linux/kernel/profile.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/profile.c
   3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
   4 *  with configurable resolution, support for restricting the cpus on
   5 *  which profiling is done, and switching between cpu time and
   6 *  schedule() calls via kernel command line parameters passed at boot.
   7 *
   8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
   9 *      Red Hat, July 2004
  10 *  Consolidation of architecture support code for profiling,
  11 *      Nadia Yvette Chambers, Oracle, July 2004
  12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
  13 *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
  14 *      Oracle, 2004
  15 */
  16
  17#include <linux/export.h>
  18#include <linux/profile.h>
  19#include <linux/bootmem.h>
  20#include <linux/notifier.h>
  21#include <linux/mm.h>
  22#include <linux/cpumask.h>
  23#include <linux/cpu.h>
  24#include <linux/highmem.h>
  25#include <linux/mutex.h>
  26#include <linux/slab.h>
  27#include <linux/vmalloc.h>
  28#include <asm/sections.h>
  29#include <asm/irq_regs.h>
  30#include <asm/ptrace.h>
  31
  32struct profile_hit {
  33        u32 pc, hits;
  34};
  35#define PROFILE_GRPSHIFT        3
  36#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
  37#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
  38#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
  39
  40/* Oprofile timer tick hook */
  41static int (*timer_hook)(struct pt_regs *) __read_mostly;
  42
  43static atomic_t *prof_buffer;
  44static unsigned long prof_len, prof_shift;
  45
  46int prof_on __read_mostly;
  47EXPORT_SYMBOL_GPL(prof_on);
  48
  49static cpumask_var_t prof_cpu_mask;
  50#ifdef CONFIG_SMP
  51static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
  52static DEFINE_PER_CPU(int, cpu_profile_flip);
  53static DEFINE_MUTEX(profile_flip_mutex);
  54#endif /* CONFIG_SMP */
  55
  56int profile_setup(char *str)
  57{
  58        static char schedstr[] = "schedule";
  59        static char sleepstr[] = "sleep";
  60        static char kvmstr[] = "kvm";
  61        int par;
  62
  63        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
  64#ifdef CONFIG_SCHEDSTATS
  65                prof_on = SLEEP_PROFILING;
  66                if (str[strlen(sleepstr)] == ',')
  67                        str += strlen(sleepstr) + 1;
  68                if (get_option(&str, &par))
  69                        prof_shift = par;
  70                printk(KERN_INFO
  71                        "kernel sleep profiling enabled (shift: %ld)\n",
  72                        prof_shift);
  73#else
  74                printk(KERN_WARNING
  75                        "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
  76#endif /* CONFIG_SCHEDSTATS */
  77        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
  78                prof_on = SCHED_PROFILING;
  79                if (str[strlen(schedstr)] == ',')
  80                        str += strlen(schedstr) + 1;
  81                if (get_option(&str, &par))
  82                        prof_shift = par;
  83                printk(KERN_INFO
  84                        "kernel schedule profiling enabled (shift: %ld)\n",
  85                        prof_shift);
  86        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
  87                prof_on = KVM_PROFILING;
  88                if (str[strlen(kvmstr)] == ',')
  89                        str += strlen(kvmstr) + 1;
  90                if (get_option(&str, &par))
  91                        prof_shift = par;
  92                printk(KERN_INFO
  93                        "kernel KVM profiling enabled (shift: %ld)\n",
  94                        prof_shift);
  95        } else if (get_option(&str, &par)) {
  96                prof_shift = par;
  97                prof_on = CPU_PROFILING;
  98                printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
  99                        prof_shift);
 100        }
 101        return 1;
 102}
 103__setup("profile=", profile_setup);
 104
 105
 106int __ref profile_init(void)
 107{
 108        int buffer_bytes;
 109        if (!prof_on)
 110                return 0;
 111
 112        /* only text is profiled */
