)
2199                return rc;
2200
2201        /* massage HPA, do it early as it might change IDENTIFY data */
2202        rc = ata_hpa_resize(dev);
2203        if (rc)
2204                return rc;
2205
2206        /* print device capabilities */
2207        if (ata_msg_probe(ap))
2208                ata_dev_dbg(dev,
2209                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2210                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2211                            __func__,
2212                            id[49], id[82], id[83], id[84],
2213                            id[85], id[86], id[87], id[88]);
2214
2215        /* initialize to-be-configured parameters */
2216        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2217        dev->max_sectors = 0;
2218        dev->cdb_len = 0;
2219        dev->n_sectors = 0;
2220        dev->cylinders = 0;
2221        dev->heads = 0;
2222        dev->sectors = 0;
2223        dev->multi_count = 0;
2224
2225        /*
2226         * common ATA, ATAPI feature tests
2227         */
2228
2229        /* find max transfer mode; for printk only */
2230        xfer_mask = ata_id_xfermask(id);
2231
2232        if (ata_msg_probe(ap))
2233                ata_dump_id(id);
2234
2235        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2236        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2237                        sizeof(fwrevbuf));
2238
2239        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2240                        sizeof(modelbuf));
2241
2242        /* ATA-specific feature tests */
2243        if (dev->class == ATA_DEV_ATA) {
2244                if (ata_id_is_cfa(id)) {
2245                        /* CPRM may make this media unusable */
2246                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2247                                ata_dev_warn(dev,
2248        "supports DRM functions and may not be fully accessible\n");
2249                        snprintf(revbuf, 7, "CFA");
2250                } else {
2251                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2252                        /* Warn the user if the device has TPM extensions */
2253                        if (ata_id_has_tpm(id))
2254                                ata_dev_warn(dev,
2255        "supports DRM functions and may not be fully accessible\n");
2256                }
2257
2258                dev->n_sectors = ata_id_n_sectors(id);
2259
2260                /* get current R/W Multiple count setting */
2261                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2262                        unsigned int max = dev->id[47] & 0xff;
2263                        unsigned int cnt = dev->id[59] & 0xff;
2264                        /* only recognize/allow powers of two here */
2265                        if (is_power_of_2(max) && is_power_of_2(cnt))
2266                                if (cnt <= max)
2267                                        dev->multi_count = cnt;
2268                }
2269
2270                if (ata_id_has_lba(id)) {
2271                        const char *lba_desc;
2272                        char ncq_desc[24];
2273
2274                        lba_desc = "LBA";
2275                        dev->flags |= ATA_DFLAG_LBA;
2276                        if (ata_id_has_lba48(id)) {
2277                                dev->flags |= ATA_DFLAG_LBA48;
2278                                lba_desc = "LBA48";
2279
2280                                if (dev->n_sectors >= (1UL << 28) &&
2281                                    ata_id_has_flush_ext(id))
2282                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2283                        }
2284
2285                        /* config NCQ */
2286                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2287                        if (rc)
2288                                return rc;
2289
2290                        /* print device info to dmesg */
2291                        if (ata_msg_drv(ap) && print_info) {
2292                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2293                                             revbuf, modelbuf, fwrevbuf,
2294                                             ata_mode_string(xfer_mask));
2295                                ata_dev_info(dev,
2296                                             "%llu sectors, multi %u: %s %s\n",
2297                                        (unsigned long long)dev->n_sectors,
2298                                        dev->multi_count, lba_desc, ncq_desc);
2299                        }
2300                } else {
2301                        /* CHS */
2302
2303                        /* Default translation */
2304                        dev->cylinders  = id[1];
2305                        dev->heads      = id[3];
2306                        dev->sectors    = id[6];
2307
2308                        if (ata_id_current_chs_valid(id)) {
2309                                /* Current CHS translation is valid. */
2310                                dev->cylinders = id[54];
2311                                dev->heads     = id[55];
2312                                dev->sectors   = id[56];
2313                        }
2314
2315                        /* print device info to dmesg */
2316                        if (ata_msg_drv(ap) && print_info) {
2317                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2318                                             revbuf,    modelbuf, fwrevbuf,
2319                                             ata_mode_string(xfer_mask));
2320                                ata_dev_info(dev,
2321                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2322                                             (unsigned long long)dev->n_sectors,
2323                                             dev->multi_count, dev->cylinders,
2324                                             dev->heads, dev->sectors);
2325                        }
2326                }
2327
2328                /* Check and mark DevSlp capability. Get DevSlp timing variables
2329                 * from SATA Settings page of Identify Device Data Log.
2330                 */
2331                if (ata_id_has_devslp(dev->id)) {
2332                        u8 *sata_setting = ap->sector_buf;
2333                        int i, j;
2334
2335                        dev->flags |= ATA_DFLAG_DEVSLP;
2336                        err_mask = ata_read_log_page(dev,
2337                                                     ATA_LOG_SATA_ID_DEV_DATA,
2338                                                     ATA_LOG_SATA_SETTINGS,
2339                                                     sata_setting,
2340                                                     1);
2341                        if (err_mask)
2342                                ata_dev_dbg(dev,
2343                                            "failed to get Identify Device Data, Emask 0x%x\n",
2344                                            err_mask);
2345                        else
2346                                for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2347                                        j = ATA_LOG_DEVSLP_OFFSET + i;
2348                                        dev->devslp_timing[i] = sata_setting[j];
2349                                }
2350                }
2351
2352                dev->cdb_len = 16;
2353        }
2354
2355        /* ATAPI-specific feature tests */
2356        else if (dev->class == ATA_DEV_ATAPI) {
2357                const char *cdb_intr_string = "";
2358                const char *atapi_an_string = "";
2359                const char *dma_dir_string = "";
2360                u32 sntf;
2361
2362                rc = atapi_cdb_len(id);
2363                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2364                        if (ata_msg_warn(ap))
2365                                ata_dev_warn(dev, "unsupported CDB len\n");
2366                        rc = -EINVAL;
2367                        goto err_out_nosup;
2368                }
2369                dev->cdb_len = (unsigned int) rc;
2370
2371                /* Enable ATAPI AN if both the host and device have
2372                 * the support.  If PMP is attached, SNTF is required
2373                 * to enable ATAPI AN to discern between PHY status
2374                 * changed notifications and ATAPI ANs.
2375                 */
2376                if (atapi_an &&
2377                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2378                    (!sata_pmp_attached(ap) ||
2379                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2380                        /* issue SET feature command to turn this on */
2381                        err_mask = ata_dev_set_feature(dev,
2382                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2383                        if (err_mask)
2384                                ata_dev_err(dev,
2385                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2386                                            err_mask);
2387                        else {
2388                                dev->flags |= ATA_DFLAG_AN;
2389                                atapi_an_string = ", ATAPI AN";
2390                        }
2391                }
2392
2393                if (ata_id_cdb_intr(dev->id)) {
2394                        dev->flags |= ATA_DFLAG_CDB_INTR;
2395                        cdb_intr_string = ", CDB intr";
2396                }
2397
2398                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2399                        dev->flags |= ATA_DFLAG_DMADIR;
2400                        dma_dir_string = ", DMADIR";
2401                }
2402
2403                if (ata_id_has_da(dev->id)) {
2404                        dev->flags |= ATA_DFLAG_DA;
2405                        zpodd_init(dev);
2406                }
2407
2408                /* print device info to dmesg */
2409                if (ata_msg_drv(ap) && print_info)
2410                        ata_dev_info(dev,
2411                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2412                                     modelbuf, fwrevbuf,
2413                                     ata_mode_string(xfer_mask),
2414                                     cdb_intr_string, atapi_an_string,
2415                                     dma_dir_string);
2416        }
2417
2418        /* determine max_sectors */
2419        dev->max_sectors = ATA_MAX_SECTORS;
2420        if (dev->flags & ATA_DFLAG_LBA48)
2421                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2422
2423        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2424           200 sectors */
2425        if (ata_dev_knobble(dev)) {
2426                if (ata_msg_drv(ap) && print_info)
2427                        ata_dev_info(dev, "applying bridge limits\n");
2428                dev->udma_mask &= ATA_UDMA5;
2429                dev->max_sectors = ATA_MAX_SECTORS;
2430        }
2431
2432        if ((dev->class == ATA_DEV_ATAPI) &&
2433            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2434                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2435                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2436        }
2437
2438        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2439                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2440                                         dev->max_sectors);
2441
2442        if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2443                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444
2445        if (ap->ops->dev_config)
2446                ap->ops->dev_config(dev);
2447
2448        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2449                /* Let the user know. We don't want to disallow opens for
2450                   rescue purposes, or in case the vendor is just a blithering
2451                   idiot. Do this after the dev_config call as some controllers
2452                   with buggy firmware may want to avoid reporting false device
2453                   bugs */
2454
2455                if (print_info) {
2456                        ata_dev_warn(dev,
2457"Drive reports diagnostics failure. This may indicate a drive\n");
2458                        ata_dev_warn(dev,
2459"fault or invalid emulation. Contact drive vendor for information.\n");
2460                }
2461        }
2462
2463        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2464                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2465                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2466        }
2467
2468        return 0;
2469
2470err_out_nosup:
2471        if (ata_msg_probe(ap))
2472                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2473        return rc;
2474}
2475
2476/**
2477 *      ata_cable_40wire        -       return 40 wire cable type
2478 *      @ap: port
2479 *
2480 *      Helper method for drivers which want to hardwire 40 wire cable
2481 *      detection.
2482 */
2483
2484int ata_cable_40wire(struct ata_port *ap)
2485{
2486        return ATA_CBL_PATA40;
2487}
2488
2489/**
2490 *      ata_cable_80wire        -       return 80 wire cable type
2491 *      @ap: port
2492 *
2493 *      Helper method for drivers which want to hardwire 80 wire cable
2494 *      detection.
2495 */
2496
2497int ata_cable_80wire(struct ata_port *ap)
2498{
2499        return ATA_CBL_PATA80;
2500}
2501
2502/**
2503 *      ata_cable_unknown       -       return unknown PATA cable.
2504 *      @ap: port
2505 *
2506 *      Helper method for drivers which have no PATA cable detection.
2507 */
2508
2509int ata_cable_unknown(struct ata_port *ap)
2510{
2511        return ATA_CBL_PATA_UNK;
2512}
2513
2514/**
2515 *      ata_cable_ignore        -       return ignored PATA cable.
2516 *      @ap: port
2517 *
2518 *      Helper method for drivers which don't use cable type to limit
2519 *      transfer mode.
2520 */
2521int ata_cable_ignore(struct ata_port *ap)
2522{
2523        return ATA_CBL_PATA_IGN;
2524}
2525
2526/**
2527 *      ata_cable_sata  -       return SATA cable type
2528 *      @ap: port
2529 *
2530 *      Helper method for drivers which have SATA cables
2531 */
2532
2533int ata_cable_sata(struct ata_port *ap)
2534{
2535        return ATA_CBL_SATA;
2536}
2537
2538/**
2539 *      ata_bus_probe - Reset and probe ATA bus
2540 *      @ap: Bus to probe
2541 *
2542 *      Master ATA bus probing function.  Initiates a hardware-dependent
2543 *      bus reset, then attempts to identify any devices found on
2544 *      the bus.
2545 *
2546 *      LOCKING:
2547 *      PCI/etc. bus probe sem.
2548 *
2549 *      RETURNS:
2550 *      Zero on success, negative errno otherwise.
2551 */
2552
2553int ata_bus_probe(struct ata_port *ap)
2554{
2555        unsigned int classes[ATA_MAX_DEVICES];
2556        int tries[ATA_MAX_DEVICES];
2557        int rc;
2558        struct ata_device *dev;
2559
2560        ata_for_each_dev(dev, &ap->link, ALL)
2561                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2562
2563 retry:
2564        ata_for_each_dev(dev, &ap->link, ALL) {
2565                /* If we issue an SRST then an ATA drive (not ATAPI)
2566                 * may change configuration and be in PIO0 timing. If
2567                 * we do a hard reset (or are coming from power on)
2568                 * this is true for ATA or ATAPI. Until we've set a
2569                 * suitable controller mode we should not touch the
2570                 * bus as we may be talking too fast.
