linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70#include <linux/compat.h>
  71
  72#include "audit.h"
  73
  74/* flags stating the success for a syscall */
  75#define AUDITSC_INVALID 0
  76#define AUDITSC_SUCCESS 1
  77#define AUDITSC_FAILURE 2
  78
  79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  80 * for saving names from getname().  If we get more names we will allocate
  81 * a name dynamically and also add those to the list anchored by names_list. */
  82#define AUDIT_NAMES     5
  83
  84/* no execve audit message should be longer than this (userspace limits) */
  85#define MAX_EXECVE_AUDIT_LEN 7500
  86
  87/* number of audit rules */
  88int audit_n_rules;
  89
  90/* determines whether we collect data for signals sent */
  91int audit_signals;
  92
  93struct audit_cap_data {
  94        kernel_cap_t            permitted;
  95        kernel_cap_t            inheritable;
  96        union {
  97                unsigned int    fE;             /* effective bit of a file capability */
  98                kernel_cap_t    effective;      /* effective set of a process */
  99        };
 100};
 101
 102/* When fs/namei.c:getname() is called, we store the pointer in name and
 103 * we don't let putname() free it (instead we free all of the saved
 104 * pointers at syscall exit time).
 105 *
 106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
 107 */
 108struct audit_names {
 109        struct list_head        list;           /* audit_context->names_list */
 110        struct filename *name;
 111        unsigned long           ino;
 112        dev_t                   dev;
 113        umode_t                 mode;
 114        kuid_t                  uid;
 115        kgid_t                  gid;
 116        dev_t                   rdev;
 117        u32                     osid;
 118        struct audit_cap_data    fcap;
 119        unsigned int            fcap_ver;
 120        int                     name_len;       /* number of name's characters to log */
 121        unsigned char           type;           /* record type */
 122        bool                    name_put;       /* call __putname() for this name */
 123        /*
 124         * This was an allocated audit_names and not from the array of
 125         * names allocated in the task audit context.  Thus this name
 126         * should be freed on syscall exit
 127         */
 128        bool                    should_free;
 129};
 130
 131struct audit_aux_data {
 132        struct audit_aux_data   *next;
 133        int                     type;
 134};
 135
 136#define AUDIT_AUX_IPCPERM       0
 137
 138/* Number of target pids per aux struct. */
 139#define AUDIT_AUX_PIDS  16
 140
 141struct audit_aux_data_execve {
 142        struct audit_aux_data   d;
 143        int argc;
 144        int envc;
 145        struct mm_struct *mm;
 146};
 147
 148struct audit_aux_data_pids {
 149        struct audit_aux_data   d;
 150        pid_t                   target_pid[AUDIT_AUX_PIDS];
 151        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 152        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 153        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 154        u32                     target_sid[AUDIT_AUX_PIDS];
 155        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 156        int                     pid_count;
 157};
 158
 159struct audit_aux_data_bprm_fcaps {
 160        struct audit_aux_data   d;
 161        struct audit_cap_data   fcap;
 162        unsigned int            fcap_ver;
 163        struct audit_cap_data   old_pcap;
 164        struct audit_cap_data   new_pcap;
 165};
 166
 167struct audit_aux_data_capset {
 168        struct audit_aux_data   d;
 169        pid_t                   pid;
 170        struct audit_cap_data   cap;
 171};
 172
 173struct audit_tree_refs {
 174        struct audit_tree_refs *next;
 175        struct audit_chunk *c[31];
 176};
 177
 178/* The per-task audit context. */
 179struct audit_context {
 180        int                 dummy;      /* must be the first element */
 181        int                 in_syscall; /* 1 if task is in a syscall */
 182        enum audit_state    state, current_state;
 183        unsigned int        serial;     /* serial number for record */
 184        int                 major;      /* syscall number */
 185        struct timespec     ctime;      /* time of syscall entry */
 186        unsigned long       argv[4];    /* syscall arguments */
 187        long                return_code;/* syscall return code */
 188        u64                 prio;
 189        int                 return_valid; /* return code is valid */
 190        /*
 191         * The names_list is the list of all audit_names collected during this
 192         * syscall.  The first AUDIT_NAMES entries in the names_list will
 193         * actually be from the preallocated_names array for performance
 194         * reasons.  Except during allocation they should never be referenced
 195         * through the preallocated_names array and should only be found/used
 196         * by running the names_list.
 197         */
 198        struct audit_names  preallocated_names[AUDIT_NAMES];
 199        int                 name_count; /* total records in names_list */
 200        struct list_head    names_list; /* anchor for struct audit_names->list */
 201        char *              filterkey;  /* key for rule that triggered record */
 202        struct path         pwd;
 203        struct audit_aux_data *aux;
 204        struct audit_aux_data *aux_pids;
 205        struct sockaddr_storage *sockaddr;
 206        size_t sockaddr_len;
 207                                /* Save things to print about task_struct */
 208        pid_t               pid, ppid;
 209        kuid_t              uid, euid, suid, fsuid;
 210        kgid_t              gid, egid, sgid, fsgid;
 211        unsigned long       personality;
 212        int                 arch;
 213
 214        pid_t               target_pid;
 215        kuid_t              target_auid;
 216        kuid_t              target_uid;
 217        unsigned int        target_sessionid;
 218        u32                 target_sid;
 219        char                target_comm[TASK_COMM_LEN];
 220
 221        struct audit_tree_refs *trees, *first_trees;
 222        struct list_head killed_trees;
 223        int tree_count;
 224
 225        int type;
 226        union {
 227                struct {
 228                        int nargs;
 229                        long args[6];
 230                } socketcall;
 231                struct {
 232                        kuid_t                  uid;
 233                        kgid_t                  gid;
 234                        umode_t                 mode;
 235                        u32                     osid;
 236                        int                     has_perm;
 237                        uid_t                   perm_uid;
 238                        gid_t                   perm_gid;
 239                        umode_t                 perm_mode;
 240                        unsigned long           qbytes;
 241                } ipc;
 242                struct {
 243                        mqd_t                   mqdes;
 244                        struct mq_attr          mqstat;
 245                } mq_getsetattr;
 246                struct {
 247                        mqd_t                   mqdes;
 248                        int                     sigev_signo;
 249                } mq_notify;
 250                struct {
 251                        mqd_t                   mqdes;
 252                        size_t                  msg_len;
 253                        unsigned int            msg_prio;
 254                        struct timespec         abs_timeout;
 255                } mq_sendrecv;
 256                struct {
 257                        int                     oflag;
 258                        umode_t                 mode;
 259                        struct mq_attr          attr;
 260                } mq_open;
 261                struct {
 262                        pid_t                   pid;
 263                        struct audit_cap_data   cap;
 264                } capset;
 265                struct {
 266                        int                     fd;
 267                        int                     flags;
 268                } mmap;
 269        };
 270        int fds[2];
 271
 272#if AUDIT_DEBUG
 273        int                 put_count;
 274        int                 ino_count;
 275#endif
 276};
 277
 278static inline int open_arg(int flags, int mask)
 279{
 280        int n = ACC_MODE(flags);
 281        if (flags & (O_TRUNC | O_CREAT))
 282                n |= AUDIT_PERM_WRITE;
 283        return n & mask;
 284}
 285
 286static int audit_match_perm(struct audit_context *ctx, int mask)
 287{
 288        unsigned n;
 289        if (unlikely(!ctx))
 290                return 0;
 291        n = ctx->major;
 292
 293        switch (audit_classify_syscall(ctx->arch, n)) {
 294        case 0: /* native */
 295                if ((mask & AUDIT_PERM_WRITE) &&
 296                     audit_match_class(AUDIT_CLASS_WRITE, n))
 297                        return 1;
 298                if ((mask & AUDIT_PERM_READ) &&
 299                     audit_match_class(AUDIT_CLASS_READ, n))
 300                        return 1;
 301                if ((mask & AUDIT_PERM_ATTR) &&
 302                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 303                        return 1;
 304                return 0;
 305        case 1: /* 32bit on biarch */
 306                if ((mask & AUDIT_PERM_WRITE) &&
 307                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 308                        return 1;
 309                if ((mask & AUDIT_PERM_READ) &&
 310                     audit_match_class(AUDIT_CLASS_READ_32, n))
 311                        return 1;
 312                if ((mask & AUDIT_PERM_ATTR) &&
 313                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 314                        return 1;
 315                return 0;
 316        case 2: /* open */
 317                return mask & ACC_MODE(ctx->argv[1]);
 318        case 3: /* openat */
 319                return mask & ACC_MODE(ctx->argv[2]);
 320        case 4: /* socketcall */
 321                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 322        case 5: /* execve */
 323                return mask & AUDIT_PERM_EXEC;
 324        default:
 325                return 0;
 326        }
 327}
 328
 329static int audit_match_filetype(struct audit_context *ctx, int val)
 330{
 331        struct audit_names *n;
 332        umode_t mode = (umode_t)val;
 333
 334        if (unlikely(!ctx))
 335                return 0;
 336
 337        list_for_each_entry(n, &ctx->names_list, list) {
 338                if ((n->ino != -1) &&
 339                    ((n->mode & S_IFMT) == mode))
 340                        return 1;
 341        }
 342
 343        return 0;
 344}
 345
 346/*
 347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 348 * ->first_trees points to its beginning, ->trees - to the current end of data.
 349 * ->tree_count is the number of free entries in array pointed to by ->trees.
 350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 351 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 352 * it's going to remain 1-element for almost any setup) until we free context itself.