 113        prof_len = (_etext - _stext) >> prof_shift;
 114        buffer_bytes = prof_len*sizeof(atomic_t);
 115
 116        if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 117                return -ENOMEM;
 118
 119        cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 120
 121        prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 122        if (prof_buffer)
 123                return 0;
 124
 125        prof_buffer = alloc_pages_exact(buffer_bytes,
 126                                        GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 127        if (prof_buffer)
 128                return 0;
 129
 130        prof_buffer = vzalloc(buffer_bytes);
 131        if (prof_buffer)
 132                return 0;
 133
 134        free_cpumask_var(prof_cpu_mask);
 135        return -ENOMEM;
 136}
 137
 138/* Profile event notifications */
 139
 140static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 141static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 142static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 143
 144void profile_task_exit(struct task_struct *task)
 145{
 146        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 147}
 148
 149int profile_handoff_task(struct task_struct *task)
 150{
 151        int ret;
 152        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 153        return (ret == NOTIFY_OK) ? 1 : 0;
 154}
 155
 156void profile_munmap(unsigned long addr)
 157{
 158        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 159}
 160
 161int task_handoff_register(struct notifier_block *n)
 162{
 163        return atomic_notifier_chain_register(&task_free_notifier, n);
 164}
 165EXPORT_SYMBOL_GPL(task_handoff_register);
 166
 167int task_handoff_unregister(struct notifier_block *n)
 168{
 169        return atomic_notifier_chain_unregister(&task_free_notifier, n);
 170}
 171EXPORT_SYMBOL_GPL(task_handoff_unregister);
 172
 173int profile_event_register(enum profile_type type, struct notifier_block *n)
 174{
 175        int err = -EINVAL;
 176
 177        switch (type) {
 178        case PROFILE_TASK_EXIT:
 179                err = blocking_notifier_chain_register(
 180                                &task_exit_notifier, n);
 181                break;
 182        case PROFILE_MUNMAP:
 183                err = blocking_notifier_chain_register(
 184                                &munmap_notifier, n);
 185                break;
 186        }
 187
 188        return err;
 189}
 190EXPORT_SYMBOL_GPL(profile_event_register);
 191
 192int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 193{
 194        int err = -EINVAL;
 195
 196        switch (type) {
 197        case PROFILE_TASK_EXIT:
 198                err = blocking_notifier_chain_unregister(
 199                                &task_exit_notifier, n);
 200                break;
 201        case PROFILE_MUNMAP:
 202                err = blocking_notifier_chain_unregister(
 203                                &munmap_notifier, n);
 204                break;
 205        }
 206
 207        return err;
 208}
 209EXPORT_SYMBOL_GPL(profile_event_unregister);
 210
 211int register_timer_hook(int (*hook)(struct pt_regs *))
 212{
 213        if (timer_hook)
 214                return -EBUSY;
 215        timer_hook = hook;
 216        return 0;
 217}
 218EXPORT_SYMBOL_GPL(register_timer_hook);
 219
 220void unregister_timer_hook(int (*hook)(struct pt_regs *))
 221{
 222        WARN_ON(hook != timer_hook);
 223        timer_hook = NULL;
 224        /* make sure all CPUs see the NULL hook */
 225        synchronize_sched();  /* Allow ongoing interrupts to complete. */
 226}
 227EXPORT_SYMBOL_GPL(unregister_timer_hook);
 228
 229
 230#ifdef CONFIG_SMP
 231/*
 232 * Each cpu has a pair of open-addressed hashtables for pending
 233 * profile hits. read_profile() IPI's all cpus to request them
 234 * to flip buffers and flushes their contents to prof_buffer itself.
 235 * Flip requests are serialized by the profile_flip_mutex. The sole
 236 * use of having a second hashtable is for avoiding cacheline
 237 * contention that would otherwise happen during flushes of pending
 238 * profile hits required for the accuracy of reported profile hits
 239 * and so resurrect the interrupt livelock issue.
