linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39
  40#define rdev_crit(rdev, fmt, ...)                                       \
  41        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_err(rdev, fmt, ...)                                        \
  43        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_warn(rdev, fmt, ...)                                       \
  45        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_info(rdev, fmt, ...)                                       \
  47        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_dbg(rdev, fmt, ...)                                        \
  49        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50
  51static DEFINE_MUTEX(regulator_list_mutex);
  52static LIST_HEAD(regulator_list);
  53static LIST_HEAD(regulator_map_list);
  54static bool has_full_constraints;
  55static bool board_wants_dummy_regulator;
  56
  57static struct dentry *debugfs_root;
  58
  59/*
  60 * struct regulator_map
  61 *
  62 * Used to provide symbolic supply names to devices.
  63 */
  64struct regulator_map {
  65        struct list_head list;
  66        const char *dev_name;   /* The dev_name() for the consumer */
  67        const char *supply;
  68        struct regulator_dev *regulator;
  69};
  70
  71/*
  72 * struct regulator
  73 *
  74 * One for each consumer device.
  75 */
  76struct regulator {
  77        struct device *dev;
  78        struct list_head list;
  79        unsigned int always_on:1;
  80        unsigned int bypass:1;
  81        int uA_load;
  82        int min_uV;
  83        int max_uV;
  84        char *supply_name;
  85        struct device_attribute dev_attr;
  86        struct regulator_dev *rdev;
  87        struct dentry *debugfs;
  88};
  89
  90static int _regulator_is_enabled(struct regulator_dev *rdev);
  91static int _regulator_disable(struct regulator_dev *rdev);
  92static int _regulator_get_voltage(struct regulator_dev *rdev);
  93static int _regulator_get_current_limit(struct regulator_dev *rdev);
  94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  95static void _notifier_call_chain(struct regulator_dev *rdev,
  96                                  unsigned long event, void *data);
  97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  98                                     int min_uV, int max_uV);
  99static struct regulator *create_regulator(struct regulator_dev *rdev,
 100                                          struct device *dev,
 101                                          const char *supply_name);
 102
 103static const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105        if (rdev->constraints && rdev->constraints->name)
 106                return rdev->constraints->name;
 107        else if (rdev->desc->name)
 108                return rdev->desc->name;
 109        else
 110                return "";
 111}
 112
 113/**
 114 * of_get_regulator - get a regulator device node based on supply name
 115 * @dev: Device pointer for the consumer (of regulator) device
 116 * @supply: regulator supply name
 117 *
 118 * Extract the regulator device node corresponding to the supply name.
 119 * retruns the device node corresponding to the regulator if found, else
 120 * returns NULL.
 121 */
 122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 123{
 124        struct device_node *regnode = NULL;
 125        char prop_name[32]; /* 32 is max size of property name */
 126
 127        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 128
 129        snprintf(prop_name, 32, "%s-supply", supply);
 130        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 131
 132        if (!regnode) {
 133                dev_dbg(dev, "Looking up %s property in node %s failed",
 134                                prop_name, dev->of_node->full_name);
 135                return NULL;
 136        }
 137        return regnode;
 138}
 139
 140static int _regulator_can_change_status(struct regulator_dev *rdev)
 141{
 142        if (!rdev->constraints)
 143                return 0;
 144
 145        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 146                return 1;
 147        else
 148                return 0;
 149}
 150
 151/* Platform voltage constraint check */
 152static int regulator_check_voltage(struct regulator_dev *rdev,
 153                                   int *min_uV, int *max_uV)
 154{
 155        BUG_ON(*min_uV > *max_uV);
 156
 157        if (!rdev->constraints) {
 158                rdev_err(rdev, "no constraints\n");
 159                return -ENODEV;
 160        }
 161        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 162                rdev_err(rdev, "operation not allowed\n");
 163                return -EPERM;
 164        }
 165
 166        if (*max_uV > rdev->constraints->max_uV)
 167                *max_uV = rdev->constraints->max_uV;
 168        if (*min_uV < rdev->constraints->min_uV)
 169                *min_uV = rdev->constraints->min_uV;
 170
 171        if (*min_uV > *max_uV) {
 172                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 173                         *min_uV, *max_uV);
 174                return -EINVAL;
 175        }
 176
 177        return 0;
 178}
 179
 180/* Make sure we select a voltage that suits the needs of all
 181 * regulator consumers
 182 */
 183static int regulator_check_consumers(struct regulator_dev *rdev,
 184                                     int *min_uV, int *max_uV)
 185{
 186        struct regulator *regulator;
 187
 188        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 189                /*
 190                 * Assume consumers that didn't say anything are OK
 191                 * with anything in the constraint range.
 192                 */
 193                if (!regulator->min_uV && !regulator->max_uV)
 194                        continue;
 195
 196                if (*max_uV > regulator->max_uV)
 197                        *max_uV = regulator->max_uV;
 198                if (*min_uV < regulator->min_uV)
 199                        *min_uV = regulator->min_uV;
 200        }
 201
 202        if (*min_uV > *max_uV) {
 203                dev_err(regulator->dev, "Restricting voltage, %u-%uuV\n",
 204                        regulator->min_uV, regulator->max_uV);
 205                return -EINVAL;
 206        }
 207
 208        return 0;
 209}
 210
 211/* current constraint check */
 212static int regulator_check_current_limit(struct regulator_dev *rdev,
 213                                        int *min_uA, int *max_uA)
 214{
 215        BUG_ON(*min_uA > *max_uA);
 216
 217        if (!rdev->constraints) {
 218                rdev_err(rdev, "no constraints\n");
 219                return -ENODEV;
 220        }
 221        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 222                rdev_err(rdev, "operation not allowed\n");
 223                return -EPERM;
 224        }
 225
 226        if (*max_uA > rdev->constraints->max_uA)
 227                *max_uA = rdev->constraints->max_uA;
 228        if (*min_uA < rdev->constraints->min_uA)
 229                *min_uA = rdev->constraints->min_uA;
 230
 231        if (*min_uA > *max_uA) {
 232                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 233                         *min_uA, *max_uA);
 234                return -EINVAL;
 235        }
 236
 237        return 0;
 238}
 239
 240/* operating mode constraint check */
 241static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 242{
 243        switch (*mode) {
 244        case REGULATOR_MODE_FAST:
 245        case REGULATOR_MODE_NORMAL:
 246        case REGULATOR_MODE_IDLE:
 247        case REGULATOR_MODE_STANDBY:
 248                break;
 249        default:
 250                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 251                return -EINVAL;
 252        }
 253
 254        if (!rdev->constraints) {
 255                rdev_err(rdev, "no constraints\n");
 256                return -ENODEV;
 257        }
 258        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 259                rdev_err(rdev, "operation not allowed\n");
 260                return -EPERM;
 261        }
 262
 263        /* The modes are bitmasks, the most power hungry modes having
 264         * the lowest values. If the requested mode isn't supported
 265         * try higher modes. */
 266        while (*mode) {
 267                if (rdev->constraints->valid_modes_mask & *mode)
 268                        return 0;
 269                *mode /= 2;
 270        }
 271
 272        return -EINVAL;
 273}
 274
 275/* dynamic regulator mode switching constraint check */
 276static int regulator_check_drms(struct regulator_dev *rdev)
 277{
 278        if (!rdev->constraints) {
 279                rdev_err(rdev, "no constraints\n");
 280                return -ENODEV;
 281        }
 282        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 283                rdev_err(rdev, "operation not allowed\n");
 284                return -EPERM;
 285        }
 286        return 0;
 287}
 288
 289static ssize_t regulator_uV_show(struct device *dev,
 290                                struct device_attribute *attr, char *buf)
 291{
 292        struct regulator_dev *rdev = dev_get_drvdata(dev);
 293        ssize_t ret;
 294
 295        mutex_lock(&rdev->mutex);
 296        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 297        mutex_unlock(&rdev->mutex);
 298
 299        return ret;
 300}
 301static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 302
 303static ssize_t regulator_uA_show(struct device *dev,
 304                                struct device_attribute *attr, char *buf)
 305{
 306        struct regulator_dev *rdev = dev_get_drvdata(dev);
 307
 308        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 309}
 310static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 311
 312static ssize_t regulator_name_show(struct device *dev,
 313                             struct device_attribute *attr, char *buf)
 314{
 315        struct regulator_dev *rdev = dev_get_drvdata(dev);
 316
 317        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 318}
 319
 320static ssize_t regulator_print_opmode(char *buf, int mode)
 321{
 322        switch (mode) {
 323        case REGULATOR_MODE_FAST:
 324                return sprintf(buf, "fast\n");
 325        case REGULATOR_MODE_NORMAL:
 326                return sprintf(buf, "normal\n");
 327        case REGULATOR_MODE_IDLE:
 328                return sprintf(buf, "idle\n");
 329        case REGULATOR_MODE_STANDBY:
 330                return sprintf(buf, "standby\n");
 331        }
 332        return sprintf(buf, "unknown\n");
 333}
 334
 335static ssize_t regulator_opmode_show(struct device *dev,
 336                                    struct device_attribute *attr, char *buf)
 337{
 338        struct regulator_dev *rdev = dev_get_drvdata(dev);
 339
 340        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 341}
 342static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 343
 344static ssize_t regulator_print_state(char *buf, int state)
 345{
 346        if (state > 0)
 347                return sprintf(buf, "enabled\n");
 348        else if (state == 0)
 349                return sprintf(buf, "disabled\n");
 350        else
 351                return sprintf(buf, "unknown\n");
 352}
 353
 354static ssize_t regulator_state_show(struct device *dev,
 355                                   struct device_attribute *attr, char *buf)
 356{
 357        struct regulator_dev *rdev = dev_get_drvdata(dev);
 358        ssize_t ret;
 359
 360        mutex_lock(&rdev->mutex);
 361        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 362        mutex_unlock(&rdev->mutex);
 363
 364        return ret;
 365}
 366static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 367
 368static ssize_t regulator_status_show(struct device *dev,
 369                                   struct device_attribute *attr, char *buf)
 370{
 371        struct regulator_dev *rdev = dev_get_drvdata(dev);
 372        int status;
 373        char *label;
 374
 375        status = rdev->desc->ops->get_status(rdev);
 376        if (status < 0)
 377                return status;
 378
 379        switch (status) {
 380        case REGULATOR_STATUS_OFF:
 381                label = "off";
 382                break;
 383        case REGULATOR_STATUS_ON:
 384                label = "on";
 385                break;
 386        case REGULATOR_STATUS_ERROR:
 387                label = "error";
 388                break;
 389        case REGULATOR_STATUS_FAST:
 390                label = "fast";
 391                break;
 392        case REGULATOR_STATUS_NORMAL:
 393                label = "normal";
 394                break;
 395        case REGULATOR_STATUS_IDLE:
 396                label = "idle";
 397                break;
 398        case REGULATOR_STATUS_STANDBY:
 399                label = "standby";
 400                break;
 401        case REGULATOR_STATUS_BYPASS:
 402                label = "bypass";
 403                break;
 404        case REGULATOR_STATUS_UNDEFINED:
 405                label = "undefined";
 406                break;
 407        default:
 408                return -ERANGE;
 409        }
 410
 411        return sprintf(buf, "%s\n", label);
 412}
 413static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 414
 415static ssize_t regulator_min_uA_show(struct device *dev,
 416                                    struct device_attribute *attr, char *buf)
 417{
 418        struct regulator_dev *rdev = dev_get_drvdata(dev);
 419
 420        if (!rdev->constraints)
 421                return sprintf(buf, "constraint not defined\n");
 422
 423        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 424}
 425static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 426
 427static ssize_t regulator_max_uA_show(struct device *dev,
 428                                    struct device_attribute *attr, char *buf)
 429{
 430        struct regulator_dev *rdev = dev_get_drvdata(dev);
 431
 432        if (!rdev->constraints)
 433                return sprintf(buf, "constraint not defined\n");
 434
 435        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 436}
 437static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 438
 439static ssize_t regulator_min_uV_show(struct device *dev,
 440                                    struct device_attribute *attr, char *buf)
 441{
 442        struct regulator_dev *rdev = dev_get_drvdata(dev);
 443
 444        if (!rdev->constraints)
 445                return sprintf(buf, "constraint not defined\n");
 446
 447        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 448}
 449static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 450
 451static ssize_t regulator_max_uV_show(struct device *dev,
 452                                    struct device_attribute *attr, char *buf)
 453{
 454        struct regulator_dev *rdev = dev_get_drvdata(dev);
 455
 456        if (!rdev->constraints)
 457                return sprintf(buf, "constraint not defined\n");
 458
 459        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 460}
 461static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 462
 463static ssize_t regulator_total_uA_show(struct device *dev,
 464                                      struct device_attribute *attr, char *buf)
 465{
 466        struct regulator_dev *rdev = dev_get_drvdata(dev);
 467        struct regulator *regulator;
 468        int uA = 0;
 469
 470        mutex_lock(&rdev->mutex);
 471        list_for_each_entry(regulator, &rdev->consumer_list, list)
 472                uA += regulator->uA_load;
 473        mutex_unlock(&rdev->mutex);
 474        return sprintf(buf, "%d\n", uA);
 475}
 476static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 477
 478static ssize_t regulator_num_users_show(struct device *dev,
 479                                      struct device_attribute *attr, char *buf)
 480{
 481        struct regulator_dev *rdev = dev_get_drvdata(dev);
 482        return sprintf(buf, "%d\n", rdev->use_count);
 483}
 484
 485static ssize_t regulator_type_show(struct device *dev,
 486                                  struct device_attribute *attr, char *buf)
 487{
 488        struct regulator_dev *rdev = dev_get_drvdata(dev);
 489
 490        switch (rdev->desc->type) {
 491        case REGULATOR_VOLTAGE:
 492                return sprintf(buf, "voltage\n");
 493        case REGULATOR_CURRENT:
 494                return sprintf(buf, "current\n");
 495        }
 496        return sprintf(buf, "unknown\n");
 497}
 498
 499static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 500                                struct device_attribute *attr, char *buf)
 501{
 502        struct regulator_dev *rdev = dev_get_drvdata(dev);
 503
 504        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 505}
 506static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 507                regulator_suspend_mem_uV_show, NULL);
 508
 509static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 510                                struct device_attribute *attr, char *buf)
 511{
 512        struct regulator_dev *rdev = dev_get_drvdata(dev);
 513
 514        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 515}
 516static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 517                regulator_suspend_disk_uV_show, NULL);
 518
 519static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 520                                struct device_attribute *attr, char *buf)
 521{
 522        struct regulator_dev *rdev = dev_get_drvdata(dev);
 523
 524        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 525}
 526static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 527                regulator_suspend_standby_uV_show, NULL);
 528
 529static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 530                                struct device_attribute *attr, char *buf)
 531{
 532        struct regulator_dev *rdev = dev_get_drvdata(dev);
 533
 534        return regulator_print_opmode(buf,
 535                rdev->constraints->state_mem.mode);
 536}
 537static DEVICE_ATTR(suspend_mem_mode, 0444,
 538                regulator_suspend_mem_mode_show, NULL);
 539
 540static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 541                                struct device_attribute *attr, char *buf)
 542{
 543        struct regulator_dev *rdev = dev_get_drvdata(dev);
 544
 545        return regulator_print_opmode(buf,
 546                rdev->constraints->state_disk.mode);
 547}
 548static DEVICE_ATTR(suspend_disk_mode, 0444,
 549                regulator_suspend_disk_mode_show, NULL);
 550
 551static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 552                                struct device_attribute *attr, char *buf)
 553{
 554        struct regulator_dev *rdev = dev_get_drvdata(dev);
 555
 556        return regulator_print_opmode(buf,
 557                rdev->constraints->state_standby.mode);
 558}
 559static DEVICE_ATTR(suspend_standby_mode, 0444,
 560                regulator_suspend_standby_mode_show, NULL);
 561
 562static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 563                                   struct device_attribute *attr, char *buf)
 564{
 565        struct regulator_dev *rdev = dev_get_drvdata(dev);
 566
 567        return regulator_print_state(buf,
 568                        rdev->constraints->state_mem.enabled);
 569}
 570static DEVICE_ATTR(suspend_mem_state, 0444,
 571                regulator_suspend_mem_state_show, NULL);
 572
 573static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 574                                   struct device_attribute *attr, char *buf)
 575{
 576        struct regulator_dev *rdev = dev_get_drvdata(dev);
 577
 578        return regulator_print_state(buf,
 579                        rdev->constraints->state_disk.enabled);
 580}
 581static DEVICE_ATTR(suspend_disk_state, 0444,
 582                regulator_suspend_disk_state_show, NULL);
 583
 584static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 585                                   struct device_attribute *attr, char *buf)
 586{
 587        struct regulator_dev *rdev = dev_get_drvdata(dev);
 588
 589        return regulator_print_state(buf,
 590                        rdev->constraints->state_standby.enabled);
 591}
 592static DEVICE_ATTR(suspend_standby_state, 0444,
 593                regulator_suspend_standby_state_show, NULL);
 594
 595static ssize_t regulator_bypass_show(struct device *dev,
 596                                     struct device_attribute *attr, char *buf)
 597{
 598        struct regulator_dev *rdev = dev_get_drvdata(dev);
 599        const char *report;
 600        bool bypass;
 601        int ret;
 602
 603        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 604
 605        if (ret != 0)
 606                report = "unknown";
 607        else if (bypass)
 608                report = "enabled";
 609        else
 610                report = "disabled";
 611
 612        return sprintf(buf, "%s\n", report);
 613}
 614static DEVICE_ATTR(bypass, 0444,
 615                   regulator_bypass_show, NULL);
 616
 617/*
 618 * These are the only attributes are present for all regulators.