2571                 */
2572                dev->pio_mode = XFER_PIO_0;
2573                dev->dma_mode = 0xff;
2574
2575                /* If the controller has a pio mode setup function
2576                 * then use it to set the chipset to rights. Don't
2577                 * touch the DMA setup as that will be dealt with when
2578                 * configuring devices.
2579                 */
2580                if (ap->ops->set_piomode)
2581                        ap->ops->set_piomode(ap, dev);
2582        }
2583
2584        /* reset and determine device classes */
2585        ap->ops->phy_reset(ap);
2586
2587        ata_for_each_dev(dev, &ap->link, ALL) {
2588                if (dev->class != ATA_DEV_UNKNOWN)
2589                        classes[dev->devno] = dev->class;
2590                else
2591                        classes[dev->devno] = ATA_DEV_NONE;
2592
2593                dev->class = ATA_DEV_UNKNOWN;
2594        }
2595
2596        /* read IDENTIFY page and configure devices. We have to do the identify
2597           specific sequence bass-ackwards so that PDIAG- is released by
2598           the slave device */
2599
2600        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2601                if (tries[dev->devno])
2602                        dev->class = classes[dev->devno];
2603
2604                if (!ata_dev_enabled(dev))
2605                        continue;
2606
2607                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2608                                     dev->id);
2609                if (rc)
2610                        goto fail;
2611        }
2612
2613        /* Now ask for the cable type as PDIAG- should have been released */
2614        if (ap->ops->cable_detect)
2615                ap->cbl = ap->ops->cable_detect(ap);
2616
2617        /* We may have SATA bridge glue hiding here irrespective of
2618         * the reported cable types and sensed types.  When SATA
2619         * drives indicate we have a bridge, we don't know which end
2620         * of the link the bridge is which is a problem.
2621         */
2622        ata_for_each_dev(dev, &ap->link, ENABLED)
2623                if (ata_id_is_sata(dev->id))
2624                        ap->cbl = ATA_CBL_SATA;
2625
2626        /* After the identify sequence we can now set up the devices. We do
2627           this in the normal order so that the user doesn't get confused */
2628
2629        ata_for_each_dev(dev, &ap->link, ENABLED) {
2630                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2631                rc = ata_dev_configure(dev);
2632                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2633                if (rc)
2634                        goto fail;
2635        }
2636
2637        /* configure transfer mode */
2638        rc = ata_set_mode(&ap->link, &dev);
2639        if (rc)
2640                goto fail;
2641
2642        ata_for_each_dev(dev, &ap->link, ENABLED)
2643                return 0;
2644
2645        return -ENODEV;
2646
2647 fail:
2648        tries[dev->devno]--;
2649
2650        switch (rc) {
2651        case -EINVAL:
2652                /* eeek, something went very wrong, give up */
2653                tries[dev->devno] = 0;
2654                break;
2655
2656        case -ENODEV:
2657                /* give it just one more chance */
2658                tries[dev->devno] = min(tries[dev->devno], 1);
2659        case -EIO:
2660                if (tries[dev->devno] == 1) {
2661                        /* This is the last chance, better to slow
2662                         * down than lose it.
2663                         */
2664                        sata_down_spd_limit(&ap->link, 0);
2665                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2666                }
2667        }
2668
2669        if (!tries[dev->devno])
2670                ata_dev_disable(dev);
2671
2672        goto retry;
2673}
2674
2675/**
2676 *      sata_print_link_status - Print SATA link status
2677 *      @link: SATA link to printk link status about
2678 *
2679 *      This function prints link speed and status of a SATA link.
2680 *
2681 *      LOCKING:
2682 *      None.
2683 */
2684static void sata_print_link_status(struct ata_link *link)
2685{
2686        u32 sstatus, scontrol, tmp;
2687
2688        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2689                return;
2690        sata_scr_read(link, SCR_CONTROL, &scontrol);
2691
2692        if (ata_phys_link_online(link)) {
2693                tmp = (sstatus >> 4) & 0xf;
2694                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2695                              sata_spd_string(tmp), sstatus, scontrol);
2696        } else {
2697                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2698                              sstatus, scontrol);
2699        }
2700}
2701
2702/**
2703 *      ata_dev_pair            -       return other device on cable
2704 *      @adev: device
2705 *
2706 *      Obtain the other device on the same cable, or if none is
2707 *      present NULL is returned
2708 */
2709
2710struct ata_device *ata_dev_pair(struct ata_device *adev)
2711{
2712        struct ata_link *link = adev->link;
2713        struct ata_device *pair = &link->device[1 - adev->devno];
2714        if (!ata_dev_enabled(pair))
2715                return NULL;
2716        return pair;
2717}
2718
2719/**
2720 *      sata_down_spd_limit - adjust SATA spd limit downward
2721 *      @link: Link to adjust SATA spd limit for
2722 *      @spd_limit: Additional limit
2723 *
2724 *      Adjust SATA spd limit of @link downward.  Note that this
2725 *      function only adjusts the limit.  The change must be applied
2726 *      using sata_set_spd().
2727 *
2728 *      If @spd_limit is non-zero, the speed is limited to equal to or
2729 *      lower than @spd_limit if such speed is supported.  If
2730 *      @spd_limit is slower than any supported speed, only the lowest
2731 *      supported speed is allowed.
2732 *
2733 *      LOCKING:
2734 *      Inherited from caller.
2735 *
2736 *      RETURNS:
2737 *      0 on success, negative errno on failure
2738 */
2739int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2740{
2741        u32 sstatus, spd, mask;
2742        int rc, bit;
2743
2744        if (!sata_scr_valid(link))
2745                return -EOPNOTSUPP;
2746
2747        /* If SCR can be read, use it to determine the current SPD.
2748         * If not, use cached value in link->sata_spd.
2749         */
2750        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2751        if (rc == 0 && ata_sstatus_online(sstatus))
2752                spd = (sstatus >> 4) & 0xf;
2753        else
2754                spd = link->sata_spd;
2755
2756        mask = link->sata_spd_limit;
2757        if (mask <= 1)
2758                return -EINVAL;
2759
2760        /* unconditionally mask off the highest bit */
2761        bit = fls(mask) - 1;
2762        mask &= ~(1 << bit);
2763
2764        /* Mask off all speeds higher than or equal to the current
2765         * one.  Force 1.5Gbps if current SPD is not available.
2766         */
2767        if (spd > 1)
2768                mask &= (1 << (spd - 1)) - 1;
2769        else
2770                mask &= 1;
2771
2772        /* were we already at the bottom? */
2773        if (!mask)
2774                return -EINVAL;
2775
2776        if (spd_limit) {
2777                if (mask & ((1 << spd_limit) - 1))
2778                        mask &= (1 << spd_limit) - 1;
2779                else {
2780                        bit = ffs(mask) - 1;
2781                        mask = 1 << bit;
2782                }
2783        }
2784
2785        link->sata_spd_limit = mask;
2786
2787        ata_link_warn(link, "limiting SATA link speed to %s\n",
2788                      sata_spd_string(fls(mask)));
2789
2790        return 0;
2791}
2792
2793static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2794{
2795        struct ata_link *host_link = &link->ap->link;
2796        u32 limit, target, spd;
2797
2798        limit = link->sata_spd_limit;
2799
2800        /* Don't configure downstream link faster than upstream link.
2801         * It doesn't speed up anything and some PMPs choke on such
2802         * configuration.
2803         */
2804        if (!ata_is_host_link(link) && host_link->sata_spd)
2805                limit &= (1 << host_link->sata_spd) - 1;
2806
2807        if (limit == UINT_MAX)
2808                target = 0;
2809        else
2810                target = fls(limit);
2811
2812        spd = (*scontrol >> 4) & 0xf;
2813        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2814
2815        return spd != target;
2816}
2817
2818/**
2819 *      sata_set_spd_needed - is SATA spd configuration needed
2820 *      @link: Link in question
2821 *
2822 *      Test whether the spd limit in SControl matches
2823 *      @link->sata_spd_limit.  This function is used to determine
2824 *      whether hardreset is necessary to apply SATA spd
2825 *      configuration.
2826 *
2827 *      LOCKING:
2828 *      Inherited from caller.
2829 *
2830 *      RETURNS:
2831 *      1 if SATA spd configuration is needed, 0 otherwise.
2832 */
2833static int sata_set_spd_needed(struct ata_link *link)
2834{
2835        u32 scontrol;
2836
2837        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2838                return 1;
2839
2840        return __sata_set_spd_needed(link, &scontrol);
2841}
2842
2843/**
2844 *      sata_set_spd - set SATA spd according to spd limit
2845 *      @link: Link to set SATA spd for
2846 *
2847 *      Set SATA spd of @link according to sata_spd_limit.
2848 *
2849 *      LOCKING:
2850 *      Inherited from caller.
2851 *
2852 *      RETURNS:
2853 *      0 if spd doesn't need to be changed, 1 if spd has been
2854 *      changed.  Negative errno if SCR registers are inaccessible.
2855 */
2856int sata_set_spd(struct ata_link *link)
2857{
2858        u32 scontrol;
2859        int rc;
2860
2861        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2862                return rc;
2863
2864        if (!__sata_set_spd_needed(link, &scontrol))
2865                return 0;
2866
2867        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2868                return rc;
2869
2870        return 1;
2871}
2872
2873/*
2874 * This mode timing computation functionality is ported over from
2875 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2876 */
2877/*
2878 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2879 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2880 * for UDMA6, which is currently supported only by Maxtor drives.
2881 *
2882 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2883 */
2884
2885static const struct ata_timing ata_timing[] = {
2886/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2887        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2888        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2889        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2890        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2891        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2892        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2893        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2894
2895        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2896        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2897        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2898
2899        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2900        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2901        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2902        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2903        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2904
2905/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2906        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2907        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2908        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2909        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2910        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2911        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2912        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2913
2914        { 0xFF }
2915};
2916
2917#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2918#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2919
2920static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2921{
2922        q->setup        = EZ(t->setup      * 1000,  T);
2923        q->act8b        = EZ(t->act8b      * 1000,  T);
2924        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2925        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2926        q->active       = EZ(t->active     * 1000,  T);
2927        q->recover      = EZ(t->recover    * 1000,  T);
2928        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2929        q->cycle        = EZ(t->cycle      * 1000,  T);
2930        q->udma         = EZ(t->udma       * 1000, UT);
2931}
2932
2933void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2934                      struct ata_timing *m, unsigned int what)
2935{
2936        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2937        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2938        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2939        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2940        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2941        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2942        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2943        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2944        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2945}
2946
2947const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2948{
2949        const struct ata_timing *t = ata_timing;
2950
2951        while (xfer_mode > t->mode)
2952                t++;
2953
2954        if (xfer_mode == t->mode)
2955                return t;
2956
2957        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2958                        __func__, xfer_mode);
2959
2960        return NULL;
2961}
2962
2963int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2964                       struct ata_timing *t, int T, int UT)
2965{
2966        const u16 *id = adev->id;
2967        const struct ata_timing *s;
2968        struct ata_timing p;
2969
2970        /*
2971         * Find the mode.
2972         */
2973
2974        if (!(s = ata_timing_find_mode(speed)))
2975                return -EINVAL;
2976
2977        memcpy(t, s, sizeof(*s));
2978
2979        /*
2980         * If the drive is an EIDE drive, it can tell us it needs extended
2981         * PIO/MW_DMA cycle timing.
2982         */
2983
2984        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2985                memset(&p, 0, sizeof(p));
2986
2987                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2988                        if (speed <= XFER_PIO_2)
2989                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2990                        else if ((speed <= XFER_PIO_4) ||
2991                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2992                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2993                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2994                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2995
2996                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2997        }
2998
2999        /*
3000         * Convert the timing to bus clock counts.
3001         */
3002
3003        ata_timing_quantize(t, t, T, UT);
3004
3005        /*
3006         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3007         * S.M.A.R.T * and some other commands. We have to ensure that the
3008         * DMA cycle timing is slower/equal than the fastest PIO timing.
3009         */
3010
3011        if (speed > XFER_PIO_6) {
3012                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3013                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3014        }
3015
3016        /*
3017         * Lengthen active & recovery time so that cycle time is correct.
