linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70#include <linux/platform_device.h>
  71
  72#include "libata.h"
  73#include "libata-transport.h"
  74
  75/* debounce timing parameters in msecs { interval, duration, timeout } */
  76const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  77const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  78const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  79
  80const struct ata_port_operations ata_base_port_ops = {
  81        .prereset               = ata_std_prereset,
  82        .postreset              = ata_std_postreset,
  83        .error_handler          = ata_std_error_handler,
  84        .sched_eh               = ata_std_sched_eh,
  85        .end_eh                 = ata_std_end_eh,
  86};
  87
  88const struct ata_port_operations sata_port_ops = {
  89        .inherits               = &ata_base_port_ops,
  90
  91        .qc_defer               = ata_std_qc_defer,
  92        .hardreset              = sata_std_hardreset,
  93};
  94
  95static unsigned int ata_dev_init_params(struct ata_device *dev,
  96                                        u16 heads, u16 sectors);
  97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  98static void ata_dev_xfermask(struct ata_device *dev);
  99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 100
 101atomic_t ata_print_id = ATOMIC_INIT(0);
 102
 103struct ata_force_param {
 104        const char      *name;
 105        unsigned int    cbl;
 106        int             spd_limit;
 107        unsigned long   xfer_mask;
 108        unsigned int    horkage_on;
 109        unsigned int    horkage_off;
 110        unsigned int    lflags;
 111};
 112
 113struct ata_force_ent {
 114        int                     port;
 115        int                     device;
 116        struct ata_force_param  param;
 117};
 118
 119static struct ata_force_ent *ata_force_tbl;
 120static int ata_force_tbl_size;
 121
 122static char ata_force_param_buf[PAGE_SIZE] __initdata;
 123/* param_buf is thrown away after initialization, disallow read */
 124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 126
 127static int atapi_enabled = 1;
 128module_param(atapi_enabled, int, 0444);
 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 130
 131static int atapi_dmadir = 0;
 132module_param(atapi_dmadir, int, 0444);
 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 134
 135int atapi_passthru16 = 1;
 136module_param(atapi_passthru16, int, 0444);
 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 138
 139int libata_fua = 0;
 140module_param_named(fua, libata_fua, int, 0444);
 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 142
 143static int ata_ignore_hpa;
 144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 146
 147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 148module_param_named(dma, libata_dma_mask, int, 0444);
 149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 150
 151static int ata_probe_timeout;
 152module_param(ata_probe_timeout, int, 0444);
 153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 154
 155int libata_noacpi = 0;
 156module_param_named(noacpi, libata_noacpi, int, 0444);
 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 158
 159int libata_allow_tpm = 0;
 160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 162
 163static int atapi_an;
 164module_param(atapi_an, int, 0444);
 165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 166
 167MODULE_AUTHOR("Jeff Garzik");
 168MODULE_DESCRIPTION("Library module for ATA devices");
 169MODULE_LICENSE("GPL");
 170MODULE_VERSION(DRV_VERSION);
 171
 172
 173static bool ata_sstatus_online(u32 sstatus)
 174{
 175        return (sstatus & 0xf) == 0x3;
 176}
 177
 178/**
 179 *      ata_link_next - link iteration helper
 180 *      @link: the previous link, NULL to start
 181 *      @ap: ATA port containing links to iterate
 182 *      @mode: iteration mode, one of ATA_LITER_*
 183 *
 184 *      LOCKING:
 185 *      Host lock or EH context.
 186 *
 187 *      RETURNS:
 188 *      Pointer to the next link.
 189 */
 190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 191                               enum ata_link_iter_mode mode)
 192{
 193        BUG_ON(mode != ATA_LITER_EDGE &&
 194               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 195
 196        /* NULL link indicates start of iteration */
 197        if (!link)
 198                switch (mode) {
 199                case ATA_LITER_EDGE:
 200                case ATA_LITER_PMP_FIRST:
 201                        if (sata_pmp_attached(ap))
 202                                return ap->pmp_link;
 203                        /* fall through */
 204                case ATA_LITER_HOST_FIRST:
 205                        return &ap->link;
 206                }
 207
 208        /* we just iterated over the host link, what's next? */
 209        if (link == &ap->link)
 210                switch (mode) {
 211                case ATA_LITER_HOST_FIRST:
 212                        if (sata_pmp_attached(ap))
 213                                return ap->pmp_link;
 214                        /* fall through */
 215                case ATA_LITER_PMP_FIRST:
 216                        if (unlikely(ap->slave_link))
 217                                return ap->slave_link;
 218                        /* fall through */
 219                case ATA_LITER_EDGE:
 220                        return NULL;
 221                }
 222
 223        /* slave_link excludes PMP */
 224        if (unlikely(link == ap->slave_link))
 225                return NULL;
 226
 227        /* we were over a PMP link */
 228        if (++link < ap->pmp_link + ap->nr_pmp_links)
 229                return link;
 230
 231        if (mode == ATA_LITER_PMP_FIRST)
 232                return &ap->link;
 233
 234        return NULL;
 235}
 236
 237/**
 238 *      ata_dev_next - device iteration helper
 239 *      @dev: the previous device, NULL to start
 240 *      @link: ATA link containing devices to iterate
 241 *      @mode: iteration mode, one of ATA_DITER_*
 242 *
 243 *      LOCKING:
 244 *      Host lock or EH context.
 245 *
 246 *      RETURNS:
 247 *      Pointer to the next device.
 248 */
 249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 250                                enum ata_dev_iter_mode mode)
 251{
 252        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 253               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 254
 255        /* NULL dev indicates start of iteration */
 256        if (!dev)
 257                switch (mode) {
 258                case ATA_DITER_ENABLED:
 259                case ATA_DITER_ALL:
 260                        dev = link->device;
 261                        goto check;
 262                case ATA_DITER_ENABLED_REVERSE:
 263                case ATA_DITER_ALL_REVERSE:
 264                        dev = link->device + ata_link_max_devices(link) - 1;
 265                        goto check;
 266                }
 267
 268 next:
 269        /* move to the next one */
 270        switch (mode) {
 271        case ATA_DITER_ENABLED:
 272        case ATA_DITER_ALL:
 273                if (++dev < link->device + ata_link_max_devices(link))
 274                        goto check;
 275                return NULL;
 276        case ATA_DITER_ENABLED_REVERSE:
 277        case ATA_DITER_ALL_REVERSE:
 278                if (--dev >= link->device)
 279                        goto check;
 280                return NULL;
 281        }
 282
 283 check:
 284        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 285            !ata_dev_enabled(dev))
 286                goto next;
 287        return dev;
 288}
 289
 290/**
 291 *      ata_dev_phys_link - find physical link for a device
 292 *      @dev: ATA device to look up physical link for
 293 *
 294 *      Look up physical link which @dev is attached to.  Note that
 295 *      this is different from @dev->link only when @dev is on slave
 296 *      link.  For all other cases, it's the same as @dev->link.
 297 *
 298 *      LOCKING:
 299 *      Don't care.
 300 *
 301 *      RETURNS:
 302 *      Pointer to the found physical link.
 303 */
 304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 305{
 306        struct ata_port *ap = dev->link->ap;
 307
 308        if (!ap->slave_link)
 309                return dev->link;
 310        if (!dev->devno)
 311                return &ap->link;
 312        return ap->slave_link;
 313}
 314
 315/**
 316 *      ata_force_cbl - force cable type according to libata.force
 317 *      @ap: ATA port of interest
 318 *
 319 *      Force cable type according to libata.force and whine about it.
 320 *      The last entry which has matching port number is used, so it
 321 *      can be specified as part of device force parameters.  For
 322 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 323 *      same effect.
 324 *
 325 *      LOCKING:
 326 *      EH context.
 327 */
 328void ata_force_cbl(struct ata_port *ap)
 329{
 330        int i;
 331
 332        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 333                const struct ata_force_ent *fe = &ata_force_tbl[i];
 334
 335                if (fe->port != -1 && fe->port != ap->print_id)
 336                        continue;
 337
 338                if (fe->param.cbl == ATA_CBL_NONE)
 339                        continue;
 340
 341                ap->cbl = fe->param.cbl;
 342                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 343                return;
 344        }
 345}
 346
 347/**
 348 *      ata_force_link_limits - force link limits according to libata.force
 349 *      @link: ATA link of interest
 350 *
 351 *      Force link flags and SATA spd limit according to libata.force
 352 *      and whine about it.  When only the port part is specified
 353 *      (e.g. 1:), the limit applies to all links connected to both
 354 *      the host link and all fan-out ports connected via PMP.  If the
 355 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 356 *      first fan-out link not the host link.  Device number 15 always
 357 *      points to the host link whether PMP is attached or not.  If the
 358 *      controller has slave link, device number 16 points to it.
 359 *
 360 *      LOCKING:
 361 *      EH context.
 362 */
 363static void ata_force_link_limits(struct ata_link *link)
 364{
 365        bool did_spd = false;
 366        int linkno = link->pmp;
 367        int i;
 368
 369        if (ata_is_host_link(link))
 370                linkno += 15;
 371
 372        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 373                const struct ata_force_ent *fe = &ata_force_tbl[i];
 374
 375                if (fe->port != -1 && fe->port != link->ap->print_id)
 376                        continue;
 377
 378                if (fe->device != -1 && fe->device != linkno)
 379                        continue;
 380
 381                /* only honor the first spd limit */
 382                if (!did_spd && fe->param.spd_limit) {
 383                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 384                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 385                                        fe->param.name);
 386                        did_spd = true;
 387                }
 388
 389                /* let lflags stack */
 390                if (fe->param.lflags) {
 391                        link->flags |= fe->param.lflags;
 392                        ata_link_notice(link,
 393                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 394                                        fe->param.lflags, link->flags);
 395                }
 396        }
 397}
 398
 399/**
 400 *      ata_force_xfermask - force xfermask according to libata.force
 401 *      @dev: ATA device of interest
 402 *
 403 *      Force xfer_mask according to libata.force and whine about it.