 619 * Other attributes are a function of regulator functionality.
 620 */
 621static struct device_attribute regulator_dev_attrs[] = {
 622        __ATTR(name, 0444, regulator_name_show, NULL),
 623        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 624        __ATTR(type, 0444, regulator_type_show, NULL),
 625        __ATTR_NULL,
 626};
 627
 628static void regulator_dev_release(struct device *dev)
 629{
 630        struct regulator_dev *rdev = dev_get_drvdata(dev);
 631        kfree(rdev);
 632}
 633
 634static struct class regulator_class = {
 635        .name = "regulator",
 636        .dev_release = regulator_dev_release,
 637        .dev_attrs = regulator_dev_attrs,
 638};
 639
 640/* Calculate the new optimum regulator operating mode based on the new total
 641 * consumer load. All locks held by caller */
 642static void drms_uA_update(struct regulator_dev *rdev)
 643{
 644        struct regulator *sibling;
 645        int current_uA = 0, output_uV, input_uV, err;
 646        unsigned int mode;
 647
 648        err = regulator_check_drms(rdev);
 649        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 650            (!rdev->desc->ops->get_voltage &&
 651             !rdev->desc->ops->get_voltage_sel) ||
 652            !rdev->desc->ops->set_mode)
 653                return;
 654
 655        /* get output voltage */
 656        output_uV = _regulator_get_voltage(rdev);
 657        if (output_uV <= 0)
 658                return;
 659
 660        /* get input voltage */
 661        input_uV = 0;
 662        if (rdev->supply)
 663                input_uV = regulator_get_voltage(rdev->supply);
 664        if (input_uV <= 0)
 665                input_uV = rdev->constraints->input_uV;
 666        if (input_uV <= 0)
 667                return;
 668
 669        /* calc total requested load */
 670        list_for_each_entry(sibling, &rdev->consumer_list, list)
 671                current_uA += sibling->uA_load;
 672
 673        /* now get the optimum mode for our new total regulator load */
 674        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 675                                                  output_uV, current_uA);
 676
 677        /* check the new mode is allowed */
 678        err = regulator_mode_constrain(rdev, &mode);
 679        if (err == 0)
 680                rdev->desc->ops->set_mode(rdev, mode);
 681}
 682
 683static int suspend_set_state(struct regulator_dev *rdev,
 684        struct regulator_state *rstate)
 685{
 686        int ret = 0;
 687
 688        /* If we have no suspend mode configration don't set anything;
 689         * only warn if the driver implements set_suspend_voltage or
 690         * set_suspend_mode callback.
 691         */
 692        if (!rstate->enabled && !rstate->disabled) {
 693                if (rdev->desc->ops->set_suspend_voltage ||
 694                    rdev->desc->ops->set_suspend_mode)
 695                        rdev_warn(rdev, "No configuration\n");
 696                return 0;
 697        }
 698
 699        if (rstate->enabled && rstate->disabled) {
 700                rdev_err(rdev, "invalid configuration\n");
 701                return -EINVAL;
 702        }
 703
 704        if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 705                ret = rdev->desc->ops->set_suspend_enable(rdev);
 706        else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 707                ret = rdev->desc->ops->set_suspend_disable(rdev);
 708        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 709                ret = 0;
 710
 711        if (ret < 0) {
 712                rdev_err(rdev, "failed to enabled/disable\n");
 713                return ret;
 714        }
 715
 716        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 717                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 718                if (ret < 0) {
 719                        rdev_err(rdev, "failed to set voltage\n");
 720                        return ret;
 721                }
 722        }
 723
 724        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 725                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 726                if (ret < 0) {
 727                        rdev_err(rdev, "failed to set mode\n");
 728                        return ret;
 729                }
 730        }
 731        return ret;
 732}
 733
 734/* locks held by caller */
 735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 736{
 737        if (!rdev->constraints)
 738                return -EINVAL;
 739
 740        switch (state) {
 741        case PM_SUSPEND_STANDBY:
 742                return suspend_set_state(rdev,
 743                        &rdev->constraints->state_standby);
 744        case PM_SUSPEND_MEM:
 745                return suspend_set_state(rdev,
 746                        &rdev->constraints->state_mem);
 747        case PM_SUSPEND_MAX:
 748                return suspend_set_state(rdev,
 749                        &rdev->constraints->state_disk);
 750        default:
 751                return -EINVAL;
 752        }
 753}
 754
 755static void print_constraints(struct regulator_dev *rdev)
 756{
 757        struct regulation_constraints *constraints = rdev->constraints;
 758        char buf[80] = "";
 759        int count = 0;
 760        int ret;
 761
 762        if (constraints->min_uV && constraints->max_uV) {
 763                if (constraints->min_uV == constraints->max_uV)
 764                        count += sprintf(buf + count, "%d mV ",
 765                                         constraints->min_uV / 1000);
 766                else
 767                        count += sprintf(buf + count, "%d <--> %d mV ",
 768                                         constraints->min_uV / 1000,
 769                                         constraints->max_uV / 1000);
 770        }
 771
 772        if (!constraints->min_uV ||
 773            constraints->min_uV != constraints->max_uV) {
 774                ret = _regulator_get_voltage(rdev);
 775                if (ret > 0)
 776                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 777        }
 778
 779        if (constraints->uV_offset)
 780                count += sprintf(buf, "%dmV offset ",
 781                                 constraints->uV_offset / 1000);
 782
 783        if (constraints->min_uA && constraints->max_uA) {
 784                if (constraints->min_uA == constraints->max_uA)
 785                        count += sprintf(buf + count, "%d mA ",
 786                                         constraints->min_uA / 1000);
 787                else
 788                        count += sprintf(buf + count, "%d <--> %d mA ",
 789                                         constraints->min_uA / 1000,
 790                                         constraints->max_uA / 1000);
 791        }
 792
 793        if (!constraints->min_uA ||
 794            constraints->min_uA != constraints->max_uA) {
 795                ret = _regulator_get_current_limit(rdev);
 796                if (ret > 0)
 797                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 798        }
 799
 800        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 801                count += sprintf(buf + count, "fast ");
 802        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 803                count += sprintf(buf + count, "normal ");
 804        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 805                count += sprintf(buf + count, "idle ");
 806        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 807                count += sprintf(buf + count, "standby");
 808
 809        if (!count)
 810                sprintf(buf, "no parameters");
 811
 812        rdev_info(rdev, "%s\n", buf);
 813
 814        if ((constraints->min_uV != constraints->max_uV) &&
 815            !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 816                rdev_warn(rdev,
 817                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 818}
 819
 820static int machine_constraints_voltage(struct regulator_dev *rdev,
 821        struct regulation_constraints *constraints)
 822{
 823        struct regulator_ops *ops = rdev->desc->ops;
 824        int ret;
 825
 826        /* do we need to apply the constraint voltage */
 827        if (rdev->constraints->apply_uV &&
 828            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 829                ret = _regulator_do_set_voltage(rdev,
 830                                                rdev->constraints->min_uV,
 831                                                rdev->constraints->max_uV);
 832                if (ret < 0) {
 833                        rdev_err(rdev, "failed to apply %duV constraint\n",
 834                                 rdev->constraints->min_uV);
 835                        return ret;
 836                }
 837        }
 838
 839        /* constrain machine-level voltage specs to fit
 840         * the actual range supported by this regulator.
 841         */
 842        if (ops->list_voltage && rdev->desc->n_voltages) {
 843                int     count = rdev->desc->n_voltages;
 844                int     i;
 845                int     min_uV = INT_MAX;
 846                int     max_uV = INT_MIN;
 847                int     cmin = constraints->min_uV;
 848                int     cmax = constraints->max_uV;
 849
 850                /* it's safe to autoconfigure fixed-voltage supplies
 851                   and the constraints are used by list_voltage. */
 852                if (count == 1 && !cmin) {
 853                        cmin = 1;
 854                        cmax = INT_MAX;
 855                        constraints->min_uV = cmin;
 856                        constraints->max_uV = cmax;
 857                }
 858
 859                /* voltage constraints are optional */
 860                if ((cmin == 0) && (cmax == 0))
 861                        return 0;
 862
 863                /* else require explicit machine-level constraints */
 864                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 865                        rdev_err(rdev, "invalid voltage constraints\n");
 866                        return -EINVAL;
 867                }
 868
 869                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 870                for (i = 0; i < count; i++) {
 871                        int     value;
 872
 873                        value = ops->list_voltage(rdev, i);
 874                        if (value <= 0)
 875                                continue;
 876
 877                        /* maybe adjust [min_uV..max_uV] */
 878                        if (value >= cmin && value < min_uV)
 879                                min_uV = value;
 880                        if (value <= cmax && value > max_uV)
 881                                max_uV = value;
 882                }
 883
 884                /* final: [min_uV..max_uV] valid iff constraints valid */
 885                if (max_uV < min_uV) {
 886                        rdev_err(rdev,
 887                                 "unsupportable voltage constraints %u-%uuV\n",
 888                                 min_uV, max_uV);
 889                        return -EINVAL;
 890                }
 891
 892                /* use regulator's subset of machine constraints */
 893                if (constraints->min_uV < min_uV) {
 894                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 895                                 constraints->min_uV, min_uV);
 896                        constraints->min_uV = min_uV;
 897                }
 898                if (constraints->max_uV > max_uV) {
 899                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 900                                 constraints->max_uV, max_uV);
 901                        constraints->max_uV = max_uV;
 902                }
 903        }
 904
 905        return 0;
 906}
 907
 908/**
 909 * set_machine_constraints - sets regulator constraints
 910 * @rdev: regulator source
 911 * @constraints: constraints to apply
 912 *
 913 * Allows platform initialisation code to define and constrain
 914 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 915 * Constraints *must* be set by platform code in order for some
 916 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 917 * set_mode.
 918 */
 919static int set_machine_constraints(struct regulator_dev *rdev,
 920        const struct regulation_constraints *constraints)
 921{
 922        int ret = 0;
 923        struct regulator_ops *ops = rdev->desc->ops;
 924
 925        if (constraints)
 926                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 927                                            GFP_KERNEL);
 928        else
 929                rdev->constraints = kzalloc(sizeof(*constraints),
 930                                            GFP_KERNEL);
 931        if (!rdev->constraints)
 932                return -ENOMEM;
 933
 934        ret = machine_constraints_voltage(rdev, rdev->constraints);
 935        if (ret != 0)
 936                goto out;
 937
 938        /* do we need to setup our suspend state */
 939        if (rdev->constraints->initial_state) {
 940                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 941                if (ret < 0) {
 942                        rdev_err(rdev, "failed to set suspend state\n");
 943                        goto out;
 944                }
 945        }
 946
 947        if (rdev->constraints->initial_mode) {
 948                if (!ops->set_mode) {
 949                        rdev_err(rdev, "no set_mode operation\n");
 950                        ret = -EINVAL;
 951                        goto out;
 952                }
 953
 954                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 955                if (ret < 0) {
 956                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 957                        goto out;
 958                }
 959        }
 960
 961        /* If the constraints say the regulator should be on at this point
 962         * and we have control then make sure it is enabled.