3018         */
3019
3020        if (t->act8b + t->rec8b < t->cyc8b) {
3021                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3022                t->rec8b = t->cyc8b - t->act8b;
3023        }
3024
3025        if (t->active + t->recover < t->cycle) {
3026                t->active += (t->cycle - (t->active + t->recover)) / 2;
3027                t->recover = t->cycle - t->active;
3028        }
3029
3030        /* In a few cases quantisation may produce enough errors to
3031           leave t->cycle too low for the sum of active and recovery
3032           if so we must correct this */
3033        if (t->active + t->recover > t->cycle)
3034                t->cycle = t->active + t->recover;
3035
3036        return 0;
3037}
3038
3039/**
3040 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3041 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3042 *      @cycle: cycle duration in ns
3043 *
3044 *      Return matching xfer mode for @cycle.  The returned mode is of
3045 *      the transfer type specified by @xfer_shift.  If @cycle is too
3046 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3047 *      than the fastest known mode, the fasted mode is returned.
3048 *
3049 *      LOCKING:
3050 *      None.
3051 *
3052 *      RETURNS:
3053 *      Matching xfer_mode, 0xff if no match found.
3054 */
3055u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3056{
3057        u8 base_mode = 0xff, last_mode = 0xff;
3058        const struct ata_xfer_ent *ent;
3059        const struct ata_timing *t;
3060
3061        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3062                if (ent->shift == xfer_shift)
3063                        base_mode = ent->base;
3064
3065        for (t = ata_timing_find_mode(base_mode);
3066             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3067                unsigned short this_cycle;
3068
3069                switch (xfer_shift) {
3070                case ATA_SHIFT_PIO:
3071                case ATA_SHIFT_MWDMA:
3072                        this_cycle = t->cycle;
3073                        break;
3074                case ATA_SHIFT_UDMA:
3075                        this_cycle = t->udma;
3076                        break;
3077                default:
3078                        return 0xff;
3079                }
3080
3081                if (cycle > this_cycle)
3082                        break;
3083
3084                last_mode = t->mode;
3085        }
3086
3087        return last_mode;
3088}
3089
3090/**
3091 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3092 *      @dev: Device to adjust xfer masks
3093 *      @sel: ATA_DNXFER_* selector
3094 *
3095 *      Adjust xfer masks of @dev downward.  Note that this function
3096 *      does not apply the change.  Invoking ata_set_mode() afterwards
3097 *      will apply the limit.
3098 *
3099 *      LOCKING:
3100 *      Inherited from caller.
3101 *
3102 *      RETURNS:
3103 *      0 on success, negative errno on failure
3104 */
3105int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3106{
3107        char buf[32];
3108        unsigned long orig_mask, xfer_mask;
3109        unsigned long pio_mask, mwdma_mask, udma_mask;
3110        int quiet, highbit;
3111
3112        quiet = !!(sel & ATA_DNXFER_QUIET);
3113        sel &= ~ATA_DNXFER_QUIET;
3114
3115        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3116                                                  dev->mwdma_mask,
3117                                                  dev->udma_mask);
3118        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3119
3120        switch (sel) {
3121        case ATA_DNXFER_PIO:
3122                highbit = fls(pio_mask) - 1;
3123                pio_mask &= ~(1 << highbit);
3124                break;
3125
3126        case ATA_DNXFER_DMA:
3127                if (udma_mask) {
3128                        highbit = fls(udma_mask) - 1;
3129                        udma_mask &= ~(1 << highbit);
3130                        if (!udma_mask)
3131                                return -ENOENT;
3132                } else if (mwdma_mask) {
3133                        highbit = fls(mwdma_mask) - 1;
3134                        mwdma_mask &= ~(1 << highbit);
3135                        if (!mwdma_mask)
3136                                return -ENOENT;
3137                }
3138                break;
3139
3140        case ATA_DNXFER_40C:
3141                udma_mask &= ATA_UDMA_MASK_40C;
3142                break;
3143
3144        case ATA_DNXFER_FORCE_PIO0:
3145                pio_mask &= 1;
3146        case ATA_DNXFER_FORCE_PIO:
3147                mwdma_mask = 0;
3148                udma_mask = 0;
3149                break;
3150
3151        default:
3152                BUG();
3153        }
3154
3155        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3156
3157        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3158                return -ENOENT;
3159
3160        if (!quiet) {
3161                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3162                        snprintf(buf, sizeof(buf), "%s:%s",
3163                                 ata_mode_string(xfer_mask),
3164                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3165                else
3166                        snprintf(buf, sizeof(buf), "%s",
3167                                 ata_mode_string(xfer_mask));
3168
3169                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3170        }
3171
3172        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3173                            &dev->udma_mask);
3174
3175        return 0;
3176}
3177
3178static int ata_dev_set_mode(struct ata_device *dev)
3179{
3180        struct ata_port *ap = dev->link->ap;
3181        struct ata_eh_context *ehc = &dev->link->eh_context;
3182        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3183        const char *dev_err_whine = "";
3184        int ign_dev_err = 0;
3185        unsigned int err_mask = 0;
3186        int rc;
3187
3188        dev->flags &= ~ATA_DFLAG_PIO;
3189        if (dev->xfer_shift == ATA_SHIFT_PIO)
3190                dev->flags |= ATA_DFLAG_PIO;
3191
3192        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3193                dev_err_whine = " (SET_XFERMODE skipped)";
3194        else {
3195                if (nosetxfer)
3196                        ata_dev_warn(dev,
3197                                     "NOSETXFER but PATA detected - can't "
3198                                     "skip SETXFER, might malfunction\n");
3199                err_mask = ata_dev_set_xfermode(dev);
3200        }
3201
3202        if (err_mask & ~AC_ERR_DEV)
3203                goto fail;
3204
3205        /* revalidate */
3206        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3207        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3208        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3209        if (rc)
3210                return rc;
3211
3212        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3213                /* Old CFA may refuse this command, which is just fine */
3214                if (ata_id_is_cfa(dev->id))
3215                        ign_dev_err = 1;
3216                /* Catch several broken garbage emulations plus some pre
3217                   ATA devices */
3218                if (ata_id_major_version(dev->id) == 0 &&
3219                                        dev->pio_mode <= XFER_PIO_2)
3220                        ign_dev_err = 1;
3221                /* Some very old devices and some bad newer ones fail
3222                   any kind of SET_XFERMODE request but support PIO0-2
3223                   timings and no IORDY */
3224                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3225                        ign_dev_err = 1;
3226        }
3227        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3228           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3229        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3230            dev->dma_mode == XFER_MW_DMA_0 &&
3231            (dev->id[63] >> 8) & 1)
3232                ign_dev_err = 1;
3233
3234        /* if the device is actually configured correctly, ignore dev err */
3235        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3236                ign_dev_err = 1;
3237
3238        if (err_mask & AC_ERR_DEV) {
3239                if (!ign_dev_err)
3240                        goto fail;
3241                else
3242                        dev_err_whine = " (device error ignored)";
3243        }
3244
3245        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3246                dev->xfer_shift, (int)dev->xfer_mode);
3247
3248        ata_dev_info(dev, "configured for %s%s\n",
3249                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3250                     dev_err_whine);
3251
3252        return 0;
3253
3254 fail:
3255        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3256        return -EIO;
3257}
3258
3259/**
3260 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3261 *      @link: link on which timings will be programmed
3262 *      @r_failed_dev: out parameter for failed device
3263 *
3264 *      Standard implementation of the function used to tune and set
3265 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3266 *      ata_dev_set_mode() fails, pointer to the failing device is
3267 *      returned in @r_failed_dev.
3268 *
3269 *      LOCKING:
3270 *      PCI/etc. bus probe sem.
3271 *
3272 *      RETURNS:
3273 *      0 on success, negative errno otherwise
3274 */
3275
3276int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3277{
3278        struct ata_port *ap = link->ap;
3279        struct ata_device *dev;
3280        int rc = 0, used_dma = 0, found = 0;
3281
3282        /* step 1: calculate xfer_mask */
3283        ata_for_each_dev(dev, link, ENABLED) {
3284                unsigned long pio_mask, dma_mask;
3285                unsigned int mode_mask;
3286
3287                mode_mask = ATA_DMA_MASK_ATA;
3288                if (dev->class == ATA_DEV_ATAPI)
3289                        mode_mask = ATA_DMA_MASK_ATAPI;
3290                else if (ata_id_is_cfa(dev->id))
3291                        mode_mask = ATA_DMA_MASK_CFA;
3292
3293                ata_dev_xfermask(dev);
3294                ata_force_xfermask(dev);
3295
3296                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3297
3298                if (libata_dma_mask & mode_mask)
3299                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3300                                                     dev->udma_mask);
3301                else
3302                        dma_mask = 0;
3303
3304                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3305                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3306
3307                found = 1;
3308                if (ata_dma_enabled(dev))
3309                        used_dma = 1;
3310        }
3311        if (!found)
3312                goto out;
3313
3314        /* step 2: always set host PIO timings */
3315        ata_for_each_dev(dev, link, ENABLED) {
3316                if (dev->pio_mode == 0xff) {
3317                        ata_dev_warn(dev, "no PIO support\n");
3318                        rc = -EINVAL;
3319                        goto out;
3320                }
3321
3322                dev->xfer_mode = dev->pio_mode;
3323                dev->xfer_shift = ATA_SHIFT_PIO;
3324                if (ap->ops->set_piomode)
3325                        ap->ops->set_piomode(ap, dev);
3326        }
3327
3328        /* step 3: set host DMA timings */
3329        ata_for_each_dev(dev, link, ENABLED) {
3330                if (!ata_dma_enabled(dev))
3331                        continue;
3332
3333                dev->xfer_mode = dev->dma_mode;
3334                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3335                if (ap->ops->set_dmamode)
3336                        ap->ops->set_dmamode(ap, dev);
3337        }
3338
3339        /* step 4: update devices' xfer mode */
3340        ata_for_each_dev(dev, link, ENABLED) {
3341                rc = ata_dev_set_mode(dev);
3342                if (rc)
3343                        goto out;
3344        }
3345
3346        /* Record simplex status. If we selected DMA then the other
3347         * host channels are not permitted to do so.
3348         */
3349        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3350                ap->host->simplex_claimed = ap;
3351
3352 out:
3353        if (rc)
3354                *r_failed_dev = dev;
3355        return rc;
3356}
3357
3358/**
3359 *      ata_wait_ready - wait for link to become ready
3360 *      @link: link to be waited on
3361 *      @deadline: deadline jiffies for the operation
3362 *      @check_ready: callback to check link readiness
3363 *
3364 *      Wait for @link to become ready.  @check_ready should return
3365 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3366 *      link doesn't seem to be occupied, other errno for other error
3367 *      conditions.
3368 *
3369 *      Transient -ENODEV conditions are allowed for
3370 *      ATA_TMOUT_FF_WAIT.
3371 *
3372 *      LOCKING:
3373 *      EH context.
3374 *
3375 *      RETURNS:
3376 *      0 if @linke is ready before @deadline; otherwise, -errno.
3377 */
3378int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3379                   int (*check_ready)(struct ata_link *link))
3380{
3381        unsigned long start = jiffies;
3382        unsigned long nodev_deadline;
3383        int warned = 0;
3384
3385        /* choose which 0xff timeout to use, read comment in libata.h */
3386        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3387                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3388        else
3389                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3390
3391        /* Slave readiness can't be tested separately from master.  On
3392         * M/S emulation configuration, this function should be called
3393         * only on the master and it will handle both master and slave.
3394         */
3395        WARN_ON(link == link->ap->slave_link);
3396
3397        if (time_after(nodev_deadline, deadline))
3398                nodev_deadline = deadline;
3399
3400        while (1) {
3401                unsigned long now = jiffies;
3402                int ready, tmp;
3403
3404                ready = tmp = check_ready(link);
3405                if (ready > 0)
3406                        return 0;
3407
3408                /*
3409                 * -ENODEV could be transient.  Ignore -ENODEV if link
3410                 * is online.  Also, some SATA devices take a long
3411                 * time to clear 0xff after reset.  Wait for
3412                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3413                 * offline.
3414                 *
3415                 * Note that some PATA controllers (pata_ali) explode
3416                 * if status register is read more than once when
3417                 * there's no device attached.