 353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 354 */
 355
 356#ifdef CONFIG_AUDIT_TREE
 357static void audit_set_auditable(struct audit_context *ctx)
 358{
 359        if (!ctx->prio) {
 360                ctx->prio = 1;
 361                ctx->current_state = AUDIT_RECORD_CONTEXT;
 362        }
 363}
 364
 365static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 366{
 367        struct audit_tree_refs *p = ctx->trees;
 368        int left = ctx->tree_count;
 369        if (likely(left)) {
 370                p->c[--left] = chunk;
 371                ctx->tree_count = left;
 372                return 1;
 373        }
 374        if (!p)
 375                return 0;
 376        p = p->next;
 377        if (p) {
 378                p->c[30] = chunk;
 379                ctx->trees = p;
 380                ctx->tree_count = 30;
 381                return 1;
 382        }
 383        return 0;
 384}
 385
 386static int grow_tree_refs(struct audit_context *ctx)
 387{
 388        struct audit_tree_refs *p = ctx->trees;
 389        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 390        if (!ctx->trees) {
 391                ctx->trees = p;
 392                return 0;
 393        }
 394        if (p)
 395                p->next = ctx->trees;
 396        else
 397                ctx->first_trees = ctx->trees;
 398        ctx->tree_count = 31;
 399        return 1;
 400}
 401#endif
 402
 403static void unroll_tree_refs(struct audit_context *ctx,
 404                      struct audit_tree_refs *p, int count)
 405{
 406#ifdef CONFIG_AUDIT_TREE
 407        struct audit_tree_refs *q;
 408        int n;
 409        if (!p) {
 410                /* we started with empty chain */
 411                p = ctx->first_trees;
 412                count = 31;
 413                /* if the very first allocation has failed, nothing to do */
 414                if (!p)
 415                        return;
 416        }
 417        n = count;
 418        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 419                while (n--) {
 420                        audit_put_chunk(q->c[n]);
 421                        q->c[n] = NULL;
 422                }
 423        }
 424        while (n-- > ctx->tree_count) {
 425                audit_put_chunk(q->c[n]);
 426                q->c[n] = NULL;
 427        }
 428        ctx->trees = p;
 429        ctx->tree_count = count;
 430#endif
 431}
 432
 433static void free_tree_refs(struct audit_context *ctx)
 434{
 435        struct audit_tree_refs *p, *q;
 436        for (p = ctx->first_trees; p; p = q) {
 437                q = p->next;
 438                kfree(p);
 439        }
 440}
 441
 442static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 443{
 444#ifdef CONFIG_AUDIT_TREE
 445        struct audit_tree_refs *p;
 446        int n;
 447        if (!tree)
 448                return 0;
 449        /* full ones */
 450        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 451                for (n = 0; n < 31; n++)
 452                        if (audit_tree_match(p->c[n], tree))
 453                                return 1;
 454        }
 455        /* partial */
 456        if (p) {
 457                for (n = ctx->tree_count; n < 31; n++)
 458                        if (audit_tree_match(p->c[n], tree))
 459                                return 1;
 460        }
 461#endif
 462        return 0;
 463}
 464
 465static int audit_compare_uid(kuid_t uid,
 466                             struct audit_names *name,
 467                             struct audit_field *f,
 468                             struct audit_context *ctx)
 469{
 470        struct audit_names *n;
 471        int rc;
 472 
 473        if (name) {
 474                rc = audit_uid_comparator(uid, f->op, name->uid);
 475                if (rc)
 476                        return rc;
 477        }
 478 
 479        if (ctx) {
 480                list_for_each_entry(n, &ctx->names_list, list) {
 481                        rc = audit_uid_comparator(uid, f->op, n->uid);
 482                        if (rc)
 483                                return rc;
 484                }
 485        }
 486        return 0;
 487}
 488
 489static int audit_compare_gid(kgid_t gid,
 490                             struct audit_names *name,
 491                             struct audit_field *f,
 492                             struct audit_context *ctx)
 493{
 494        struct audit_names *n;
 495        int rc;
 496 
 497        if (name) {
 498                rc = audit_gid_comparator(gid, f->op, name->gid);
 499                if (rc)
 500                        return rc;
 501        }
 502 
 503        if (ctx) {
 504                list_for_each_entry(n, &ctx->names_list, list) {
 505                        rc = audit_gid_comparator(gid, f->op, n->gid);
 506                        if (rc)
 507                                return rc;
 508                }
 509        }
 510        return 0;
 511}
 512
 513static int audit_field_compare(struct task_struct *tsk,
 514                               const struct cred *cred,
 515                               struct audit_field *f,
 516                               struct audit_context *ctx,
 517                               struct audit_names *name)
 518{
 519        switch (f->val) {
 520        /* process to file object comparisons */
 521        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 522                return audit_compare_uid(cred->uid, name, f, ctx);
 523        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 524                return audit_compare_gid(cred->gid, name, f, ctx);
 525        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 526                return audit_compare_uid(cred->euid, name, f, ctx);
 527        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 528                return audit_compare_gid(cred->egid, name, f, ctx);
 529        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 530                return audit_compare_uid(tsk->loginuid, name, f, ctx);
 531        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 532                return audit_compare_uid(cred->suid, name, f, ctx);
 533        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 534                return audit_compare_gid(cred->sgid, name, f, ctx);
 535        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 536                return audit_compare_uid(cred->fsuid, name, f, ctx);
 537        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 538                return audit_compare_gid(cred->fsgid, name, f, ctx);
 539        /* uid comparisons */
 540        case AUDIT_COMPARE_UID_TO_AUID:
 541                return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 542        case AUDIT_COMPARE_UID_TO_EUID:
 543                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 544        case AUDIT_COMPARE_UID_TO_SUID:
 545                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 546        case AUDIT_COMPARE_UID_TO_FSUID:
 547                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 548        /* auid comparisons */
 549        case AUDIT_COMPARE_AUID_TO_EUID:
 550                return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 551        case AUDIT_COMPARE_AUID_TO_SUID:
 552                return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 553        case AUDIT_COMPARE_AUID_TO_FSUID:
 554                return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 555        /* euid comparisons */
 556        case AUDIT_COMPARE_EUID_TO_SUID:
 557                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 558        case AUDIT_COMPARE_EUID_TO_FSUID:
 559                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 560        /* suid comparisons */
 561        case AUDIT_COMPARE_SUID_TO_FSUID:
 562                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 563        /* gid comparisons */
 564        case AUDIT_COMPARE_GID_TO_EGID:
 565                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 566        case AUDIT_COMPARE_GID_TO_SGID:
 567                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 568        case AUDIT_COMPARE_GID_TO_FSGID:
 569                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 570        /* egid comparisons */
 571        case AUDIT_COMPARE_EGID_TO_SGID:
 572                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 573        case AUDIT_COMPARE_EGID_TO_FSGID:
 574                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 575        /* sgid comparison */
 576        case AUDIT_COMPARE_SGID_TO_FSGID:
 577                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 578        default:
 579                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 580                return 0;
 581        }
 582        return 0;
 583}
 584
 585/* Determine if any context name data matches a rule's watch data */
 586/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 587 * otherwise.
 588 *
 589 * If task_creation is true, this is an explicit indication that we are
 590 * filtering a task rule at task creation time.  This and tsk == current are
 591 * the only situations where tsk->cred may be accessed without an rcu read lock.
 592 */
 593static int audit_filter_rules(struct task_struct *tsk,
 594                              struct audit_krule *rule,
 595                              struct audit_context *ctx,
 596                              struct audit_names *name,
 597                              enum audit_state *state,
 598                              bool task_creation)
 599{
 600        const struct cred *cred;
 601        int i, need_sid = 1;
 602        u32 sid;
 603
 604        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 605
 606        for (i = 0; i < rule->field_count; i++) {
 607                struct audit_field *f = &rule->fields[i];
 608                struct audit_names *n;
 609                int result = 0;
 610
 611                switch (f->type) {
 612                case AUDIT_PID:
 613                        result = audit_comparator(tsk->pid, f->op, f->val);
 614                        break;
 615                case AUDIT_PPID:
 616                        if (ctx) {
 617                                if (!ctx->ppid)
 618                                        ctx->ppid = sys_getppid();
 619                                result = audit_comparator(ctx->ppid, f->op, f->val);
 620                        }
 621                        break;
 622                case AUDIT_UID:
 623                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 624                        break;
 625                case AUDIT_EUID:
 626                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 627                        break;
 628                case AUDIT_SUID:
 629                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 630                        break;
 631                case AUDIT_FSUID:
 632                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 633                        break;
 634                case AUDIT_GID:
 635                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 636                        break;
 637                case AUDIT_EGID:
 638                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 639                        break;
 640                case AUDIT_SGID:
 641                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 642                        break;
 643                case AUDIT_FSGID:
 644                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 645                        break;
 646                case AUDIT_PERS:
 647                        result = audit_comparator(tsk->personality, f->op, f->val);
 648                        break;
 649                case AUDIT_ARCH:
 650                        if (ctx)
 651                                result = audit_comparator(ctx->arch, f->op, f->val);
 652                        break;
 653
 654                case AUDIT_EXIT:
 655                        if (ctx && ctx->return_valid)
 656                                result = audit_comparator(ctx->return_code, f->op, f->val);
 657                        break;
 658                case AUDIT_SUCCESS:
 659                        if (ctx && ctx->return_valid) {
 660                                if (f->val)
 661                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 662                                else
 663                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 664                        }
 665                        break;
 666                case AUDIT_DEVMAJOR:
 667                        if (name) {
 668                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 669                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 670                                        ++result;
 671                        } else if (ctx) {
 672                                list_for_each_entry(n, &ctx->names_list, list) {
 673                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 674                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 675                                                ++result;
 676                                                break;
 677                                        }
 678                                }
 679                        }
 680                        break;
 681                case AUDIT_DEVMINOR:
 682                        if (name) {
 683                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 684                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 685                                        ++result;
 686                        } else if (ctx) {
 687                                list_for_each_entry(n, &ctx->names_list, list) {
 688                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 689                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 690                                                ++result;
 691                                                break;
 692                                        }
 693                                }
 694                        }
 695                        break;
 696                case AUDIT_INODE:
 697                        if (name)
 698                                result = (name->ino == f->val);
 699                        else if (ctx) {
 700                                list_for_each_entry(n, &ctx->names_list, list) {
 701                                        if (audit_comparator(n->ino, f->op, f->val)) {
 702                                                ++result;
 703                                                break;
 704                                        }
 705                                }
 706                        }
 707                        break;
 708                case AUDIT_OBJ_UID:
 709                        if (name) {
 710                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 711                        } else if (ctx) {