 963         */
 964        if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 965            ops->enable) {
 966                ret = ops->enable(rdev);
 967                if (ret < 0) {
 968                        rdev_err(rdev, "failed to enable\n");
 969                        goto out;
 970                }
 971        }
 972
 973        if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
 974                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
 975                if (ret < 0) {
 976                        rdev_err(rdev, "failed to set ramp_delay\n");
 977                        goto out;
 978                }
 979        }
 980
 981        print_constraints(rdev);
 982        return 0;
 983out:
 984        kfree(rdev->constraints);
 985        rdev->constraints = NULL;
 986        return ret;
 987}
 988
 989/**
 990 * set_supply - set regulator supply regulator
 991 * @rdev: regulator name
 992 * @supply_rdev: supply regulator name
 993 *
 994 * Called by platform initialisation code to set the supply regulator for this
 995 * regulator. This ensures that a regulators supply will also be enabled by the
 996 * core if it's child is enabled.
 997 */
 998static int set_supply(struct regulator_dev *rdev,
 999                      struct regulator_dev *supply_rdev)
1000{
1001        int err;
1002
1003        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006        if (rdev->supply == NULL) {
1007                err = -ENOMEM;
1008                return err;
1009        }
1010        supply_rdev->open_count++;
1011
1012        return 0;
1013}
1014
1015/**
1016 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017 * @rdev:         regulator source
1018 * @consumer_dev_name: dev_name() string for device supply applies to
1019 * @supply:       symbolic name for supply
1020 *
1021 * Allows platform initialisation code to map physical regulator
1022 * sources to symbolic names for supplies for use by devices.  Devices
1023 * should use these symbolic names to request regulators, avoiding the
1024 * need to provide board-specific regulator names as platform data.
1025 */
1026static int set_consumer_device_supply(struct regulator_dev *rdev,
1027                                      const char *consumer_dev_name,
1028                                      const char *supply)
1029{
1030        struct regulator_map *node;
1031        int has_dev;
1032
1033        if (supply == NULL)
1034                return -EINVAL;
1035
1036        if (consumer_dev_name != NULL)
1037                has_dev = 1;
1038        else
1039                has_dev = 0;
1040
1041        list_for_each_entry(node, &regulator_map_list, list) {
1042                if (node->dev_name && consumer_dev_name) {
1043                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044                                continue;
1045                } else if (node->dev_name || consumer_dev_name) {
1046                        continue;
1047                }
1048
1049                if (strcmp(node->supply, supply) != 0)
1050                        continue;
1051
1052                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053                         consumer_dev_name,
1054                         dev_name(&node->regulator->dev),
1055                         node->regulator->desc->name,
1056                         supply,
1057                         dev_name(&rdev->dev), rdev_get_name(rdev));
1058                return -EBUSY;
1059        }
1060
1061        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062        if (node == NULL)
1063                return -ENOMEM;
1064
1065        node->regulator = rdev;
1066        node->supply = supply;
1067
1068        if (has_dev) {
1069                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070                if (node->dev_name == NULL) {
1071                        kfree(node);
1072                        return -ENOMEM;
1073                }
1074        }
1075
1076        list_add(&node->list, &regulator_map_list);
1077        return 0;
1078}
1079
1080static void unset_regulator_supplies(struct regulator_dev *rdev)
1081{
1082        struct regulator_map *node, *n;
1083
1084        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085                if (rdev == node->regulator) {
1086                        list_del(&node->list);
1087                        kfree(node->dev_name);
1088                        kfree(node);
1089                }
1090        }
1091}
1092
1093#define REG_STR_SIZE    64
1094
1095static struct regulator *create_regulator(struct regulator_dev *rdev,
1096                                          struct device *dev,
1097                                          const char *supply_name)
1098{
1099        struct regulator *regulator;
1100        char buf[REG_STR_SIZE];
1101        int err, size;
1102
1103        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104        if (regulator == NULL)
1105                return NULL;
1106
1107        mutex_lock(&rdev->mutex);
1108        regulator->rdev = rdev;
1109        list_add(&regulator->list, &rdev->consumer_list);
1110
1111        if (dev) {
1112                regulator->dev = dev;
1113
1114                /* Add a link to the device sysfs entry */
1115                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116                                 dev->kobj.name, supply_name);
1117                if (size >= REG_STR_SIZE)
1118                        goto overflow_err;
1119
1120                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121                if (regulator->supply_name == NULL)
1122                        goto overflow_err;
1123
1124                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125                                        buf);
1126                if (err) {
1127                        rdev_warn(rdev, "could not add device link %s err %d\n",
1128                                  dev->kobj.name, err);
1129                        /* non-fatal */
1130                }
1131        } else {
1132                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133                if (regulator->supply_name == NULL)
1134                        goto overflow_err;
1135        }
1136
1137        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138                                                rdev->debugfs);
1139        if (!regulator->debugfs) {
1140                rdev_warn(rdev, "Failed to create debugfs directory\n");
1141        } else {
1142                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143                                   &regulator->uA_load);
1144                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145                                   &regulator->min_uV);
1146                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147                                   &regulator->max_uV);
1148        }
1149
1150        /*
1151         * Check now if the regulator is an always on regulator - if
1152         * it is then we don't need to do nearly so much work for
1153         * enable/disable calls.
1154         */
1155        if (!_regulator_can_change_status(rdev) &&
1156            _regulator_is_enabled(rdev))
1157                regulator->always_on = true;
1158
1159        mutex_unlock(&rdev->mutex);
1160        return regulator;
1161overflow_err:
1162        list_del(&regulator->list);
1163        kfree(regulator);
1164        mutex_unlock(&rdev->mutex);
1165        return NULL;
1166}
1167
1168static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169{
1170        if (!rdev->desc->ops->enable_time)
1171                return rdev->desc->enable_time;
1172        return rdev->desc->ops->enable_time(rdev);
1173}
1174
1175static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176                                                  const char *supply,
1177                                                  int *ret)
1178{
1179        struct regulator_dev *r;
1180        struct device_node *node;
1181        struct regulator_map *map;
1182        const char *devname = NULL;
1183
1184        /* first do a dt based lookup */
1185        if (dev && dev->of_node) {
1186                node = of_get_regulator(dev, supply);
1187                if (node) {
1188                        list_for_each_entry(r, &regulator_list, list)
1189                                if (r->dev.parent &&
1190                                        node == r->dev.of_node)
1191                                        return r;
1192                } else {
1193                        /*
1194                         * If we couldn't even get the node then it's
1195                         * not just that the device didn't register
1196                         * yet, there's no node and we'll never
1197                         * succeed.
1198                         */
1199                        *ret = -ENODEV;
1200                }
1201        }
1202
1203        /* if not found, try doing it non-dt way */
1204        if (dev)
1205                devname = dev_name(dev);
1206
1207        list_for_each_entry(r, &regulator_list, list)
1208                if (strcmp(rdev_get_name(r), supply) == 0)
1209                        return r;
1210
1211        list_for_each_entry(map, &regulator_map_list, list) {
1212                /* If the mapping has a device set up it must match */
1213                if (map->dev_name &&
1214                    (!devname || strcmp(map->dev_name, devname)))
1215                        continue;
1216
1217                if (strcmp(map->supply, supply) == 0)
1218                        return map->regulator;
1219        }
1220
1221
1222        return NULL;
1223}
1224
1225/* Internal regulator request function */
1226static struct regulator *_regulator_get(struct device *dev, const char *id,
1227                                        int exclusive)
1228{
1229        struct regulator_dev *rdev;
1230        struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231        const char *devname = NULL;
1232        int ret;
1233
1234        if (id == NULL) {
1235                pr_err("get() with no identifier\n");
1236                return regulator;
1237        }
1238
1239        if (dev)
1240                devname = dev_name(dev);
1241
1242        mutex_lock(&regulator_list_mutex);
1243
1244        rdev = regulator_dev_lookup(dev, id, &ret);
1245        if (rdev)
1246                goto found;
1247
1248        if (board_wants_dummy_regulator) {
1249                rdev = dummy_regulator_rdev;
1250                goto found;
1251        }
1252
1253#ifdef CONFIG_REGULATOR_DUMMY
1254        if (!devname)
1255                devname = "deviceless";
1256
1257        /* If the board didn't flag that it was fully constrained then
1258         * substitute in a dummy regulator so consumers can continue.
1259         */
1260        if (!has_full_constraints) {
1261                pr_warn("%s supply %s not found, using dummy regulator\n",
1262                        devname, id);
1263                rdev = dummy_regulator_rdev;
1264                goto found;
1265        }
1266#endif
1267
1268        mutex_unlock(&regulator_list_mutex);
1269        return regulator;
1270
1271found:
1272        if (rdev->exclusive) {
1273                regulator = ERR_PTR(-EPERM);
1274                goto out;
1275        }
1276
1277        if (exclusive && rdev->open_count) {
1278                regulator = ERR_PTR(-EBUSY);
1279                goto out;
1280        }
1281
1282        if (!try_module_get(rdev->owner))
1283                goto out;
1284
1285        regulator = create_regulator(rdev, dev, id);
1286        if (regulator == NULL) {
1287                regulator = ERR_PTR(-ENOMEM);
1288                module_put(rdev->owner);
1289                goto out;
1290        }
1291
1292        rdev->open_count++;
1293        if (exclusive) {
1294                rdev->exclusive = 1;
1295
1296                ret = _regulator_is_enabled(rdev);
1297                if (ret > 0)
1298                        rdev->use_count = 1;
1299                else
1300                        rdev->use_count = 0;
1301        }
1302
1303out:
1304        mutex_unlock(&regulator_list_mutex);
1305
1306        return regulator;
1307}
1308
1309/**
1310 * regulator_get - lookup and obtain a reference to a regulator.
1311 * @dev: device for regulator "consumer"
1312 * @id: Supply name or regulator ID.
1313 *
1314 * Returns a struct regulator corresponding to the regulator producer,
1315 * or IS_ERR() condition containing errno.
1316 *
1317 * Use of supply names configured via regulator_set_device_supply() is
1318 * strongly encouraged.  It is recommended that the supply name used
1319 * should match the name used for the supply and/or the relevant
1320 * device pins in the datasheet.
1321 */
1322struct regulator *regulator_get(struct device *dev, const char *id)
1323{
1324        return _regulator_get(dev, id, 0);
1325}
1326EXPORT_SYMBOL_GPL(regulator_get);
1327
1328static void devm_regulator_release(struct device *dev, void *res)
1329{
1330        regulator_put(*(struct regulator **)res);
1331}
1332
1333/**
1334 * devm_regulator_get - Resource managed regulator_get()
1335 * @dev: device for regulator "consumer"
1336 * @id: Supply name or regulator ID.
1337 *
1338 * Managed regulator_get(). Regulators returned from this function are
1339 * automatically regulator_put() on driver detach. See regulator_get() for more
1340 * information.
1341 */
1342struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343{
1344        struct regulator **ptr, *regulator;
1345
1346        ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347        if (!ptr)
1348                return ERR_PTR(-ENOMEM);
1349
1350        regulator = regulator_get(dev, id);
1351        if (!IS_ERR(regulator)) {
1352                *ptr = regulator;
1353                devres_add(dev, ptr);
1354        } else {
1355                devres_free(ptr);
1356        }
1357
1358        return regulator;
1359}
1360EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362/**
1363 * regulator_get_exclusive - obtain exclusive access to a regulator.
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1366 *
1367 * Returns a struct regulator corresponding to the regulator producer,
1368 * or IS_ERR() condition containing errno.  Other consumers will be
1369 * unable to obtain this reference is held and the use count for the
1370 * regulator will be initialised to reflect the current state of the
1371 * regulator.
1372 *
1373 * This is intended for use by consumers which cannot tolerate shared
1374 * use of the regulator such as those which need to force the
1375 * regulator off for correct operation of the hardware they are
1376 * controlling.
1377 *
1378 * Use of supply names configured via regulator_set_device_supply() is
1379 * strongly encouraged.  It is recommended that the supply name used
1380 * should match the name used for the supply and/or the relevant
1381 * device pins in the datasheet.
1382 */
1383struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384{
1385        return _regulator_get(dev, id, 1);
1386}
1387EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389/* Locks held by regulator_put() */
1390static void _regulator_put(struct regulator *regulator)
1391{
1392        struct regulator_dev *rdev;
1393
1394        if (regulator == NULL || IS_ERR(regulator))
1395                return;
1396
1397        rdev = regulator->rdev;
1398
1399        debugfs_remove_recursive(regulator->debugfs);
1400
1401        /* remove any sysfs entries */
1402        if (regulator->dev)
1403                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404        kfree(regulator->supply_name);
1405        list_del(&regulator->list);
1406        kfree(regulator);
1407
1408        rdev->open_count--;
1409        rdev->exclusive = 0;
1410
1411        module_put(rdev->owner);
1412}
1413
1414/**
1415 * regulator_put - "free" the regulator source
1416 * @regulator: regulator source
1417 *
1418 * Note: drivers must ensure that all regulator_enable calls made on this
1419 * regulator source are balanced by regulator_disable calls prior to calling
1420 * this function.
1421 */
1422void regulator_put(struct regulator *regulator)
1423{
1424        mutex_lock(&regulator_list_mutex);
1425        _regulator_put(regulator);
1426        mutex_unlock(&regulator_list_mutex);
1427}
1428EXPORT_SYMBOL_GPL(regulator_put);
1429
1430static int devm_regulator_match(struct device *dev, void *res, void *data)
1431{
1432        struct regulator **r = res;
1433        if (!r || !*r) {
1434                WARN_ON(!r || !*r);
1435                return 0;
1436        }
1437        return *r == data;
1438}
1439
1440/**
1441 * devm_regulator_put - Resource managed regulator_put()
1442 * @regulator: regulator to free
1443 *
1444 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445 * this function will not need to be called and the resource management
1446 * code will ensure that the resource is freed.