 404 *      For consistency with link selection, device number 15 selects
 405 *      the first device connected to the host link.
 406 *
 407 *      LOCKING:
 408 *      EH context.
 409 */
 410static void ata_force_xfermask(struct ata_device *dev)
 411{
 412        int devno = dev->link->pmp + dev->devno;
 413        int alt_devno = devno;
 414        int i;
 415
 416        /* allow n.15/16 for devices attached to host port */
 417        if (ata_is_host_link(dev->link))
 418                alt_devno += 15;
 419
 420        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 421                const struct ata_force_ent *fe = &ata_force_tbl[i];
 422                unsigned long pio_mask, mwdma_mask, udma_mask;
 423
 424                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 425                        continue;
 426
 427                if (fe->device != -1 && fe->device != devno &&
 428                    fe->device != alt_devno)
 429                        continue;
 430
 431                if (!fe->param.xfer_mask)
 432                        continue;
 433
 434                ata_unpack_xfermask(fe->param.xfer_mask,
 435                                    &pio_mask, &mwdma_mask, &udma_mask);
 436                if (udma_mask)
 437                        dev->udma_mask = udma_mask;
 438                else if (mwdma_mask) {
 439                        dev->udma_mask = 0;
 440                        dev->mwdma_mask = mwdma_mask;
 441                } else {
 442                        dev->udma_mask = 0;
 443                        dev->mwdma_mask = 0;
 444                        dev->pio_mask = pio_mask;
 445                }
 446
 447                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 448                               fe->param.name);
 449                return;
 450        }
 451}
 452
 453/**
 454 *      ata_force_horkage - force horkage according to libata.force
 455 *      @dev: ATA device of interest
 456 *
 457 *      Force horkage according to libata.force and whine about it.
 458 *      For consistency with link selection, device number 15 selects
 459 *      the first device connected to the host link.
 460 *
 461 *      LOCKING:
 462 *      EH context.
 463 */
 464static void ata_force_horkage(struct ata_device *dev)
 465{
 466        int devno = dev->link->pmp + dev->devno;
 467        int alt_devno = devno;
 468        int i;
 469
 470        /* allow n.15/16 for devices attached to host port */
 471        if (ata_is_host_link(dev->link))
 472                alt_devno += 15;
 473
 474        for (i = 0; i < ata_force_tbl_size; i++) {
 475                const struct ata_force_ent *fe = &ata_force_tbl[i];
 476
 477                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 478                        continue;
 479
 480                if (fe->device != -1 && fe->device != devno &&
 481                    fe->device != alt_devno)
 482                        continue;
 483
 484                if (!(~dev->horkage & fe->param.horkage_on) &&
 485                    !(dev->horkage & fe->param.horkage_off))
 486                        continue;
 487
 488                dev->horkage |= fe->param.horkage_on;
 489                dev->horkage &= ~fe->param.horkage_off;
 490
 491                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 492                               fe->param.name);
 493        }
 494}
 495
 496/**
 497 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 498 *      @opcode: SCSI opcode
 499 *
 500 *      Determine ATAPI command type from @opcode.
 501 *
 502 *      LOCKING:
 503 *      None.
 504 *
 505 *      RETURNS:
 506 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 507 */
 508int atapi_cmd_type(u8 opcode)
 509{
 510        switch (opcode) {
 511        case GPCMD_READ_10:
 512        case GPCMD_READ_12:
 513                return ATAPI_READ;
 514
 515        case GPCMD_WRITE_10:
 516        case GPCMD_WRITE_12:
 517        case GPCMD_WRITE_AND_VERIFY_10:
 518                return ATAPI_WRITE;
 519
 520        case GPCMD_READ_CD:
 521        case GPCMD_READ_CD_MSF:
 522                return ATAPI_READ_CD;
 523
 524        case ATA_16:
 525        case ATA_12:
 526                if (atapi_passthru16)
 527                        return ATAPI_PASS_THRU;
 528                /* fall thru */
 529        default:
 530                return ATAPI_MISC;
 531        }
 532}
 533
 534/**
 535 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 536 *      @tf: Taskfile to convert
 537 *      @pmp: Port multiplier port
 538 *      @is_cmd: This FIS is for command
 539 *      @fis: Buffer into which data will output
 540 *
 541 *      Converts a standard ATA taskfile to a Serial ATA
 542 *      FIS structure (Register - Host to Device).
 543 *
 544 *      LOCKING:
 545 *      Inherited from caller.
 546 */
 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 548{
 549        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 550        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 551        if (is_cmd)
 552                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 553
 554        fis[2] = tf->command;
 555        fis[3] = tf->feature;
 556
 557        fis[4] = tf->lbal;
 558        fis[5] = tf->lbam;
 559        fis[6] = tf->lbah;
 560        fis[7] = tf->device;
 561
 562        fis[8] = tf->hob_lbal;
 563        fis[9] = tf->hob_lbam;
 564        fis[10] = tf->hob_lbah;
 565        fis[11] = tf->hob_feature;
 566
 567        fis[12] = tf->nsect;
 568        fis[13] = tf->hob_nsect;
 569        fis[14] = 0;
 570        fis[15] = tf->ctl;
 571
 572        fis[16] = 0;
 573        fis[17] = 0;
 574        fis[18] = 0;
 575        fis[19] = 0;
 576}
 577
 578/**
 579 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 580 *      @fis: Buffer from which data will be input
 581 *      @tf: Taskfile to output
 582 *
 583 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 584 *
 585 *      LOCKING:
 586 *      Inherited from caller.
 587 */
 588
 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 590{
 591        tf->command     = fis[2];       /* status */
 592        tf->feature     = fis[3];       /* error */
 593
 594        tf->lbal        = fis[4];
 595        tf->lbam        = fis[5];
 596        tf->lbah        = fis[6];
 597        tf->device      = fis[7];
 598
 599        tf->hob_lbal    = fis[8];
 600        tf->hob_lbam    = fis[9];
 601        tf->hob_lbah    = fis[10];
 602
 603        tf->nsect       = fis[12];
 604        tf->hob_nsect   = fis[13];
 605}
 606
 607static const u8 ata_rw_cmds[] = {
 608        /* pio multi */
 609        ATA_CMD_READ_MULTI,
 610        ATA_CMD_WRITE_MULTI,
 611        ATA_CMD_READ_MULTI_EXT,
 612        ATA_CMD_WRITE_MULTI_EXT,
 613        0,
 614        0,
 615        0,
 616        ATA_CMD_WRITE_MULTI_FUA_EXT,
 617        /* pio */
 618        ATA_CMD_PIO_READ,
 619        ATA_CMD_PIO_WRITE,
 620        ATA_CMD_PIO_READ_EXT,
 621        ATA_CMD_PIO_WRITE_EXT,
 622        0,
 623        0,
 624        0,
 625        0,
 626        /* dma */
 627        ATA_CMD_READ,
 628        ATA_CMD_WRITE,
 629        ATA_CMD_READ_EXT,
 630        ATA_CMD_WRITE_EXT,
 631        0,
 632        0,
 633        0,
 634        ATA_CMD_WRITE_FUA_EXT
 635};
 636
 637/**
 638 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 639 *      @tf: command to examine and configure
 640 *      @dev: device tf belongs to
 641 *
 642 *      Examine the device configuration and tf->flags to calculate
 643 *      the proper read/write commands and protocol to use.
 644 *
 645 *      LOCKING:
 646 *      caller.
 647 */
 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 649{
 650        u8 cmd;
 651
 652        int index, fua, lba48, write;
 653
 654        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 655        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 656        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 657
 658        if (dev->flags & ATA_DFLAG_PIO) {
 659                tf->protocol = ATA_PROT_PIO;
 660                index = dev->multi_count ? 0 : 8;
 661        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 662                /* Unable to use DMA due to host limitation */
 663                tf->protocol = ATA_PROT_PIO;
 664                index = dev->multi_count ? 0 : 8;
 665        } else {
 666                tf->protocol = ATA_PROT_DMA;
 667                index = 16;
 668        }
 669
 670        cmd = ata_rw_cmds[index + fua + lba48 + write];
 671        if (cmd) {
 672                tf->command = cmd;
 673                return 0;
 674        }
 675        return -1;
 676}
 677
 678/**
 679 *      ata_tf_read_block - Read block address from ATA taskfile
 680 *      @tf: ATA taskfile of interest
 681 *      @dev: ATA device @tf belongs to
 682 *
 683 *      LOCKING:
 684 *      None.
 685 *
 686 *      Read block address from @tf.  This function can handle all
 687 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 688 *      flags select the address format to use.
 689 *
 690 *      RETURNS:
 691 *      Block address read from @tf.