 712                                list_for_each_entry(n, &ctx->names_list, list) {
 713                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 714                                                ++result;
 715                                                break;
 716                                        }
 717                                }
 718                        }
 719                        break;
 720                case AUDIT_OBJ_GID:
 721                        if (name) {
 722                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 723                        } else if (ctx) {
 724                                list_for_each_entry(n, &ctx->names_list, list) {
 725                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 726                                                ++result;
 727                                                break;
 728                                        }
 729                                }
 730                        }
 731                        break;
 732                case AUDIT_WATCH:
 733                        if (name)
 734                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 735                        break;
 736                case AUDIT_DIR:
 737                        if (ctx)
 738                                result = match_tree_refs(ctx, rule->tree);
 739                        break;
 740                case AUDIT_LOGINUID:
 741                        result = 0;
 742                        if (ctx)
 743                                result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 744                        break;
 745                case AUDIT_SUBJ_USER:
 746                case AUDIT_SUBJ_ROLE:
 747                case AUDIT_SUBJ_TYPE:
 748                case AUDIT_SUBJ_SEN:
 749                case AUDIT_SUBJ_CLR:
 750                        /* NOTE: this may return negative values indicating
 751                           a temporary error.  We simply treat this as a
 752                           match for now to avoid losing information that
 753                           may be wanted.   An error message will also be
 754                           logged upon error */
 755                        if (f->lsm_rule) {
 756                                if (need_sid) {
 757                                        security_task_getsecid(tsk, &sid);
 758                                        need_sid = 0;
 759                                }
 760                                result = security_audit_rule_match(sid, f->type,
 761                                                                  f->op,
 762                                                                  f->lsm_rule,
 763                                                                  ctx);
 764                        }
 765                        break;
 766                case AUDIT_OBJ_USER:
 767                case AUDIT_OBJ_ROLE:
 768                case AUDIT_OBJ_TYPE:
 769                case AUDIT_OBJ_LEV_LOW:
 770                case AUDIT_OBJ_LEV_HIGH:
 771                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 772                           also applies here */
 773                        if (f->lsm_rule) {
 774                                /* Find files that match */
 775                                if (name) {
 776                                        result = security_audit_rule_match(
 777                                                   name->osid, f->type, f->op,
 778                                                   f->lsm_rule, ctx);
 779                                } else if (ctx) {
 780                                        list_for_each_entry(n, &ctx->names_list, list) {
 781                                                if (security_audit_rule_match(n->osid, f->type,
 782                                                                              f->op, f->lsm_rule,
 783                                                                              ctx)) {
 784                                                        ++result;
 785                                                        break;
 786                                                }
 787                                        }
 788                                }
 789                                /* Find ipc objects that match */
 790                                if (!ctx || ctx->type != AUDIT_IPC)
 791                                        break;
 792                                if (security_audit_rule_match(ctx->ipc.osid,
 793                                                              f->type, f->op,
 794                                                              f->lsm_rule, ctx))
 795                                        ++result;
 796                        }
 797                        break;
 798                case AUDIT_ARG0:
 799                case AUDIT_ARG1:
 800                case AUDIT_ARG2:
 801                case AUDIT_ARG3:
 802                        if (ctx)
 803                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 804                        break;
 805                case AUDIT_FILTERKEY:
 806                        /* ignore this field for filtering */
 807                        result = 1;
 808                        break;
 809                case AUDIT_PERM:
 810                        result = audit_match_perm(ctx, f->val);
 811                        break;
 812                case AUDIT_FILETYPE:
 813                        result = audit_match_filetype(ctx, f->val);
 814                        break;
 815                case AUDIT_FIELD_COMPARE:
 816                        result = audit_field_compare(tsk, cred, f, ctx, name);
 817                        break;
 818                }
 819                if (!result)
 820                        return 0;
 821        }
 822
 823        if (ctx) {
 824                if (rule->prio <= ctx->prio)
 825                        return 0;
 826                if (rule->filterkey) {
 827                        kfree(ctx->filterkey);
 828                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 829                }
 830                ctx->prio = rule->prio;
 831        }
 832        switch (rule->action) {
 833        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 834        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 835        }
 836        return 1;
 837}
 838
 839/* At process creation time, we can determine if system-call auditing is
 840 * completely disabled for this task.  Since we only have the task
 841 * structure at this point, we can only check uid and gid.
 842 */
 843static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 844{
 845        struct audit_entry *e;
 846        enum audit_state   state;
 847
 848        rcu_read_lock();
 849        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 850                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 851                                       &state, true)) {
 852                        if (state == AUDIT_RECORD_CONTEXT)
 853                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 854                        rcu_read_unlock();
 855                        return state;
 856                }
 857        }
 858        rcu_read_unlock();
 859        return AUDIT_BUILD_CONTEXT;
 860}
 861
 862/* At syscall entry and exit time, this filter is called if the
 863 * audit_state is not low enough that auditing cannot take place, but is
 864 * also not high enough that we already know we have to write an audit
 865 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 866 */
 867static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 868                                             struct audit_context *ctx,
 869                                             struct list_head *list)
 870{
 871        struct audit_entry *e;
 872        enum audit_state state;
 873
 874        if (audit_pid && tsk->tgid == audit_pid)
 875                return AUDIT_DISABLED;
 876
 877        rcu_read_lock();
 878        if (!list_empty(list)) {
 879                int word = AUDIT_WORD(ctx->major);
 880                int bit  = AUDIT_BIT(ctx->major);
 881
 882                list_for_each_entry_rcu(e, list, list) {
 883                        if ((e->rule.mask[word] & bit) == bit &&
 884                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 885                                               &state, false)) {
 886                                rcu_read_unlock();
 887                                ctx->current_state = state;
 888                                return state;
 889                        }
 890                }
 891        }
 892        rcu_read_unlock();
 893        return AUDIT_BUILD_CONTEXT;
 894}
 895
 896/*
 897 * Given an audit_name check the inode hash table to see if they match.
 898 * Called holding the rcu read lock to protect the use of audit_inode_hash
 899 */
 900static int audit_filter_inode_name(struct task_struct *tsk,
 901                                   struct audit_names *n,
 902                                   struct audit_context *ctx) {
 903        int word, bit;
 904        int h = audit_hash_ino((u32)n->ino);
 905        struct list_head *list = &audit_inode_hash[h];
 906        struct audit_entry *e;
 907        enum audit_state state;
 908
 909        word = AUDIT_WORD(ctx->major);
 910        bit  = AUDIT_BIT(ctx->major);
 911
 912        if (list_empty(list))
 913                return 0;
 914
 915        list_for_each_entry_rcu(e, list, list) {
 916                if ((e->rule.mask[word] & bit) == bit &&
 917                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 918                        ctx->current_state = state;
 919                        return 1;
 920                }
 921        }
 922
 923        return 0;
 924}
 925
 926/* At syscall exit time, this filter is called if any audit_names have been
 927 * collected during syscall processing.  We only check rules in sublists at hash
 928 * buckets applicable to the inode numbers in audit_names.
 929 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 930 */
 931void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 932{
 933        struct audit_names *n;
 934
 935        if (audit_pid && tsk->tgid == audit_pid)
 936                return;
 937
 938        rcu_read_lock();
 939
 940        list_for_each_entry(n, &ctx->names_list, list) {
 941                if (audit_filter_inode_name(tsk, n, ctx))
 942                        break;
 943        }
 944        rcu_read_unlock();
 945}
 946
 947static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 948                                                      int return_valid,
 949                                                      long return_code)
 950{
 951        struct audit_context *context = tsk->audit_context;
 952
 953        if (!context)
 954                return NULL;
 955        context->return_valid = return_valid;
 956
 957        /*
 958         * we need to fix up the return code in the audit logs if the actual
 959         * return codes are later going to be fixed up by the arch specific
 960         * signal handlers
 961         *
 962         * This is actually a test for:
 963         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 964         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 965         *
 966         * but is faster than a bunch of ||
 967         */
 968        if (unlikely(return_code <= -ERESTARTSYS) &&
 969            (return_code >= -ERESTART_RESTARTBLOCK) &&
 970            (return_code != -ENOIOCTLCMD))
 971                context->return_code = -EINTR;
 972        else
 973                context->return_code  = return_code;
 974
 975        if (context->in_syscall && !context->dummy) {
 976                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 977                audit_filter_inodes(tsk, context);
 978        }
 979
 980        tsk->audit_context = NULL;
 981        return context;
 982}
 983
 984static inline void audit_free_names(struct audit_context *context)
 985{
 986        struct audit_names *n, *next;
 987
 988#if AUDIT_DEBUG == 2
 989        if (context->put_count + context->ino_count != context->name_count) {
 990                printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 991                       " name_count=%d put_count=%d"
 992                       " ino_count=%d [NOT freeing]\n",
 993                       __FILE__, __LINE__,
 994                       context->serial, context->major, context->in_syscall,
 995                       context->name_count, context->put_count,
 996                       context->ino_count);
 997                list_for_each_entry(n, &context->names_list, list) {
 998                        printk(KERN_ERR "names[%d] = %p = %s\n", i,
 999                               n->name, n->name->name ?: "(null)");
1000                }
1001                dump_stack();
1002                return;
1003        }
1004#endif
1005#if AUDIT_DEBUG
1006        context->put_count  = 0;
1007        context->ino_count  = 0;
1008#endif
1009
1010        list_for_each_entry_safe(n, next, &context->names_list, list) {
1011                list_del(&n->list);
1012                if (n->name && n->name_put)
1013                        __putname(n->name);
1014                if (n->should_free)
1015                        kfree(n);
1016        }
1017        context->name_count = 0;
1018        path_put(&context->pwd);
1019        context->pwd.dentry = NULL;
1020        context->pwd.mnt = NULL;
1021}
1022
1023static inline void audit_free_aux(struct audit_context *context)
1024{
1025        struct audit_aux_data *aux;
1026
1027        while ((aux = context->aux)) {
1028                context->aux = aux->next;
1029                kfree(aux);
1030        }
1031        while ((aux = context->aux_pids)) {
1032                context->aux_pids = aux->next;
1033                kfree(aux);
1034        }
1035}
1036
1037static inline void audit_zero_context(struct audit_context *context,
1038                                      enum audit_state state)
1039{
1040        memset(context, 0, sizeof(*context));
1041        context->state      = state;
1042        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1043}
1044
1045static inline struct audit_context *audit_alloc_context(enum audit_state state)
1046{
1047        struct audit_context *context;
1048
1049        if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1050                return NULL;
1051        audit_zero_context(context, state);
1052        INIT_LIST_HEAD(&context->killed_trees);
1053        INIT_LIST_HEAD(&context->names_list);
1054        return context;
1055}
1056
1057/**
1058 * audit_alloc - allocate an audit context block for a task
1059 * @tsk: task
1060 *
1061 * Filter on the task information and allocate a per-task audit context
1062 * if necessary.  Doing so turns on system call auditing for the
1063 * specified task.  This is called from copy_process, so no lock is
1064 * needed.