 240 *
 241 * The open-addressed hashtables are indexed by profile buffer slot
 242 * and hold the number of pending hits to that profile buffer slot on
 243 * a cpu in an entry. When the hashtable overflows, all pending hits
 244 * are accounted to their corresponding profile buffer slots with
 245 * atomic_add() and the hashtable emptied. As numerous pending hits
 246 * may be accounted to a profile buffer slot in a hashtable entry,
 247 * this amortizes a number of atomic profile buffer increments likely
 248 * to be far larger than the number of entries in the hashtable,
 249 * particularly given that the number of distinct profile buffer
 250 * positions to which hits are accounted during short intervals (e.g.
 251 * several seconds) is usually very small. Exclusion from buffer
 252 * flipping is provided by interrupt disablement (note that for
 253 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 254 * process context).
 255 * The hash function is meant to be lightweight as opposed to strong,
 256 * and was vaguely inspired by ppc64 firmware-supported inverted
 257 * pagetable hash functions, but uses a full hashtable full of finite
 258 * collision chains, not just pairs of them.
 259 *
 260 * -- nyc
 261 */
 262static void __profile_flip_buffers(void *unused)
 263{
 264        int cpu = smp_processor_id();
 265
 266        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 267}
 268
 269static void profile_flip_buffers(void)
 270{
 271        int i, j, cpu;
 272
 273        mutex_lock(&profile_flip_mutex);
 274        j = per_cpu(cpu_profile_flip, get_cpu());
 275        put_cpu();
 276        on_each_cpu(__profile_flip_buffers, NULL, 1);
 277        for_each_online_cpu(cpu) {
 278                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 279                for (i = 0; i < NR_PROFILE_HIT; ++i) {
 280                        if (!hits[i].hits) {
 281                                if (hits[i].pc)
 282                                        hits[i].pc = 0;
 283                                continue;
 284                        }
 285                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 286                        hits[i].hits = hits[i].pc = 0;
 287                }
 288        }
 289        mutex_unlock(&profile_flip_mutex);
 290}
 291
 292static void profile_discard_flip_buffers(void)
 293{
 294        int i, cpu;
 295
 296        mutex_lock(&profile_flip_mutex);
 297        i = per_cpu(cpu_profile_flip, get_cpu());
 298        put_cpu();
 299        on_each_cpu(__profile_flip_buffers, NULL, 1);
 300        for_each_online_cpu(cpu) {
 301                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 302                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 303        }
 304        mutex_unlock(&profile_flip_mutex);
 305}
 306
 307static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 308{
 309        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 310        int i, j, cpu;
 311        struct profile_hit *hits;
 312
 313        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 314        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 315        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 316        cpu = get_cpu();
 317        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 318        if (!hits) {
 319                put_cpu();
 320                return;
 321        }
 322        /*
 323         * We buffer the global profiler buffer into a per-CPU
 324         * queue and thus reduce the number of global (and possibly
 325         * NUMA-alien) accesses. The write-queue is self-coalescing:
 326         */
 327        local_irq_save(flags);
 328        do {
 329                for (j = 0; j < PROFILE_GRPSZ; ++j) {
 330                        if (hits[i + j].pc == pc) {
 331                                hits[i + j].hits += nr_hits;
 332                                goto out;
 333                        } else if (!hits[i + j].hits) {
 334                                hits[i + j].pc = pc;
 335                                hits[i + j].hits = nr_hits;
 336                                goto out;
 337                        }
 338                }
 339                i = (i + secondary) & (NR_PROFILE_HIT - 1);
 340        } while (i != primary);
 341
 342        /*
 343         * Add the current hit(s) and flush the write-queue out
 344         * to the global buffer:
 345         */
 346        atomic_add(nr_hits, &prof_buffer[pc]);
 347        for (i = 0; i < NR_PROFILE_HIT; ++i) {
 348                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 349                hits[i].pc = hits[i].hits = 0;
 350        }
 351out:
 352        local_irq_restore(flags);
 353        put_cpu();
 354}
 355
 356static int __cpuinit profile_cpu_callback(struct notifier_block *info,
 357                                        unsigned long action, void *__cpu)
 358{
 359        int node, cpu = (unsigned long)__cpu;
 360        struct page *page;
 361
 362        switch (action) {
 363        case CPU_UP_PREPARE:
 364        case CPU_UP_PREPARE_FROZEN:
 365                node = cpu_to_mem(cpu);
 366                per_cpu(cpu_profile_flip, cpu) = 0;