1447 */
1448void devm_regulator_put(struct regulator *regulator)
1449{
1450        int rc;
1451
1452        rc = devres_release(regulator->dev, devm_regulator_release,
1453                            devm_regulator_match, regulator);
1454        if (rc != 0)
1455                WARN_ON(rc);
1456}
1457EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459static int _regulator_do_enable(struct regulator_dev *rdev)
1460{
1461        int ret, delay;
1462
1463        /* Query before enabling in case configuration dependent.  */
1464        ret = _regulator_get_enable_time(rdev);
1465        if (ret >= 0) {
1466                delay = ret;
1467        } else {
1468                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469                delay = 0;
1470        }
1471
1472        trace_regulator_enable(rdev_get_name(rdev));
1473
1474        if (rdev->ena_gpio) {
1475                gpio_set_value_cansleep(rdev->ena_gpio,
1476                                        !rdev->ena_gpio_invert);
1477                rdev->ena_gpio_state = 1;
1478        } else if (rdev->desc->ops->enable) {
1479                ret = rdev->desc->ops->enable(rdev);
1480                if (ret < 0)
1481                        return ret;
1482        } else {
1483                return -EINVAL;
1484        }
1485
1486        /* Allow the regulator to ramp; it would be useful to extend
1487         * this for bulk operations so that the regulators can ramp
1488         * together.  */
1489        trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491        if (delay >= 1000) {
1492                mdelay(delay / 1000);
1493                udelay(delay % 1000);
1494        } else if (delay) {
1495                udelay(delay);
1496        }
1497
1498        trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500        return 0;
1501}
1502
1503/* locks held by regulator_enable() */
1504static int _regulator_enable(struct regulator_dev *rdev)
1505{
1506        int ret;
1507
1508        /* check voltage and requested load before enabling */
1509        if (rdev->constraints &&
1510            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511                drms_uA_update(rdev);
1512
1513        if (rdev->use_count == 0) {
1514                /* The regulator may on if it's not switchable or left on */
1515                ret = _regulator_is_enabled(rdev);
1516                if (ret == -EINVAL || ret == 0) {
1517                        if (!_regulator_can_change_status(rdev))
1518                                return -EPERM;
1519
1520                        ret = _regulator_do_enable(rdev);
1521                        if (ret < 0)
1522                                return ret;
1523
1524                } else if (ret < 0) {
1525                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526                        return ret;
1527                }
1528                /* Fallthrough on positive return values - already enabled */
1529        }
1530
1531        rdev->use_count++;
1532
1533        return 0;
1534}
1535
1536/**
1537 * regulator_enable - enable regulator output
1538 * @regulator: regulator source
1539 *
1540 * Request that the regulator be enabled with the regulator output at
1541 * the predefined voltage or current value.  Calls to regulator_enable()
1542 * must be balanced with calls to regulator_disable().
1543 *
1544 * NOTE: the output value can be set by other drivers, boot loader or may be
1545 * hardwired in the regulator.
1546 */
1547int regulator_enable(struct regulator *regulator)
1548{
1549        struct regulator_dev *rdev = regulator->rdev;
1550        int ret = 0;
1551
1552        if (regulator->always_on)
1553                return 0;
1554
1555        if (rdev->supply) {
1556                ret = regulator_enable(rdev->supply);
1557                if (ret != 0)
1558                        return ret;
1559        }
1560
1561        mutex_lock(&rdev->mutex);
1562        ret = _regulator_enable(rdev);
1563        mutex_unlock(&rdev->mutex);
1564
1565        if (ret != 0 && rdev->supply)
1566                regulator_disable(rdev->supply);
1567
1568        return ret;
1569}
1570EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572static int _regulator_do_disable(struct regulator_dev *rdev)
1573{
1574        int ret;
1575
1576        trace_regulator_disable(rdev_get_name(rdev));
1577
1578        if (rdev->ena_gpio) {
1579                gpio_set_value_cansleep(rdev->ena_gpio,
1580                                        rdev->ena_gpio_invert);
1581                rdev->ena_gpio_state = 0;
1582
1583        } else if (rdev->desc->ops->disable) {
1584                ret = rdev->desc->ops->disable(rdev);
1585                if (ret != 0)
1586                        return ret;
1587        }
1588
1589        trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592                             NULL);
1593        return 0;
1594}
1595
1596/* locks held by regulator_disable() */
1597static int _regulator_disable(struct regulator_dev *rdev)
1598{
1599        int ret = 0;
1600
1601        if (WARN(rdev->use_count <= 0,
1602                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603                return -EIO;
1604
1605        /* are we the last user and permitted to disable ? */
1606        if (rdev->use_count == 1 &&
1607            (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609                /* we are last user */
1610                if (_regulator_can_change_status(rdev)) {
1611                        ret = _regulator_do_disable(rdev);
1612                        if (ret < 0) {
1613                                rdev_err(rdev, "failed to disable\n");
1614                                return ret;
1615                        }
1616                }
1617
1618                rdev->use_count = 0;
1619        } else if (rdev->use_count > 1) {
1620
1621                if (rdev->constraints &&
1622                        (rdev->constraints->valid_ops_mask &
1623                        REGULATOR_CHANGE_DRMS))
1624                        drms_uA_update(rdev);
1625
1626                rdev->use_count--;
1627        }
1628
1629        return ret;
1630}
1631
1632/**
1633 * regulator_disable - disable regulator output
1634 * @regulator: regulator source
1635 *
1636 * Disable the regulator output voltage or current.  Calls to
1637 * regulator_enable() must be balanced with calls to
1638 * regulator_disable().
1639 *
1640 * NOTE: this will only disable the regulator output if no other consumer
1641 * devices have it enabled, the regulator device supports disabling and
1642 * machine constraints permit this operation.
1643 */
1644int regulator_disable(struct regulator *regulator)
1645{
1646        struct regulator_dev *rdev = regulator->rdev;
1647        int ret = 0;
1648
1649        if (regulator->always_on)
1650                return 0;
1651
1652        mutex_lock(&rdev->mutex);
1653        ret = _regulator_disable(rdev);
1654        mutex_unlock(&rdev->mutex);
1655
1656        if (ret == 0 && rdev->supply)
1657                regulator_disable(rdev->supply);
1658
1659        return ret;
1660}
1661EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663/* locks held by regulator_force_disable() */
1664static int _regulator_force_disable(struct regulator_dev *rdev)
1665{
1666        int ret = 0;
1667
1668        /* force disable */
1669        if (rdev->desc->ops->disable) {
1670                /* ah well, who wants to live forever... */
1671                ret = rdev->desc->ops->disable(rdev);
1672                if (ret < 0) {
1673                        rdev_err(rdev, "failed to force disable\n");
1674                        return ret;
1675                }
1676                /* notify other consumers that power has been forced off */
1677                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678                        REGULATOR_EVENT_DISABLE, NULL);
1679        }
1680
1681        return ret;
1682}
1683
1684/**
1685 * regulator_force_disable - force disable regulator output
1686 * @regulator: regulator source
1687 *
1688 * Forcibly disable the regulator output voltage or current.
1689 * NOTE: this *will* disable the regulator output even if other consumer
1690 * devices have it enabled. This should be used for situations when device
1691 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692 */
1693int regulator_force_disable(struct regulator *regulator)
1694{
1695        struct regulator_dev *rdev = regulator->rdev;
1696        int ret;
1697
1698        mutex_lock(&rdev->mutex);
1699        regulator->uA_load = 0;
1700        ret = _regulator_force_disable(regulator->rdev);
1701        mutex_unlock(&rdev->mutex);
1702
1703        if (rdev->supply)
1704                while (rdev->open_count--)
1705                        regulator_disable(rdev->supply);
1706
1707        return ret;
1708}
1709EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711static void regulator_disable_work(struct work_struct *work)
1712{
1713        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714                                                  disable_work.work);
1715        int count, i, ret;
1716
1717        mutex_lock(&rdev->mutex);
1718
1719        BUG_ON(!rdev->deferred_disables);
1720
1721        count = rdev->deferred_disables;
1722        rdev->deferred_disables = 0;
1723
1724        for (i = 0; i < count; i++) {
1725                ret = _regulator_disable(rdev);
1726                if (ret != 0)
1727                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728        }
1729
1730        mutex_unlock(&rdev->mutex);
1731
1732        if (rdev->supply) {
1733                for (i = 0; i < count; i++) {
1734                        ret = regulator_disable(rdev->supply);
1735                        if (ret != 0) {
1736                                rdev_err(rdev,
1737                                         "Supply disable failed: %d\n", ret);
1738                        }
1739                }
1740        }
1741}
1742
1743/**
1744 * regulator_disable_deferred - disable regulator output with delay
1745 * @regulator: regulator source
1746 * @ms: miliseconds until the regulator is disabled
1747 *
1748 * Execute regulator_disable() on the regulator after a delay.  This
1749 * is intended for use with devices that require some time to quiesce.
1750 *
1751 * NOTE: this will only disable the regulator output if no other consumer
1752 * devices have it enabled, the regulator device supports disabling and
1753 * machine constraints permit this operation.
1754 */
1755int regulator_disable_deferred(struct regulator *regulator, int ms)
1756{
1757        struct regulator_dev *rdev = regulator->rdev;
1758        int ret;
1759
1760        if (regulator->always_on)
1761                return 0;
1762
1763        if (!ms)
1764                return regulator_disable(regulator);
1765
1766        mutex_lock(&rdev->mutex);
1767        rdev->deferred_disables++;
1768        mutex_unlock(&rdev->mutex);
1769
1770        ret = schedule_delayed_work(&rdev->disable_work,
1771                                    msecs_to_jiffies(ms));
1772        if (ret < 0)
1773                return ret;
1774        else
1775                return 0;
1776}
1777EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779/**
1780 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781 *
1782 * @rdev: regulator to operate on
1783 *
1784 * Regulators that use regmap for their register I/O can set the
1785 * enable_reg and enable_mask fields in their descriptor and then use
1786 * this as their is_enabled operation, saving some code.
1787 */
1788int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789{
1790        unsigned int val;
1791        int ret;
1792
1793        ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794        if (ret != 0)
1795                return ret;
1796
1797        return (val & rdev->desc->enable_mask) != 0;
1798}
1799EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801/**
1802 * regulator_enable_regmap - standard enable() for regmap users
1803 *
1804 * @rdev: regulator to operate on
1805 *
1806 * Regulators that use regmap for their register I/O can set the
1807 * enable_reg and enable_mask fields in their descriptor and then use
1808 * this as their enable() operation, saving some code.
1809 */
1810int regulator_enable_regmap(struct regulator_dev *rdev)
1811{
1812        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813                                  rdev->desc->enable_mask,
1814                                  rdev->desc->enable_mask);
1815}
1816EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818/**
1819 * regulator_disable_regmap - standard disable() for regmap users
1820 *
1821 * @rdev: regulator to operate on
1822 *
1823 * Regulators that use regmap for their register I/O can set the
1824 * enable_reg and enable_mask fields in their descriptor and then use
1825 * this as their disable() operation, saving some code.
1826 */
1827int regulator_disable_regmap(struct regulator_dev *rdev)
1828{
1829        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830                                  rdev->desc->enable_mask, 0);
1831}
1832EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834static int _regulator_is_enabled(struct regulator_dev *rdev)
1835{
1836        /* A GPIO control always takes precedence */
1837        if (rdev->ena_gpio)
1838                return rdev->ena_gpio_state;
1839
1840        /* If we don't know then assume that the regulator is always on */
1841        if (!rdev->desc->ops->is_enabled)
1842                return 1;
1843
1844        return rdev->desc->ops->is_enabled(rdev);
1845}
1846
1847/**
1848 * regulator_is_enabled - is the regulator output enabled
1849 * @regulator: regulator source
1850 *
1851 * Returns positive if the regulator driver backing the source/client
1852 * has requested that the device be enabled, zero if it hasn't, else a
1853 * negative errno code.
1854 *
1855 * Note that the device backing this regulator handle can have multiple
1856 * users, so it might be enabled even if regulator_enable() was never
1857 * called for this particular source.
1858 */
1859int regulator_is_enabled(struct regulator *regulator)
1860{
1861        int ret;
1862
1863        if (regulator->always_on)
1864                return 1;
1865
1866        mutex_lock(&regulator->rdev->mutex);
1867        ret = _regulator_is_enabled(regulator->rdev);
1868        mutex_unlock(&regulator->rdev->mutex);
1869
1870        return ret;
1871}
1872EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874/**
1875 * regulator_can_change_voltage - check if regulator can change voltage
1876 * @regulator: regulator source
1877 *
1878 * Returns positive if the regulator driver backing the source/client
1879 * can change its voltage, false otherwise. Usefull for detecting fixed
1880 * or dummy regulators and disabling voltage change logic in the client
1881 * driver.
1882 */
1883int regulator_can_change_voltage(struct regulator *regulator)
1884{
1885        struct regulator_dev    *rdev = regulator->rdev;
1886
1887        if (rdev->constraints &&
1888            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1889                if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1890                        return 1;
1891
1892                if (rdev->desc->continuous_voltage_range &&
1893                    rdev->constraints->min_uV && rdev->constraints->max_uV &&
1894                    rdev->constraints->min_uV != rdev->constraints->max_uV)
1895                        return 1;
1896        }
1897
1898        return 0;
1899}
1900EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1901
1902/**
1903 * regulator_count_voltages - count regulator_list_voltage() selectors
1904 * @regulator: regulator source
1905 *
1906 * Returns number of selectors, or negative errno.  Selectors are
1907 * numbered starting at zero, and typically correspond to bitfields
1908 * in hardware registers.
1909 */
1910int regulator_count_voltages(struct regulator *regulator)
1911{
1912        struct regulator_dev    *rdev = regulator->rdev;
1913
1914        return rdev->desc->n_voltages ? : -EINVAL;
1915}
1916EXPORT_SYMBOL_GPL(regulator_count_voltages);
1917
1918/**
1919 * regulator_list_voltage_linear - List voltages with simple calculation
1920 *
1921 * @rdev: Regulator device
1922 * @selector: Selector to convert into a voltage
1923 *
1924 * Regulators with a simple linear mapping between voltages and
1925 * selectors can set min_uV and uV_step in the regulator descriptor
1926 * and then use this function as their list_voltage() operation,
1927 */
1928int regulator_list_voltage_linear(struct regulator_dev *rdev,
1929                                  unsigned int selector)
1930{
1931        if (selector >= rdev->desc->n_voltages)
1932                return -EINVAL;
1933        if (selector < rdev->desc->linear_min_sel)
1934                return 0;
1935
1936        selector -= rdev->desc->linear_min_sel;
1937
1938        return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1939}
1940EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1941
1942/**
1943 * regulator_list_voltage_table - List voltages with table based mapping
1944 *
1945 * @rdev: Regulator device
1946 * @selector: Selector to convert into a voltage
1947 *
1948 * Regulators with table based mapping between voltages and
1949 * selectors can set volt_table in the regulator descriptor
1950 * and then use this function as their list_voltage() operation.