 692 */
 693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 694{
 695        u64 block = 0;
 696
 697        if (tf->flags & ATA_TFLAG_LBA) {
 698                if (tf->flags & ATA_TFLAG_LBA48) {
 699                        block |= (u64)tf->hob_lbah << 40;
 700                        block |= (u64)tf->hob_lbam << 32;
 701                        block |= (u64)tf->hob_lbal << 24;
 702                } else
 703                        block |= (tf->device & 0xf) << 24;
 704
 705                block |= tf->lbah << 16;
 706                block |= tf->lbam << 8;
 707                block |= tf->lbal;
 708        } else {
 709                u32 cyl, head, sect;
 710
 711                cyl = tf->lbam | (tf->lbah << 8);
 712                head = tf->device & 0xf;
 713                sect = tf->lbal;
 714
 715                if (!sect) {
 716                        ata_dev_warn(dev,
 717                                     "device reported invalid CHS sector 0\n");
 718                        sect = 1; /* oh well */
 719                }
 720
 721                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 722        }
 723
 724        return block;
 725}
 726
 727/**
 728 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 729 *      @tf: Target ATA taskfile
 730 *      @dev: ATA device @tf belongs to
 731 *      @block: Block address
 732 *      @n_block: Number of blocks
 733 *      @tf_flags: RW/FUA etc...
 734 *      @tag: tag
 735 *
 736 *      LOCKING:
 737 *      None.
 738 *
 739 *      Build ATA taskfile @tf for read/write request described by
 740 *      @block, @n_block, @tf_flags and @tag on @dev.
 741 *
 742 *      RETURNS:
 743 *
 744 *      0 on success, -ERANGE if the request is too large for @dev,
 745 *      -EINVAL if the request is invalid.
 746 */
 747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 748                    u64 block, u32 n_block, unsigned int tf_flags,
 749                    unsigned int tag)
 750{
 751        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 752        tf->flags |= tf_flags;
 753
 754        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 755                /* yay, NCQ */
 756                if (!lba_48_ok(block, n_block))
 757                        return -ERANGE;
 758
 759                tf->protocol = ATA_PROT_NCQ;
 760                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 761
 762                if (tf->flags & ATA_TFLAG_WRITE)
 763                        tf->command = ATA_CMD_FPDMA_WRITE;
 764                else
 765                        tf->command = ATA_CMD_FPDMA_READ;
 766
 767                tf->nsect = tag << 3;
 768                tf->hob_feature = (n_block >> 8) & 0xff;
 769                tf->feature = n_block & 0xff;
 770
 771                tf->hob_lbah = (block >> 40) & 0xff;
 772                tf->hob_lbam = (block >> 32) & 0xff;
 773                tf->hob_lbal = (block >> 24) & 0xff;
 774                tf->lbah = (block >> 16) & 0xff;
 775                tf->lbam = (block >> 8) & 0xff;
 776                tf->lbal = block & 0xff;
 777
 778                tf->device = ATA_LBA;
 779                if (tf->flags & ATA_TFLAG_FUA)
 780                        tf->device |= 1 << 7;
 781        } else if (dev->flags & ATA_DFLAG_LBA) {
 782                tf->flags |= ATA_TFLAG_LBA;
 783
 784                if (lba_28_ok(block, n_block)) {
 785                        /* use LBA28 */
 786                        tf->device |= (block >> 24) & 0xf;
 787                } else if (lba_48_ok(block, n_block)) {
 788                        if (!(dev->flags & ATA_DFLAG_LBA48))
 789                                return -ERANGE;
 790
 791                        /* use LBA48 */
 792                        tf->flags |= ATA_TFLAG_LBA48;
 793
 794                        tf->hob_nsect = (n_block >> 8) & 0xff;
 795
 796                        tf->hob_lbah = (block >> 40) & 0xff;
 797                        tf->hob_lbam = (block >> 32) & 0xff;
 798                        tf->hob_lbal = (block >> 24) & 0xff;
 799                } else
 800                        /* request too large even for LBA48 */
 801                        return -ERANGE;
 802
 803                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 804                        return -EINVAL;
 805
 806                tf->nsect = n_block & 0xff;
 807
 808                tf->lbah = (block >> 16) & 0xff;
 809                tf->lbam = (block >> 8) & 0xff;
 810                tf->lbal = block & 0xff;
 811
 812                tf->device |= ATA_LBA;
 813        } else {
 814                /* CHS */
 815                u32 sect, head, cyl, track;
 816
 817                /* The request -may- be too large for CHS addressing. */
 818                if (!lba_28_ok(block, n_block))
 819                        return -ERANGE;
 820
 821                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 822                        return -EINVAL;
 823
 824                /* Convert LBA to CHS */
 825                track = (u32)block / dev->sectors;
 826                cyl   = track / dev->heads;
 827                head  = track % dev->heads;
 828                sect  = (u32)block % dev->sectors + 1;
 829
 830                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 831                        (u32)block, track, cyl, head, sect);
 832
 833                /* Check whether the converted CHS can fit.
 834                   Cylinder: 0-65535
 835                   Head: 0-15
 836                   Sector: 1-255*/
 837                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 838                        return -ERANGE;
 839
 840                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 841                tf->lbal = sect;
 842                tf->lbam = cyl;
 843                tf->lbah = cyl >> 8;
 844                tf->device |= head;
 845        }
 846
 847        return 0;
 848}
 849
 850/**
 851 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 852 *      @pio_mask: pio_mask
 853 *      @mwdma_mask: mwdma_mask
 854 *      @udma_mask: udma_mask
 855 *
 856 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 857 *      unsigned int xfer_mask.
 858 *
 859 *      LOCKING:
 860 *      None.
 861 *
 862 *      RETURNS:
 863 *      Packed xfer_mask.
 864 */
 865unsigned long ata_pack_xfermask(unsigned long pio_mask,
 866                                unsigned long mwdma_mask,
 867                                unsigned long udma_mask)
 868{
 869        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 870                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 871                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 872}
 873
 874/**
 875 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 876 *      @xfer_mask: xfer_mask to unpack
 877 *      @pio_mask: resulting pio_mask
 878 *      @mwdma_mask: resulting mwdma_mask
 879 *      @udma_mask: resulting udma_mask
 880 *
 881 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 882 *      Any NULL distination masks will be ignored.
 883 */
 884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 885                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 886{
 887        if (pio_mask)
 888                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 889        if (mwdma_mask)
 890                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 891        if (udma_mask)
 892                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 893}
 894
 895static const struct ata_xfer_ent {
 896        int shift, bits;
 897        u8 base;
 898} ata_xfer_tbl[] = {
 899        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 900        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 901        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 902        { -1, },
 903};
 904
 905/**
 906 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 907 *      @xfer_mask: xfer_mask of interest
 908 *
 909 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 910 *      bit of @xfer_mask is considered.
 911 *
 912 *      LOCKING:
 913 *      None.
 914 *
 915 *      RETURNS:
 916 *      Matching XFER_* value, 0xff if no match found.
 917 */
 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 919{
 920        int highbit = fls(xfer_mask) - 1;
 921        const struct ata_xfer_ent *ent;
 922
 923        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 924                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 925                        return ent->base + highbit - ent->shift;
 926        return 0xff;
 927}
 928
 929/**
 930 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 931 *      @xfer_mode: XFER_* of interest
 932 *
 933 *      Return matching xfer_mask for @xfer_mode.
 934 *
 935 *      LOCKING:
 936 *      None.
 937 *
 938 *      RETURNS:
 939 *      Matching xfer_mask, 0 if no match found.
 940 */
 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 942{
 943        const struct ata_xfer_ent *ent;
 944
 945        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 946                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 947                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 948                                & ~((1 << ent->shift) - 1);
 949        return 0;
 950}
 951
 952/**
 953 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 954 *      @xfer_mode: XFER_* of interest
 955 *
 956 *      Return matching xfer_shift for @xfer_mode.
 957 *
 958 *      LOCKING:
 959 *      None.
 960 *
 961 *      RETURNS:
 962 *      Matching xfer_shift, -1 if no match found.
 963 */
 964int ata_xfer_mode2shift(unsigned long xfer_mode)
 965{
 966        const struct ata_xfer_ent *ent;
 967
 968        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 969                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 970                        return ent->shift;
 971        return -1;
 972}
 973
 974/**
 975 *      ata_mode_string - convert xfer_mask to string
 976 *      @xfer_mask: mask of bits supported; only highest bit counts.
 977 *
 978 *      Determine string which represents the highest speed
 979 *      (highest bit in @modemask).
 980 *
 981 *      LOCKING:
 982 *      None.
 983 *
 984 *      RETURNS:
 985 *      Constant C string representing highest speed listed in
 986 *      @mode_mask, or the constant C string "<n/a>".
 987 */
 988const char *ata_mode_string(unsigned long xfer_mask)
 989{
 990        static const char * const xfer_mode_str[] = {
 991                "PIO0",
 992                "PIO1",
 993                "PIO2",
 994                "PIO3",
 995                "PIO4",
 996                "PIO5",
 997                "PIO6",
 998                "MWDMA0",
 999                "MWDMA1",
1000                "MWDMA2",
1001                "MWDMA3",
1002                "MWDMA4",
1003                "UDMA/16",
1004                "UDMA/25",
1005                "UDMA/33",
1006                "UDMA/44",
1007                "UDMA/66",
1008                "UDMA/100",
1009                "UDMA/133",
1010                "UDMA7",
1011        };
1012        int highbit;
1013
1014        highbit = fls(xfer_mask) - 1;
1015        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016                return xfer_mode_str[highbit];
1017        return "<n/a>";
1018}
1019
1020const char *sata_spd_string(unsigned int spd)
1021{
1022        static const char * const spd_str[] = {
1023                "1.5 Gbps",
1024                "3.0 Gbps",
1025                "6.0 Gbps",
1026        };
1027
1028        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029                return "<unknown>";
1030        return spd_str[spd - 1];
1031}
1032
1033/**
1034 *      ata_dev_classify - determine device type based on ATA-spec signature
1035 *      @tf: ATA taskfile register set for device to be identified
1036 *
1037 *      Determine from taskfile register contents whether a device is
1038 *      ATA or ATAPI, as per "Signature and persistence" section
1039 *      of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 *      LOCKING:
1042 *      None.