3418                 */
3419                if (ready == -ENODEV) {
3420                        if (ata_link_online(link))
3421                                ready = 0;
3422                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3423                                 !ata_link_offline(link) &&
3424                                 time_before(now, nodev_deadline))
3425                                ready = 0;
3426                }
3427
3428                if (ready)
3429                        return ready;
3430                if (time_after(now, deadline))
3431                        return -EBUSY;
3432
3433                if (!warned && time_after(now, start + 5 * HZ) &&
3434                    (deadline - now > 3 * HZ)) {
3435                        ata_link_warn(link,
3436                                "link is slow to respond, please be patient "
3437                                "(ready=%d)\n", tmp);
3438                        warned = 1;
3439                }
3440
3441                ata_msleep(link->ap, 50);
3442        }
3443}
3444
3445/**
3446 *      ata_wait_after_reset - wait for link to become ready after reset
3447 *      @link: link to be waited on
3448 *      @deadline: deadline jiffies for the operation
3449 *      @check_ready: callback to check link readiness
3450 *
3451 *      Wait for @link to become ready after reset.
3452 *
3453 *      LOCKING:
3454 *      EH context.
3455 *
3456 *      RETURNS:
3457 *      0 if @linke is ready before @deadline; otherwise, -errno.
3458 */
3459int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3460                                int (*check_ready)(struct ata_link *link))
3461{
3462        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3463
3464        return ata_wait_ready(link, deadline, check_ready);
3465}
3466
3467/**
3468 *      sata_link_debounce - debounce SATA phy status
3469 *      @link: ATA link to debounce SATA phy status for
3470 *      @params: timing parameters { interval, duratinon, timeout } in msec
3471 *      @deadline: deadline jiffies for the operation
3472 *
3473 *      Make sure SStatus of @link reaches stable state, determined by
3474 *      holding the same value where DET is not 1 for @duration polled
3475 *      every @interval, before @timeout.  Timeout constraints the
3476 *      beginning of the stable state.  Because DET gets stuck at 1 on
3477 *      some controllers after hot unplugging, this functions waits
3478 *      until timeout then returns 0 if DET is stable at 1.
3479 *
3480 *      @timeout is further limited by @deadline.  The sooner of the
3481 *      two is used.
3482 *
3483 *      LOCKING:
3484 *      Kernel thread context (may sleep)
3485 *
3486 *      RETURNS:
3487 *      0 on success, -errno on failure.
3488 */
3489int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3490                       unsigned long deadline)
3491{
3492        unsigned long interval = params[0];
3493        unsigned long duration = params[1];
3494        unsigned long last_jiffies, t;
3495        u32 last, cur;
3496        int rc;
3497
3498        t = ata_deadline(jiffies, params[2]);
3499        if (time_before(t, deadline))
3500                deadline = t;
3501
3502        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3503                return rc;
3504        cur &= 0xf;
3505
3506        last = cur;
3507        last_jiffies = jiffies;
3508
3509        while (1) {
3510                ata_msleep(link->ap, interval);
3511                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3512                        return rc;
3513                cur &= 0xf;
3514
3515                /* DET stable? */
3516                if (cur == last) {
3517                        if (cur == 1 && time_before(jiffies, deadline))
3518                                continue;
3519                        if (time_after(jiffies,
3520                                       ata_deadline(last_jiffies, duration)))
3521                                return 0;
3522                        continue;
3523                }
3524
3525                /* unstable, start over */
3526                last = cur;
3527                last_jiffies = jiffies;
3528
3529                /* Check deadline.  If debouncing failed, return
3530                 * -EPIPE to tell upper layer to lower link speed.
3531                 */
3532                if (time_after(jiffies, deadline))
3533                        return -EPIPE;
3534        }
3535}
3536
3537/**
3538 *      sata_link_resume - resume SATA link
3539 *      @link: ATA link to resume SATA
3540 *      @params: timing parameters { interval, duratinon, timeout } in msec
3541 *      @deadline: deadline jiffies for the operation
3542 *
3543 *      Resume SATA phy @link and debounce it.
3544 *
3545 *      LOCKING:
3546 *      Kernel thread context (may sleep)
3547 *
3548 *      RETURNS:
3549 *      0 on success, -errno on failure.
3550 */
3551int sata_link_resume(struct ata_link *link, const unsigned long *params,
3552                     unsigned long deadline)
3553{
3554        int tries = ATA_LINK_RESUME_TRIES;
3555        u32 scontrol, serror;
3556        int rc;
3557
3558        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3559                return rc;
3560
3561        /*
3562         * Writes to SControl sometimes get ignored under certain
3563         * controllers (ata_piix SIDPR).  Make sure DET actually is
3564         * cleared.
3565         */
3566        do {
3567                scontrol = (scontrol & 0x0f0) | 0x300;
3568                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3569                        return rc;
3570                /*
3571                 * Some PHYs react badly if SStatus is pounded
3572                 * immediately after resuming.  Delay 200ms before
3573                 * debouncing.
3574                 */
3575                ata_msleep(link->ap, 200);
3576
3577                /* is SControl restored correctly? */
3578                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3579                        return rc;
3580        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3581
3582        if ((scontrol & 0xf0f) != 0x300) {
3583                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3584                             scontrol);
3585                return 0;
3586        }
3587
3588        if (tries < ATA_LINK_RESUME_TRIES)
3589                ata_link_warn(link, "link resume succeeded after %d retries\n",
3590                              ATA_LINK_RESUME_TRIES - tries);
3591
3592        if ((rc = sata_link_debounce(link, params, deadline)))
3593                return rc;
3594
3595        /* clear SError, some PHYs require this even for SRST to work */
3596        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3597                rc = sata_scr_write(link, SCR_ERROR, serror);
3598
3599        return rc != -EINVAL ? rc : 0;
3600}
3601
3602/**
3603 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3604 *      @link: ATA link to manipulate SControl for
3605 *      @policy: LPM policy to configure
3606 *      @spm_wakeup: initiate LPM transition to active state
3607 *
3608 *      Manipulate the IPM field of the SControl register of @link
3609 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3610 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3611 *      the link.  This function also clears PHYRDY_CHG before
3612 *      returning.
3613 *
3614 *      LOCKING:
3615 *      EH context.
3616 *
3617 *      RETURNS:
3618 *      0 on succes, -errno otherwise.
3619 */
3620int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3621                      bool spm_wakeup)
3622{
3623        struct ata_eh_context *ehc = &link->eh_context;
3624        bool woken_up = false;
3625        u32 scontrol;
3626        int rc;
3627
3628        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3629        if (rc)
3630                return rc;
3631
3632        switch (policy) {
3633        case ATA_LPM_MAX_POWER:
3634                /* disable all LPM transitions */
3635                scontrol |= (0x7 << 8);
3636                /* initiate transition to active state */
3637                if (spm_wakeup) {
3638                        scontrol |= (0x4 << 12);
3639                        woken_up = true;
3640                }
3641                break;
3642        case ATA_LPM_MED_POWER:
3643                /* allow LPM to PARTIAL */
3644                scontrol &= ~(0x1 << 8);
3645                scontrol |= (0x6 << 8);
3646                break;
3647        case ATA_LPM_MIN_POWER:
3648                if (ata_link_nr_enabled(link) > 0)
3649                        /* no restrictions on LPM transitions */
3650                        scontrol &= ~(0x7 << 8);
3651                else {
3652                        /* empty port, power off */
3653                        scontrol &= ~0xf;
3654                        scontrol |= (0x1 << 2);
3655                }
3656                break;
3657        default:
3658                WARN_ON(1);
3659        }
3660
3661        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3662        if (rc)
3663                return rc;
3664
3665        /* give the link time to transit out of LPM state */
3666        if (woken_up)
3667                msleep(10);
3668
3669        /* clear PHYRDY_CHG from SError */
3670        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3671        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3672}
3673
3674/**
3675 *      ata_std_prereset - prepare for reset
3676 *      @link: ATA link to be reset
3677 *      @deadline: deadline jiffies for the operation
3678 *
3679 *      @link is about to be reset.  Initialize it.  Failure from
3680 *      prereset makes libata abort whole reset sequence and give up
3681 *      that port, so prereset should be best-effort.  It does its
3682 *      best to prepare for reset sequence but if things go wrong, it
3683 *      should just whine, not fail.
3684 *
3685 *      LOCKING:
3686 *      Kernel thread context (may sleep)
3687 *
3688 *      RETURNS:
3689 *      0 on success, -errno otherwise.
3690 */
3691int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3692{
3693        struct ata_port *ap = link->ap;
3694        struct ata_eh_context *ehc = &link->eh_context;
3695        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3696        int rc;
3697
3698        /* if we're about to do hardreset, nothing more to do */
3699        if (ehc->i.action & ATA_EH_HARDRESET)
3700                return 0;
3701
3702        /* if SATA, resume link */
3703        if (ap->flags & ATA_FLAG_SATA) {
3704                rc = sata_link_resume(link, timing, deadline);
3705                /* whine about phy resume failure but proceed */
3706                if (rc && rc != -EOPNOTSUPP)
3707                        ata_link_warn(link,
3708                                      "failed to resume link for reset (errno=%d)\n",
3709                                      rc);
3710        }
3711
3712        /* no point in trying softreset on offline link */
3713        if (ata_phys_link_offline(link))
3714                ehc->i.action &= ~ATA_EH_SOFTRESET;
3715
3716        return 0;
3717}
3718
3719/**
3720 *      sata_link_hardreset - reset link via SATA phy reset
3721 *      @link: link to reset
3722 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3723 *      @deadline: deadline jiffies for the operation
3724 *      @online: optional out parameter indicating link onlineness
3725 *      @check_ready: optional callback to check link readiness
3726 *
3727 *      SATA phy-reset @link using DET bits of SControl register.
3728 *      After hardreset, link readiness is waited upon using
3729 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3730 *      allowed to not specify @check_ready and wait itself after this
3731 *      function returns.  Device classification is LLD's
3732 *      responsibility.
3733 *
3734 *      *@online is set to one iff reset succeeded and @link is online
3735 *      after reset.
3736 *
3737 *      LOCKING:
3738 *      Kernel thread context (may sleep)
3739 *
3740 *      RETURNS:
3741 *      0 on success, -errno otherwise.
3742 */
3743int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3744                        unsigned long deadline,
3745                        bool *online, int (*check_ready)(struct ata_link *))
3746{
3747        u32 scontrol;
3748        int rc;
3749
3750        DPRINTK("ENTER\n");
3751
3752        if (online)
3753                *online = false;
3754
3755        if (sata_set_spd_needed(link)) {
3756                /* SATA spec says nothing about how to reconfigure
3757                 * spd.  To be on the safe side, turn off phy during
3758                 * reconfiguration.  This works for at least ICH7 AHCI
3759                 * and Sil3124.
3760                 */
3761                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3762                        goto out;
3763
3764                scontrol = (scontrol & 0x0f0) | 0x304;
3765
3766                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3767                        goto out;
3768
3769                sata_set_spd(link);
3770        }
3771
3772        /* issue phy wake/reset */
3773        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3774                goto out;
3775
3776        scontrol = (scontrol & 0x0f0) | 0x301;
3777
3778        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3779                goto out;
3780
3781        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3782         * 10.4.2 says at least 1 ms.
3783         */
3784        ata_msleep(link->ap, 1);
3785
3786        /* bring link back */
3787        rc = sata_link_resume(link, timing, deadline);
3788        if (rc)
3789                goto out;
3790        /* if link is offline nothing more to do */
3791        if (ata_phys_link_offline(link))
3792                goto out;
3793
3794        /* Link is online.  From this point, -ENODEV too is an error. */
3795        if (online)
3796                *online = true;
3797
3798        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3799                /* If PMP is supported, we have to do follow-up SRST.
3800                 * Some PMPs don't send D2H Reg FIS after hardreset if
3801                 * the first port is empty.  Wait only for
3802                 * ATA_TMOUT_PMP_SRST_WAIT.