1951 */
1952int regulator_list_voltage_table(struct regulator_dev *rdev,
1953                                 unsigned int selector)
1954{
1955        if (!rdev->desc->volt_table) {
1956                BUG_ON(!rdev->desc->volt_table);
1957                return -EINVAL;
1958        }
1959
1960        if (selector >= rdev->desc->n_voltages)
1961                return -EINVAL;
1962
1963        return rdev->desc->volt_table[selector];
1964}
1965EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1966
1967/**
1968 * regulator_list_voltage - enumerate supported voltages
1969 * @regulator: regulator source
1970 * @selector: identify voltage to list
1971 * Context: can sleep
1972 *
1973 * Returns a voltage that can be passed to @regulator_set_voltage(),
1974 * zero if this selector code can't be used on this system, or a
1975 * negative errno.
1976 */
1977int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1978{
1979        struct regulator_dev    *rdev = regulator->rdev;
1980        struct regulator_ops    *ops = rdev->desc->ops;
1981        int                     ret;
1982
1983        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1984                return -EINVAL;
1985
1986        mutex_lock(&rdev->mutex);
1987        ret = ops->list_voltage(rdev, selector);
1988        mutex_unlock(&rdev->mutex);
1989
1990        if (ret > 0) {
1991                if (ret < rdev->constraints->min_uV)
1992                        ret = 0;
1993                else if (ret > rdev->constraints->max_uV)
1994                        ret = 0;
1995        }
1996
1997        return ret;
1998}
1999EXPORT_SYMBOL_GPL(regulator_list_voltage);
2000
2001/**
2002 * regulator_is_supported_voltage - check if a voltage range can be supported
2003 *
2004 * @regulator: Regulator to check.
2005 * @min_uV: Minimum required voltage in uV.
2006 * @max_uV: Maximum required voltage in uV.
2007 *
2008 * Returns a boolean or a negative error code.
2009 */
2010int regulator_is_supported_voltage(struct regulator *regulator,
2011                                   int min_uV, int max_uV)
2012{
2013        struct regulator_dev *rdev = regulator->rdev;
2014        int i, voltages, ret;
2015
2016        /* If we can't change voltage check the current voltage */
2017        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2018                ret = regulator_get_voltage(regulator);
2019                if (ret >= 0)
2020                        return (min_uV <= ret && ret <= max_uV);
2021                else
2022                        return ret;
2023        }
2024
2025        /* Any voltage within constrains range is fine? */
2026        if (rdev->desc->continuous_voltage_range)
2027                return min_uV >= rdev->constraints->min_uV &&
2028                                max_uV <= rdev->constraints->max_uV;
2029
2030        ret = regulator_count_voltages(regulator);
2031        if (ret < 0)
2032                return ret;
2033        voltages = ret;
2034
2035        for (i = 0; i < voltages; i++) {
2036                ret = regulator_list_voltage(regulator, i);
2037
2038                if (ret >= min_uV && ret <= max_uV)
2039                        return 1;
2040        }
2041
2042        return 0;
2043}
2044EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2045
2046/**
2047 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2048 *
2049 * @rdev: regulator to operate on
2050 *
2051 * Regulators that use regmap for their register I/O can set the
2052 * vsel_reg and vsel_mask fields in their descriptor and then use this
2053 * as their get_voltage_vsel operation, saving some code.
2054 */
2055int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2056{
2057        unsigned int val;
2058        int ret;
2059
2060        ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2061        if (ret != 0)
2062                return ret;
2063
2064        val &= rdev->desc->vsel_mask;
2065        val >>= ffs(rdev->desc->vsel_mask) - 1;
2066
2067        return val;
2068}
2069EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2070
2071/**
2072 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2073 *
2074 * @rdev: regulator to operate on
2075 * @sel: Selector to set
2076 *
2077 * Regulators that use regmap for their register I/O can set the
2078 * vsel_reg and vsel_mask fields in their descriptor and then use this
2079 * as their set_voltage_vsel operation, saving some code.
2080 */
2081int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2082{
2083        sel <<= ffs(rdev->desc->vsel_mask) - 1;
2084
2085        return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2086                                  rdev->desc->vsel_mask, sel);
2087}
2088EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2089
2090/**
2091 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2092 *
2093 * @rdev: Regulator to operate on
2094 * @min_uV: Lower bound for voltage
2095 * @max_uV: Upper bound for voltage
2096 *
2097 * Drivers implementing set_voltage_sel() and list_voltage() can use
2098 * this as their map_voltage() operation.  It will find a suitable
2099 * voltage by calling list_voltage() until it gets something in bounds
2100 * for the requested voltages.
2101 */
2102int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2103                                  int min_uV, int max_uV)
2104{
2105        int best_val = INT_MAX;
2106        int selector = 0;
2107        int i, ret;
2108
2109        /* Find the smallest voltage that falls within the specified
2110         * range.
2111         */
2112        for (i = 0; i < rdev->desc->n_voltages; i++) {
2113                ret = rdev->desc->ops->list_voltage(rdev, i);
2114                if (ret < 0)
2115                        continue;
2116
2117                if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2118                        best_val = ret;
2119                        selector = i;
2120                }
2121        }
2122
2123        if (best_val != INT_MAX)
2124                return selector;
2125        else
2126                return -EINVAL;
2127}
2128EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2129
2130/**
2131 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2132 *
2133 * @rdev: Regulator to operate on
2134 * @min_uV: Lower bound for voltage
2135 * @max_uV: Upper bound for voltage
2136 *
2137 * Drivers providing min_uV and uV_step in their regulator_desc can
2138 * use this as their map_voltage() operation.
2139 */
2140int regulator_map_voltage_linear(struct regulator_dev *rdev,
2141                                 int min_uV, int max_uV)
2142{
2143        int ret, voltage;
2144
2145        /* Allow uV_step to be 0 for fixed voltage */
2146        if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2147                if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2148                        return 0;
2149                else
2150                        return -EINVAL;
2151        }
2152
2153        if (!rdev->desc->uV_step) {
2154                BUG_ON(!rdev->desc->uV_step);
2155                return -EINVAL;
2156        }
2157
2158        if (min_uV < rdev->desc->min_uV)
2159                min_uV = rdev->desc->min_uV;
2160
2161        ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2162        if (ret < 0)
2163                return ret;
2164
2165        ret += rdev->desc->linear_min_sel;
2166
2167        /* Map back into a voltage to verify we're still in bounds */
2168        voltage = rdev->desc->ops->list_voltage(rdev, ret);
2169        if (voltage < min_uV || voltage > max_uV)
2170                return -EINVAL;
2171
2172        return ret;
2173}
2174EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2175
2176static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2177                                     int min_uV, int max_uV)
2178{
2179        int ret;
2180        int delay = 0;
2181        int best_val = 0;
2182        unsigned int selector;
2183        int old_selector = -1;
2184
2185        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2186
2187        min_uV += rdev->constraints->uV_offset;
2188        max_uV += rdev->constraints->uV_offset;
2189
2190        /*
2191         * If we can't obtain the old selector there is not enough
2192         * info to call set_voltage_time_sel().
2193         */
2194        if (_regulator_is_enabled(rdev) &&
2195            rdev->desc->ops->set_voltage_time_sel &&
2196            rdev->desc->ops->get_voltage_sel) {
2197                old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2198                if (old_selector < 0)
2199                        return old_selector;
2200        }
2201
2202        if (rdev->desc->ops->set_voltage) {
2203                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2204                                                   &selector);
2205
2206                if (ret >= 0) {
2207                        if (rdev->desc->ops->list_voltage)
2208                                best_val = rdev->desc->ops->list_voltage(rdev,
2209                                                                         selector);
2210                        else
2211                                best_val = _regulator_get_voltage(rdev);
2212                }
2213
2214        } else if (rdev->desc->ops->set_voltage_sel) {
2215                if (rdev->desc->ops->map_voltage) {
2216                        ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2217                                                           max_uV);
2218                } else {
2219                        if (rdev->desc->ops->list_voltage ==
2220                            regulator_list_voltage_linear)
2221                                ret = regulator_map_voltage_linear(rdev,
2222                                                                min_uV, max_uV);
2223                        else
2224                                ret = regulator_map_voltage_iterate(rdev,
2225                                                                min_uV, max_uV);
2226                }
2227
2228                if (ret >= 0) {
2229                        best_val = rdev->desc->ops->list_voltage(rdev, ret);
2230                        if (min_uV <= best_val && max_uV >= best_val) {
2231                                selector = ret;
2232                                ret = rdev->desc->ops->set_voltage_sel(rdev,
2233                                                                       ret);
2234                        } else {
2235                                ret = -EINVAL;
2236                        }
2237                }
2238        } else {
2239                ret = -EINVAL;
2240        }
2241
2242        /* Call set_voltage_time_sel if successfully obtained old_selector */
2243        if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2244            rdev->desc->ops->set_voltage_time_sel) {
2245
2246                delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2247                                                old_selector, selector);
2248                if (delay < 0) {
2249                        rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2250                                  delay);
2251                        delay = 0;
2252                }
2253
2254                /* Insert any necessary delays */
2255                if (delay >= 1000) {
2256                        mdelay(delay / 1000);
2257                        udelay(delay % 1000);
2258                } else if (delay) {
2259                        udelay(delay);
2260                }
2261        }
2262
2263        if (ret == 0 && best_val >= 0) {
2264                unsigned long data = best_val;
2265
2266                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2267                                     (void *)data);
2268        }
2269
2270        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2271
2272        return ret;
2273}
2274
2275/**
2276 * regulator_set_voltage - set regulator output voltage
2277 * @regulator: regulator source
2278 * @min_uV: Minimum required voltage in uV
2279 * @max_uV: Maximum acceptable voltage in uV
2280 *
2281 * Sets a voltage regulator to the desired output voltage. This can be set
2282 * during any regulator state. IOW, regulator can be disabled or enabled.
2283 *
2284 * If the regulator is enabled then the voltage will change to the new value
2285 * immediately otherwise if the regulator is disabled the regulator will
2286 * output at the new voltage when enabled.
2287 *
2288 * NOTE: If the regulator is shared between several devices then the lowest
2289 * request voltage that meets the system constraints will be used.
2290 * Regulator system constraints must be set for this regulator before
2291 * calling this function otherwise this call will fail.
2292 */
2293int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2294{
2295        struct regulator_dev *rdev = regulator->rdev;
2296        int ret = 0;
2297
2298        mutex_lock(&rdev->mutex);
2299
2300        /* If we're setting the same range as last time the change
2301         * should be a noop (some cpufreq implementations use the same
2302         * voltage for multiple frequencies, for example).
2303         */
2304        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2305                goto out;
2306
2307        /* sanity check */
2308        if (!rdev->desc->ops->set_voltage &&
2309            !rdev->desc->ops->set_voltage_sel) {
2310                ret = -EINVAL;
2311                goto out;
2312        }
2313
2314        /* constraints check */
2315        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2316        if (ret < 0)
2317                goto out;
2318        regulator->min_uV = min_uV;
2319        regulator->max_uV = max_uV;
2320
2321        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2322        if (ret < 0)
2323                goto out;
2324
2325        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2326
2327out:
2328        mutex_unlock(&rdev->mutex);
2329        return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_set_voltage);
2332
2333/**
2334 * regulator_set_voltage_time - get raise/fall time
2335 * @regulator: regulator source
2336 * @old_uV: starting voltage in microvolts
2337 * @new_uV: target voltage in microvolts
2338 *
2339 * Provided with the starting and ending voltage, this function attempts to
2340 * calculate the time in microseconds required to rise or fall to this new
2341 * voltage.
2342 */
2343int regulator_set_voltage_time(struct regulator *regulator,
2344                               int old_uV, int new_uV)
2345{
2346        struct regulator_dev    *rdev = regulator->rdev;
2347        struct regulator_ops    *ops = rdev->desc->ops;
2348        int old_sel = -1;
2349        int new_sel = -1;
2350        int voltage;
2351        int i;
2352
2353        /* Currently requires operations to do this */
2354        if (!ops->list_voltage || !ops->set_voltage_time_sel
2355            || !rdev->desc->n_voltages)
2356                return -EINVAL;
2357
2358        for (i = 0; i < rdev->desc->n_voltages; i++) {
2359                /* We only look for exact voltage matches here */
2360                voltage = regulator_list_voltage(regulator, i);
2361                if (voltage < 0)
2362                        return -EINVAL;
2363                if (voltage == 0)
2364                        continue;
2365                if (voltage == old_uV)
2366                        old_sel = i;
2367                if (voltage == new_uV)
2368                        new_sel = i;
2369        }
2370
2371        if (old_sel < 0 || new_sel < 0)
2372                return -EINVAL;
2373
2374        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2375}
2376EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2377
2378/**
2379 * regulator_set_voltage_time_sel - get raise/fall time
2380 * @rdev: regulator source device
2381 * @old_selector: selector for starting voltage
2382 * @new_selector: selector for target voltage
2383 *
2384 * Provided with the starting and target voltage selectors, this function
2385 * returns time in microseconds required to rise or fall to this new voltage
2386 *
2387 * Drivers providing ramp_delay in regulation_constraints can use this as their
2388 * set_voltage_time_sel() operation.
2389 */
2390int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2391                                   unsigned int old_selector,
2392                                   unsigned int new_selector)
2393{
2394        unsigned int ramp_delay = 0;
2395        int old_volt, new_volt;
2396
2397        if (rdev->constraints->ramp_delay)
2398                ramp_delay = rdev->constraints->ramp_delay;
2399        else if (rdev->desc->ramp_delay)
2400                ramp_delay = rdev->desc->ramp_delay;
2401
2402        if (ramp_delay == 0) {
2403                rdev_warn(rdev, "ramp_delay not set\n");
2404                return 0;
2405        }
2406
2407        /* sanity check */
2408        if (!rdev->desc->ops->list_voltage)
2409                return -EINVAL;
2410
2411        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2412        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2413
2414        return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2415}
2416EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2417
2418/**
2419 * regulator_sync_voltage - re-apply last regulator output voltage
2420 * @regulator: regulator source
2421 *
2422 * Re-apply the last configured voltage.  This is intended to be used
2423 * where some external control source the consumer is cooperating with
2424 * has caused the configured voltage to change.