1043 *
1044 *      RETURNS:
1045 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 *      %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049{
1050        /* Apple's open source Darwin code hints that some devices only
1051         * put a proper signature into the LBA mid/high registers,
1052         * So, we only check those.  It's sufficient for uniqueness.
1053         *
1054         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055         * signatures for ATA and ATAPI devices attached on SerialATA,
1056         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057         * spec has never mentioned about using different signatures
1058         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059         * Multiplier specification began to use 0x69/0x96 to identify
1060         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062         * 0x69/0x96 shortly and described them as reserved for
1063         * SerialATA.
1064         *
1065         * We follow the current spec and consider that 0x69/0x96
1066         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068         * SEMB signature.  This is worked around in
1069         * ata_dev_read_id().
1070         */
1071        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072                DPRINTK("found ATA device by sig\n");
1073                return ATA_DEV_ATA;
1074        }
1075
1076        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077                DPRINTK("found ATAPI device by sig\n");
1078                return ATA_DEV_ATAPI;
1079        }
1080
1081        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082                DPRINTK("found PMP device by sig\n");
1083                return ATA_DEV_PMP;
1084        }
1085
1086        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088                return ATA_DEV_SEMB;
1089        }
1090
1091        DPRINTK("unknown device\n");
1092        return ATA_DEV_UNKNOWN;
1093}
1094
1095/**
1096 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1097 *      @id: IDENTIFY DEVICE results we will examine
1098 *      @s: string into which data is output
1099 *      @ofs: offset into identify device page
1100 *      @len: length of string to return. must be an even number.
1101 *
1102 *      The strings in the IDENTIFY DEVICE page are broken up into
1103 *      16-bit chunks.  Run through the string, and output each
1104 *      8-bit chunk linearly, regardless of platform.
1105 *
1106 *      LOCKING:
1107 *      caller.
1108 */
1109
1110void ata_id_string(const u16 *id, unsigned char *s,
1111                   unsigned int ofs, unsigned int len)
1112{
1113        unsigned int c;
1114
1115        BUG_ON(len & 1);
1116
1117        while (len > 0) {
1118                c = id[ofs] >> 8;
1119                *s = c;
1120                s++;
1121
1122                c = id[ofs] & 0xff;
1123                *s = c;
1124                s++;
1125
1126                ofs++;
1127                len -= 2;
1128        }
1129}
1130
1131/**
1132 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 *      @id: IDENTIFY DEVICE results we will examine
1134 *      @s: string into which data is output
1135 *      @ofs: offset into identify device page
1136 *      @len: length of string to return. must be an odd number.
1137 *
1138 *      This function is identical to ata_id_string except that it
1139 *      trims trailing spaces and terminates the resulting string with
1140 *      null.  @len must be actual maximum length (even number) + 1.
1141 *
1142 *      LOCKING:
1143 *      caller.
1144 */
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146                     unsigned int ofs, unsigned int len)
1147{
1148        unsigned char *p;
1149
1150        ata_id_string(id, s, ofs, len - 1);
1151
1152        p = s + strnlen(s, len - 1);
1153        while (p > s && p[-1] == ' ')
1154                p--;
1155        *p = '\0';
1156}
1157
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160        if (ata_id_has_lba(id)) {
1161                if (ata_id_has_lba48(id))
1162                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163                else
1164                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165        } else {
1166                if (ata_id_current_chs_valid(id))
1167                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168                               id[ATA_ID_CUR_SECTORS];
1169                else
1170                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171                               id[ATA_ID_SECTORS];
1172        }
1173}
1174
1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176{
1177        u64 sectors = 0;
1178
1179        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182        sectors |= (tf->lbah & 0xff) << 16;
1183        sectors |= (tf->lbam & 0xff) << 8;
1184        sectors |= (tf->lbal & 0xff);
1185
1186        return sectors;
1187}
1188
1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190{
1191        u64 sectors = 0;
1192
1193        sectors |= (tf->device & 0x0f) << 24;
1194        sectors |= (tf->lbah & 0xff) << 16;
1195        sectors |= (tf->lbam & 0xff) << 8;
1196        sectors |= (tf->lbal & 0xff);
1197
1198        return sectors;
1199}
1200
1201/**
1202 *      ata_read_native_max_address - Read native max address
1203 *      @dev: target device
1204 *      @max_sectors: out parameter for the result native max address
1205 *
1206 *      Perform an LBA48 or LBA28 native size query upon the device in
1207 *      question.
1208 *
1209 *      RETURNS:
1210 *      0 on success, -EACCES if command is aborted by the drive.
1211 *      -EIO on other errors.
1212 */
1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214{
1215        unsigned int err_mask;
1216        struct ata_taskfile tf;
1217        int lba48 = ata_id_has_lba48(dev->id);
1218
1219        ata_tf_init(dev, &tf);
1220
1221        /* always clear all address registers */
1222        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224        if (lba48) {
1225                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226                tf.flags |= ATA_TFLAG_LBA48;
1227        } else
1228                tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230        tf.protocol |= ATA_PROT_NODATA;
1231        tf.device |= ATA_LBA;
1232
1233        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234        if (err_mask) {
1235                ata_dev_warn(dev,
1236                             "failed to read native max address (err_mask=0x%x)\n",
1237                             err_mask);
1238                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239                        return -EACCES;
1240                return -EIO;
1241        }
1242
1243        if (lba48)
1244                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245        else
1246                *max_sectors = ata_tf_to_lba(&tf) + 1;
1247        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248                (*max_sectors)--;
1249        return 0;
1250}
1251
1252/**
1253 *      ata_set_max_sectors - Set max sectors
1254 *      @dev: target device
1255 *      @new_sectors: new max sectors value to set for the device
1256 *
1257 *      Set max sectors of @dev to @new_sectors.
1258 *
1259 *      RETURNS:
1260 *      0 on success, -EACCES if command is aborted or denied (due to
1261 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1262 *      errors.
1263 */
1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265{
1266        unsigned int err_mask;
1267        struct ata_taskfile tf;
1268        int lba48 = ata_id_has_lba48(dev->id);
1269
1270        new_sectors--;
1271
1272        ata_tf_init(dev, &tf);
1273
1274        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276        if (lba48) {
1277                tf.command = ATA_CMD_SET_MAX_EXT;
1278                tf.flags |= ATA_TFLAG_LBA48;
1279
1280                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283        } else {
1284                tf.command = ATA_CMD_SET_MAX;
1285
1286                tf.device |= (new_sectors >> 24) & 0xf;
1287        }
1288
1289        tf.protocol |= ATA_PROT_NODATA;
1290        tf.device |= ATA_LBA;
1291
1292        tf.lbal = (new_sectors >> 0) & 0xff;
1293        tf.lbam = (new_sectors >> 8) & 0xff;
1294        tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297        if (err_mask) {
1298                ata_dev_warn(dev,
1299                             "failed to set max address (err_mask=0x%x)\n",
1300                             err_mask);
1301                if (err_mask == AC_ERR_DEV &&
1302                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303                        return -EACCES;
1304                return -EIO;
1305        }
1306
1307        return 0;
1308}
1309
1310/**
1311 *      ata_hpa_resize          -       Resize a device with an HPA set
1312 *      @dev: Device to resize
1313 *
1314 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 *      it if required to the full size of the media. The caller must check
1316 *      the drive has the HPA feature set enabled.
1317 *
1318 *      RETURNS:
1319 *      0 on success, -errno on failure.
1320 */
1321static int ata_hpa_resize(struct ata_device *dev)
1322{
1323        struct ata_eh_context *ehc = &dev->link->eh_context;
1324        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326        u64 sectors = ata_id_n_sectors(dev->id);
1327        u64 native_sectors;
1328        int rc;
1329
1330        /* do we need to do it? */
1331        if (dev->class != ATA_DEV_ATA ||
1332            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334                return 0;
1335
1336        /* read native max address */
1337        rc = ata_read_native_max_address(dev, &native_sectors);
1338        if (rc) {
1339                /* If device aborted the command or HPA isn't going to
1340                 * be unlocked, skip HPA resizing.
1341                 */
1342                if (rc == -EACCES || !unlock_hpa) {
1343                        ata_dev_warn(dev,
1344                                     "HPA support seems broken, skipping HPA handling\n");
1345                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347                        /* we can continue if device aborted the command */
1348                        if (rc == -EACCES)
1349                                rc = 0;
1350                }
1351
1352                return rc;
1353        }
1354        dev->n_native_sectors = native_sectors;
1355
1356        /* nothing to do? */
1357        if (native_sectors <= sectors || !unlock_hpa) {
1358                if (!print_info || native_sectors == sectors)
1359                        return 0;
1360
1361                if (native_sectors > sectors)
1362                        ata_dev_info(dev,
1363                                "HPA detected: current %llu, native %llu\n",
1364                                (unsigned long long)sectors,
1365                                (unsigned long long)native_sectors);
1366                else if (native_sectors < sectors)
1367                        ata_dev_warn(dev,
1368                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1369                                (unsigned long long)native_sectors,
1370                                (unsigned long long)sectors);
1371                return 0;
1372        }
1373
1374        /* let's unlock HPA */
1375        rc = ata_set_max_sectors(dev, native_sectors);
1376        if (rc == -EACCES) {
1377                /* if device aborted the command, skip HPA resizing */
1378                ata_dev_warn(dev,
1379                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380                             (unsigned long long)sectors,
1381                             (unsigned long long)native_sectors);
1382                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383                return 0;
1384        } else if (rc)
1385                return rc;
1386
1387        /* re-read IDENTIFY data */
1388        rc = ata_dev_reread_id(dev, 0);
1389        if (rc) {
1390                ata_dev_err(dev,
1391                            "failed to re-read IDENTIFY data after HPA resizing\n");
1392                return rc;
1393        }
1394
1395        if (print_info) {
1396                u64 new_sectors = ata_id_n_sectors(dev->id);
1397                ata_dev_info(dev,
1398                        "HPA unlocked: %llu -> %llu, native %llu\n",
1399                        (unsigned long long)sectors,
1400                        (unsigned long long)new_sectors,
1401                        (unsigned long long)native_sectors);
1402        }
1403
1404        return 0;
1405}
1406
1407/**
1408 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1409 *      @id: IDENTIFY DEVICE page to dump
1410 *
1411 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 *      page.