 367                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 368                        page = alloc_pages_exact_node(node,
 369                                        GFP_KERNEL | __GFP_ZERO,
 370                                        0);
 371                        if (!page)
 372                                return notifier_from_errno(-ENOMEM);
 373                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 374                }
 375                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 376                        page = alloc_pages_exact_node(node,
 377                                        GFP_KERNEL | __GFP_ZERO,
 378                                        0);
 379                        if (!page)
 380                                goto out_free;
 381                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 382                }
 383                break;
 384out_free:
 385                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 386                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 387                __free_page(page);
 388                return notifier_from_errno(-ENOMEM);
 389        case CPU_ONLINE:
 390        case CPU_ONLINE_FROZEN:
 391                if (prof_cpu_mask != NULL)
 392                        cpumask_set_cpu(cpu, prof_cpu_mask);
 393                break;
 394        case CPU_UP_CANCELED:
 395        case CPU_UP_CANCELED_FROZEN:
 396        case CPU_DEAD:
 397        case CPU_DEAD_FROZEN:
 398                if (prof_cpu_mask != NULL)
 399                        cpumask_clear_cpu(cpu, prof_cpu_mask);
 400                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 401                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 402                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 403                        __free_page(page);
 404                }
 405                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 406                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 407                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 408                        __free_page(page);
 409                }
 410                break;
 411        }
 412        return NOTIFY_OK;
 413}
 414#else /* !CONFIG_SMP */
 415#define profile_flip_buffers()          do { } while (0)
 416#define profile_discard_flip_buffers()  do { } while (0)
 417#define profile_cpu_callback            NULL
 418
 419static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 420{
 421        unsigned long pc;
 422        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 423        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 424}
 425#endif /* !CONFIG_SMP */
 426
 427void profile_hits(int type, void *__pc, unsigned int nr_hits)
 428{
 429        if (prof_on != type || !prof_buffer)
 430                return;
 431        do_profile_hits(type, __pc, nr_hits);
 432}
 433EXPORT_SYMBOL_GPL(profile_hits);
 434
 435void profile_tick(int type)
 436{
 437        struct pt_regs *regs = get_irq_regs();
 438
 439        if (type == CPU_PROFILING && timer_hook)
 440                timer_hook(regs);
 441        if (!user_mode(regs) && prof_cpu_mask != NULL &&
 442            cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 443                profile_hit(type, (void *)profile_pc(regs));
 444}
 445
 446#ifdef CONFIG_PROC_FS
 447#include <linux/proc_fs.h>
 448#include <linux/seq_file.h>
 449#include <asm/uaccess.h>
 450
 451static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 452{
 453        seq_cpumask(m, prof_cpu_mask);
 454        seq_putc(m, '\n');
 455        return 0;
 456}
 457
 458static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 459{
 460        return single_open(file, prof_cpu_mask_proc_show, NULL);
 461}
 462
 463static ssize_t prof_cpu_mask_proc_write(struct file *file,
 464        const char __user *buffer, size_t count, loff_t *pos)
 465{
 466        cpumask_var_t new_value;
 467        int err;
 468
 469        if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 470                return -ENOMEM;
 471
 472        err = cpumask_parse_user(buffer, count, new_value);
 473        if (!err) {
 474                cpumask_copy(prof_cpu_mask, new_value);
 475                err = count;
 476        }
 477        free_cpumask_var(new_value);
 478        return err;
 479}
 480
 481static const struct file_operations prof_cpu_mask_proc_fops = {
 482        .open           = prof_cpu_mask_proc_open,
 483        .read           = seq_read,
 484        .llseek         = seq_lseek,
 485        .release        = single_release,
 486        .write          = prof_cpu_mask_proc_write,
 487};
 488
 489void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
 490{
 491        /* create /proc/irq/prof_cpu_mask */
 492        proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
 493}
 494
 495/*
 496 * This function accesses profiling information. The returned data is
 497 * binary: the sampling step and the actual contents of the profile
 498 * buffer. Use of the program readprofile is recommended in order to
 499 * get meaningful info out of these data.