2425 */
2426int regulator_sync_voltage(struct regulator *regulator)
2427{
2428        struct regulator_dev *rdev = regulator->rdev;
2429        int ret, min_uV, max_uV;
2430
2431        mutex_lock(&rdev->mutex);
2432
2433        if (!rdev->desc->ops->set_voltage &&
2434            !rdev->desc->ops->set_voltage_sel) {
2435                ret = -EINVAL;
2436                goto out;
2437        }
2438
2439        /* This is only going to work if we've had a voltage configured. */
2440        if (!regulator->min_uV && !regulator->max_uV) {
2441                ret = -EINVAL;
2442                goto out;
2443        }
2444
2445        min_uV = regulator->min_uV;
2446        max_uV = regulator->max_uV;
2447
2448        /* This should be a paranoia check... */
2449        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2450        if (ret < 0)
2451                goto out;
2452
2453        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2454        if (ret < 0)
2455                goto out;
2456
2457        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2458
2459out:
2460        mutex_unlock(&rdev->mutex);
2461        return ret;
2462}
2463EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2464
2465static int _regulator_get_voltage(struct regulator_dev *rdev)
2466{
2467        int sel, ret;
2468
2469        if (rdev->desc->ops->get_voltage_sel) {
2470                sel = rdev->desc->ops->get_voltage_sel(rdev);
2471                if (sel < 0)
2472                        return sel;
2473                ret = rdev->desc->ops->list_voltage(rdev, sel);
2474        } else if (rdev->desc->ops->get_voltage) {
2475                ret = rdev->desc->ops->get_voltage(rdev);
2476        } else if (rdev->desc->ops->list_voltage) {
2477                ret = rdev->desc->ops->list_voltage(rdev, 0);
2478        } else {
2479                return -EINVAL;
2480        }
2481
2482        if (ret < 0)
2483                return ret;
2484        return ret - rdev->constraints->uV_offset;
2485}
2486
2487/**
2488 * regulator_get_voltage - get regulator output voltage
2489 * @regulator: regulator source
2490 *
2491 * This returns the current regulator voltage in uV.
2492 *
2493 * NOTE: If the regulator is disabled it will return the voltage value. This
2494 * function should not be used to determine regulator state.
2495 */
2496int regulator_get_voltage(struct regulator *regulator)
2497{
2498        int ret;
2499
2500        mutex_lock(&regulator->rdev->mutex);
2501
2502        ret = _regulator_get_voltage(regulator->rdev);
2503
2504        mutex_unlock(&regulator->rdev->mutex);
2505
2506        return ret;
2507}
2508EXPORT_SYMBOL_GPL(regulator_get_voltage);
2509
2510/**
2511 * regulator_set_current_limit - set regulator output current limit
2512 * @regulator: regulator source
2513 * @min_uA: Minimuum supported current in uA
2514 * @max_uA: Maximum supported current in uA
2515 *
2516 * Sets current sink to the desired output current. This can be set during
2517 * any regulator state. IOW, regulator can be disabled or enabled.
2518 *
2519 * If the regulator is enabled then the current will change to the new value
2520 * immediately otherwise if the regulator is disabled the regulator will
2521 * output at the new current when enabled.
2522 *
2523 * NOTE: Regulator system constraints must be set for this regulator before
2524 * calling this function otherwise this call will fail.
2525 */
2526int regulator_set_current_limit(struct regulator *regulator,
2527                               int min_uA, int max_uA)
2528{
2529        struct regulator_dev *rdev = regulator->rdev;
2530        int ret;
2531
2532        mutex_lock(&rdev->mutex);
2533
2534        /* sanity check */
2535        if (!rdev->desc->ops->set_current_limit) {
2536                ret = -EINVAL;
2537                goto out;
2538        }
2539
2540        /* constraints check */
2541        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2542        if (ret < 0)
2543                goto out;
2544
2545        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2546out:
2547        mutex_unlock(&rdev->mutex);
2548        return ret;
2549}
2550EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2551
2552static int _regulator_get_current_limit(struct regulator_dev *rdev)
2553{
2554        int ret;
2555
2556        mutex_lock(&rdev->mutex);
2557
2558        /* sanity check */
2559        if (!rdev->desc->ops->get_current_limit) {
2560                ret = -EINVAL;
2561                goto out;
2562        }
2563
2564        ret = rdev->desc->ops->get_current_limit(rdev);
2565out:
2566        mutex_unlock(&rdev->mutex);
2567        return ret;
2568}
2569
2570/**
2571 * regulator_get_current_limit - get regulator output current
2572 * @regulator: regulator source
2573 *
2574 * This returns the current supplied by the specified current sink in uA.
2575 *
2576 * NOTE: If the regulator is disabled it will return the current value. This
2577 * function should not be used to determine regulator state.
2578 */
2579int regulator_get_current_limit(struct regulator *regulator)
2580{
2581        return _regulator_get_current_limit(regulator->rdev);
2582}
2583EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2584
2585/**
2586 * regulator_set_mode - set regulator operating mode
2587 * @regulator: regulator source
2588 * @mode: operating mode - one of the REGULATOR_MODE constants
2589 *
2590 * Set regulator operating mode to increase regulator efficiency or improve
2591 * regulation performance.
2592 *
2593 * NOTE: Regulator system constraints must be set for this regulator before
2594 * calling this function otherwise this call will fail.
2595 */
2596int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2597{
2598        struct regulator_dev *rdev = regulator->rdev;
2599        int ret;
2600        int regulator_curr_mode;
2601
2602        mutex_lock(&rdev->mutex);
2603
2604        /* sanity check */
2605        if (!rdev->desc->ops->set_mode) {
2606                ret = -EINVAL;
2607                goto out;
2608        }
2609
2610        /* return if the same mode is requested */
2611        if (rdev->desc->ops->get_mode) {
2612                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2613                if (regulator_curr_mode == mode) {
2614                        ret = 0;
2615                        goto out;
2616                }
2617        }
2618
2619        /* constraints check */
2620        ret = regulator_mode_constrain(rdev, &mode);
2621        if (ret < 0)
2622                goto out;
2623
2624        ret = rdev->desc->ops->set_mode(rdev, mode);
2625out:
2626        mutex_unlock(&rdev->mutex);
2627        return ret;
2628}
2629EXPORT_SYMBOL_GPL(regulator_set_mode);
2630
2631static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2632{
2633        int ret;
2634
2635        mutex_lock(&rdev->mutex);
2636
2637        /* sanity check */
2638        if (!rdev->desc->ops->get_mode) {
2639                ret = -EINVAL;
2640                goto out;
2641        }
2642
2643        ret = rdev->desc->ops->get_mode(rdev);
2644out:
2645        mutex_unlock(&rdev->mutex);
2646        return ret;
2647}
2648
2649/**
2650 * regulator_get_mode - get regulator operating mode
2651 * @regulator: regulator source
2652 *
2653 * Get the current regulator operating mode.
2654 */
2655unsigned int regulator_get_mode(struct regulator *regulator)
2656{
2657        return _regulator_get_mode(regulator->rdev);
2658}
2659EXPORT_SYMBOL_GPL(regulator_get_mode);
2660
2661/**
2662 * regulator_set_optimum_mode - set regulator optimum operating mode
2663 * @regulator: regulator source
2664 * @uA_load: load current
2665 *
2666 * Notifies the regulator core of a new device load. This is then used by
2667 * DRMS (if enabled by constraints) to set the most efficient regulator
2668 * operating mode for the new regulator loading.
2669 *
2670 * Consumer devices notify their supply regulator of the maximum power
2671 * they will require (can be taken from device datasheet in the power
2672 * consumption tables) when they change operational status and hence power
2673 * state. Examples of operational state changes that can affect power
2674 * consumption are :-
2675 *
2676 *    o Device is opened / closed.
2677 *    o Device I/O is about to begin or has just finished.
2678 *    o Device is idling in between work.
2679 *
2680 * This information is also exported via sysfs to userspace.
2681 *
2682 * DRMS will sum the total requested load on the regulator and change
2683 * to the most efficient operating mode if platform constraints allow.
2684 *
2685 * Returns the new regulator mode or error.
2686 */
2687int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2688{
2689        struct regulator_dev *rdev = regulator->rdev;
2690        struct regulator *consumer;
2691        int ret, output_uV, input_uV = 0, total_uA_load = 0;
2692        unsigned int mode;
2693
2694        if (rdev->supply)
2695                input_uV = regulator_get_voltage(rdev->supply);
2696
2697        mutex_lock(&rdev->mutex);
2698
2699        /*
2700         * first check to see if we can set modes at all, otherwise just
2701         * tell the consumer everything is OK.
2702         */
2703        regulator->uA_load = uA_load;
2704        ret = regulator_check_drms(rdev);
2705        if (ret < 0) {
2706                ret = 0;
2707                goto out;
2708        }
2709
2710        if (!rdev->desc->ops->get_optimum_mode)
2711                goto out;
2712
2713        /*
2714         * we can actually do this so any errors are indicators of
2715         * potential real failure.
2716         */
2717        ret = -EINVAL;
2718
2719        if (!rdev->desc->ops->set_mode)
2720                goto out;
2721
2722        /* get output voltage */
2723        output_uV = _regulator_get_voltage(rdev);
2724        if (output_uV <= 0) {
2725                rdev_err(rdev, "invalid output voltage found\n");
2726                goto out;
2727        }
2728
2729        /* No supply? Use constraint voltage */
2730        if (input_uV <= 0)
2731                input_uV = rdev->constraints->input_uV;
2732        if (input_uV <= 0) {
2733                rdev_err(rdev, "invalid input voltage found\n");
2734                goto out;
2735        }
2736
2737        /* calc total requested load for this regulator */
2738        list_for_each_entry(consumer, &rdev->consumer_list, list)
2739                total_uA_load += consumer->uA_load;
2740
2741        mode = rdev->desc->ops->get_optimum_mode(rdev,
2742                                                 input_uV, output_uV,
2743                                                 total_uA_load);
2744        ret = regulator_mode_constrain(rdev, &mode);
2745        if (ret < 0) {
2746                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2747                         total_uA_load, input_uV, output_uV);
2748                goto out;
2749        }
2750
2751        ret = rdev->desc->ops->set_mode(rdev, mode);
2752        if (ret < 0) {
2753                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2754                goto out;
2755        }
2756        ret = mode;
2757out:
2758        mutex_unlock(&rdev->mutex);
2759        return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2762
2763/**
2764 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2765 *
2766 * @rdev: device to operate on.
2767 * @enable: state to set.
2768 */
2769int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2770{
2771        unsigned int val;
2772
2773        if (enable)
2774                val = rdev->desc->bypass_mask;
2775        else
2776                val = 0;
2777
2778        return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2779                                  rdev->desc->bypass_mask, val);
2780}
2781EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2782
2783/**
2784 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2785 *
2786 * @rdev: device to operate on.
2787 * @enable: current state.
2788 */
2789int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2790{
2791        unsigned int val;
2792        int ret;
2793
2794        ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2795        if (ret != 0)
2796                return ret;
2797
2798        *enable = val & rdev->desc->bypass_mask;
2799
2800        return 0;
2801}
2802EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2803
2804/**
2805 * regulator_allow_bypass - allow the regulator to go into bypass mode
2806 *
2807 * @regulator: Regulator to configure
2808 * @allow: enable or disable bypass mode
2809 *
2810 * Allow the regulator to go into bypass mode if all other consumers
2811 * for the regulator also enable bypass mode and the machine
2812 * constraints allow this.  Bypass mode means that the regulator is
2813 * simply passing the input directly to the output with no regulation.
2814 */
2815int regulator_allow_bypass(struct regulator *regulator, bool enable)
2816{
2817        struct regulator_dev *rdev = regulator->rdev;
2818        int ret = 0;
2819
2820        if (!rdev->desc->ops->set_bypass)
2821                return 0;
2822
2823        if (rdev->constraints &&
2824            !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2825                return 0;
2826
2827        mutex_lock(&rdev->mutex);
2828
2829        if (enable && !regulator->bypass) {
2830                rdev->bypass_count++;
2831
2832                if (rdev->bypass_count == rdev->open_count) {
2833                        ret = rdev->desc->ops->set_bypass(rdev, enable);
2834                        if (ret != 0)
2835                                rdev->bypass_count--;
2836                }
2837
2838        } else if (!enable && regulator->bypass) {
2839                rdev->bypass_count--;
2840
2841                if (rdev->bypass_count != rdev->open_count) {
2842                        ret = rdev->desc->ops->set_bypass(rdev, enable);
2843                        if (ret != 0)
2844                                rdev->bypass_count++;
2845                }
2846        }
2847
2848        if (ret == 0)
2849                regulator->bypass = enable;
2850
2851        mutex_unlock(&rdev->mutex);
2852
2853        return ret;
2854}
2855EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2856
2857/**
2858 * regulator_register_notifier - register regulator event notifier
2859 * @regulator: regulator source
2860 * @nb: notifier block
2861 *
2862 * Register notifier block to receive regulator events.
2863 */
2864int regulator_register_notifier(struct regulator *regulator,
2865                              struct notifier_block *nb)
2866{
2867        return blocking_notifier_chain_register(&regulator->rdev->notifier,
2868                                                nb);
2869}
2870EXPORT_SYMBOL_GPL(regulator_register_notifier);
2871
2872/**
2873 * regulator_unregister_notifier - unregister regulator event notifier
2874 * @regulator: regulator source
2875 * @nb: notifier block
2876 *
2877 * Unregister regulator event notifier block.
2878 */
2879int regulator_unregister_notifier(struct regulator *regulator,
2880                                struct notifier_block *nb)
2881{
2882        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2883                                                  nb);
2884}
2885EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2886
2887/* notify regulator consumers and downstream regulator consumers.
2888 * Note mutex must be held by caller.
2889 */
2890static void _notifier_call_chain(struct regulator_dev *rdev,
2891                                  unsigned long event, void *data)
2892{
2893        /* call rdev chain first */
2894        blocking_notifier_call_chain(&rdev->notifier, event, data);
2895}
2896
2897/**
2898 * regulator_bulk_get - get multiple regulator consumers
2899 *
2900 * @dev:           Device to supply
2901 * @num_consumers: Number of consumers to register
2902 * @consumers:     Configuration of consumers; clients are stored here.
2903 *
2904 * @return 0 on success, an errno on failure.
2905 *
2906 * This helper function allows drivers to get several regulator
2907 * consumers in one operation.  If any of the regulators cannot be
2908 * acquired then any regulators that were allocated will be freed
2909 * before returning to the caller.