1413 *
1414 *      LOCKING:
1415 *      caller.
1416 */
1417
1418static inline void ata_dump_id(const u16 *id)
1419{
1420        DPRINTK("49==0x%04x  "
1421                "53==0x%04x  "
1422                "63==0x%04x  "
1423                "64==0x%04x  "
1424                "75==0x%04x  \n",
1425                id[49],
1426                id[53],
1427                id[63],
1428                id[64],
1429                id[75]);
1430        DPRINTK("80==0x%04x  "
1431                "81==0x%04x  "
1432                "82==0x%04x  "
1433                "83==0x%04x  "
1434                "84==0x%04x  \n",
1435                id[80],
1436                id[81],
1437                id[82],
1438                id[83],
1439                id[84]);
1440        DPRINTK("88==0x%04x  "
1441                "93==0x%04x\n",
1442                id[88],
1443                id[93]);
1444}
1445
1446/**
1447 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 *      @id: IDENTIFY data to compute xfer mask from
1449 *
1450 *      Compute the xfermask for this device. This is not as trivial
1451 *      as it seems if we must consider early devices correctly.
1452 *
1453 *      FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 *      LOCKING:
1456 *      None.
1457 *
1458 *      RETURNS:
1459 *      Computed xfermask
1460 */
1461unsigned long ata_id_xfermask(const u16 *id)
1462{
1463        unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465        /* Usual case. Word 53 indicates word 64 is valid */
1466        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468                pio_mask <<= 3;
1469                pio_mask |= 0x7;
1470        } else {
1471                /* If word 64 isn't valid then Word 51 high byte holds
1472                 * the PIO timing number for the maximum. Turn it into
1473                 * a mask.
1474                 */
1475                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476                if (mode < 5)   /* Valid PIO range */
1477                        pio_mask = (2 << mode) - 1;
1478                else
1479                        pio_mask = 1;
1480
1481                /* But wait.. there's more. Design your standards by
1482                 * committee and you too can get a free iordy field to
1483                 * process. However its the speeds not the modes that
1484                 * are supported... Note drivers using the timing API
1485                 * will get this right anyway
1486                 */
1487        }
1488
1489        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491        if (ata_id_is_cfa(id)) {
1492                /*
1493                 *      Process compact flash extended modes
1494                 */
1495                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498                if (pio)
1499                        pio_mask |= (1 << 5);
1500                if (pio > 1)
1501                        pio_mask |= (1 << 6);
1502                if (dma)
1503                        mwdma_mask |= (1 << 3);
1504                if (dma > 1)
1505                        mwdma_mask |= (1 << 4);
1506        }
1507
1508        udma_mask = 0;
1509        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516{
1517        struct completion *waiting = qc->private_data;
1518
1519        complete(waiting);
1520}
1521
1522/**
1523 *      ata_exec_internal_sg - execute libata internal command
1524 *      @dev: Device to which the command is sent
1525 *      @tf: Taskfile registers for the command and the result
1526 *      @cdb: CDB for packet command
1527 *      @dma_dir: Data tranfer direction of the command
1528 *      @sgl: sg list for the data buffer of the command
1529 *      @n_elem: Number of sg entries
1530 *      @timeout: Timeout in msecs (0 for default)
1531 *
1532 *      Executes libata internal command with timeout.  @tf contains
1533 *      command on entry and result on return.  Timeout and error
1534 *      conditions are reported via return value.  No recovery action
1535 *      is taken after a command times out.  It's caller's duty to
1536 *      clean up after timeout.
1537 *
1538 *      LOCKING:
1539 *      None.  Should be called with kernel context, might sleep.
1540 *
1541 *      RETURNS:
1542 *      Zero on success, AC_ERR_* mask on failure
1543 */
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545                              struct ata_taskfile *tf, const u8 *cdb,
1546                              int dma_dir, struct scatterlist *sgl,
1547                              unsigned int n_elem, unsigned long timeout)
1548{
1549        struct ata_link *link = dev->link;
1550        struct ata_port *ap = link->ap;
1551        u8 command = tf->command;
1552        int auto_timeout = 0;
1553        struct ata_queued_cmd *qc;
1554        unsigned int tag, preempted_tag;
1555        u32 preempted_sactive, preempted_qc_active;
1556        int preempted_nr_active_links;
1557        DECLARE_COMPLETION_ONSTACK(wait);
1558        unsigned long flags;
1559        unsigned int err_mask;
1560        int rc;
1561
1562        spin_lock_irqsave(ap->lock, flags);
1563
1564        /* no internal command while frozen */
1565        if (ap->pflags & ATA_PFLAG_FROZEN) {
1566                spin_unlock_irqrestore(ap->lock, flags);
1567                return AC_ERR_SYSTEM;
1568        }
1569
1570        /* initialize internal qc */
1571
1572        /* XXX: Tag 0 is used for drivers with legacy EH as some
1573         * drivers choke if any other tag is given.  This breaks
1574         * ata_tag_internal() test for those drivers.  Don't use new
1575         * EH stuff without converting to it.
1576         */
1577        if (ap->ops->error_handler)
1578                tag = ATA_TAG_INTERNAL;
1579        else
1580                tag = 0;
1581
1582        if (test_and_set_bit(tag, &ap->qc_allocated))
1583                BUG();
1584        qc = __ata_qc_from_tag(ap, tag);
1585
1586        qc->tag = tag;
1587        qc->scsicmd = NULL;
1588        qc->ap = ap;
1589        qc->dev = dev;
1590        ata_qc_reinit(qc);
1591
1592        preempted_tag = link->active_tag;
1593        preempted_sactive = link->sactive;
1594        preempted_qc_active = ap->qc_active;
1595        preempted_nr_active_links = ap->nr_active_links;
1596        link->active_tag = ATA_TAG_POISON;
1597        link->sactive = 0;
1598        ap->qc_active = 0;
1599        ap->nr_active_links = 0;
1600
1601        /* prepare & issue qc */
1602        qc->tf = *tf;
1603        if (cdb)
1604                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605        qc->flags |= ATA_QCFLAG_RESULT_TF;
1606        qc->dma_dir = dma_dir;
1607        if (dma_dir != DMA_NONE) {
1608                unsigned int i, buflen = 0;
1609                struct scatterlist *sg;
1610
1611                for_each_sg(sgl, sg, n_elem, i)
1612                        buflen += sg->length;
1613
1614                ata_sg_init(qc, sgl, n_elem);
1615                qc->nbytes = buflen;
1616        }
1617
1618        qc->private_data = &wait;
1619        qc->complete_fn = ata_qc_complete_internal;
1620
1621        ata_qc_issue(qc);
1622
1623        spin_unlock_irqrestore(ap->lock, flags);
1624
1625        if (!timeout) {
1626                if (ata_probe_timeout)
1627                        timeout = ata_probe_timeout * 1000;
1628                else {
1629                        timeout = ata_internal_cmd_timeout(dev, command);
1630                        auto_timeout = 1;
1631                }
1632        }
1633
1634        if (ap->ops->error_handler)
1635                ata_eh_release(ap);
1636
1637        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1638
1639        if (ap->ops->error_handler)
1640                ata_eh_acquire(ap);
1641
1642        ata_sff_flush_pio_task(ap);
1643
1644        if (!rc) {
1645                spin_lock_irqsave(ap->lock, flags);
1646
1647                /* We're racing with irq here.  If we lose, the
1648                 * following test prevents us from completing the qc
1649                 * twice.  If we win, the port is frozen and will be
1650                 * cleaned up by ->post_internal_cmd().
1651                 */
1652                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1653                        qc->err_mask |= AC_ERR_TIMEOUT;
1654
1655                        if (ap->ops->error_handler)
1656                                ata_port_freeze(ap);
1657                        else
1658                                ata_qc_complete(qc);
1659
1660                        if (ata_msg_warn(ap))
1661                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1662                                             command);
1663                }
1664
1665                spin_unlock_irqrestore(ap->lock, flags);
1666        }
1667
1668        /* do post_internal_cmd */
1669        if (ap->ops->post_internal_cmd)
1670                ap->ops->post_internal_cmd(qc);
1671
1672        /* perform minimal error analysis */
1673        if (qc->flags & ATA_QCFLAG_FAILED) {
1674                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1675                        qc->err_mask |= AC_ERR_DEV;
1676
1677                if (!qc->err_mask)
1678                        qc->err_mask |= AC_ERR_OTHER;
1679
1680                if (qc->err_mask & ~AC_ERR_OTHER)
1681                        qc->err_mask &= ~AC_ERR_OTHER;
1682        }
1683
1684        /* finish up */
1685        spin_lock_irqsave(ap->lock, flags);
1686
1687        *tf = qc->result_tf;
1688        err_mask = qc->err_mask;
1689
1690        ata_qc_free(qc);
1691        link->active_tag = preempted_tag;
1692        link->sactive = preempted_sactive;
1693        ap->qc_active = preempted_qc_active;
1694        ap->nr_active_links = preempted_nr_active_links;
1695
1696        spin_unlock_irqrestore(ap->lock, flags);
1697
1698        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699                ata_internal_cmd_timed_out(dev, command);
1700
1701        return err_mask;
1702}
1703
1704/**
1705 *      ata_exec_internal - execute libata internal command
1706 *      @dev: Device to which the command is sent
1707 *      @tf: Taskfile registers for the command and the result
1708 *      @cdb: CDB for packet command
1709 *      @dma_dir: Data tranfer direction of the command
1710 *      @buf: Data buffer of the command
1711 *      @buflen: Length of data buffer
1712 *      @timeout: Timeout in msecs (0 for default)
1713 *
1714 *      Wrapper around ata_exec_internal_sg() which takes simple
1715 *      buffer instead of sg list.