3803                 */
3804                if (check_ready) {
3805                        unsigned long pmp_deadline;
3806
3807                        pmp_deadline = ata_deadline(jiffies,
3808                                                    ATA_TMOUT_PMP_SRST_WAIT);
3809                        if (time_after(pmp_deadline, deadline))
3810                                pmp_deadline = deadline;
3811                        ata_wait_ready(link, pmp_deadline, check_ready);
3812                }
3813                rc = -EAGAIN;
3814                goto out;
3815        }
3816
3817        rc = 0;
3818        if (check_ready)
3819                rc = ata_wait_ready(link, deadline, check_ready);
3820 out:
3821        if (rc && rc != -EAGAIN) {
3822                /* online is set iff link is online && reset succeeded */
3823                if (online)
3824                        *online = false;
3825                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3826        }
3827        DPRINTK("EXIT, rc=%d\n", rc);
3828        return rc;
3829}
3830
3831/**
3832 *      sata_std_hardreset - COMRESET w/o waiting or classification
3833 *      @link: link to reset
3834 *      @class: resulting class of attached device
3835 *      @deadline: deadline jiffies for the operation
3836 *
3837 *      Standard SATA COMRESET w/o waiting or classification.
3838 *
3839 *      LOCKING:
3840 *      Kernel thread context (may sleep)
3841 *
3842 *      RETURNS:
3843 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3844 */
3845int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3846                       unsigned long deadline)
3847{
3848        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3849        bool online;
3850        int rc;
3851
3852        /* do hardreset */
3853        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3854        return online ? -EAGAIN : rc;
3855}
3856
3857/**
3858 *      ata_std_postreset - standard postreset callback
3859 *      @link: the target ata_link
3860 *      @classes: classes of attached devices
3861 *
3862 *      This function is invoked after a successful reset.  Note that
3863 *      the device might have been reset more than once using
3864 *      different reset methods before postreset is invoked.
3865 *
3866 *      LOCKING:
3867 *      Kernel thread context (may sleep)
3868 */
3869void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3870{
3871        u32 serror;
3872
3873        DPRINTK("ENTER\n");
3874
3875        /* reset complete, clear SError */
3876        if (!sata_scr_read(link, SCR_ERROR, &serror))
3877                sata_scr_write(link, SCR_ERROR, serror);
3878
3879        /* print link status */
3880        sata_print_link_status(link);
3881
3882        DPRINTK("EXIT\n");
3883}
3884
3885/**
3886 *      ata_dev_same_device - Determine whether new ID matches configured device
3887 *      @dev: device to compare against
3888 *      @new_class: class of the new device
3889 *      @new_id: IDENTIFY page of the new device
3890 *
3891 *      Compare @new_class and @new_id against @dev and determine
3892 *      whether @dev is the device indicated by @new_class and
3893 *      @new_id.
3894 *
3895 *      LOCKING:
3896 *      None.
3897 *
3898 *      RETURNS:
3899 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3900 */
3901static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3902                               const u16 *new_id)
3903{
3904        const u16 *old_id = dev->id;
3905        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3906        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3907
3908        if (dev->class != new_class) {
3909                ata_dev_info(dev, "class mismatch %d != %d\n",
3910                             dev->class, new_class);
3911                return 0;
3912        }
3913
3914        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3915        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3916        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3917        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3918
3919        if (strcmp(model[0], model[1])) {
3920                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3921                             model[0], model[1]);
3922                return 0;
3923        }
3924
3925        if (strcmp(serial[0], serial[1])) {
3926                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3927                             serial[0], serial[1]);
3928                return 0;
3929        }
3930
3931        return 1;
3932}
3933
3934/**
3935 *      ata_dev_reread_id - Re-read IDENTIFY data
3936 *      @dev: target ATA device
3937 *      @readid_flags: read ID flags
3938 *
3939 *      Re-read IDENTIFY page and make sure @dev is still attached to
3940 *      the port.
3941 *
3942 *      LOCKING:
3943 *      Kernel thread context (may sleep)
3944 *
3945 *      RETURNS:
3946 *      0 on success, negative errno otherwise
3947 */
3948int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3949{
3950        unsigned int class = dev->class;
3951        u16 *id = (void *)dev->link->ap->sector_buf;
3952        int rc;
3953
3954        /* read ID data */
3955        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3956        if (rc)
3957                return rc;
3958
3959        /* is the device still there? */
3960        if (!ata_dev_same_device(dev, class, id))
3961                return -ENODEV;
3962
3963        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3964        return 0;
3965}
3966
3967/**
3968 *      ata_dev_revalidate - Revalidate ATA device
3969 *      @dev: device to revalidate
3970 *      @new_class: new class code
3971 *      @readid_flags: read ID flags
3972 *
3973 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3974 *      port and reconfigure it according to the new IDENTIFY page.
3975 *
3976 *      LOCKING:
3977 *      Kernel thread context (may sleep)
3978 *
3979 *      RETURNS:
3980 *      0 on success, negative errno otherwise
3981 */
3982int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3983                       unsigned int readid_flags)
3984{
3985        u64 n_sectors = dev->n_sectors;
3986        u64 n_native_sectors = dev->n_native_sectors;
3987        int rc;
3988
3989        if (!ata_dev_enabled(dev))
3990                return -ENODEV;
3991
3992        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3993        if (ata_class_enabled(new_class) &&
3994            new_class != ATA_DEV_ATA &&
3995            new_class != ATA_DEV_ATAPI &&
3996            new_class != ATA_DEV_SEMB) {
3997                ata_dev_info(dev, "class mismatch %u != %u\n",
3998                             dev->class, new_class);
3999                rc = -ENODEV;
4000                goto fail;
4001        }
4002
4003        /* re-read ID */
4004        rc = ata_dev_reread_id(dev, readid_flags);
4005        if (rc)
4006                goto fail;
4007
4008        /* configure device according to the new ID */
4009        rc = ata_dev_configure(dev);
4010        if (rc)
4011                goto fail;
4012
4013        /* verify n_sectors hasn't changed */
4014        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4015            dev->n_sectors == n_sectors)
4016                return 0;
4017
4018        /* n_sectors has changed */
4019        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4020                     (unsigned long long)n_sectors,
4021                     (unsigned long long)dev->n_sectors);
4022
4023        /*
4024         * Something could have caused HPA to be unlocked
4025         * involuntarily.  If n_native_sectors hasn't changed and the
4026         * new size matches it, keep the device.
4027         */
4028        if (dev->n_native_sectors == n_native_sectors &&
4029            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4030                ata_dev_warn(dev,
4031                             "new n_sectors matches native, probably "
4032                             "late HPA unlock, n_sectors updated\n");
4033                /* use the larger n_sectors */
4034                return 0;
4035        }
4036
4037        /*
4038         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4039         * unlocking HPA in those cases.
4040         *
4041         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4042         */
4043        if (dev->n_native_sectors == n_native_sectors &&
4044            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4045            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4046                ata_dev_warn(dev,
4047                             "old n_sectors matches native, probably "
4048                             "late HPA lock, will try to unlock HPA\n");
4049                /* try unlocking HPA */
4050                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4051                rc = -EIO;
4052        } else
4053                rc = -ENODEV;
4054
4055        /* restore original n_[native_]sectors and fail */
4056        dev->n_native_sectors = n_native_sectors;
4057        dev->n_sectors = n_sectors;
4058 fail:
4059        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4060        return rc;
4061}
4062
4063struct ata_blacklist_entry {
4064        const char *model_num;
4065        const char *model_rev;
4066        unsigned long horkage;
4067};
4068
4069static const struct ata_blacklist_entry ata_device_blacklist [] = {
4070        /* Devices with DMA related problems under Linux */
4071        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4072        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4073        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4074        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4075        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4076        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4077        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4078        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4079        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4080        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4081        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4082        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4083        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4084        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4085        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4086        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4087        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4088        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4089        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4090        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4091        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4092        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4093        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4094        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4095        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4096        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4097        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4098        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4099        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4100        /* Odd clown on sil3726/4726 PMPs */
4101        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4102
4103        /* Weird ATAPI devices */
4104        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4105        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4106        { "Slimtype DVD A  DS8A8SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
4107
4108        /* Devices we expect to fail diagnostics */
4109
4110        /* Devices where NCQ should be avoided */
4111        /* NCQ is slow */
4112        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4113        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4114        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4115        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4116        /* NCQ is broken */
4117        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4118        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4119        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4120        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4121        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4122
4123        /* Seagate NCQ + FLUSH CACHE firmware bug */
4124        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4125                                                ATA_HORKAGE_FIRMWARE_WARN },
4126
4127        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4128                                                ATA_HORKAGE_FIRMWARE_WARN },
4129
4130        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4131                                                ATA_HORKAGE_FIRMWARE_WARN },
4132
4133        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4134                                                ATA_HORKAGE_FIRMWARE_WARN },
4135
4136        /* Blacklist entries taken from Silicon Image 3124/3132
4137           Windows driver .inf file - also several Linux problem reports */
4138        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4139        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4140        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4141
4142        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4143        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4144
4145        /* devices which puke on READ_NATIVE_MAX */
4146        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4147        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4148        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4149        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4150
4151        /* this one allows HPA unlocking but fails IOs on the area */
4152        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4153
4154        /* Devices which report 1 sector over size HPA */
4155        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4156        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4157        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4158
4159        /* Devices which get the IVB wrong */
4160        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4161        /* Maybe we should just blacklist TSSTcorp... */
4162        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4163
4164        /* Devices that do not need bridging limits applied */
4165        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4166        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4167
4168        /* Devices which aren't very happy with higher link speeds */
4169        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4170        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4171
4172        /*
4173         * Devices which choke on SETXFER.  Applies only if both the
4174         * device and controller are SATA.
4175         */
4176        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4177        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4178        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4179        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4180        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4181
4182        /* End Marker */
4183        { }
4184};
4185
4186/**
4187 *      glob_match - match a text string against a glob-style pattern
4188 *      @text: the string to be examined
4189 *      @pattern: the glob-style pattern to be matched against
4190 *
4191 *      Either/both of text and pattern can be empty strings.
4192 *
4193 *      Match text against a glob-style pattern, with wildcards and simple sets:
4194 *
4195 *              ?       matches any single character.
4196 *              *       matches any run of characters.
4197 *              [xyz]   matches a single character from the set: x, y, or z.
4198 *              [a-d]   matches a single character from the range: a, b, c, or d.
4199 *              [a-d0-9] matches a single character from either range.
4200 *
4201 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4202 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4203 *
4204 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4205 *
4206 *      This function uses one level of recursion per '*' in pattern.
4207 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4208 *      this will not cause stack problems for any reasonable use here.
4209 *
4210 *      RETURNS:
4211 *      0 on match, 1 otherwise.
4212 */
4213static int glob_match (const char *text, const char *pattern)
4214{
4215        do {
4216                /* Match single character or a '?' wildcard */
4217                if (*text == *pattern || *pattern == '?') {
4218                        if (!*pattern++)
4219                                return 0;  /* End of both strings: match */
4220                } else {
4221                        /* Match single char against a '[' bracketed ']' pattern set */
4222                        if (!*text || *pattern != '[')
4223                                break;  /* Not a pattern set */
4224                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4225                                if (*pattern == '-' && *(pattern - 1) != '[')
4226                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4227                                                ++pattern;
4228                                                break;
4229                                        }
4230                        }
4231                        if (!*pattern || *pattern == ']')
4232                                return 1;  /* No match */
4233                        while (*pattern && *pattern++ != ']');
4234                }
4235        } while (*++text && *pattern);
4236
4237        /* Match any run of chars against a '*' wildcard */
4238        if (*pattern == '*') {
4239                if (!*++pattern)
4240                        return 0;  /* Match: avoid recursion at end of pattern */
4241                /* Loop to handle additional pattern chars after the wildcard */
4242                while (*text) {
4243                        if (glob_match(text, pattern) == 0)
4244                                return 0;  /* Remainder matched */
4245                        ++text;  /* Absorb (match) this char and try again */
4246                }
4247        }
4248        if (!*text && !*pattern)
4249                return 0;  /* End of both strings: match */
4250        return 1;  /* No match */
4251}
4252
4253static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4254{
4255        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4256        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4257        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4258
4259        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4260        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4261
4262        while (ad->model_num) {
4263                if (!glob_match(model_num, ad->model_num)) {
4264                        if (ad->model_rev == NULL)
4265                                return ad->horkage;
4266                        if (!glob_match(model_rev, ad->model_rev))
4267                                return ad->horkage;
4268                }
4269                ad++;
4270        }
4271        return 0;
4272}
4273
4274static int ata_dma_blacklisted(const struct ata_device *dev)
4275{
4276        /* We don't support polling DMA.