2910 */
2911int regulator_bulk_get(struct device *dev, int num_consumers,
2912                       struct regulator_bulk_data *consumers)
2913{
2914        int i;
2915        int ret;
2916
2917        for (i = 0; i < num_consumers; i++)
2918                consumers[i].consumer = NULL;
2919
2920        for (i = 0; i < num_consumers; i++) {
2921                consumers[i].consumer = regulator_get(dev,
2922                                                      consumers[i].supply);
2923                if (IS_ERR(consumers[i].consumer)) {
2924                        ret = PTR_ERR(consumers[i].consumer);
2925                        dev_err(dev, "Failed to get supply '%s': %d\n",
2926                                consumers[i].supply, ret);
2927                        consumers[i].consumer = NULL;
2928                        goto err;
2929                }
2930        }
2931
2932        return 0;
2933
2934err:
2935        while (--i >= 0)
2936                regulator_put(consumers[i].consumer);
2937
2938        return ret;
2939}
2940EXPORT_SYMBOL_GPL(regulator_bulk_get);
2941
2942/**
2943 * devm_regulator_bulk_get - managed get multiple regulator consumers
2944 *
2945 * @dev:           Device to supply
2946 * @num_consumers: Number of consumers to register
2947 * @consumers:     Configuration of consumers; clients are stored here.
2948 *
2949 * @return 0 on success, an errno on failure.
2950 *
2951 * This helper function allows drivers to get several regulator
2952 * consumers in one operation with management, the regulators will
2953 * automatically be freed when the device is unbound.  If any of the
2954 * regulators cannot be acquired then any regulators that were
2955 * allocated will be freed before returning to the caller.
2956 */
2957int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2958                            struct regulator_bulk_data *consumers)
2959{
2960        int i;
2961        int ret;
2962
2963        for (i = 0; i < num_consumers; i++)
2964                consumers[i].consumer = NULL;
2965
2966        for (i = 0; i < num_consumers; i++) {
2967                consumers[i].consumer = devm_regulator_get(dev,
2968                                                           consumers[i].supply);
2969                if (IS_ERR(consumers[i].consumer)) {
2970                        ret = PTR_ERR(consumers[i].consumer);
2971                        dev_err(dev, "Failed to get supply '%s': %d\n",
2972                                consumers[i].supply, ret);
2973                        consumers[i].consumer = NULL;
2974                        goto err;
2975                }
2976        }
2977
2978        return 0;
2979
2980err:
2981        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2982                devm_regulator_put(consumers[i].consumer);
2983
2984        return ret;
2985}
2986EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2987
2988static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2989{
2990        struct regulator_bulk_data *bulk = data;
2991
2992        bulk->ret = regulator_enable(bulk->consumer);
2993}
2994
2995/**
2996 * regulator_bulk_enable - enable multiple regulator consumers
2997 *
2998 * @num_consumers: Number of consumers
2999 * @consumers:     Consumer data; clients are stored here.
3000 * @return         0 on success, an errno on failure
3001 *
3002 * This convenience API allows consumers to enable multiple regulator
3003 * clients in a single API call.  If any consumers cannot be enabled
3004 * then any others that were enabled will be disabled again prior to
3005 * return.
3006 */
3007int regulator_bulk_enable(int num_consumers,
3008                          struct regulator_bulk_data *consumers)
3009{
3010        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3011        int i;
3012        int ret = 0;
3013
3014        for (i = 0; i < num_consumers; i++) {
3015                if (consumers[i].consumer->always_on)
3016                        consumers[i].ret = 0;
3017                else
3018                        async_schedule_domain(regulator_bulk_enable_async,
3019                                              &consumers[i], &async_domain);
3020        }
3021
3022        async_synchronize_full_domain(&async_domain);
3023
3024        /* If any consumer failed we need to unwind any that succeeded */
3025        for (i = 0; i < num_consumers; i++) {
3026                if (consumers[i].ret != 0) {
3027                        ret = consumers[i].ret;
3028                        goto err;
3029                }
3030        }
3031
3032        return 0;
3033
3034err:
3035        pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3036        while (--i >= 0)
3037                regulator_disable(consumers[i].consumer);
3038
3039        return ret;
3040}
3041EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3042
3043/**
3044 * regulator_bulk_disable - disable multiple regulator consumers
3045 *
3046 * @num_consumers: Number of consumers
3047 * @consumers:     Consumer data; clients are stored here.
3048 * @return         0 on success, an errno on failure
3049 *
3050 * This convenience API allows consumers to disable multiple regulator
3051 * clients in a single API call.  If any consumers cannot be disabled
3052 * then any others that were disabled will be enabled again prior to
3053 * return.
3054 */
3055int regulator_bulk_disable(int num_consumers,
3056                           struct regulator_bulk_data *consumers)
3057{
3058        int i;
3059        int ret, r;
3060
3061        for (i = num_consumers - 1; i >= 0; --i) {
3062                ret = regulator_disable(consumers[i].consumer);
3063                if (ret != 0)
3064                        goto err;
3065        }
3066
3067        return 0;
3068
3069err:
3070        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3071        for (++i; i < num_consumers; ++i) {
3072                r = regulator_enable(consumers[i].consumer);
3073                if (r != 0)
3074                        pr_err("Failed to reename %s: %d\n",
3075                               consumers[i].supply, r);
3076        }
3077
3078        return ret;
3079}
3080EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3081
3082/**
3083 * regulator_bulk_force_disable - force disable multiple regulator consumers
3084 *
3085 * @num_consumers: Number of consumers
3086 * @consumers:     Consumer data; clients are stored here.
3087 * @return         0 on success, an errno on failure
3088 *
3089 * This convenience API allows consumers to forcibly disable multiple regulator
3090 * clients in a single API call.
3091 * NOTE: This should be used for situations when device damage will
3092 * likely occur if the regulators are not disabled (e.g. over temp).
3093 * Although regulator_force_disable function call for some consumers can
3094 * return error numbers, the function is called for all consumers.
3095 */
3096int regulator_bulk_force_disable(int num_consumers,
3097                           struct regulator_bulk_data *consumers)
3098{
3099        int i;
3100        int ret;
3101
3102        for (i = 0; i < num_consumers; i++)
3103                consumers[i].ret =
3104                            regulator_force_disable(consumers[i].consumer);
3105
3106        for (i = 0; i < num_consumers; i++) {
3107                if (consumers[i].ret != 0) {
3108                        ret = consumers[i].ret;
3109                        goto out;
3110                }
3111        }
3112
3113        return 0;
3114out:
3115        return ret;
3116}
3117EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3118
3119/**
3120 * regulator_bulk_free - free multiple regulator consumers
3121 *
3122 * @num_consumers: Number of consumers
3123 * @consumers:     Consumer data; clients are stored here.
3124 *
3125 * This convenience API allows consumers to free multiple regulator
3126 * clients in a single API call.
3127 */
3128void regulator_bulk_free(int num_consumers,
3129                         struct regulator_bulk_data *consumers)
3130{
3131        int i;
3132
3133        for (i = 0; i < num_consumers; i++) {
3134                regulator_put(consumers[i].consumer);
3135                consumers[i].consumer = NULL;
3136        }
3137}
3138EXPORT_SYMBOL_GPL(regulator_bulk_free);
3139
3140/**
3141 * regulator_notifier_call_chain - call regulator event notifier
3142 * @rdev: regulator source
3143 * @event: notifier block
3144 * @data: callback-specific data.
3145 *
3146 * Called by regulator drivers to notify clients a regulator event has
3147 * occurred. We also notify regulator clients downstream.
3148 * Note lock must be held by caller.
3149 */
3150int regulator_notifier_call_chain(struct regulator_dev *rdev,
3151                                  unsigned long event, void *data)
3152{
3153        _notifier_call_chain(rdev, event, data);
3154        return NOTIFY_DONE;
3155
3156}
3157EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3158
3159/**
3160 * regulator_mode_to_status - convert a regulator mode into a status
3161 *
3162 * @mode: Mode to convert
3163 *
3164 * Convert a regulator mode into a status.
3165 */
3166int regulator_mode_to_status(unsigned int mode)
3167{
3168        switch (mode) {
3169        case REGULATOR_MODE_FAST:
3170                return REGULATOR_STATUS_FAST;
3171        case REGULATOR_MODE_NORMAL:
3172                return REGULATOR_STATUS_NORMAL;
3173        case REGULATOR_MODE_IDLE:
3174                return REGULATOR_STATUS_IDLE;
3175        case REGULATOR_MODE_STANDBY:
3176                return REGULATOR_STATUS_STANDBY;
3177        default:
3178                return REGULATOR_STATUS_UNDEFINED;
3179        }
3180}
3181EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3182
3183/*
3184 * To avoid cluttering sysfs (and memory) with useless state, only
3185 * create attributes that can be meaningfully displayed.
3186 */
3187static int add_regulator_attributes(struct regulator_dev *rdev)
3188{
3189        struct device           *dev = &rdev->dev;
3190        struct regulator_ops    *ops = rdev->desc->ops;
3191        int                     status = 0;
3192
3193        /* some attributes need specific methods to be displayed */
3194        if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3195            (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3196            (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3197                status = device_create_file(dev, &dev_attr_microvolts);
3198                if (status < 0)
3199                        return status;
3200        }
3201        if (ops->get_current_limit) {
3202                status = device_create_file(dev, &dev_attr_microamps);
3203                if (status < 0)
3204                        return status;
3205        }
3206        if (ops->get_mode) {
3207                status = device_create_file(dev, &dev_attr_opmode);
3208                if (status < 0)
3209                        return status;
3210        }
3211        if (ops->is_enabled) {
3212                status = device_create_file(dev, &dev_attr_state);
3213                if (status < 0)
3214                        return status;
3215        }
3216        if (ops->get_status) {
3217                status = device_create_file(dev, &dev_attr_status);
3218                if (status < 0)
3219                        return status;
3220        }
3221        if (ops->get_bypass) {
3222                status = device_create_file(dev, &dev_attr_bypass);
3223                if (status < 0)
3224                        return status;
3225        }
3226
3227        /* some attributes are type-specific */
3228        if (rdev->desc->type == REGULATOR_CURRENT) {
3229                status = device_create_file(dev, &dev_attr_requested_microamps);
3230                if (status < 0)
3231                        return status;
3232        }
3233
3234        /* all the other attributes exist to support constraints;
3235         * don't show them if there are no constraints, or if the
3236         * relevant supporting methods are missing.
3237         */
3238        if (!rdev->constraints)
3239                return status;
3240
3241        /* constraints need specific supporting methods */
3242        if (ops->set_voltage || ops->set_voltage_sel) {
3243                status = device_create_file(dev, &dev_attr_min_microvolts);
3244                if (status < 0)
3245                        return status;
3246                status = device_create_file(dev, &dev_attr_max_microvolts);
3247                if (status < 0)
3248                        return status;
3249        }
3250        if (ops->set_current_limit) {
3251                status = device_create_file(dev, &dev_attr_min_microamps);
3252                if (status < 0)
3253                        return status;
3254                status = device_create_file(dev, &dev_attr_max_microamps);
3255                if (status < 0)
3256                        return status;
3257        }
3258
3259        status = device_create_file(dev, &dev_attr_suspend_standby_state);
3260        if (status < 0)
3261                return status;
3262        status = device_create_file(dev, &dev_attr_suspend_mem_state);
3263        if (status < 0)
3264                return status;
3265        status = device_create_file(dev, &dev_attr_suspend_disk_state);
3266        if (status < 0)
3267                return status;
3268
3269        if (ops->set_suspend_voltage) {
3270                status = device_create_file(dev,
3271                                &dev_attr_suspend_standby_microvolts);
3272                if (status < 0)
3273                        return status;
3274                status = device_create_file(dev,
3275                                &dev_attr_suspend_mem_microvolts);
3276                if (status < 0)
3277                        return status;
3278                status = device_create_file(dev,
3279                                &dev_attr_suspend_disk_microvolts);
3280                if (status < 0)
3281                        return status;
3282        }
3283
3284        if (ops->set_suspend_mode) {
3285                status = device_create_file(dev,
3286                                &dev_attr_suspend_standby_mode);
3287                if (status < 0)
3288                        return status;
3289                status = device_create_file(dev,
3290                                &dev_attr_suspend_mem_mode);
3291                if (status < 0)
3292                        return status;
3293                status = device_create_file(dev,
3294                                &dev_attr_suspend_disk_mode);
3295                if (status < 0)
3296                        return status;
3297        }
3298
3299        return status;
3300}
3301
3302static void rdev_init_debugfs(struct regulator_dev *rdev)
3303{
3304        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3305        if (!rdev->debugfs) {
3306                rdev_warn(rdev, "Failed to create debugfs directory\n");
3307                return;
3308        }
3309
3310        debugfs_create_u32("use_count", 0444, rdev->debugfs,
3311                           &rdev->use_count);
3312        debugfs_create_u32("open_count", 0444, rdev->debugfs,
3313                           &rdev->open_count);
3314        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3315                           &rdev->bypass_count);
3316}
3317
3318/**
3319 * regulator_register - register regulator
3320 * @regulator_desc: regulator to register
3321 * @config: runtime configuration for regulator
3322 *
3323 * Called by regulator drivers to register a regulator.
3324 * Returns a valid pointer to struct regulator_dev on success
3325 * or an ERR_PTR() on error.