1065 */
1066int audit_alloc(struct task_struct *tsk)
1067{
1068        struct audit_context *context;
1069        enum audit_state     state;
1070        char *key = NULL;
1071
1072        if (likely(!audit_ever_enabled))
1073                return 0; /* Return if not auditing. */
1074
1075        state = audit_filter_task(tsk, &key);
1076        if (state == AUDIT_DISABLED)
1077                return 0;
1078
1079        if (!(context = audit_alloc_context(state))) {
1080                kfree(key);
1081                audit_log_lost("out of memory in audit_alloc");
1082                return -ENOMEM;
1083        }
1084        context->filterkey = key;
1085
1086        tsk->audit_context  = context;
1087        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1088        return 0;
1089}
1090
1091static inline void audit_free_context(struct audit_context *context)
1092{
1093        audit_free_names(context);
1094        unroll_tree_refs(context, NULL, 0);
1095        free_tree_refs(context);
1096        audit_free_aux(context);
1097        kfree(context->filterkey);
1098        kfree(context->sockaddr);
1099        kfree(context);
1100}
1101
1102void audit_log_task_context(struct audit_buffer *ab)
1103{
1104        char *ctx = NULL;
1105        unsigned len;
1106        int error;
1107        u32 sid;
1108
1109        security_task_getsecid(current, &sid);
1110        if (!sid)
1111                return;
1112
1113        error = security_secid_to_secctx(sid, &ctx, &len);
1114        if (error) {
1115                if (error != -EINVAL)
1116                        goto error_path;
1117                return;
1118        }
1119
1120        audit_log_format(ab, " subj=%s", ctx);
1121        security_release_secctx(ctx, len);
1122        return;
1123
1124error_path:
1125        audit_panic("error in audit_log_task_context");
1126        return;
1127}
1128
1129EXPORT_SYMBOL(audit_log_task_context);
1130
1131void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1132{
1133        const struct cred *cred;
1134        char name[sizeof(tsk->comm)];
1135        struct mm_struct *mm = tsk->mm;
1136        char *tty;
1137
1138        if (!ab)
1139                return;
1140
1141        /* tsk == current */
1142        cred = current_cred();
1143
1144        spin_lock_irq(&tsk->sighand->siglock);
1145        if (tsk->signal && tsk->signal->tty)
1146                tty = tsk->signal->tty->name;
1147        else
1148                tty = "(none)";
1149        spin_unlock_irq(&tsk->sighand->siglock);
1150
1151
1152        audit_log_format(ab,
1153                         " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1154                         " euid=%u suid=%u fsuid=%u"
1155                         " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1156                         sys_getppid(),
1157                         tsk->pid,
1158                         from_kuid(&init_user_ns, tsk->loginuid),
1159                         from_kuid(&init_user_ns, cred->uid),
1160                         from_kgid(&init_user_ns, cred->gid),
1161                         from_kuid(&init_user_ns, cred->euid),
1162                         from_kuid(&init_user_ns, cred->suid),
1163                         from_kuid(&init_user_ns, cred->fsuid),
1164                         from_kgid(&init_user_ns, cred->egid),
1165                         from_kgid(&init_user_ns, cred->sgid),
1166                         from_kgid(&init_user_ns, cred->fsgid),
1167                         tsk->sessionid, tty);
1168
1169        get_task_comm(name, tsk);
1170        audit_log_format(ab, " comm=");
1171        audit_log_untrustedstring(ab, name);
1172
1173        if (mm) {
1174                down_read(&mm->mmap_sem);
1175                if (mm->exe_file)
1176                        audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1177                up_read(&mm->mmap_sem);
1178        }
1179        audit_log_task_context(ab);
1180}
1181
1182EXPORT_SYMBOL(audit_log_task_info);
1183
1184static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1185                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
1186                                 u32 sid, char *comm)
1187{
1188        struct audit_buffer *ab;
1189        char *ctx = NULL;
1190        u32 len;
1191        int rc = 0;
1192
1193        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1194        if (!ab)
1195                return rc;
1196
1197        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1198                         from_kuid(&init_user_ns, auid),
1199                         from_kuid(&init_user_ns, uid), sessionid);
1200        if (security_secid_to_secctx(sid, &ctx, &len)) {
1201                audit_log_format(ab, " obj=(none)");
1202                rc = 1;
1203        } else {
1204                audit_log_format(ab, " obj=%s", ctx);
1205                security_release_secctx(ctx, len);
1206        }
1207        audit_log_format(ab, " ocomm=");
1208        audit_log_untrustedstring(ab, comm);
1209        audit_log_end(ab);
1210
1211        return rc;
1212}
1213
1214/*
1215 * to_send and len_sent accounting are very loose estimates.  We aren't
1216 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1217 * within about 500 bytes (next page boundary)
1218 *
1219 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1220 * logging that a[%d]= was going to be 16 characters long we would be wasting
1221 * space in every audit message.  In one 7500 byte message we can log up to
1222 * about 1000 min size arguments.  That comes down to about 50% waste of space
1223 * if we didn't do the snprintf to find out how long arg_num_len was.
1224 */
1225static int audit_log_single_execve_arg(struct audit_context *context,
1226                                        struct audit_buffer **ab,
1227                                        int arg_num,
1228                                        size_t *len_sent,
1229                                        const char __user *p,
1230                                        char *buf)
1231{
1232        char arg_num_len_buf[12];
1233        const char __user *tmp_p = p;
1234        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1235        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1236        size_t len, len_left, to_send;
1237        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1238        unsigned int i, has_cntl = 0, too_long = 0;
1239        int ret;
1240
1241        /* strnlen_user includes the null we don't want to send */
1242        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1243
1244        /*
1245         * We just created this mm, if we can't find the strings
1246         * we just copied into it something is _very_ wrong. Similar
1247         * for strings that are too long, we should not have created
1248         * any.
1249         */
1250        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1251                WARN_ON(1);
1252                send_sig(SIGKILL, current, 0);
1253                return -1;
1254        }
1255
1256        /* walk the whole argument looking for non-ascii chars */
1257        do {
1258                if (len_left > MAX_EXECVE_AUDIT_LEN)
1259                        to_send = MAX_EXECVE_AUDIT_LEN;
1260                else
1261                        to_send = len_left;
1262                ret = copy_from_user(buf, tmp_p, to_send);
1263                /*
1264                 * There is no reason for this copy to be short. We just
1265                 * copied them here, and the mm hasn't been exposed to user-
1266                 * space yet.
1267                 */
1268                if (ret) {
1269                        WARN_ON(1);
1270                        send_sig(SIGKILL, current, 0);
1271                        return -1;
1272                }
1273                buf[to_send] = '\0';
1274                has_cntl = audit_string_contains_control(buf, to_send);
1275                if (has_cntl) {
1276                        /*
1277                         * hex messages get logged as 2 bytes, so we can only
1278                         * send half as much in each message
1279                         */
1280                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1281                        break;
1282                }
1283                len_left -= to_send;
1284                tmp_p += to_send;
1285        } while (len_left > 0);
1286
1287        len_left = len;
1288
1289        if (len > max_execve_audit_len)
1290                too_long = 1;
1291
1292        /* rewalk the argument actually logging the message */
1293        for (i = 0; len_left > 0; i++) {
1294                int room_left;
1295
1296                if (len_left > max_execve_audit_len)
1297                        to_send = max_execve_audit_len;
1298                else
1299                        to_send = len_left;
1300
1301                /* do we have space left to send this argument in this ab? */
1302                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1303                if (has_cntl)
1304                        room_left -= (to_send * 2);
1305                else
1306                        room_left -= to_send;
1307                if (room_left < 0) {
1308                        *len_sent = 0;
1309                        audit_log_end(*ab);
1310                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1311                        if (!*ab)
1312                                return 0;
1313                }
1314
1315                /*
1316                 * first record needs to say how long the original string was
1317                 * so we can be sure nothing was lost.
1318                 */
1319                if ((i == 0) && (too_long))
1320                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1321                                         has_cntl ? 2*len : len);
1322
1323                /*
1324                 * normally arguments are small enough to fit and we already
1325                 * filled buf above when we checked for control characters
1326                 * so don't bother with another copy_from_user
1327                 */
1328                if (len >= max_execve_audit_len)
1329                        ret = copy_from_user(buf, p, to_send);
1330                else
1331                        ret = 0;
1332                if (ret) {
1333                        WARN_ON(1);
1334                        send_sig(SIGKILL, current, 0);
1335                        return -1;
1336                }
1337                buf[to_send] = '\0';
1338
1339                /* actually log it */
1340                audit_log_format(*ab, " a%d", arg_num);
1341                if (too_long)
1342                        audit_log_format(*ab, "[%d]", i);
1343                audit_log_format(*ab, "=");
1344                if (has_cntl)
1345                        audit_log_n_hex(*ab, buf, to_send);
1346                else
1347                        audit_log_string(*ab, buf);
1348
1349                p += to_send;
1350                len_left -= to_send;
1351                *len_sent += arg_num_len;
1352                if (has_cntl)
1353                        *len_sent += to_send * 2;
1354                else
1355                        *len_sent += to_send;
1356        }
1357        /* include the null we didn't log */
1358        return len + 1;
1359}
1360
1361static void audit_log_execve_info(struct audit_context *context,
1362                                  struct audit_buffer **ab,
1363                                  struct audit_aux_data_execve *axi)
1364{
1365        int i, len;
1366        size_t len_sent = 0;
1367        const char __user *p;
1368        char *buf;
1369
1370        if (axi->mm != current->mm)
1371                return; /* execve failed, no additional info */
1372
1373        p = (const char __user *)axi->mm->arg_start;
1374
1375        audit_log_format(*ab, "argc=%d", axi->argc);
1376
1377        /*
1378         * we need some kernel buffer to hold the userspace args.  Just
1379         * allocate one big one rather than allocating one of the right size
1380         * for every single argument inside audit_log_single_execve_arg()
1381         * should be <8k allocation so should be pretty safe.