4277         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4278         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4279         */
4280        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4281            (dev->flags & ATA_DFLAG_CDB_INTR))
4282                return 1;
4283        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4284}
4285
4286/**
4287 *      ata_is_40wire           -       check drive side detection
4288 *      @dev: device
4289 *
4290 *      Perform drive side detection decoding, allowing for device vendors
4291 *      who can't follow the documentation.
4292 */
4293
4294static int ata_is_40wire(struct ata_device *dev)
4295{
4296        if (dev->horkage & ATA_HORKAGE_IVB)
4297                return ata_drive_40wire_relaxed(dev->id);
4298        return ata_drive_40wire(dev->id);
4299}
4300
4301/**
4302 *      cable_is_40wire         -       40/80/SATA decider
4303 *      @ap: port to consider
4304 *
4305 *      This function encapsulates the policy for speed management
4306 *      in one place. At the moment we don't cache the result but
4307 *      there is a good case for setting ap->cbl to the result when
4308 *      we are called with unknown cables (and figuring out if it
4309 *      impacts hotplug at all).
4310 *
4311 *      Return 1 if the cable appears to be 40 wire.
4312 */
4313
4314static int cable_is_40wire(struct ata_port *ap)
4315{
4316        struct ata_link *link;
4317        struct ata_device *dev;
4318
4319        /* If the controller thinks we are 40 wire, we are. */
4320        if (ap->cbl == ATA_CBL_PATA40)
4321                return 1;
4322
4323        /* If the controller thinks we are 80 wire, we are. */
4324        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4325                return 0;
4326
4327        /* If the system is known to be 40 wire short cable (eg
4328         * laptop), then we allow 80 wire modes even if the drive
4329         * isn't sure.
4330         */
4331        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4332                return 0;
4333
4334        /* If the controller doesn't know, we scan.
4335         *
4336         * Note: We look for all 40 wire detects at this point.  Any
4337         *       80 wire detect is taken to be 80 wire cable because
4338         * - in many setups only the one drive (slave if present) will
4339         *   give a valid detect
4340         * - if you have a non detect capable drive you don't want it
4341         *   to colour the choice
4342         */
4343        ata_for_each_link(link, ap, EDGE) {
4344                ata_for_each_dev(dev, link, ENABLED) {
4345                        if (!ata_is_40wire(dev))
4346                                return 0;
4347                }
4348        }
4349        return 1;
4350}
4351
4352/**
4353 *      ata_dev_xfermask - Compute supported xfermask of the given device
4354 *      @dev: Device to compute xfermask for
4355 *
4356 *      Compute supported xfermask of @dev and store it in
4357 *      dev->*_mask.  This function is responsible for applying all
4358 *      known limits including host controller limits, device
4359 *      blacklist, etc...
4360 *
4361 *      LOCKING:
4362 *      None.
4363 */
4364static void ata_dev_xfermask(struct ata_device *dev)
4365{
4366        struct ata_link *link = dev->link;
4367        struct ata_port *ap = link->ap;
4368        struct ata_host *host = ap->host;
4369        unsigned long xfer_mask;
4370
4371        /* controller modes available */
4372        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4373                                      ap->mwdma_mask, ap->udma_mask);
4374
4375        /* drive modes available */
4376        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4377                                       dev->mwdma_mask, dev->udma_mask);
4378        xfer_mask &= ata_id_xfermask(dev->id);
4379
4380        /*
4381         *      CFA Advanced TrueIDE timings are not allowed on a shared
4382         *      cable
4383         */
4384        if (ata_dev_pair(dev)) {
4385                /* No PIO5 or PIO6 */
4386                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4387                /* No MWDMA3 or MWDMA 4 */
4388                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4389        }
4390
4391        if (ata_dma_blacklisted(dev)) {
4392                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4393                ata_dev_warn(dev,
4394                             "device is on DMA blacklist, disabling DMA\n");
4395        }
4396
4397        if ((host->flags & ATA_HOST_SIMPLEX) &&
4398            host->simplex_claimed && host->simplex_claimed != ap) {
4399                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4400                ata_dev_warn(dev,
4401                             "simplex DMA is claimed by other device, disabling DMA\n");
4402        }
4403
4404        if (ap->flags & ATA_FLAG_NO_IORDY)
4405                xfer_mask &= ata_pio_mask_no_iordy(dev);
4406
4407        if (ap->ops->mode_filter)
4408                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4409
4410        /* Apply cable rule here.  Don't apply it early because when
4411         * we handle hot plug the cable type can itself change.
4412         * Check this last so that we know if the transfer rate was
4413         * solely limited by the cable.
4414         * Unknown or 80 wire cables reported host side are checked
4415         * drive side as well. Cases where we know a 40wire cable
4416         * is used safely for 80 are not checked here.
4417         */
4418        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4419                /* UDMA/44 or higher would be available */
4420                if (cable_is_40wire(ap)) {
4421                        ata_dev_warn(dev,
4422                                     "limited to UDMA/33 due to 40-wire cable\n");
4423                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4424                }
4425
4426        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4427                            &dev->mwdma_mask, &dev->udma_mask);
4428}
4429
4430/**
4431 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4432 *      @dev: Device to which command will be sent
4433 *
4434 *      Issue SET FEATURES - XFER MODE command to device @dev
4435 *      on port @ap.
4436 *
4437 *      LOCKING:
4438 *      PCI/etc. bus probe sem.
4439 *
4440 *      RETURNS:
4441 *      0 on success, AC_ERR_* mask otherwise.
4442 */
4443
4444static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4445{
4446        struct ata_taskfile tf;
4447        unsigned int err_mask;
4448
4449        /* set up set-features taskfile */
4450        DPRINTK("set features - xfer mode\n");
4451
4452        /* Some controllers and ATAPI devices show flaky interrupt
4453         * behavior after setting xfer mode.  Use polling instead.
4454         */
4455        ata_tf_init(dev, &tf);
4456        tf.command = ATA_CMD_SET_FEATURES;
4457        tf.feature = SETFEATURES_XFER;
4458        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4459        tf.protocol = ATA_PROT_NODATA;
4460        /* If we are using IORDY we must send the mode setting command */
4461        if (ata_pio_need_iordy(dev))
4462                tf.nsect = dev->xfer_mode;
4463        /* If the device has IORDY and the controller does not - turn it off */
4464        else if (ata_id_has_iordy(dev->id))
4465                tf.nsect = 0x01;
4466        else /* In the ancient relic department - skip all of this */
4467                return 0;
4468
4469        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4470
4471        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4472        return err_mask;
4473}
4474
4475/**
4476 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4477 *      @dev: Device to which command will be sent
4478 *      @enable: Whether to enable or disable the feature
4479 *      @feature: The sector count represents the feature to set
4480 *
4481 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4482 *      on port @ap with sector count
4483 *
4484 *      LOCKING:
4485 *      PCI/etc. bus probe sem.
4486 *
4487 *      RETURNS:
4488 *      0 on success, AC_ERR_* mask otherwise.
4489 */
4490unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4491{
4492        struct ata_taskfile tf;
4493        unsigned int err_mask;
4494
4495        /* set up set-features taskfile */
4496        DPRINTK("set features - SATA features\n");
4497
4498        ata_tf_init(dev, &tf);
4499        tf.command = ATA_CMD_SET_FEATURES;
4500        tf.feature = enable;
4501        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4502        tf.protocol = ATA_PROT_NODATA;
4503        tf.nsect = feature;
4504
4505        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4506
4507        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4508        return err_mask;
4509}
4510EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4511
4512/**
4513 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4514 *      @dev: Device to which command will be sent
4515 *      @heads: Number of heads (taskfile parameter)
4516 *      @sectors: Number of sectors (taskfile parameter)
4517 *
4518 *      LOCKING:
4519 *      Kernel thread context (may sleep)
4520 *
4521 *      RETURNS:
4522 *      0 on success, AC_ERR_* mask otherwise.
4523 */
4524static unsigned int ata_dev_init_params(struct ata_device *dev,
4525                                        u16 heads, u16 sectors)
4526{
4527        struct ata_taskfile tf;
4528        unsigned int err_mask;
4529
4530        /* Number of sectors per track 1-255. Number of heads 1-16 */
4531        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4532                return AC_ERR_INVALID;
4533
4534        /* set up init dev params taskfile */
4535        DPRINTK("init dev params \n");
4536
4537        ata_tf_init(dev, &tf);
4538        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4539        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4540        tf.protocol = ATA_PROT_NODATA;
4541        tf.nsect = sectors;
4542        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4543
4544        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4545        /* A clean abort indicates an original or just out of spec drive
4546           and we should continue as we issue the setup based on the
4547           drive reported working geometry */
4548        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4549                err_mask = 0;
4550
4551        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4552        return err_mask;
4553}
4554
4555/**
4556 *      ata_sg_clean - Unmap DMA memory associated with command
4557 *      @qc: Command containing DMA memory to be released
4558 *
4559 *      Unmap all mapped DMA memory associated with this command.
4560 *
4561 *      LOCKING:
4562 *      spin_lock_irqsave(host lock)
4563 */
4564void ata_sg_clean(struct ata_queued_cmd *qc)
4565{
4566        struct ata_port *ap = qc->ap;
4567        struct scatterlist *sg = qc->sg;
4568        int dir = qc->dma_dir;
4569
4570        WARN_ON_ONCE(sg == NULL);
4571
4572        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4573
4574        if (qc->n_elem)
4575                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4576
4577        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4578        qc->sg = NULL;
4579}
4580
4581/**
4582 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4583 *      @qc: Metadata associated with taskfile to check
4584 *
4585 *      Allow low-level driver to filter ATA PACKET commands, returning
4586 *      a status indicating whether or not it is OK to use DMA for the
4587 *      supplied PACKET command.
4588 *
4589 *      LOCKING:
4590 *      spin_lock_irqsave(host lock)
4591 *
4592 *      RETURNS: 0 when ATAPI DMA can be used
4593 *               nonzero otherwise
4594 */
4595int atapi_check_dma(struct ata_queued_cmd *qc)
4596{
4597        struct ata_port *ap = qc->ap;
4598
4599        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4600         * few ATAPI devices choke on such DMA requests.
4601         */
4602        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4603            unlikely(qc->nbytes & 15))
4604                return 1;
4605
4606        if (ap->ops->check_atapi_dma)
4607                return ap->ops->check_atapi_dma(qc);
4608
4609        return 0;
4610}
4611
4612/**
4613 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4614 *      @qc: ATA command in question
4615 *
4616 *      Non-NCQ commands cannot run with any other command, NCQ or
4617 *      not.  As upper layer only knows the queue depth, we are
4618 *      responsible for maintaining exclusion.  This function checks
4619 *      whether a new command @qc can be issued.
4620 *
4621 *      LOCKING:
4622 *      spin_lock_irqsave(host lock)
4623 *
4624 *      RETURNS:
4625 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4626 */
4627int ata_std_qc_defer(struct ata_queued_cmd *qc)
4628{
4629        struct ata_link *link = qc->dev->link;
4630
4631        if (qc->tf.protocol == ATA_PROT_NCQ) {
4632                if (!ata_tag_valid(link->active_tag))
4633                        return 0;
4634        } else {
4635                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4636                        return 0;
4637        }
4638
4639        return ATA_DEFER_LINK;
4640}
4641
4642void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4643
4644/**
4645 *      ata_sg_init - Associate command with scatter-gather table.
4646 *      @qc: Command to be associated
4647 *      @sg: Scatter-gather table.
4648 *      @n_elem: Number of elements in s/g table.
4649 *
4650 *      Initialize the data-related elements of queued_cmd @qc
4651 *      to point to a scatter-gather table @sg, containing @n_elem
4652 *      elements.
4653 *
4654 *      LOCKING:
4655 *      spin_lock_irqsave(host lock)
4656 */
4657void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4658                 unsigned int n_elem)
4659{
4660        qc->sg = sg;
4661        qc->n_elem = n_elem;
4662        qc->cursg = qc->sg;
4663}
4664
4665/**
4666 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4667 *      @qc: Command with scatter-gather table to be mapped.
4668 *
4669 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4670 *
4671 *      LOCKING:
4672 *      spin_lock_irqsave(host lock)
4673 *
4674 *      RETURNS:
4675 *      Zero on success, negative on error.