3326 */
3327struct regulator_dev *
3328regulator_register(const struct regulator_desc *regulator_desc,
3329                   const struct regulator_config *config)
3330{
3331        const struct regulation_constraints *constraints = NULL;
3332        const struct regulator_init_data *init_data;
3333        static atomic_t regulator_no = ATOMIC_INIT(0);
3334        struct regulator_dev *rdev;
3335        struct device *dev;
3336        int ret, i;
3337        const char *supply = NULL;
3338
3339        if (regulator_desc == NULL || config == NULL)
3340                return ERR_PTR(-EINVAL);
3341
3342        dev = config->dev;
3343        WARN_ON(!dev);
3344
3345        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3346                return ERR_PTR(-EINVAL);
3347
3348        if (regulator_desc->type != REGULATOR_VOLTAGE &&
3349            regulator_desc->type != REGULATOR_CURRENT)
3350                return ERR_PTR(-EINVAL);
3351
3352        /* Only one of each should be implemented */
3353        WARN_ON(regulator_desc->ops->get_voltage &&
3354                regulator_desc->ops->get_voltage_sel);
3355        WARN_ON(regulator_desc->ops->set_voltage &&
3356                regulator_desc->ops->set_voltage_sel);
3357
3358        /* If we're using selectors we must implement list_voltage. */
3359        if (regulator_desc->ops->get_voltage_sel &&
3360            !regulator_desc->ops->list_voltage) {
3361                return ERR_PTR(-EINVAL);
3362        }
3363        if (regulator_desc->ops->set_voltage_sel &&
3364            !regulator_desc->ops->list_voltage) {
3365                return ERR_PTR(-EINVAL);
3366        }
3367
3368        init_data = config->init_data;
3369
3370        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3371        if (rdev == NULL)
3372                return ERR_PTR(-ENOMEM);
3373
3374        mutex_lock(&regulator_list_mutex);
3375
3376        mutex_init(&rdev->mutex);
3377        rdev->reg_data = config->driver_data;
3378        rdev->owner = regulator_desc->owner;
3379        rdev->desc = regulator_desc;
3380        if (config->regmap)
3381                rdev->regmap = config->regmap;
3382        else if (dev_get_regmap(dev, NULL))
3383                rdev->regmap = dev_get_regmap(dev, NULL);
3384        else if (dev->parent)
3385                rdev->regmap = dev_get_regmap(dev->parent, NULL);
3386        INIT_LIST_HEAD(&rdev->consumer_list);
3387        INIT_LIST_HEAD(&rdev->list);
3388        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3389        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3390
3391        /* preform any regulator specific init */
3392        if (init_data && init_data->regulator_init) {
3393                ret = init_data->regulator_init(rdev->reg_data);
3394                if (ret < 0)
3395                        goto clean;
3396        }
3397
3398        /* register with sysfs */
3399        rdev->dev.class = &regulator_class;
3400        rdev->dev.of_node = config->of_node;
3401        rdev->dev.parent = dev;
3402        dev_set_name(&rdev->dev, "regulator.%d",
3403                     atomic_inc_return(&regulator_no) - 1);
3404        ret = device_register(&rdev->dev);
3405        if (ret != 0) {
3406                put_device(&rdev->dev);
3407                goto clean;
3408        }
3409
3410        dev_set_drvdata(&rdev->dev, rdev);
3411
3412        if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3413                ret = gpio_request_one(config->ena_gpio,
3414                                       GPIOF_DIR_OUT | config->ena_gpio_flags,
3415                                       rdev_get_name(rdev));
3416                if (ret != 0) {
3417                        rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3418                                 config->ena_gpio, ret);
3419                        goto wash;
3420                }
3421
3422                rdev->ena_gpio = config->ena_gpio;
3423                rdev->ena_gpio_invert = config->ena_gpio_invert;
3424
3425                if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3426                        rdev->ena_gpio_state = 1;
3427
3428                if (rdev->ena_gpio_invert)
3429                        rdev->ena_gpio_state = !rdev->ena_gpio_state;
3430        }
3431
3432        /* set regulator constraints */
3433        if (init_data)
3434                constraints = &init_data->constraints;
3435
3436        ret = set_machine_constraints(rdev, constraints);
3437        if (ret < 0)
3438                goto scrub;
3439
3440        /* add attributes supported by this regulator */
3441        ret = add_regulator_attributes(rdev);
3442        if (ret < 0)
3443                goto scrub;
3444
3445        if (init_data && init_data->supply_regulator)
3446                supply = init_data->supply_regulator;
3447        else if (regulator_desc->supply_name)
3448                supply = regulator_desc->supply_name;
3449
3450        if (supply) {
3451                struct regulator_dev *r;
3452
3453                r = regulator_dev_lookup(dev, supply, &ret);
3454
3455                if (!r) {
3456                        dev_err(dev, "Failed to find supply %s\n", supply);
3457                        ret = -EPROBE_DEFER;
3458                        goto scrub;
3459                }
3460
3461                ret = set_supply(rdev, r);
3462                if (ret < 0)
3463                        goto scrub;
3464
3465                /* Enable supply if rail is enabled */
3466                if (_regulator_is_enabled(rdev)) {
3467                        ret = regulator_enable(rdev->supply);
3468                        if (ret < 0)
3469                                goto scrub;
3470                }
3471        }
3472
3473        /* add consumers devices */
3474        if (init_data) {
3475                for (i = 0; i < init_data->num_consumer_supplies; i++) {
3476                        ret = set_consumer_device_supply(rdev,
3477                                init_data->consumer_supplies[i].dev_name,
3478                                init_data->consumer_supplies[i].supply);
3479                        if (ret < 0) {
3480                                dev_err(dev, "Failed to set supply %s\n",
3481                                        init_data->consumer_supplies[i].supply);
3482                                goto unset_supplies;
3483                        }
3484                }
3485        }
3486
3487        list_add(&rdev->list, &regulator_list);
3488
3489        rdev_init_debugfs(rdev);
3490out:
3491        mutex_unlock(&regulator_list_mutex);
3492        return rdev;
3493
3494unset_supplies:
3495        unset_regulator_supplies(rdev);
3496
3497scrub:
3498        if (rdev->supply)
3499                _regulator_put(rdev->supply);
3500        if (rdev->ena_gpio)
3501                gpio_free(rdev->ena_gpio);
3502        kfree(rdev->constraints);
3503wash:
3504        device_unregister(&rdev->dev);
3505        /* device core frees rdev */
3506        rdev = ERR_PTR(ret);
3507        goto out;
3508
3509clean:
3510        kfree(rdev);
3511        rdev = ERR_PTR(ret);
3512        goto out;
3513}
3514EXPORT_SYMBOL_GPL(regulator_register);
3515
3516/**
3517 * regulator_unregister - unregister regulator
3518 * @rdev: regulator to unregister
3519 *
3520 * Called by regulator drivers to unregister a regulator.
3521 */
3522void regulator_unregister(struct regulator_dev *rdev)
3523{
3524        if (rdev == NULL)
3525                return;
3526
3527        if (rdev->supply)
3528                regulator_put(rdev->supply);
3529        mutex_lock(&regulator_list_mutex);
3530        debugfs_remove_recursive(rdev->debugfs);
3531        flush_work(&rdev->disable_work.work);
3532        WARN_ON(rdev->open_count);
3533        unset_regulator_supplies(rdev);
3534        list_del(&rdev->list);
3535        kfree(rdev->constraints);
3536        if (rdev->ena_gpio)
3537                gpio_free(rdev->ena_gpio);
3538        device_unregister(&rdev->dev);
3539        mutex_unlock(&regulator_list_mutex);
3540}
3541EXPORT_SYMBOL_GPL(regulator_unregister);
3542
3543/**
3544 * regulator_suspend_prepare - prepare regulators for system wide suspend
3545 * @state: system suspend state
3546 *
3547 * Configure each regulator with it's suspend operating parameters for state.
3548 * This will usually be called by machine suspend code prior to supending.
3549 */
3550int regulator_suspend_prepare(suspend_state_t state)
3551{
3552        struct regulator_dev *rdev;
3553        int ret = 0;
3554
3555        /* ON is handled by regulator active state */
3556        if (state == PM_SUSPEND_ON)
3557                return -EINVAL;
3558
3559        mutex_lock(&regulator_list_mutex);
3560        list_for_each_entry(rdev, &regulator_list, list) {
3561
3562                mutex_lock(&rdev->mutex);
3563                ret = suspend_prepare(rdev, state);
3564                mutex_unlock(&rdev->mutex);
3565
3566                if (ret < 0) {
3567                        rdev_err(rdev, "failed to prepare\n");
3568                        goto out;
3569                }
3570        }
3571out:
3572        mutex_unlock(&regulator_list_mutex);
3573        return ret;
3574}
3575EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3576
3577/**
3578 * regulator_suspend_finish - resume regulators from system wide suspend
3579 *
3580 * Turn on regulators that might be turned off by regulator_suspend_prepare
3581 * and that should be turned on according to the regulators properties.
3582 */
3583int regulator_suspend_finish(void)
3584{
3585        struct regulator_dev *rdev;
3586        int ret = 0, error;
3587
3588        mutex_lock(&regulator_list_mutex);
3589        list_for_each_entry(rdev, &regulator_list, list) {
3590                struct regulator_ops *ops = rdev->desc->ops;
3591
3592                mutex_lock(&rdev->mutex);
3593                if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3594                                ops->enable) {
3595                        error = ops->enable(rdev);
3596                        if (error)
3597                                ret = error;
3598                } else {
3599                        if (!has_full_constraints)
3600                                goto unlock;
3601                        if (!ops->disable)
3602                                goto unlock;
3603                        if (!_regulator_is_enabled(rdev))
3604                                goto unlock;
3605
3606                        error = ops->disable(rdev);
3607                        if (error)
3608                                ret = error;
3609                }
3610unlock:
3611                mutex_unlock(&rdev->mutex);
3612        }
3613        mutex_unlock(&regulator_list_mutex);
3614        return ret;
3615}
3616EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3617
3618/**
3619 * regulator_has_full_constraints - the system has fully specified constraints
3620 *
3621 * Calling this function will cause the regulator API to disable all
3622 * regulators which have a zero use count and don't have an always_on
3623 * constraint in a late_initcall.
3624 *
3625 * The intention is that this will become the default behaviour in a
3626 * future kernel release so users are encouraged to use this facility
3627 * now.
3628 */
3629void regulator_has_full_constraints(void)
3630{
3631        has_full_constraints = 1;
3632}
3633EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3634
3635/**
3636 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3637 *
3638 * Calling this function will cause the regulator API to provide a
3639 * dummy regulator to consumers if no physical regulator is found,
3640 * allowing most consumers to proceed as though a regulator were
3641 * configured.  This allows systems such as those with software
3642 * controllable regulators for the CPU core only to be brought up more
3643 * readily.
3644 */
3645void regulator_use_dummy_regulator(void)
3646{
3647        board_wants_dummy_regulator = true;
3648}
3649EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3650
3651/**
3652 * rdev_get_drvdata - get rdev regulator driver data
3653 * @rdev: regulator
3654 *
3655 * Get rdev regulator driver private data. This call can be used in the
3656 * regulator driver context.
3657 */
3658void *rdev_get_drvdata(struct regulator_dev *rdev)
3659{
3660        return rdev->reg_data;
3661}
3662EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3663
3664/**
3665 * regulator_get_drvdata - get regulator driver data
3666 * @regulator: regulator
3667 *
3668 * Get regulator driver private data. This call can be used in the consumer
3669 * driver context when non API regulator specific functions need to be called.
3670 */
3671void *regulator_get_drvdata(struct regulator *regulator)
3672{
3673        return regulator->rdev->reg_data;
3674}
3675EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3676
3677/**
3678 * regulator_set_drvdata - set regulator driver data
3679 * @regulator: regulator
3680 * @data: data
3681 */
3682void regulator_set_drvdata(struct regulator *regulator, void *data)
3683{
3684        regulator->rdev->reg_data = data;
3685}
3686EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3687
3688/**
3689 * regulator_get_id - get regulator ID
3690 * @rdev: regulator
3691 */
3692int rdev_get_id(struct regulator_dev *rdev)
3693{
3694        return rdev->desc->id;
3695}
3696EXPORT_SYMBOL_GPL(rdev_get_id);
3697
3698struct device *rdev_get_dev(struct regulator_dev *rdev)
3699{
3700        return &rdev->dev;
3701}
3702EXPORT_SYMBOL_GPL(rdev_get_dev);
3703
3704void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3705{
3706        return reg_init_data->driver_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3709
3710#ifdef CONFIG_DEBUG_FS
3711static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3712                                    size_t count, loff_t *ppos)
3713{
3714        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3715        ssize_t len, ret = 0;
3716        struct regulator_map *map;
3717
3718        if (!buf)
3719                return -ENOMEM;
3720
3721        list_for_each_entry(map, &regulator_map_list, list) {
3722                len = snprintf(buf + ret, PAGE_SIZE - ret,
3723                               "%s -> %s.%s\n",
3724                               rdev_get_name(map->regulator), map->dev_name,
3725                               map->supply);
3726                if (len >= 0)
3727                        ret += len;
3728                if (ret > PAGE_SIZE) {
3729                        ret = PAGE_SIZE;
3730                        break;
3731                }
3732        }
3733
3734        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3735
3736        kfree(buf);
3737
3738        return ret;
3739}
3740#endif
3741
3742static const struct file_operations supply_map_fops = {
3743#ifdef CONFIG_DEBUG_FS
3744        .read = supply_map_read_file,
3745        .llseek = default_llseek,
3746#endif
3747};
3748
3749static int __init regulator_init(void)
3750{
3751        int ret;
3752
3753        ret = class_register(&regulator_class);
3754
3755        debugfs_root = debugfs_create_dir("regulator", NULL);
3756        if (!debugfs_root)
3757                pr_warn("regulator: Failed to create debugfs directory\n");
3758
3759        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3760                            &supply_map_fops);
3761
3762        regulator_dummy_init();
3763
3764        return ret;
3765}
3766
3767/* init early to allow our consumers to complete system booting */
3768core_initcall(regulator_init);
3769
3770static int __init regulator_init_complete(void)
3771{
3772        struct regulator_dev *rdev;
3773        struct regulator_ops *ops;
3774        struct regulation_constraints *c;
3775        int enabled, ret;
3776
3777        /*
3778         * Since DT doesn't provide an idiomatic mechanism for
3779         * enabling full constraints and since it's much more natural
3780         * with DT to provide them just assume that a DT enabled
3781         * system has full constraints.
3782         */
3783        if (of_have_populated_dt())
3784                has_full_constraints = true;
3785
3786        mutex_lock(&regulator_list_mutex);
3787
3788        /* If we have a full configuration then disable any regulators
3789         * which are not in use or always_on.  This will become the
3790         * default behaviour in the future.
3791         */
3792        list_for_each_entry(rdev, &regulator_list, list) {
3793                ops = rdev->desc->ops;
3794                c = rdev->constraints;
3795
3796                if (!ops->disable || (c && c->always_on))
3797                        continue;
3798
3799                mutex_lock(&rdev->mutex);
3800
3801                if (rdev->use_count)
3802                        goto unlock;
3803
3804                /* If we can't read the status assume it's on. */
3805                if (ops->is_enabled)
3806                        enabled = ops->is_enabled(rdev);
3807                else
3808                        enabled = 1;
3809
3810                if (!enabled)
3811                        goto unlock;
3812
3813                if (has_full_constraints) {
3814                        /* We log since this may kill the system if it
3815                         * goes wrong. */
3816                        rdev_info(rdev, "disabling\n");
3817                        ret = ops->disable(rdev);
3818                        if (ret != 0) {
3819                                rdev_err(rdev, "couldn't disable: %d\n", ret);
3820                        }
3821                } else {
3822                        /* The intention is that in future we will
3823                         * assume that full constraints are provided
3824                         * so warn even if we aren't going to do
3825                         * anything here.
3826                         */
3827                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
3828                }
3829
3830unlock:
3831                mutex_unlock(&rdev->mutex);
3832        }
3833
3834        mutex_unlock(&regulator_list_mutex);
3835
3836        return 0;
3837}
3838late_initcall(regulator_init_complete);
3839
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.