 500 */
 501static ssize_t
 502read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 503{
 504        unsigned long p = *ppos;
 505        ssize_t read;
 506        char *pnt;
 507        unsigned int sample_step = 1 << prof_shift;
 508
 509        profile_flip_buffers();
 510        if (p >= (prof_len+1)*sizeof(unsigned int))
 511                return 0;
 512        if (count > (prof_len+1)*sizeof(unsigned int) - p)
 513                count = (prof_len+1)*sizeof(unsigned int) - p;
 514        read = 0;
 515
 516        while (p < sizeof(unsigned int) && count > 0) {
 517                if (put_user(*((char *)(&sample_step)+p), buf))
 518                        return -EFAULT;
 519                buf++; p++; count--; read++;
 520        }
 521        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 522        if (copy_to_user(buf, (void *)pnt, count))
 523                return -EFAULT;
 524        read += count;
 525        *ppos += read;
 526        return read;
 527}
 528
 529/*
 530 * Writing to /proc/profile resets the counters
 531 *
 532 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 533 * interrupt frequency, on architectures that support this.
 534 */
 535static ssize_t write_profile(struct file *file, const char __user *buf,
 536                             size_t count, loff_t *ppos)
 537{
 538#ifdef CONFIG_SMP
 539        extern int setup_profiling_timer(unsigned int multiplier);
 540
 541        if (count == sizeof(int)) {
 542                unsigned int multiplier;
 543
 544                if (copy_from_user(&multiplier, buf, sizeof(int)))
 545                        return -EFAULT;
 546
 547                if (setup_profiling_timer(multiplier))
 548                        return -EINVAL;
 549        }
 550#endif
 551        profile_discard_flip_buffers();
 552        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 553        return count;
 554}
 555
 556static const struct file_operations proc_profile_operations = {
 557        .read           = read_profile,
 558        .write          = write_profile,
 559        .llseek         = default_llseek,
 560};
 561
 562#ifdef CONFIG_SMP
 563static void profile_nop(void *unused)
 564{
 565}
 566
 567static int create_hash_tables(void)
 568{
 569        int cpu;
 570
 571        for_each_online_cpu(cpu) {
 572                int node = cpu_to_mem(cpu);
 573                struct page *page;
 574
 575                page = alloc_pages_exact_node(node,
 576                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 577                                0);
 578                if (!page)
 579                        goto out_cleanup;
 580                per_cpu(cpu_profile_hits, cpu)[1]
 581                                = (struct profile_hit *)page_address(page);
 582                page = alloc_pages_exact_node(node,
 583                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 584                                0);
 585                if (!page)
 586                        goto out_cleanup;
 587                per_cpu(cpu_profile_hits, cpu)[0]
 588                                = (struct profile_hit *)page_address(page);
 589        }
 590        return 0;
 591out_cleanup:
 592        prof_on = 0;
 593        smp_mb();
 594        on_each_cpu(profile_nop, NULL, 1);
 595        for_each_online_cpu(cpu) {
 596                struct page *page;
 597
 598                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 599                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 600                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 601                        __free_page(page);
 602                }
 603                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 604                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 605                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 606                        __free_page(page);
 607                }
 608        }
 609        return -1;
 610}
 611#else
 612#define create_hash_tables()                    ({ 0; })
 613#endif
 614
 615int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 616{
 617        struct proc_dir_entry *entry;
 618
 619        if (!prof_on)
 620                return 0;
 621        if (create_hash_tables())
 622                return -ENOMEM;
 623        entry = proc_create("profile", S_IWUSR | S_IRUGO,
 624                            NULL, &proc_profile_operations);
 625        if (!entry)
 626                return 0;
 627        entry->size = (1+prof_len) * sizeof(atomic_t);
 628        hotcpu_notifier(profile_cpu_callback, 0);
 629        return 0;
 630}
 631module_init(create_proc_profile);
 632#endif /* CONFIG_PROC_FS */
 633
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.