1382         */
1383        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1384        if (!buf) {
1385                audit_panic("out of memory for argv string\n");
1386                return;
1387        }
1388
1389        for (i = 0; i < axi->argc; i++) {
1390                len = audit_log_single_execve_arg(context, ab, i,
1391                                                  &len_sent, p, buf);
1392                if (len <= 0)
1393                        break;
1394                p += len;
1395        }
1396        kfree(buf);
1397}
1398
1399static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1400{
1401        int i;
1402
1403        audit_log_format(ab, " %s=", prefix);
1404        CAP_FOR_EACH_U32(i) {
1405                audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1406        }
1407}
1408
1409static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1410{
1411        kernel_cap_t *perm = &name->fcap.permitted;
1412        kernel_cap_t *inh = &name->fcap.inheritable;
1413        int log = 0;
1414
1415        if (!cap_isclear(*perm)) {
1416                audit_log_cap(ab, "cap_fp", perm);
1417                log = 1;
1418        }
1419        if (!cap_isclear(*inh)) {
1420                audit_log_cap(ab, "cap_fi", inh);
1421                log = 1;
1422        }
1423
1424        if (log)
1425                audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1426}
1427
1428static void show_special(struct audit_context *context, int *call_panic)
1429{
1430        struct audit_buffer *ab;
1431        int i;
1432
1433        ab = audit_log_start(context, GFP_KERNEL, context->type);
1434        if (!ab)
1435                return;
1436
1437        switch (context->type) {
1438        case AUDIT_SOCKETCALL: {
1439                int nargs = context->socketcall.nargs;
1440                audit_log_format(ab, "nargs=%d", nargs);
1441                for (i = 0; i < nargs; i++)
1442                        audit_log_format(ab, " a%d=%lx", i,
1443                                context->socketcall.args[i]);
1444                break; }
1445        case AUDIT_IPC: {
1446                u32 osid = context->ipc.osid;
1447
1448                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1449                                 from_kuid(&init_user_ns, context->ipc.uid),
1450                                 from_kgid(&init_user_ns, context->ipc.gid),
1451                                 context->ipc.mode);
1452                if (osid) {
1453                        char *ctx = NULL;
1454                        u32 len;
1455                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1456                                audit_log_format(ab, " osid=%u", osid);
1457                                *call_panic = 1;
1458                        } else {
1459                                audit_log_format(ab, " obj=%s", ctx);
1460                                security_release_secctx(ctx, len);
1461                        }
1462                }
1463                if (context->ipc.has_perm) {
1464                        audit_log_end(ab);
1465                        ab = audit_log_start(context, GFP_KERNEL,
1466                                             AUDIT_IPC_SET_PERM);
1467                        if (unlikely(!ab))
1468                                return;
1469                        audit_log_format(ab,
1470                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1471                                context->ipc.qbytes,
1472                                context->ipc.perm_uid,
1473                                context->ipc.perm_gid,
1474                                context->ipc.perm_mode);
1475                }
1476                break; }
1477        case AUDIT_MQ_OPEN: {
1478                audit_log_format(ab,
1479                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1480                        "mq_msgsize=%ld mq_curmsgs=%ld",
1481                        context->mq_open.oflag, context->mq_open.mode,
1482                        context->mq_open.attr.mq_flags,
1483                        context->mq_open.attr.mq_maxmsg,
1484                        context->mq_open.attr.mq_msgsize,
1485                        context->mq_open.attr.mq_curmsgs);
1486                break; }
1487        case AUDIT_MQ_SENDRECV: {
1488                audit_log_format(ab,
1489                        "mqdes=%d msg_len=%zd msg_prio=%u "
1490                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1491                        context->mq_sendrecv.mqdes,
1492                        context->mq_sendrecv.msg_len,
1493                        context->mq_sendrecv.msg_prio,
1494                        context->mq_sendrecv.abs_timeout.tv_sec,
1495                        context->mq_sendrecv.abs_timeout.tv_nsec);
1496                break; }
1497        case AUDIT_MQ_NOTIFY: {
1498                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1499                                context->mq_notify.mqdes,
1500                                context->mq_notify.sigev_signo);
1501                break; }
1502        case AUDIT_MQ_GETSETATTR: {
1503                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1504                audit_log_format(ab,
1505                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1506                        "mq_curmsgs=%ld ",
1507                        context->mq_getsetattr.mqdes,
1508                        attr->mq_flags, attr->mq_maxmsg,
1509                        attr->mq_msgsize, attr->mq_curmsgs);
1510                break; }
1511        case AUDIT_CAPSET: {
1512                audit_log_format(ab, "pid=%d", context->capset.pid);
1513                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1514                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1515                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1516                break; }
1517        case AUDIT_MMAP: {
1518                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1519                                 context->mmap.flags);
1520                break; }
1521        }
1522        audit_log_end(ab);
1523}
1524
1525static void audit_log_name(struct audit_context *context, struct audit_names *n,
1526                           int record_num, int *call_panic)
1527{
1528        struct audit_buffer *ab;
1529        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1530        if (!ab)
1531                return; /* audit_panic has been called */
1532
1533        audit_log_format(ab, "item=%d", record_num);
1534
1535        if (n->name) {
1536                switch (n->name_len) {
1537                case AUDIT_NAME_FULL:
1538                        /* log the full path */
1539                        audit_log_format(ab, " name=");
1540                        audit_log_untrustedstring(ab, n->name->name);
1541                        break;
1542                case 0:
1543                        /* name was specified as a relative path and the
1544                         * directory component is the cwd */
1545                        audit_log_d_path(ab, " name=", &context->pwd);
1546                        break;
1547                default:
1548                        /* log the name's directory component */
1549                        audit_log_format(ab, " name=");
1550                        audit_log_n_untrustedstring(ab, n->name->name,
1551                                                    n->name_len);
1552                }
1553        } else
1554                audit_log_format(ab, " name=(null)");
1555
1556        if (n->ino != (unsigned long)-1) {
1557                audit_log_format(ab, " inode=%lu"
1558                                 " dev=%02x:%02x mode=%#ho"
1559                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1560                                 n->ino,
1561                                 MAJOR(n->dev),
1562                                 MINOR(n->dev),
1563                                 n->mode,
1564                                 from_kuid(&init_user_ns, n->uid),
1565                                 from_kgid(&init_user_ns, n->gid),
1566                                 MAJOR(n->rdev),
1567                                 MINOR(n->rdev));
1568        }
1569        if (n->osid != 0) {
1570                char *ctx = NULL;
1571                u32 len;
1572                if (security_secid_to_secctx(
1573                        n->osid, &ctx, &len)) {
1574                        audit_log_format(ab, " osid=%u", n->osid);
1575                        *call_panic = 2;
1576                } else {
1577                        audit_log_format(ab, " obj=%s", ctx);
1578                        security_release_secctx(ctx, len);
1579                }
1580        }
1581
1582        audit_log_fcaps(ab, n);
1583
1584        audit_log_end(ab);
1585}
1586
1587static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1588{
1589        int i, call_panic = 0;
1590        struct audit_buffer *ab;
1591        struct audit_aux_data *aux;
1592        struct audit_names *n;
1593
1594        /* tsk == current */
1595        context->personality = tsk->personality;
1596
1597        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1598        if (!ab)
1599                return;         /* audit_panic has been called */
1600        audit_log_format(ab, "arch=%x syscall=%d",
1601                         context->arch, context->major);
1602        if (context->personality != PER_LINUX)
1603                audit_log_format(ab, " per=%lx", context->personality);
1604        if (context->return_valid)
1605                audit_log_format(ab, " success=%s exit=%ld",
1606                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1607                                 context->return_code);
1608
1609        audit_log_format(ab,
1610                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1611                         context->argv[0],
1612                         context->argv[1],
1613                         context->argv[2],
1614                         context->argv[3],
1615                         context->name_count);
1616
1617        audit_log_task_info(ab, tsk);
1618        audit_log_key(ab, context->filterkey);
1619        audit_log_end(ab);
1620
1621        for (aux = context->aux; aux; aux = aux->next) {
1622
1623                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1624                if (!ab)
1625                        continue; /* audit_panic has been called */
1626
1627                switch (aux->type) {
1628
1629                case AUDIT_EXECVE: {
1630                        struct audit_aux_data_execve *axi = (void *)aux;
1631                        audit_log_execve_info(context, &ab, axi);
1632                        break; }
1633
1634                case AUDIT_BPRM_FCAPS: {
1635                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1636                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1637                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1638                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1639                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1640                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1641                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1642                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1643                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1644                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1645                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1646                        break; }
1647
1648                }
1649                audit_log_end(ab);
1650        }
1651
1652        if (context->type)
1653                show_special(context, &call_panic);
1654
1655        if (context->fds[0] >= 0) {
1656                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1657                if (ab) {
1658                        audit_log_format(ab, "fd0=%d fd1=%d",
1659                                        context->fds[0], context->fds[1]);
1660                        audit_log_end(ab);
1661                }
1662        }
1663
1664        if (context->sockaddr_len) {
1665                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1666                if (ab) {
1667                        audit_log_format(ab, "saddr=");
1668                        audit_log_n_hex(ab, (void *)context->sockaddr,
1669                                        context->sockaddr_len);
1670                        audit_log_end(ab);
1671                }
1672        }
1673
1674        for (aux = context->aux_pids; aux; aux = aux->next) {
1675                struct audit_aux_data_pids *axs = (void *)aux;
1676
1677                for (i = 0; i < axs->pid_count; i++)
1678                        if (audit_log_pid_context(context, axs->target_pid[i],
1679                                                  axs->target_auid[i],
1680                                                  axs->target_uid[i],
1681                                                  axs->target_sessionid[i],
1682                                                  axs->target_sid[i],
1683                                                  axs->target_comm[i]))
1684                                call_panic = 1;
1685        }
1686
1687        if (context->target_pid &&
1688            audit_log_pid_context(context, context->target_pid,
1689                                  context->target_auid, context->target_uid,
1690                                  context->target_sessionid,
1691                                  context->target_sid, context->target_comm))
1692                        call_panic = 1;
1693
1694        if (context->pwd.dentry && context->pwd.mnt) {
1695                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1696                if (ab) {
1697                        audit_log_d_path(ab, " cwd=", &context->pwd);
1698                        audit_log_end(ab);
1699                }
1700        }
1701
1702        i = 0;
1703        list_for_each_entry(n, &context->names_list, list)
1704                audit_log_name(context, n, i++, &call_panic);
1705
1706        /* Send end of event record to help user space know we are finished */
1707        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1708        if (ab)
1709                audit_log_end(ab);
1710        if (call_panic)
1711                audit_panic("error converting sid to string");
1712}
1713
1714/**
1715 * audit_free - free a per-task audit context
1716 * @tsk: task whose audit context block to free
1717 *
1718 * Called from copy_process and do_exit
1719 */
1720void __audit_free(struct task_struct *tsk)
1721{
1722        struct audit_context *context;
1723
1724        context = audit_get_context(tsk, 0, 0);
1725        if (!context)
1726                return;
1727
1728        /* Check for system calls that do not go through the exit
1729         * function (e.g., exit_group), then free context block.