4676 *
4677 */
4678static int ata_sg_setup(struct ata_queued_cmd *qc)
4679{
4680        struct ata_port *ap = qc->ap;
4681        unsigned int n_elem;
4682
4683        VPRINTK("ENTER, ata%u\n", ap->print_id);
4684
4685        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4686        if (n_elem < 1)
4687                return -1;
4688
4689        DPRINTK("%d sg elements mapped\n", n_elem);
4690        qc->orig_n_elem = qc->n_elem;
4691        qc->n_elem = n_elem;
4692        qc->flags |= ATA_QCFLAG_DMAMAP;
4693
4694        return 0;
4695}
4696
4697/**
4698 *      swap_buf_le16 - swap halves of 16-bit words in place
4699 *      @buf:  Buffer to swap
4700 *      @buf_words:  Number of 16-bit words in buffer.
4701 *
4702 *      Swap halves of 16-bit words if needed to convert from
4703 *      little-endian byte order to native cpu byte order, or
4704 *      vice-versa.
4705 *
4706 *      LOCKING:
4707 *      Inherited from caller.
4708 */
4709void swap_buf_le16(u16 *buf, unsigned int buf_words)
4710{
4711#ifdef __BIG_ENDIAN
4712        unsigned int i;
4713
4714        for (i = 0; i < buf_words; i++)
4715                buf[i] = le16_to_cpu(buf[i]);
4716#endif /* __BIG_ENDIAN */
4717}
4718
4719/**
4720 *      ata_qc_new - Request an available ATA command, for queueing
4721 *      @ap: target port
4722 *
4723 *      LOCKING:
4724 *      None.
4725 */
4726
4727static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4728{
4729        struct ata_queued_cmd *qc = NULL;
4730        unsigned int i;
4731
4732        /* no command while frozen */
4733        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4734                return NULL;
4735
4736        /* the last tag is reserved for internal command. */
4737        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4738                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4739                        qc = __ata_qc_from_tag(ap, i);
4740                        break;
4741                }
4742
4743        if (qc)
4744                qc->tag = i;
4745
4746        return qc;
4747}
4748
4749/**
4750 *      ata_qc_new_init - Request an available ATA command, and initialize it
4751 *      @dev: Device from whom we request an available command structure
4752 *
4753 *      LOCKING:
4754 *      None.
4755 */
4756
4757struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4758{
4759        struct ata_port *ap = dev->link->ap;
4760        struct ata_queued_cmd *qc;
4761
4762        qc = ata_qc_new(ap);
4763        if (qc) {
4764                qc->scsicmd = NULL;
4765                qc->ap = ap;
4766                qc->dev = dev;
4767
4768                ata_qc_reinit(qc);
4769        }
4770
4771        return qc;
4772}
4773
4774/**
4775 *      ata_qc_free - free unused ata_queued_cmd
4776 *      @qc: Command to complete
4777 *
4778 *      Designed to free unused ata_queued_cmd object
4779 *      in case something prevents using it.
4780 *
4781 *      LOCKING:
4782 *      spin_lock_irqsave(host lock)
4783 */
4784void ata_qc_free(struct ata_queued_cmd *qc)
4785{
4786        struct ata_port *ap;
4787        unsigned int tag;
4788
4789        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4790        ap = qc->ap;
4791
4792        qc->flags = 0;
4793        tag = qc->tag;
4794        if (likely(ata_tag_valid(tag))) {
4795                qc->tag = ATA_TAG_POISON;
4796                clear_bit(tag, &ap->qc_allocated);
4797        }
4798}
4799
4800void __ata_qc_complete(struct ata_queued_cmd *qc)
4801{
4802        struct ata_port *ap;
4803        struct ata_link *link;
4804
4805        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4806        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4807        ap = qc->ap;
4808        link = qc->dev->link;
4809
4810        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4811                ata_sg_clean(qc);
4812
4813        /* command should be marked inactive atomically with qc completion */
4814        if (qc->tf.protocol == ATA_PROT_NCQ) {
4815                link->sactive &= ~(1 << qc->tag);
4816                if (!link->sactive)
4817                        ap->nr_active_links--;
4818        } else {
4819                link->active_tag = ATA_TAG_POISON;
4820                ap->nr_active_links--;
4821        }
4822
4823        /* clear exclusive status */
4824        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4825                     ap->excl_link == link))
4826                ap->excl_link = NULL;
4827
4828        /* atapi: mark qc as inactive to prevent the interrupt handler
4829         * from completing the command twice later, before the error handler
4830         * is called. (when rc != 0 and atapi request sense is needed)
4831         */
4832        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4833        ap->qc_active &= ~(1 << qc->tag);
4834
4835        /* call completion callback */
4836        qc->complete_fn(qc);
4837}
4838
4839static void fill_result_tf(struct ata_queued_cmd *qc)
4840{
4841        struct ata_port *ap = qc->ap;
4842
4843        qc->result_tf.flags = qc->tf.flags;
4844        ap->ops->qc_fill_rtf(qc);
4845}
4846
4847static void ata_verify_xfer(struct ata_queued_cmd *qc)
4848{
4849        struct ata_device *dev = qc->dev;
4850
4851        if (ata_is_nodata(qc->tf.protocol))
4852                return;
4853
4854        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4855                return;
4856
4857        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4858}
4859
4860/**
4861 *      ata_qc_complete - Complete an active ATA command
4862 *      @qc: Command to complete
4863 *
4864 *      Indicate to the mid and upper layers that an ATA command has
4865 *      completed, with either an ok or not-ok status.
4866 *
4867 *      Refrain from calling this function multiple times when
4868 *      successfully completing multiple NCQ commands.
4869 *      ata_qc_complete_multiple() should be used instead, which will
4870 *      properly update IRQ expect state.
4871 *
4872 *      LOCKING:
4873 *      spin_lock_irqsave(host lock)
4874 */
4875void ata_qc_complete(struct ata_queued_cmd *qc)
4876{
4877        struct ata_port *ap = qc->ap;
4878
4879        /* XXX: New EH and old EH use different mechanisms to
4880         * synchronize EH with regular execution path.
4881         *
4882         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4883         * Normal execution path is responsible for not accessing a
4884         * failed qc.  libata core enforces the rule by returning NULL
4885         * from ata_qc_from_tag() for failed qcs.
4886         *
4887         * Old EH depends on ata_qc_complete() nullifying completion
4888         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4889         * not synchronize with interrupt handler.  Only PIO task is
4890         * taken care of.
4891         */
4892        if (ap->ops->error_handler) {
4893                struct ata_device *dev = qc->dev;
4894                struct ata_eh_info *ehi = &dev->link->eh_info;
4895
4896                if (unlikely(qc->err_mask))
4897                        qc->flags |= ATA_QCFLAG_FAILED;
4898
4899                /*
4900                 * Finish internal commands without any further processing
4901                 * and always with the result TF filled.
4902                 */
4903                if (unlikely(ata_tag_internal(qc->tag))) {
4904                        fill_result_tf(qc);
4905                        __ata_qc_complete(qc);
4906                        return;
4907                }
4908
4909                /*
4910                 * Non-internal qc has failed.  Fill the result TF and
4911                 * summon EH.
4912                 */
4913                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4914                        fill_result_tf(qc);
4915                        ata_qc_schedule_eh(qc);
4916                        return;
4917                }
4918
4919                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4920
4921                /* read result TF if requested */
4922                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4923                        fill_result_tf(qc);
4924
4925                /* Some commands need post-processing after successful
4926                 * completion.
4927                 */
4928                switch (qc->tf.command) {
4929                case ATA_CMD_SET_FEATURES:
4930                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4931                            qc->tf.feature != SETFEATURES_WC_OFF)
4932                                break;
4933                        /* fall through */
4934                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4935                case ATA_CMD_SET_MULTI: /* multi_count changed */
4936                        /* revalidate device */
4937                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4938                        ata_port_schedule_eh(ap);
4939                        break;
4940
4941                case ATA_CMD_SLEEP:
4942                        dev->flags |= ATA_DFLAG_SLEEPING;
4943                        break;
4944                }
4945
4946                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4947                        ata_verify_xfer(qc);
4948
4949                __ata_qc_complete(qc);
4950        } else {
4951                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4952                        return;
4953
4954                /* read result TF if failed or requested */
4955                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4956                        fill_result_tf(qc);
4957
4958                __ata_qc_complete(qc);
4959        }
4960}
4961
4962/**
4963 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4964 *      @ap: port in question
4965 *      @qc_active: new qc_active mask
4966 *
4967 *      Complete in-flight commands.  This functions is meant to be
4968 *      called from low-level driver's interrupt routine to complete
4969 *      requests normally.  ap->qc_active and @qc_active is compared
4970 *      and commands are completed accordingly.
4971 *
4972 *      Always use this function when completing multiple NCQ commands
4973 *      from IRQ handlers instead of calling ata_qc_complete()
4974 *      multiple times to keep IRQ expect status properly in sync.
4975 *
4976 *      LOCKING:
4977 *      spin_lock_irqsave(host lock)
4978 *
4979 *      RETURNS:
4980 *      Number of completed commands on success, -errno otherwise.
4981 */
4982int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4983{
4984        int nr_done = 0;
4985        u32 done_mask;
4986
4987        done_mask = ap->qc_active ^ qc_active;
4988
4989        if (unlikely(done_mask & qc_active)) {
4990                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4991                             ap->qc_active, qc_active);
4992                return -EINVAL;
4993        }
4994
4995        while (done_mask) {
4996                struct ata_queued_cmd *qc;
4997                unsigned int tag = __ffs(done_mask);
4998
4999                qc = ata_qc_from_tag(ap, tag);
5000                if (qc) {
5001                        ata_qc_complete(qc);
5002                        nr_done++;
5003                }
5004                done_mask &= ~(1 << tag);
5005        }
5006
5007        return nr_done;
5008}
5009
5010/**
5011 *      ata_qc_issue - issue taskfile to device
5012 *      @qc: command to issue to device
5013 *
5014 *      Prepare an ATA command to submission to device.
5015 *      This includes mapping the data into a DMA-able
5016 *      area, filling in the S/G table, and finally
5017 *      writing the taskfile to hardware, starting the command.
5018 *
5019 *      LOCKING:
5020 *      spin_lock_irqsave(host lock)
5021 */
5022void ata_qc_issue(struct ata_queued_cmd *qc)
5023{
5024        struct ata_port *ap = qc->ap;
5025        struct ata_link *link = qc->dev->link;
5026        u8 prot = qc->tf.protocol;
5027
5028        /* Make sure only one non-NCQ command is outstanding.  The
5029         * check is skipped for old EH because it reuses active qc to
5030         * request ATAPI sense.
5031         */
5032        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5033
5034        if (ata_is_ncq(prot)) {
5035                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5036
5037                if (!link->sactive)
5038                        ap->nr_active_links++;
5039                link->sactive |= 1 << qc->tag;
5040        } else {
5041                WARN_ON_ONCE(link->sactive);
5042
5043                ap->nr_active_links++;
5044                link->active_tag = qc->tag;
5045        }
5046
5047        qc->flags |= ATA_QCFLAG_ACTIVE;
5048        ap->qc_active |= 1 << qc->tag;
5049
5050        /*
5051         * We guarantee to LLDs that they will have at least one
5052         * non-zero sg if the command is a data command.
5053         */
5054        if (WARN_ON_ONCE(ata_is_data(prot) &&
5055                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5056                goto sys_err;
5057
5058        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5059                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5060                if (ata_sg_setup(qc))
5061                        goto sys_err;
5062
5063        /* if device is sleeping, schedule reset and abort the link */
5064        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5065                link->eh_info.action |= ATA_EH_RESET;
5066                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5067                ata_link_abort(link);
5068                return;
5069        }
5070
5071        ap->ops->qc_prep(qc);
5072
5073        qc->err_mask |= ap->ops->qc_issue(qc);
5074        if (unlikely(qc->err_mask))
5075                goto err;
5076        return;
5077
5078sys_err:
5079        qc->err_mask |= AC_ERR_SYSTEM;
5080err:
5081        ata_qc_complete(qc);
5082}
5083
5084/**
5085 *      sata_scr_valid - test whether SCRs are accessible
5086 *      @link: ATA link to test SCR accessibility for
5087 *
5088 *      Test whether SCRs are accessible for @link.