1716 *
1717 *      LOCKING:
1718 *      None.  Should be called with kernel context, might sleep.
1719 *
1720 *      RETURNS:
1721 *      Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724                           struct ata_taskfile *tf, const u8 *cdb,
1725                           int dma_dir, void *buf, unsigned int buflen,
1726                           unsigned long timeout)
1727{
1728        struct scatterlist *psg = NULL, sg;
1729        unsigned int n_elem = 0;
1730
1731        if (dma_dir != DMA_NONE) {
1732                WARN_ON(!buf);
1733                sg_init_one(&sg, buf, buflen);
1734                psg = &sg;
1735                n_elem++;
1736        }
1737
1738        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739                                    timeout);
1740}
1741
1742/**
1743 *      ata_do_simple_cmd - execute simple internal command
1744 *      @dev: Device to which the command is sent
1745 *      @cmd: Opcode to execute
1746 *
1747 *      Execute a 'simple' command, that only consists of the opcode
1748 *      'cmd' itself, without filling any other registers
1749 *
1750 *      LOCKING:
1751 *      Kernel thread context (may sleep).
1752 *
1753 *      RETURNS:
1754 *      Zero on success, AC_ERR_* mask on failure
1755 */
1756unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1757{
1758        struct ata_taskfile tf;
1759
1760        ata_tf_init(dev, &tf);
1761
1762        tf.command = cmd;
1763        tf.flags |= ATA_TFLAG_DEVICE;
1764        tf.protocol = ATA_PROT_NODATA;
1765
1766        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1767}
1768
1769/**
1770 *      ata_pio_need_iordy      -       check if iordy needed
1771 *      @adev: ATA device
1772 *
1773 *      Check if the current speed of the device requires IORDY. Used
1774 *      by various controllers for chip configuration.
1775 */
1776unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1777{
1778        /* Don't set IORDY if we're preparing for reset.  IORDY may
1779         * lead to controller lock up on certain controllers if the
1780         * port is not occupied.  See bko#11703 for details.
1781         */
1782        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1783                return 0;
1784        /* Controller doesn't support IORDY.  Probably a pointless
1785         * check as the caller should know this.
1786         */
1787        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1788                return 0;
1789        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1790        if (ata_id_is_cfa(adev->id)
1791            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1792                return 0;
1793        /* PIO3 and higher it is mandatory */
1794        if (adev->pio_mode > XFER_PIO_2)
1795                return 1;
1796        /* We turn it on when possible */
1797        if (ata_id_has_iordy(adev->id))
1798                return 1;
1799        return 0;
1800}
1801
1802/**
1803 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1804 *      @adev: ATA device
1805 *
1806 *      Compute the highest mode possible if we are not using iordy. Return
1807 *      -1 if no iordy mode is available.
1808 */
1809static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1810{
1811        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1812        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1813                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1814                /* Is the speed faster than the drive allows non IORDY ? */
1815                if (pio) {
1816                        /* This is cycle times not frequency - watch the logic! */
1817                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1818                                return 3 << ATA_SHIFT_PIO;
1819                        return 7 << ATA_SHIFT_PIO;
1820                }
1821        }
1822        return 3 << ATA_SHIFT_PIO;
1823}
1824
1825/**
1826 *      ata_do_dev_read_id              -       default ID read method
1827 *      @dev: device
1828 *      @tf: proposed taskfile
1829 *      @id: data buffer
1830 *
1831 *      Issue the identify taskfile and hand back the buffer containing
1832 *      identify data. For some RAID controllers and for pre ATA devices
1833 *      this function is wrapped or replaced by the driver
1834 */
1835unsigned int ata_do_dev_read_id(struct ata_device *dev,
1836                                        struct ata_taskfile *tf, u16 *id)
1837{
1838        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1839                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1840}
1841
1842/**
1843 *      ata_dev_read_id - Read ID data from the specified device
1844 *      @dev: target device
1845 *      @p_class: pointer to class of the target device (may be changed)
1846 *      @flags: ATA_READID_* flags
1847 *      @id: buffer to read IDENTIFY data into
1848 *
1849 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1850 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1851 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1852 *      for pre-ATA4 drives.
1853 *
1854 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1855 *      now we abort if we hit that case.
1856 *
1857 *      LOCKING:
1858 *      Kernel thread context (may sleep)
1859 *
1860 *      RETURNS:
1861 *      0 on success, -errno otherwise.
1862 */
1863int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1864                    unsigned int flags, u16 *id)
1865{
1866        struct ata_port *ap = dev->link->ap;
1867        unsigned int class = *p_class;
1868        struct ata_taskfile tf;
1869        unsigned int err_mask = 0;
1870        const char *reason;
1871        bool is_semb = class == ATA_DEV_SEMB;
1872        int may_fallback = 1, tried_spinup = 0;
1873        int rc;
1874
1875        if (ata_msg_ctl(ap))
1876                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1877
1878retry:
1879        ata_tf_init(dev, &tf);
1880
1881        switch (class) {
1882        case ATA_DEV_SEMB:
1883                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1884        case ATA_DEV_ATA:
1885                tf.command = ATA_CMD_ID_ATA;
1886                break;
1887        case ATA_DEV_ATAPI:
1888                tf.command = ATA_CMD_ID_ATAPI;
1889                break;
1890        default:
1891                rc = -ENODEV;
1892                reason = "unsupported class";
1893                goto err_out;
1894        }
1895
1896        tf.protocol = ATA_PROT_PIO;
1897
1898        /* Some devices choke if TF registers contain garbage.  Make
1899         * sure those are properly initialized.
1900         */
1901        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903        /* Device presence detection is unreliable on some
1904         * controllers.  Always poll IDENTIFY if available.
1905         */
1906        tf.flags |= ATA_TFLAG_POLLING;
1907
1908        if (ap->ops->read_id)
1909                err_mask = ap->ops->read_id(dev, &tf, id);
1910        else
1911                err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913        if (err_mask) {
1914                if (err_mask & AC_ERR_NODEV_HINT) {
1915                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1916                        return -ENOENT;
1917                }
1918
1919                if (is_semb) {
1920                        ata_dev_info(dev,
1921                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922                        /* SEMB is not supported yet */
1923                        *p_class = ATA_DEV_SEMB_UNSUP;
1924                        return 0;
1925                }
1926
1927                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928                        /* Device or controller might have reported
1929                         * the wrong device class.  Give a shot at the
1930                         * other IDENTIFY if the current one is
1931                         * aborted by the device.
1932                         */
1933                        if (may_fallback) {
1934                                may_fallback = 0;
1935
1936                                if (class == ATA_DEV_ATA)
1937                                        class = ATA_DEV_ATAPI;
1938                                else
1939                                        class = ATA_DEV_ATA;
1940                                goto retry;
1941                        }
1942
1943                        /* Control reaches here iff the device aborted
1944                         * both flavors of IDENTIFYs which happens
1945                         * sometimes with phantom devices.
1946                         */
1947                        ata_dev_dbg(dev,
1948                                    "both IDENTIFYs aborted, assuming NODEV\n");
1949                        return -ENOENT;
1950                }
1951
1952                rc = -EIO;
1953                reason = "I/O error";
1954                goto err_out;
1955        }
1956
1957        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959                            "class=%d may_fallback=%d tried_spinup=%d\n",
1960                            class, may_fallback, tried_spinup);
1961                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963        }
1964
1965        /* Falling back doesn't make sense if ID data was read
1966         * successfully at least once.
1967         */
1968        may_fallback = 0;
1969
1970        swap_buf_le16(id, ATA_ID_WORDS);
1971
1972        /* sanity check */
1973        rc = -EINVAL;
1974        reason = "device reports invalid type";
1975
1976        if (class == ATA_DEV_ATA) {
1977                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978                        goto err_out;
1979                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980                                                        ata_id_is_ata(id)) {
1981                        ata_dev_dbg(dev,
1982                                "host indicates ignore ATA devices, ignored\n");
1983                        return -ENOENT;
1984                }
1985        } else {
1986                if (ata_id_is_ata(id))
1987                        goto err_out;
1988        }
1989
1990        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991                tried_spinup = 1;
1992                /*
1993                 * Drive powered-up in standby mode, and requires a specific
1994                 * SET_FEATURES spin-up subcommand before it will accept
1995                 * anything other than the original IDENTIFY command.
1996                 */
1997                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998                if (err_mask && id[2] != 0x738c) {
1999                        rc = -EIO;
2000                        reason = "SPINUP failed";
2001                        goto err_out;
2002                }
2003                /*
2004                 * If the drive initially returned incomplete IDENTIFY info,
2005                 * we now must reissue the IDENTIFY command.