1730         * We use GFP_ATOMIC here because we might be doing this
1731         * in the context of the idle thread */
1732        /* that can happen only if we are called from do_exit() */
1733        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1734                audit_log_exit(context, tsk);
1735        if (!list_empty(&context->killed_trees))
1736                audit_kill_trees(&context->killed_trees);
1737
1738        audit_free_context(context);
1739}
1740
1741/**
1742 * audit_syscall_entry - fill in an audit record at syscall entry
1743 * @arch: architecture type
1744 * @major: major syscall type (function)
1745 * @a1: additional syscall register 1
1746 * @a2: additional syscall register 2
1747 * @a3: additional syscall register 3
1748 * @a4: additional syscall register 4
1749 *
1750 * Fill in audit context at syscall entry.  This only happens if the
1751 * audit context was created when the task was created and the state or
1752 * filters demand the audit context be built.  If the state from the
1753 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1754 * then the record will be written at syscall exit time (otherwise, it
1755 * will only be written if another part of the kernel requests that it
1756 * be written).
1757 */
1758void __audit_syscall_entry(int arch, int major,
1759                         unsigned long a1, unsigned long a2,
1760                         unsigned long a3, unsigned long a4)
1761{
1762        struct task_struct *tsk = current;
1763        struct audit_context *context = tsk->audit_context;
1764        enum audit_state     state;
1765
1766        if (!context)
1767                return;
1768
1769        BUG_ON(context->in_syscall || context->name_count);
1770
1771        if (!audit_enabled)
1772                return;
1773
1774        context->arch       = arch;
1775        context->major      = major;
1776        context->argv[0]    = a1;
1777        context->argv[1]    = a2;
1778        context->argv[2]    = a3;
1779        context->argv[3]    = a4;
1780
1781        state = context->state;
1782        context->dummy = !audit_n_rules;
1783        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1784                context->prio = 0;
1785                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1786        }
1787        if (state == AUDIT_DISABLED)
1788                return;
1789
1790        context->serial     = 0;
1791        context->ctime      = CURRENT_TIME;
1792        context->in_syscall = 1;
1793        context->current_state  = state;
1794        context->ppid       = 0;
1795}
1796
1797/**
1798 * audit_syscall_exit - deallocate audit context after a system call
1799 * @success: success value of the syscall
1800 * @return_code: return value of the syscall
1801 *
1802 * Tear down after system call.  If the audit context has been marked as
1803 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1804 * filtering, or because some other part of the kernel wrote an audit
1805 * message), then write out the syscall information.  In call cases,
1806 * free the names stored from getname().
1807 */
1808void __audit_syscall_exit(int success, long return_code)
1809{
1810        struct task_struct *tsk = current;
1811        struct audit_context *context;
1812
1813        if (success)
1814                success = AUDITSC_SUCCESS;
1815        else
1816                success = AUDITSC_FAILURE;
1817
1818        context = audit_get_context(tsk, success, return_code);
1819        if (!context)
1820                return;
1821
1822        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1823                audit_log_exit(context, tsk);
1824
1825        context->in_syscall = 0;
1826        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1827
1828        if (!list_empty(&context->killed_trees))
1829                audit_kill_trees(&context->killed_trees);
1830
1831        audit_free_names(context);
1832        unroll_tree_refs(context, NULL, 0);
1833        audit_free_aux(context);
1834        context->aux = NULL;
1835        context->aux_pids = NULL;
1836        context->target_pid = 0;
1837        context->target_sid = 0;
1838        context->sockaddr_len = 0;
1839        context->type = 0;
1840        context->fds[0] = -1;
1841        if (context->state != AUDIT_RECORD_CONTEXT) {
1842                kfree(context->filterkey);
1843                context->filterkey = NULL;
1844        }
1845        tsk->audit_context = context;
1846}
1847
1848static inline void handle_one(const struct inode *inode)
1849{
1850#ifdef CONFIG_AUDIT_TREE
1851        struct audit_context *context;
1852        struct audit_tree_refs *p;
1853        struct audit_chunk *chunk;
1854        int count;
1855        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1856                return;
1857        context = current->audit_context;
1858        p = context->trees;
1859        count = context->tree_count;
1860        rcu_read_lock();
1861        chunk = audit_tree_lookup(inode);
1862        rcu_read_unlock();
1863        if (!chunk)
1864                return;
1865        if (likely(put_tree_ref(context, chunk)))
1866                return;
1867        if (unlikely(!grow_tree_refs(context))) {
1868                printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1869                audit_set_auditable(context);
1870                audit_put_chunk(chunk);
1871                unroll_tree_refs(context, p, count);
1872                return;
1873        }
1874        put_tree_ref(context, chunk);
1875#endif
1876}
1877
1878static void handle_path(const struct dentry *dentry)
1879{
1880#ifdef CONFIG_AUDIT_TREE
1881        struct audit_context *context;
1882        struct audit_tree_refs *p;
1883        const struct dentry *d, *parent;
1884        struct audit_chunk *drop;
1885        unsigned long seq;
1886        int count;
1887
1888        context = current->audit_context;
1889        p = context->trees;
1890        count = context->tree_count;
1891retry:
1892        drop = NULL;
1893        d = dentry;
1894        rcu_read_lock();
1895        seq = read_seqbegin(&rename_lock);
1896        for(;;) {
1897                struct inode *inode = d->d_inode;
1898                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1899                        struct audit_chunk *chunk;
1900                        chunk = audit_tree_lookup(inode);
1901                        if (chunk) {
1902                                if (unlikely(!put_tree_ref(context, chunk))) {
1903                                        drop = chunk;
1904                                        break;
1905                                }
1906                        }
1907                }
1908                parent = d->d_parent;
1909                if (parent == d)
1910                        break;
1911                d = parent;
1912        }
1913        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1914                rcu_read_unlock();
1915                if (!drop) {
1916                        /* just a race with rename */
1917                        unroll_tree_refs(context, p, count);
1918                        goto retry;
1919                }
1920                audit_put_chunk(drop);
1921                if (grow_tree_refs(context)) {
1922                        /* OK, got more space */
1923                        unroll_tree_refs(context, p, count);
1924                        goto retry;
1925                }
1926                /* too bad */
1927                printk(KERN_WARNING
1928                        "out of memory, audit has lost a tree reference\n");
1929                unroll_tree_refs(context, p, count);
1930                audit_set_auditable(context);
1931                return;
1932        }
1933        rcu_read_unlock();
1934#endif
1935}
1936
1937static struct audit_names *audit_alloc_name(struct audit_context *context,
1938                                                unsigned char type)
1939{
1940        struct audit_names *aname;
1941
1942        if (context->name_count < AUDIT_NAMES) {
1943                aname = &context->preallocated_names[context->name_count];
1944                memset(aname, 0, sizeof(*aname));
1945        } else {
1946                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1947                if (!aname)
1948                        return NULL;
1949                aname->should_free = true;
1950        }
1951
1952        aname->ino = (unsigned long)-1;
1953        aname->type = type;
1954        list_add_tail(&aname->list, &context->names_list);
1955
1956        context->name_count++;
1957#if AUDIT_DEBUG
1958        context->ino_count++;
1959#endif
1960        return aname;
1961}
1962
1963/**
1964 * audit_reusename - fill out filename with info from existing entry
1965 * @uptr: userland ptr to pathname
1966 *
1967 * Search the audit_names list for the current audit context. If there is an
1968 * existing entry with a matching "uptr" then return the filename
1969 * associated with that audit_name. If not, return NULL.
1970 */
1971struct filename *
1972__audit_reusename(const __user char *uptr)
1973{
1974        struct audit_context *context = current->audit_context;
1975        struct audit_names *n;
1976
1977        list_for_each_entry(n, &context->names_list, list) {
1978                if (!n->name)
1979                        continue;
1980                if (n->name->uptr == uptr)
1981                        return n->name;
1982        }
1983        return NULL;
1984}
1985
1986/**
1987 * audit_getname - add a name to the list
1988 * @name: name to add
1989 *
1990 * Add a name to the list of audit names for this context.
1991 * Called from fs/namei.c:getname().
1992 */
1993void __audit_getname(struct filename *name)
1994{
1995        struct audit_context *context = current->audit_context;
1996        struct audit_names *n;
1997
1998        if (!context->in_syscall) {
1999#if AUDIT_DEBUG == 2
2000                printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2001                       __FILE__, __LINE__, context->serial, name);
2002                dump_stack();
2003#endif
2004                return;
2005        }
2006
2007#if AUDIT_DEBUG
2008        /* The filename _must_ have a populated ->name */
2009        BUG_ON(!name->name);
2010#endif
2011
2012        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2013        if (!n)
2014                return;
2015
2016        n->name = name;
2017        n->name_len = AUDIT_NAME_FULL;
2018        n->name_put = true;
2019        name->aname = n;
2020
2021        if (!context->pwd.dentry)
2022                get_fs_pwd(current->fs, &context->pwd);
2023}
2024
2025/* audit_putname - intercept a putname request
2026 * @name: name to intercept and delay for putname
2027 *
2028 * If we have stored the name from getname in the audit context,
2029 * then we delay the putname until syscall exit.
2030 * Called from include/linux/fs.h:putname().
2031 */
2032void audit_putname(struct filename *name)
2033{
2034        struct audit_context *context = current->audit_context;
2035
2036        BUG_ON(!context);
2037        if (!context->in_syscall) {
2038#if AUDIT_DEBUG == 2
2039                printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2040                       __FILE__, __LINE__, context->serial, name);
2041                if (context->name_count) {
2042                        struct audit_names *n;
2043                        int i;
2044
2045                        list_for_each_entry(n, &context->names_list, list)
2046                                printk(KERN_ERR "name[%d] = %p = %s\n", i,
2047                                       n->name, n->name->name ?: "(null)");
2048                        }
2049#endif
2050                __putname(name);
2051        }
2052#if AUDIT_DEBUG
2053        else {
2054                ++context->put_count;
2055                if (context->put_count > context->name_count) {
2056                        printk(KERN_ERR "%s:%d(:%d): major=%d"
2057                               " in_syscall=%d putname(%p) name_count=%d"
2058                               " put_count=%d\n",
2059                               __FILE__, __LINE__,
2060                               context->serial, context->major,
2061                               context->in_syscall, name->name,
2062                               context->name_count, context->put_count);
2063                        dump_stack();
2064                }
2065        }
2066#endif
2067}
2068
2069static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2070{
2071        struct cpu_vfs_cap_data caps;
2072        int rc;
2073
2074        if (!dentry)
2075                return 0;
2076
2077        rc = get_vfs_caps_from_disk(dentry, &caps);
2078        if (rc)
2079                return rc;
2080
2081        name->fcap.permitted = caps.permitted;
2082        name->fcap.inheritable = caps.inheritable;
2083        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2084        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2085
2086        return 0;
2087}
2088
2089
2090/* Copy inode data into an audit_names. */
2091static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2092                             const struct inode *inode)
2093{
2094        name->ino   = inode->i_ino;
2095        name->dev   = inode->i_sb->s_dev;
2096        name->mode  = inode->i_mode;
2097        name->uid   = inode->i_uid;
2098        name->gid   = inode->i_gid;
2099        name->rdev  = inode->i_rdev;
2100        security_inode_getsecid(inode, &name->osid);
2101        audit_copy_fcaps(name, dentry);
2102}
2103
2104/**
2105 * __audit_inode - store the inode and device from a lookup
2106 * @name: name being audited
2107 * @dentry: dentry being audited
2108 * @parent: does this dentry represent the parent?