5089 *
5090 *      LOCKING:
5091 *      None.
5092 *
5093 *      RETURNS:
5094 *      1 if SCRs are accessible, 0 otherwise.
5095 */
5096int sata_scr_valid(struct ata_link *link)
5097{
5098        struct ata_port *ap = link->ap;
5099
5100        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5101}
5102
5103/**
5104 *      sata_scr_read - read SCR register of the specified port
5105 *      @link: ATA link to read SCR for
5106 *      @reg: SCR to read
5107 *      @val: Place to store read value
5108 *
5109 *      Read SCR register @reg of @link into *@val.  This function is
5110 *      guaranteed to succeed if @link is ap->link, the cable type of
5111 *      the port is SATA and the port implements ->scr_read.
5112 *
5113 *      LOCKING:
5114 *      None if @link is ap->link.  Kernel thread context otherwise.
5115 *
5116 *      RETURNS:
5117 *      0 on success, negative errno on failure.
5118 */
5119int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5120{
5121        if (ata_is_host_link(link)) {
5122                if (sata_scr_valid(link))
5123                        return link->ap->ops->scr_read(link, reg, val);
5124                return -EOPNOTSUPP;
5125        }
5126
5127        return sata_pmp_scr_read(link, reg, val);
5128}
5129
5130/**
5131 *      sata_scr_write - write SCR register of the specified port
5132 *      @link: ATA link to write SCR for
5133 *      @reg: SCR to write
5134 *      @val: value to write
5135 *
5136 *      Write @val to SCR register @reg of @link.  This function is
5137 *      guaranteed to succeed if @link is ap->link, the cable type of
5138 *      the port is SATA and the port implements ->scr_read.
5139 *
5140 *      LOCKING:
5141 *      None if @link is ap->link.  Kernel thread context otherwise.
5142 *
5143 *      RETURNS:
5144 *      0 on success, negative errno on failure.
5145 */
5146int sata_scr_write(struct ata_link *link, int reg, u32 val)
5147{
5148        if (ata_is_host_link(link)) {
5149                if (sata_scr_valid(link))
5150                        return link->ap->ops->scr_write(link, reg, val);
5151                return -EOPNOTSUPP;
5152        }
5153
5154        return sata_pmp_scr_write(link, reg, val);
5155}
5156
5157/**
5158 *      sata_scr_write_flush - write SCR register of the specified port and flush
5159 *      @link: ATA link to write SCR for
5160 *      @reg: SCR to write
5161 *      @val: value to write
5162 *
5163 *      This function is identical to sata_scr_write() except that this
5164 *      function performs flush after writing to the register.
5165 *
5166 *      LOCKING:
5167 *      None if @link is ap->link.  Kernel thread context otherwise.
5168 *
5169 *      RETURNS:
5170 *      0 on success, negative errno on failure.
5171 */
5172int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5173{
5174        if (ata_is_host_link(link)) {
5175                int rc;
5176
5177                if (sata_scr_valid(link)) {
5178                        rc = link->ap->ops->scr_write(link, reg, val);
5179                        if (rc == 0)
5180                                rc = link->ap->ops->scr_read(link, reg, &val);
5181                        return rc;
5182                }
5183                return -EOPNOTSUPP;
5184        }
5185
5186        return sata_pmp_scr_write(link, reg, val);
5187}
5188
5189/**
5190 *      ata_phys_link_online - test whether the given link is online
5191 *      @link: ATA link to test
5192 *
5193 *      Test whether @link is online.  Note that this function returns
5194 *      0 if online status of @link cannot be obtained, so
5195 *      ata_link_online(link) != !ata_link_offline(link).
5196 *
5197 *      LOCKING:
5198 *      None.
5199 *
5200 *      RETURNS:
5201 *      True if the port online status is available and online.
5202 */
5203bool ata_phys_link_online(struct ata_link *link)
5204{
5205        u32 sstatus;
5206
5207        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5208            ata_sstatus_online(sstatus))
5209                return true;
5210        return false;
5211}
5212
5213/**
5214 *      ata_phys_link_offline - test whether the given link is offline
5215 *      @link: ATA link to test
5216 *
5217 *      Test whether @link is offline.  Note that this function
5218 *      returns 0 if offline status of @link cannot be obtained, so
5219 *      ata_link_online(link) != !ata_link_offline(link).
5220 *
5221 *      LOCKING:
5222 *      None.
5223 *
5224 *      RETURNS:
5225 *      True if the port offline status is available and offline.
5226 */
5227bool ata_phys_link_offline(struct ata_link *link)
5228{
5229        u32 sstatus;
5230
5231        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5232            !ata_sstatus_online(sstatus))
5233                return true;
5234        return false;
5235}
5236
5237/**
5238 *      ata_link_online - test whether the given link is online
5239 *      @link: ATA link to test
5240 *
5241 *      Test whether @link is online.  This is identical to
5242 *      ata_phys_link_online() when there's no slave link.  When
5243 *      there's a slave link, this function should only be called on
5244 *      the master link and will return true if any of M/S links is
5245 *      online.
5246 *
5247 *      LOCKING:
5248 *      None.
5249 *
5250 *      RETURNS:
5251 *      True if the port online status is available and online.
5252 */
5253bool ata_link_online(struct ata_link *link)
5254{
5255        struct ata_link *slave = link->ap->slave_link;
5256
5257        WARN_ON(link == slave); /* shouldn't be called on slave link */
5258
5259        return ata_phys_link_online(link) ||
5260                (slave && ata_phys_link_online(slave));
5261}
5262
5263/**
5264 *      ata_link_offline - test whether the given link is offline
5265 *      @link: ATA link to test
5266 *
5267 *      Test whether @link is offline.  This is identical to
5268 *      ata_phys_link_offline() when there's no slave link.  When
5269 *      there's a slave link, this function should only be called on
5270 *      the master link and will return true if both M/S links are
5271 *      offline.
5272 *
5273 *      LOCKING:
5274 *      None.
5275 *
5276 *      RETURNS:
5277 *      True if the port offline status is available and offline.
5278 */
5279bool ata_link_offline(struct ata_link *link)
5280{
5281        struct ata_link *slave = link->ap->slave_link;
5282
5283        WARN_ON(link == slave); /* shouldn't be called on slave link */
5284
5285        return ata_phys_link_offline(link) &&
5286                (!slave || ata_phys_link_offline(slave));
5287}
5288
5289#ifdef CONFIG_PM
5290static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5291                               unsigned int action, unsigned int ehi_flags,
5292                               int *async)
5293{
5294        struct ata_link *link;
5295        unsigned long flags;
5296        int rc = 0;
5297
5298        /* Previous resume operation might still be in
5299         * progress.  Wait for PM_PENDING to clear.
5300         */
5301        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5302                if (async) {
5303                        *async = -EAGAIN;
5304                        return 0;
5305                }
5306                ata_port_wait_eh(ap);
5307                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5308        }
5309
5310        /* request PM ops to EH */
5311        spin_lock_irqsave(ap->lock, flags);
5312
5313        ap->pm_mesg = mesg;
5314        if (async)
5315                ap->pm_result = async;
5316        else
5317                ap->pm_result = &rc;
5318
5319        ap->pflags |= ATA_PFLAG_PM_PENDING;
5320        ata_for_each_link(link, ap, HOST_FIRST) {
5321                link->eh_info.action |= action;
5322                link->eh_info.flags |= ehi_flags;
5323        }
5324
5325        ata_port_schedule_eh(ap);
5326
5327        spin_unlock_irqrestore(ap->lock, flags);
5328
5329        /* wait and check result */
5330        if (!async) {
5331                ata_port_wait_eh(ap);
5332                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5333        }
5334
5335        return rc;
5336}
5337
5338static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5339{
5340        /*
5341         * On some hardware, device fails to respond after spun down
5342         * for suspend.  As the device won't be used before being
5343         * resumed, we don't need to touch the device.  Ask EH to skip
5344         * the usual stuff and proceed directly to suspend.
5345         *
5346         * http://thread.gmane.org/gmane.linux.ide/46764
5347         */
5348        unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5349                                 ATA_EHI_NO_RECOVERY;
5350        return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5351}
5352
5353static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5354{
5355        struct ata_port *ap = to_ata_port(dev);
5356
5357        return __ata_port_suspend_common(ap, mesg, NULL);
5358}
5359
5360static int ata_port_suspend(struct device *dev)
5361{
5362        if (pm_runtime_suspended(dev))
5363                return 0;
5364
5365        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5366}
5367
5368static int ata_port_do_freeze(struct device *dev)
5369{
5370        if (pm_runtime_suspended(dev))
5371                return 0;
5372
5373        return ata_port_suspend_common(dev, PMSG_FREEZE);
5374}
5375
5376static int ata_port_poweroff(struct device *dev)
5377{
5378        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5379}
5380
5381static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5382                                    int *async)
5383{
5384        int rc;
5385
5386        rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5387                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5388        return rc;
5389}
5390
5391static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5392{
5393        struct ata_port *ap = to_ata_port(dev);
5394
5395        return __ata_port_resume_common(ap, mesg, NULL);
5396}
5397
5398static int ata_port_resume(struct device *dev)
5399{
5400        int rc;
5401
5402        rc = ata_port_resume_common(dev, PMSG_RESUME);
5403        if (!rc) {
5404                pm_runtime_disable(dev);
5405                pm_runtime_set_active(dev);
5406                pm_runtime_enable(dev);
5407        }
5408
5409        return rc;
5410}
5411
5412/*
5413 * For ODDs, the upper layer will poll for media change every few seconds,
5414 * which will make it enter and leave suspend state every few seconds. And
5415 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5416 * is very little and the ODD may malfunction after constantly being reset.
5417 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5418 * ODD is attached to the port.
5419 */
5420static int ata_port_runtime_idle(struct device *dev)
5421{
5422        struct ata_port *ap = to_ata_port(dev);
5423        struct ata_link *link;
5424        struct ata_device *adev;
5425
5426        ata_for_each_link(link, ap, HOST_FIRST) {
5427                ata_for_each_dev(adev, link, ENABLED)
5428                        if (adev->class == ATA_DEV_ATAPI &&
5429                            !zpodd_dev_enabled(adev))
5430                                return -EBUSY;
5431        }
5432
5433        return pm_runtime_suspend(dev);
5434}
5435
5436static int ata_port_runtime_suspend(struct device *dev)
5437{
5438        return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5439}
5440
5441static int ata_port_runtime_resume(struct device *dev)
5442{
5443        return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5444}
5445
5446static const struct dev_pm_ops ata_port_pm_ops = {
5447        .suspend = ata_port_suspend,
5448        .resume = ata_port_resume,
5449        .freeze = ata_port_do_freeze,
5450        .thaw = ata_port_resume,
5451        .poweroff = ata_port_poweroff,
5452        .restore = ata_port_resume,
5453
5454        .runtime_suspend = ata_port_runtime_suspend,
5455        .runtime_resume = ata_port_runtime_resume,
5456        .runtime_idle = ata_port_runtime_idle,
5457};
5458
5459/* sas ports don't participate in pm runtime management of ata_ports,
5460 * and need to resume ata devices at the domain level, not the per-port
5461 * level. sas suspend/resume is async to allow parallel port recovery
5462 * since sas has multiple ata_port instances per Scsi_Host.
5463 */
5464int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5465{
5466        return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5467}
5468EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5469
5470int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5471{
5472        return __ata_port_resume_common(ap, PMSG_RESUME, async);
5473}
5474EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5475
5476
5477/**
5478 *      ata_host_suspend - suspend host
5479 *      @host: host to suspend
5480 *      @mesg: PM message
5481 *
5482 *      Suspend @host.  Actual operation is performed by port suspend.
5483 */
5484int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5485{
5486        host->dev->power.power_state = mesg;
5487        return 0;
5488}
5489
5490/**
5491 *      ata_host_resume - resume host
5492 *      @host: host to resume
5493 *
5494 *      Resume @host.  Actual operation is performed by port resume.
5495 */
5496void ata_host_resume(struct ata_host *host)
5497{
5498        host->dev->power.power_state = PMSG_ON;
5499}
5500#endif
5501
5502struct device_type ata_port_type = {
5503        .name = "ata_port",
5504#ifdef CONFIG_PM
5505        .pm = &ata_port_pm_ops,
5506#endif