2006                 */
2007                if (id[2] == 0x37c8)
2008                        goto retry;
2009        }
2010
2011        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2012                /*
2013                 * The exact sequence expected by certain pre-ATA4 drives is:
2014                 * SRST RESET
2015                 * IDENTIFY (optional in early ATA)
2016                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017                 * anything else..
2018                 * Some drives were very specific about that exact sequence.
2019                 *
2020                 * Note that ATA4 says lba is mandatory so the second check
2021                 * should never trigger.
2022                 */
2023                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025                        if (err_mask) {
2026                                rc = -EIO;
2027                                reason = "INIT_DEV_PARAMS failed";
2028                                goto err_out;
2029                        }
2030
2031                        /* current CHS translation info (id[53-58]) might be
2032                         * changed. reread the identify device info.
2033                         */
2034                        flags &= ~ATA_READID_POSTRESET;
2035                        goto retry;
2036                }
2037        }
2038
2039        *p_class = class;
2040
2041        return 0;
2042
2043 err_out:
2044        if (ata_msg_warn(ap))
2045                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046                             reason, err_mask);
2047        return rc;
2048}
2049
2050static int ata_do_link_spd_horkage(struct ata_device *dev)
2051{
2052        struct ata_link *plink = ata_dev_phys_link(dev);
2053        u32 target, target_limit;
2054
2055        if (!sata_scr_valid(plink))
2056                return 0;
2057
2058        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059                target = 1;
2060        else
2061                return 0;
2062
2063        target_limit = (1 << target) - 1;
2064
2065        /* if already on stricter limit, no need to push further */
2066        if (plink->sata_spd_limit <= target_limit)
2067                return 0;
2068
2069        plink->sata_spd_limit = target_limit;
2070
2071        /* Request another EH round by returning -EAGAIN if link is
2072         * going faster than the target speed.  Forward progress is
2073         * guaranteed by setting sata_spd_limit to target_limit above.
2074         */
2075        if (plink->sata_spd > target) {
2076                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077                             sata_spd_string(target));
2078                return -EAGAIN;
2079        }
2080        return 0;
2081}
2082
2083static inline u8 ata_dev_knobble(struct ata_device *dev)
2084{
2085        struct ata_port *ap = dev->link->ap;
2086
2087        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088                return 0;
2089
2090        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2091}
2092
2093static int ata_dev_config_ncq(struct ata_device *dev,
2094                               char *desc, size_t desc_sz)
2095{
2096        struct ata_port *ap = dev->link->ap;
2097        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2098        unsigned int err_mask;
2099        char *aa_desc = "";
2100
2101        if (!ata_id_has_ncq(dev->id)) {
2102                desc[0] = '\0';
2103                return 0;
2104        }
2105        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2106                snprintf(desc, desc_sz, "NCQ (not used)");
2107                return 0;
2108        }
2109        if (ap->flags & ATA_FLAG_NCQ) {
2110                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2111                dev->flags |= ATA_DFLAG_NCQ;
2112        }
2113
2114        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2115                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2116                ata_id_has_fpdma_aa(dev->id)) {
2117                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2118                        SATA_FPDMA_AA);
2119                if (err_mask) {
2120                        ata_dev_err(dev,
2121                                    "failed to enable AA (error_mask=0x%x)\n",
2122                                    err_mask);
2123                        if (err_mask != AC_ERR_DEV) {
2124                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2125                                return -EIO;
2126                        }
2127                } else
2128                        aa_desc = ", AA";
2129        }
2130
2131        if (hdepth >= ddepth)
2132                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2133        else
2134                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2135                        ddepth, aa_desc);
2136        return 0;
2137}
2138
2139/**
2140 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2141 *      @dev: Target device to configure
2142 *
2143 *      Configure @dev according to @dev->id.  Generic and low-level
2144 *      driver specific fixups are also applied.
2145 *
2146 *      LOCKING:
2147 *      Kernel thread context (may sleep)
2148 *
2149 *      RETURNS:
2150 *      0 on success, -errno otherwise
2151 */
2152int ata_dev_configure(struct ata_device *dev)
2153{
2154        struct ata_port *ap = dev->link->ap;
2155        struct ata_eh_context *ehc = &dev->link->eh_context;
2156        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2157        const u16 *id = dev->id;
2158        unsigned long xfer_mask;
2159        unsigned int err_mask;
2160        char revbuf[7];         /* XYZ-99\0 */
2161        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2162        char modelbuf[ATA_ID_PROD_LEN+1];
2163        int rc;
2164
2165        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2166                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2167                return 0;
2168        }
2169
2170        if (ata_msg_probe(ap))
2171                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2172
2173        /* set horkage */
2174        dev->horkage |= ata_dev_blacklisted(dev);
2175        ata_force_horkage(dev);
2176
2177        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2178                ata_dev_info(dev, "unsupported device, disabling\n");
2179                ata_dev_disable(dev);
2180                return 0;
2181        }
2182
2183        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2184            dev->class == ATA_DEV_ATAPI) {
2185                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2186                             atapi_enabled ? "not supported with this driver"
2187                             : "disabled");
2188                ata_dev_disable(dev);
2189                return 0;
2190        }
2191
2192        rc = ata_do_link_spd_horkage(dev);
2193        if (rc)
2194                return rc;
2195
2196        /* let ACPI work its magic */
2197        rc = ata_acpi_on_devcfg(dev);
2198        if (rc)
2199                return rc;
2200
2201        /* massage HPA, do it early as it might change IDENTIFY data */
2202        rc = ata_hpa_resize(dev);
2203        if (rc)
2204                return rc;
2205
2206        /* print device capabilities */
2207        if (ata_msg_probe(ap))
2208                ata_dev_dbg(dev,
2209                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2210                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2211                            __func__,
2212                            id[49], id[82], id[83], id[84],
2213                            id[85], id[86], id[87], id[88]);
2214
2215        /* initialize to-be-configured parameters */
2216        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2217        dev->max_sectors = 0;
2218        dev->cdb_len = 0;
2219        dev->n_sectors = 0;
2220        dev->cylinders = 0;
2221        dev->heads = 0;
2222        dev->sectors = 0;
2223        dev->multi_count = 0;
2224
2225        /*
2226         * common ATA, ATAPI feature tests
2227         */
2228
2229        /* find max transfer mode; for printk only */
2230        xfer_mask = ata_id_xfermask(id);
2231
2232        if (ata_msg_probe(ap))
2233                ata_dump_id(id);
2234
2235        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2236        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2237                        sizeof(fwrevbuf));
2238
2239        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2240                        sizeof(modelbuf));
2241
2242        /* ATA-specific feature tests */
2243        if (dev->class == ATA_DEV_ATA) {
2244                if (ata_id_is_cfa(id)) {
2245                        /* CPRM may make this media unusable */
2246                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2247                                ata_dev_warn(dev,
2248        "supports DRM functions and may not be fully accessible\n");
2249                        snprintf(revbuf, 7, "CFA");
2250                } else {
2251                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2252                        /* Warn the user if the device has TPM extensions */
2253                        if (ata_id_has_tpm(id))
2254                                ata_dev_warn(dev,
2255        "supports DRM functions and may not be fully accessible\n");
2256                }
2257
2258                dev->n_sectors = ata_id_n_sectors(id);
2259
2260                /* get current R/W Multiple count setting */
2261                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2262                        unsigned int max = dev->id[47] & 0xff;
2263                        unsigned int cnt = dev->id[59] & 0xff;
2264                        /* only recognize/allow powers of two here */
2265                        if (is_power_of_2(max) && is_power_of_2(cnt))
2266                                if (cnt <= max)
2267                                        dev->multi_count = cnt;
2268                }
2269
2270                if (ata_id_has_lba(id)) {
2271                        const char *lba_desc;
2272                        char ncq_desc[24];
2273
2274                        lba_desc = "LBA";
2275                        dev->flags |= ATA_DFLAG_LBA;
2276                        if (ata_id_has_lba48(id)) {
2277                                dev->flags |= ATA_DFLAG_LBA48;
2278                                lba_desc = "LBA48";
2279
2280                                if (dev->n_sectors >= (1UL << 28) &&
2281                                    ata_id_has_flush_ext(id))
2282                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2283                        }
2284
2285                        /* config NCQ */
2286                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2287                        if (rc)
2288                                return rc;
2289
2290                        /* print device info to dmesg */
2291                        if (ata_msg_drv(ap) && print_info) {
2292                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2293                                             revbuf, modelbuf, fwrevbuf,
2294                                             ata_mode_string(xfer_mask));
2295                                ata_dev_info(dev,
2296                                             "%llu sectors, multi %u: %s %s\n",
2297                                        (unsigned long long)dev->n_sectors,
2298                                        dev->multi_count, lba_desc, ncq_desc);
2299                        }
2300                } else {
2301                        /* CHS */
2302
2303                        /* Default translation */
2304                        dev->cylinders  = id[1];
2305                        dev->heads      = id[3];
2306                        dev->sectors    = id[6];
2307
2308                        if (ata_id_current_chs_valid(id)) {
2309                                /* Current CHS translation is valid. */
2310                                dev->cylinders = id[54];
2311                                dev->heads     = id[55];
2312                                dev->sectors   = id[56];
2313                        }
2314
2315                        /* print device info to dmesg */
2316                        if (ata_msg_drv(ap) && print_info) {
2317                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2318                                             revbuf,    modelbuf, fwrevbuf,
2319                                             ata_mode_string(xfer_mask));
2320                                ata_dev_info(dev,
2321                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2322                                             (unsigned long long)dev->n_sectors,
2323                                             dev->multi_count, dev->cylinders,
2324                                             dev->heads, dev->sectors);
2325                        }
2326                }
2327
2328                /* Check and mark DevSlp capability. Get DevSlp timing variables
2329                 * from SATA Settings page of Identify Device Data Log.