2109 */
2110void __audit_inode(struct filename *name, const struct dentry *dentry,
2111                   unsigned int parent)
2112{
2113        struct audit_context *context = current->audit_context;
2114        const struct inode *inode = dentry->d_inode;
2115        struct audit_names *n;
2116
2117        if (!context->in_syscall)
2118                return;
2119
2120        if (!name)
2121                goto out_alloc;
2122
2123#if AUDIT_DEBUG
2124        /* The struct filename _must_ have a populated ->name */
2125        BUG_ON(!name->name);
2126#endif
2127        /*
2128         * If we have a pointer to an audit_names entry already, then we can
2129         * just use it directly if the type is correct.
2130         */
2131        n = name->aname;
2132        if (n) {
2133                if (parent) {
2134                        if (n->type == AUDIT_TYPE_PARENT ||
2135                            n->type == AUDIT_TYPE_UNKNOWN)
2136                                goto out;
2137                } else {
2138                        if (n->type != AUDIT_TYPE_PARENT)
2139                                goto out;
2140                }
2141        }
2142
2143        list_for_each_entry_reverse(n, &context->names_list, list) {
2144                /* does the name pointer match? */
2145                if (!n->name || n->name->name != name->name)
2146                        continue;
2147
2148                /* match the correct record type */
2149                if (parent) {
2150                        if (n->type == AUDIT_TYPE_PARENT ||
2151                            n->type == AUDIT_TYPE_UNKNOWN)
2152                                goto out;
2153                } else {
2154                        if (n->type != AUDIT_TYPE_PARENT)
2155                                goto out;
2156                }
2157        }
2158
2159out_alloc:
2160        /* unable to find the name from a previous getname(). Allocate a new
2161         * anonymous entry.
2162         */
2163        n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2164        if (!n)
2165                return;
2166out:
2167        if (parent) {
2168                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2169                n->type = AUDIT_TYPE_PARENT;
2170        } else {
2171                n->name_len = AUDIT_NAME_FULL;
2172                n->type = AUDIT_TYPE_NORMAL;
2173        }
2174        handle_path(dentry);
2175        audit_copy_inode(n, dentry, inode);
2176}
2177
2178/**
2179 * __audit_inode_child - collect inode info for created/removed objects
2180 * @parent: inode of dentry parent
2181 * @dentry: dentry being audited
2182 * @type:   AUDIT_TYPE_* value that we're looking for
2183 *
2184 * For syscalls that create or remove filesystem objects, audit_inode
2185 * can only collect information for the filesystem object's parent.
2186 * This call updates the audit context with the child's information.
2187 * Syscalls that create a new filesystem object must be hooked after
2188 * the object is created.  Syscalls that remove a filesystem object
2189 * must be hooked prior, in order to capture the target inode during
2190 * unsuccessful attempts.
2191 */
2192void __audit_inode_child(const struct inode *parent,
2193                         const struct dentry *dentry,
2194                         const unsigned char type)
2195{
2196        struct audit_context *context = current->audit_context;
2197        const struct inode *inode = dentry->d_inode;
2198        const char *dname = dentry->d_name.name;
2199        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2200
2201        if (!context->in_syscall)
2202                return;
2203
2204        if (inode)
2205                handle_one(inode);
2206
2207        /* look for a parent entry first */
2208        list_for_each_entry(n, &context->names_list, list) {
2209                if (!n->name || n->type != AUDIT_TYPE_PARENT)
2210                        continue;
2211
2212                if (n->ino == parent->i_ino &&
2213                    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2214                        found_parent = n;
2215                        break;
2216                }
2217        }
2218
2219        /* is there a matching child entry? */
2220        list_for_each_entry(n, &context->names_list, list) {
2221                /* can only match entries that have a name */
2222                if (!n->name || n->type != type)
2223                        continue;
2224
2225                /* if we found a parent, make sure this one is a child of it */
2226                if (found_parent && (n->name != found_parent->name))
2227                        continue;
2228
2229                if (!strcmp(dname, n->name->name) ||
2230                    !audit_compare_dname_path(dname, n->name->name,
2231                                                found_parent ?
2232                                                found_parent->name_len :
2233                                                AUDIT_NAME_FULL)) {
2234                        found_child = n;
2235                        break;
2236                }
2237        }
2238
2239        if (!found_parent) {
2240                /* create a new, "anonymous" parent record */
2241                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2242                if (!n)
2243                        return;
2244                audit_copy_inode(n, NULL, parent);
2245        }
2246
2247        if (!found_child) {
2248                found_child = audit_alloc_name(context, type);
2249                if (!found_child)
2250                        return;
2251
2252                /* Re-use the name belonging to the slot for a matching parent
2253                 * directory. All names for this context are relinquished in
2254                 * audit_free_names() */
2255                if (found_parent) {
2256                        found_child->name = found_parent->name;
2257                        found_child->name_len = AUDIT_NAME_FULL;
2258                        /* don't call __putname() */
2259                        found_child->name_put = false;
2260                }
2261        }
2262        if (inode)
2263                audit_copy_inode(found_child, dentry, inode);
2264        else
2265                found_child->ino = (unsigned long)-1;
2266}
2267EXPORT_SYMBOL_GPL(__audit_inode_child);
2268
2269/**
2270 * auditsc_get_stamp - get local copies of audit_context values
2271 * @ctx: audit_context for the task
2272 * @t: timespec to store time recorded in the audit_context
2273 * @serial: serial value that is recorded in the audit_context
2274 *
2275 * Also sets the context as auditable.
2276 */
2277int auditsc_get_stamp(struct audit_context *ctx,
2278                       struct timespec *t, unsigned int *serial)
2279{
2280        if (!ctx->in_syscall)
2281                return 0;
2282        if (!ctx->serial)
2283                ctx->serial = audit_serial();
2284        t->tv_sec  = ctx->ctime.tv_sec;
2285        t->tv_nsec = ctx->ctime.tv_nsec;
2286        *serial    = ctx->serial;
2287        if (!ctx->prio) {
2288                ctx->prio = 1;
2289                ctx->current_state = AUDIT_RECORD_CONTEXT;
2290        }
2291        return 1;
2292}
2293
2294/* global counter which is incremented every time something logs in */
2295static atomic_t session_id = ATOMIC_INIT(0);
2296
2297/**
2298 * audit_set_loginuid - set current task's audit_context loginuid
2299 * @loginuid: loginuid value
2300 *
2301 * Returns 0.
2302 *
2303 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2304 */
2305int audit_set_loginuid(kuid_t loginuid)
2306{
2307        struct task_struct *task = current;
2308        struct audit_context *context = task->audit_context;
2309        unsigned int sessionid;
2310
2311#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2312        if (uid_valid(task->loginuid))
2313                return -EPERM;
2314#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315        if (!capable(CAP_AUDIT_CONTROL))
2316                return -EPERM;
2317#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2318
2319        sessionid = atomic_inc_return(&session_id);
2320        if (context && context->in_syscall) {
2321                struct audit_buffer *ab;
2322
2323                ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2324                if (ab) {
2325                        audit_log_format(ab, "login pid=%d uid=%u "
2326                                "old auid=%u new auid=%u"
2327                                " old ses=%u new ses=%u",
2328                                task->pid,
2329                                from_kuid(&init_user_ns, task_uid(task)),
2330                                from_kuid(&init_user_ns, task->loginuid),
2331                                from_kuid(&init_user_ns, loginuid),
2332                                task->sessionid, sessionid);
2333                        audit_log_end(ab);
2334                }
2335        }
2336        task->sessionid = sessionid;
2337        task->loginuid = loginuid;
2338        return 0;
2339}
2340
2341/**
2342 * __audit_mq_open - record audit data for a POSIX MQ open
2343 * @oflag: open flag
2344 * @mode: mode bits
2345 * @attr: queue attributes
2346 *
2347 */
2348void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2349{
2350        struct audit_context *context = current->audit_context;
2351
2352        if (attr)
2353                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2354        else
2355                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2356
2357        context->mq_open.oflag = oflag;
2358        context->mq_open.mode = mode;
2359
2360        context->type = AUDIT_MQ_OPEN;
2361}
2362
2363/**
2364 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2365 * @mqdes: MQ descriptor
2366 * @msg_len: Message length
2367 * @msg_prio: Message priority
2368 * @abs_timeout: Message timeout in absolute time
2369 *
2370 */
2371void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2372                        const struct timespec *abs_timeout)
2373{
2374        struct audit_context *context = current->audit_context;
2375        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2376
2377        if (abs_timeout)
2378                memcpy(p, abs_timeout, sizeof(struct timespec));
2379        else
2380                memset(p, 0, sizeof(struct timespec));
2381
2382        context->mq_sendrecv.mqdes = mqdes;
2383        context->mq_sendrecv.msg_len = msg_len;
2384        context->mq_sendrecv.msg_prio = msg_prio;
2385
2386        context->type = AUDIT_MQ_SENDRECV;
2387}
2388
2389/**
2390 * __audit_mq_notify - record audit data for a POSIX MQ notify
2391 * @mqdes: MQ descriptor
2392 * @notification: Notification event
2393 *
2394 */
2395
2396void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2397{
2398        struct audit_context *context = current->audit_context;
2399
2400        if (notification)
2401                context->mq_notify.sigev_signo = notification->sigev_signo;
2402        else
2403                context->mq_notify.sigev_signo = 0;
2404
2405        context->mq_notify.mqdes = mqdes;
2406        context->type = AUDIT_MQ_NOTIFY;
2407}
2408
2409/**
2410 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2411 * @mqdes: MQ descriptor
2412 * @mqstat: MQ flags
2413 *
2414 */
2415void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2416{
2417        struct audit_context *context = current->audit_context;
2418        context->mq_getsetattr.mqdes = mqdes;
2419        context->mq_getsetattr.mqstat = *mqstat;
2420        context->type = AUDIT_MQ_GETSETATTR;
2421}
2422
2423/**
2424 * audit_ipc_obj - record audit data for ipc object
2425 * @ipcp: ipc permissions
2426 *
2427 */
2428void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2429{
2430        struct audit_context *context = current->audit_context;
2431        context->ipc.uid = ipcp->uid;
2432        context->ipc.gid = ipcp->gid;
2433        context->ipc.mode = ipcp->mode;
2434        context->ipc.has_perm = 0;
2435        security_ipc_getsecid(ipcp, &context->ipc.osid);
2436        context->type = AUDIT_IPC;
2437}
2438
2439/**
2440 * audit_ipc_set_perm - record audit data for new ipc permissions
2441 * @qbytes: msgq bytes
2442 * @uid: msgq user id
2443 * @gid: msgq group id
2444 * @mode: msgq mode (permissions)
2445 *
2446 * Called only after audit_ipc_obj().
2447 */
2448void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2449{
2450        struct audit_context *context = current->audit_context;
2451
2452        context->ipc.qbytes = qbytes;
2453        context->ipc.perm_uid = uid;
2454        context->ipc.perm_gid = gid;
2455        context->ipc.perm_mode = mode;
2456        context->ipc.has_perm = 1;
2457}
2458
2459int __audit_bprm(struct linux_binprm *bprm)
2460{
2461        struct audit_aux_data_execve *ax;
2462        struct audit_context *context = current->audit_context;
2463
2464        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2465        if (!ax)
2466                return -ENOMEM;
2467
2468        ax->argc = bprm->argc;
2469        ax->envc = bprm->envc;
2470        ax->mm = bprm->mm;
2471        ax->d.type = AUDIT_EXECVE;
2472        ax->d.next = context->aux;
2473        context->aux = (void *)ax;
2474        return 0;
2475}
2476
2477
2478/**
2479 * audit_socketcall - record audit data for sys_socketcall
2480 * @nargs: number of args
2481 * @args: args array
2482 *
2483 */
2484void __audit_socketcall(int nargs, unsigned long *args)
2485{
2486        struct audit_context *context = current->audit_context;
2487
2488        context->type = AUDIT_SOCKETCALL;
2489        context->socketcall.nargs = nargs;
2490        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2491}
2492
2493/**
2494 * __audit_fd_pair - record audit data for pipe and socketpair
2495 * @fd1: the first file descriptor
2496 * @fd2: the second file descriptor
2497 *
2498 */
2499void __audit_fd_pair(int fd1, int fd2)
2500{
2501        struct audit_context *context = current->audit_context;
2502        context->fds[0] = fd1;
2503        context->fds[1] = fd2;
2504}
2505
2506/**
2507 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2508 * @len: data length in user space
2509 * @a: data address in kernel space
2510 *
2511 * Returns 0 for success or NULL context or < 0 on error.
2512 */
2513int __audit_sockaddr(int len, void *a)
2514{
2515        struct audit_context *context = current->audit_context;
2516
2517        if (!context->sockaddr) {
2518                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2519                if (!p)
2520                        return -ENOMEM;
2521                context->sockaddr = p;
2522        }
2523
2524        context->sockaddr_len = len;
2525        memcpy(context->sockaddr, a, len);
2526        return 0;
2527}
2528
2529void __audit_ptrace(struct task_struct *t)
2530{
2531        struct audit_context *context = current->audit_context;
2532
2533        context->target_pid = t->pid;
2534        context->target_auid = audit_get_loginuid(t);
2535        context->target_uid = task_uid(t);
2536        context->target_sessionid = audit_get_sessionid(t);
2537        security_task_getsecid(t, &context->target_sid);
2538        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2539}
2540
2541/**
2542 * audit_signal_info - record signal info for shutting down audit subsystem
2543 * @sig: signal value
2544 * @t: task being signaled
2545 *
2546 * If the audit subsystem is being terminated, record the task (pid)
2547 * and uid that is doing that.
2548 */
2549int __audit_signal_info(int sig, struct task_struct *t)
2550{
2551        struct audit_aux_data_pids *axp;
2552        struct task_struct *tsk = current;
2553        struct audit_context *ctx = tsk->audit_context;
2554        kuid_t uid = current_uid(), t_uid = task_uid(t);
2555
2556        if (audit_pid && t->tgid == audit_pid) {
2557                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2558                        audit_sig_pid = tsk->pid;
2559                        if (uid_valid(tsk->loginuid))
2560                                audit_sig_uid = tsk->loginuid;
2561                        else
2562                                audit_sig_uid = uid;
2563                        security_task_getsecid(tsk, &audit_sig_sid);
2564                }
2565                if (!audit_signals || audit_dummy_context())
2566                        return 0;
2567        }
2568
2569        /* optimize the common case by putting first signal recipient directly
2570         * in audit_context */
2571        if (!ctx->target_pid) {
2572                ctx->target_pid = t->tgid;
2573                ctx->target_auid = audit_get_loginuid(t);
2574                ctx->target_uid = t_uid;
2575                ctx->target_sessionid = audit_get_sessionid(t);
2576                security_task_getsecid(t, &ctx->target_sid);
2577                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2578                return 0;
2579        }
2580
2581        axp = (void *)ctx->aux_pids;
2582        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2583                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2584                if (!axp)
2585                        return -ENOMEM;
2586
2587                axp->d.type = AUDIT_OBJ_PID;
2588                axp->d.next = ctx->aux_pids;
2589                ctx->aux_pids = (void *)axp;
2590        }
2591        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2592
2593        axp->target_pid[axp->pid_count] = t->tgid;
2594        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2595        axp->target_uid[axp->pid_count] = t_uid;
2596        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2597        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2598        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2599        axp->pid_count++;
2600
2601        return 0;
2602}
2603
2604/**
2605 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2606 * @bprm: pointer to the bprm being processed
2607 * @new: the proposed new credentials
2608 * @old: the old credentials
2609 *
2610 * Simply check if the proc already has the caps given by the file and if not
2611 * store the priv escalation info for later auditing at the end of the syscall
2612 *
2613 * -Eric
2614 */
2615int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2616                           const struct cred *new, const struct cred *old)
2617{
2618        struct audit_aux_data_bprm_fcaps *ax;
2619        struct audit_context *context = current->audit_context;
2620        struct cpu_vfs_cap_data vcaps;
2621        struct dentry *dentry;
2622
2623        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2624        if (!ax)
2625                return -ENOMEM;
2626
2627        ax->d.type = AUDIT_BPRM_FCAPS;
2628        ax->d.next = context->aux;
2629        context->aux = (void *)ax;
2630
2631        dentry = dget(bprm->file->f_dentry);
2632        get_vfs_caps_from_disk(dentry, &vcaps);
2633        dput(dentry);
2634
2635        ax->fcap.permitted = vcaps.permitted;
2636        ax->fcap.inheritable = vcaps.inheritable;
2637        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2638        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2639
2640        ax->old_pcap.permitted   = old->cap_permitted;
2641        ax->old_pcap.inheritable = old->cap_inheritable;
2642        ax->old_pcap.effective   = old->cap_effective;
2643
2644        ax->new_pcap.permitted   = new->cap_permitted;
2645        ax->new_pcap.inheritable = new->cap_inheritable;
2646        ax->new_pcap.effective   = new->cap_effective;
2647        return 0;
2648}
2649
2650/**
2651 * __audit_log_capset - store information about the arguments to the capset syscall
2652 * @pid: target pid of the capset call
2653 * @new: the new credentials
2654 * @old: the old (current) credentials
2655 *
2656 * Record the aguments userspace sent to sys_capset for later printing by the
2657 * audit system if applicable
2658 */
2659void __audit_log_capset(pid_t pid,
2660                       const struct cred *new, const struct cred *old)
2661{
2662        struct audit_context *context = current->audit_context;
2663        context->capset.pid = pid;
2664        context->capset.cap.effective   = new->cap_effective;
2665        context->capset.cap.inheritable = new->cap_effective;
2666        context->capset.cap.permitted   = new->cap_permitted;
2667        context->type = AUDIT_CAPSET;
2668}
2669
2670void __audit_mmap_fd(int fd, int flags)
2671{
2672        struct audit_context *context = current->audit_context;
2673        context->mmap.fd = fd;
2674        context->mmap.flags = flags;
2675        context->type = AUDIT_MMAP;
2676}
2677
2678static void audit_log_task(struct audit_buffer *ab)
2679{
2680        kuid_t auid, uid;
2681        kgid_t gid;
2682        unsigned int sessionid;
2683
2684        auid = audit_get_loginuid(current);
2685        sessionid = audit_get_sessionid(current);
2686        current_uid_gid(&uid, &gid);
2687
2688        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2689                         from_kuid(&init_user_ns, auid),
2690                         from_kuid(&init_user_ns, uid),
2691                         from_kgid(&init_user_ns, gid),
2692                         sessionid);
2693        audit_log_task_context(ab);
2694        audit_log_format(ab, " pid=%d comm=", current->pid);
2695        audit_log_untrustedstring(ab, current->comm);
2696}
2697
2698static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2699{
2700        audit_log_task(ab);
2701        audit_log_format(ab, " reason=");
2702        audit_log_string(ab, reason);
2703        audit_log_format(ab, " sig=%ld", signr);
2704}
2705/**
2706 * audit_core_dumps - record information about processes that end abnormally
2707 * @signr: signal value
2708 *
2709 * If a process ends with a core dump, something fishy is going on and we
2710 * should record the event for investigation.
2711 */
2712void audit_core_dumps(long signr)
2713{
2714        struct audit_buffer *ab;
2715
2716        if (!audit_enabled)
2717                return;
2718
2719        if (signr == SIGQUIT)   /* don't care for those */
2720                return;
2721
2722        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2723        if (unlikely(!ab))
2724                return;
2725        audit_log_abend(ab, "memory violation", signr);
2726        audit_log_end(ab);
2727}
2728
2729void __audit_seccomp(unsigned long syscall, long signr, int code)
2730{
2731        struct audit_buffer *ab;
2732
2733        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2734        if (unlikely(!ab))
2735                return;
2736        audit_log_task(ab);
2737        audit_log_format(ab, " sig=%ld", signr);
2738        audit_log_format(ab, " syscall=%ld", syscall);
2739        audit_log_format(ab, " compat=%d", is_compat_task());
2740        audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2741        audit_log_format(ab, " code=0x%x", code);
2742        audit_log_end(ab);
2743}
2744
2745struct list_head *audit_killed_trees(void)
2746{
2747        struct audit_context *ctx = current->audit_context;
2748        if (likely(!ctx || !ctx->in_syscall))
2749                return NULL;
2750        return &ctx->killed_trees;
2751}
2752
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.