2330                 */
2331                if (ata_id_has_devslp(dev->id)) {
2332                        u8 sata_setting[ATA_SECT_SIZE];
2333                        int i, j;
2334
2335                        dev->flags |= ATA_DFLAG_DEVSLP;
2336                        err_mask = ata_read_log_page(dev,
2337                                                     ATA_LOG_SATA_ID_DEV_DATA,
2338                                                     ATA_LOG_SATA_SETTINGS,
2339                                                     sata_setting,
2340                                                     1);
2341                        if (err_mask)
2342                                ata_dev_dbg(dev,
2343                                            "failed to get Identify Device Data, Emask 0x%x\n",
2344                                            err_mask);
2345                        else
2346                                for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2347                                        j = ATA_LOG_DEVSLP_OFFSET + i;
2348                                        dev->devslp_timing[i] = sata_setting[j];
2349                                }
2350                }
2351
2352                dev->cdb_len = 16;
2353        }
2354
2355        /* ATAPI-specific feature tests */
2356        else if (dev->class == ATA_DEV_ATAPI) {
2357                const char *cdb_intr_string = "";
2358                const char *atapi_an_string = "";
2359                const char *dma_dir_string = "";
2360                u32 sntf;
2361
2362                rc = atapi_cdb_len(id);
2363                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2364                        if (ata_msg_warn(ap))
2365                                ata_dev_warn(dev, "unsupported CDB len\n");
2366                        rc = -EINVAL;
2367                        goto err_out_nosup;
2368                }
2369                dev->cdb_len = (unsigned int) rc;
2370
2371                /* Enable ATAPI AN if both the host and device have
2372                 * the support.  If PMP is attached, SNTF is required
2373                 * to enable ATAPI AN to discern between PHY status
2374                 * changed notifications and ATAPI ANs.
2375                 */
2376                if (atapi_an &&
2377                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2378                    (!sata_pmp_attached(ap) ||
2379                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2380                        /* issue SET feature command to turn this on */
2381                        err_mask = ata_dev_set_feature(dev,
2382                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2383                        if (err_mask)
2384                                ata_dev_err(dev,
2385                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2386                                            err_mask);
2387                        else {
2388                                dev->flags |= ATA_DFLAG_AN;
2389                                atapi_an_string = ", ATAPI AN";
2390                        }
2391                }
2392
2393                if (ata_id_cdb_intr(dev->id)) {
2394                        dev->flags |= ATA_DFLAG_CDB_INTR;
2395                        cdb_intr_string = ", CDB intr";
2396                }
2397
2398                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2399                        dev->flags |= ATA_DFLAG_DMADIR;
2400                        dma_dir_string = ", DMADIR";
2401                }
2402
2403                if (ata_id_has_da(dev->id))
2404                        dev->flags |= ATA_DFLAG_DA;
2405
2406                /* print device info to dmesg */
2407                if (ata_msg_drv(ap) && print_info)
2408                        ata_dev_info(dev,
2409                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2410                                     modelbuf, fwrevbuf,
2411                                     ata_mode_string(xfer_mask),
2412                                     cdb_intr_string, atapi_an_string,
2413                                     dma_dir_string);
2414        }
2415
2416        /* determine max_sectors */
2417        dev->max_sectors = ATA_MAX_SECTORS;
2418        if (dev->flags & ATA_DFLAG_LBA48)
2419                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2420
2421        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2422           200 sectors */
2423        if (ata_dev_knobble(dev)) {
2424                if (ata_msg_drv(ap) && print_info)
2425                        ata_dev_info(dev, "applying bridge limits\n");
2426                dev->udma_mask &= ATA_UDMA5;
2427                dev->max_sectors = ATA_MAX_SECTORS;
2428        }
2429
2430        if ((dev->class == ATA_DEV_ATAPI) &&
2431            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2432                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2433                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2434        }
2435
2436        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2437                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2438                                         dev->max_sectors);
2439
2440        if (ap->ops->dev_config)
2441                ap->ops->dev_config(dev);
2442
2443        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2444                /* Let the user know. We don't want to disallow opens for
2445                   rescue purposes, or in case the vendor is just a blithering
2446                   idiot. Do this after the dev_config call as some controllers
2447                   with buggy firmware may want to avoid reporting false device
2448                   bugs */
2449
2450                if (print_info) {
2451                        ata_dev_warn(dev,
2452"Drive reports diagnostics failure. This may indicate a drive\n");
2453                        ata_dev_warn(dev,
2454"fault or invalid emulation. Contact drive vendor for information.\n");
2455                }
2456        }
2457
2458        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2459                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2460                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2461        }
2462
2463        return 0;
2464
2465err_out_nosup:
2466        if (ata_msg_probe(ap))
2467                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2468        return rc;
2469}
2470
2471/**
2472 *      ata_cable_40wire        -       return 40 wire cable type
2473 *      @ap: port
2474 *
2475 *      Helper method for drivers which want to hardwire 40 wire cable
2476 *      detection.
2477 */
2478
2479int ata_cable_40wire(struct ata_port *ap)
2480{
2481        return ATA_CBL_PATA40;
2482}
2483
2484/**
2485 *      ata_cable_80wire        -       return 80 wire cable type
2486 *      @ap: port
2487 *
2488 *      Helper method for drivers which want to hardwire 80 wire cable
2489 *      detection.
2490 */
2491
2492int ata_cable_80wire(struct ata_port *ap)
2493{
2494        return ATA_CBL_PATA80;
2495}
2496
2497/**
2498 *      ata_cable_unknown       -       return unknown PATA cable.
2499 *      @ap: port
2500 *
2501 *      Helper method for drivers which have no PATA cable detection.
2502 */
2503
2504int ata_cable_unknown(struct ata_port *ap)
2505{
2506        return ATA_CBL_PATA_UNK;
2507}
2508
2509/**
2510 *      ata_cable_ignore        -       return ignored PATA cable.
2511 *      @ap: port
2512 *
2513 *      Helper method for drivers which don't use cable type to limit
2514 *      transfer mode.
2515 */
2516int ata_cable_ignore(struct ata_port *ap)
2517{
2518        return ATA_CBL_PATA_IGN;
2519}
2520
2521/**
2522 *      ata_cable_sata  -       return SATA cable type
2523 *      @ap: port
2524 *
2525 *      Helper method for drivers which have SATA cables
2526 */
2527
2528int ata_cable_sata(struct ata_port *ap)
2529{
2530        return ATA_CBL_SATA;
2531}
2532
2533/**
2534 *      ata_bus_probe - Reset and probe ATA bus
2535 *      @ap: Bus to probe
2536 *
2537 *      Master ATA bus probing function.  Initiates a hardware-dependent
2538 *      bus reset, then attempts to identify any devices found on
2539 *      the bus.
2540 *
2541 *      LOCKING:
2542 *      PCI/etc. bus probe sem.
2543 *
2544 *      RETURNS:
2545 *      Zero on success, negative errno otherwise.
2546 */
2547
2548int ata_bus_probe(struct ata_port *ap)
2549{
2550        unsigned int classes[ATA_MAX_DEVICES];
2551        int tries[ATA_MAX_DEVICES];
2552        int rc;
2553        struct ata_device *dev;
2554
2555        ata_for_each_dev(dev, &ap->link, ALL)
2556                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2557
2558 retry:
2559        ata_for_each_dev(dev, &ap->link, ALL) {
2560                /* If we issue an SRST then an ATA drive (not ATAPI)
2561                 * may change configuration and be in PIO0 timing. If
2562                 * we do a hard reset (or are coming from power on)
2563                 * this is true for ATA or ATAPI. Until we've set a
2564                 * suitable controller mode we should not touch the
2565                 * bus as we may be talking too fast.
2566                 */
2567                dev->pio_mode = XFER_PIO_0;
2568                dev->dma_mode = 0xff;
2569
2570                /* If the controller has a pio mode setup function
2571                 * then use it to set the chipset to rights. Don't
2572                 * touch the DMA setup as that will be dealt with when
2573                 * configuring devices.
2574                 */
2575                if (ap->ops->set_piomode)
2576                        ap->ops->set_piomode(ap, dev);
2577        }
2578
2579        /* reset and determine device classes */
2580        ap->ops->phy_reset(ap);
2581
2582        ata_for_each_dev(dev, &ap->link, ALL) {
2583                if (dev->class != ATA_DEV_UNKNOWN)
2584                        classes[dev->devno] = dev->class;
2585                else
2586                        classes[dev->devno] = ATA_DEV_NONE;
2587
2588                dev->class = ATA_DEV_UNKNOWN;
2589        }
2590
2591        /* read IDENTIFY page and configure devices. We have to do the identify
2592           specific sequence bass-ackwards so that PDIAG- is released by
2593           the slave device */
2594
2595        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2596                if (tries[dev->devno])
2597                        dev->class = classes[dev->devno];
2598
2599                if (!ata_dev_enabled(dev))
2600                        continue;
2601
2602                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2603                                     dev->id);
2604                if (rc)
2605                        goto fail;
2606        }
2607
2608        /* Now ask for the cable type as PDIAG- should have been released */
2609        if (ap->ops->cable_detect)
2610                ap->cbl = ap->ops->cable_detect(ap);
2611
2612        /* We may have SATA bridge glue hiding here irrespective of
2613         * the reported cable types and sensed types.  When SATA
2614         * drives indicate we have a bridge, we don't know which end
2615         * of the link the bridge is which is a problem.
2616         */
2617        ata_for_each_dev(dev, &ap->link, ENABLED)
2618                if (ata_id_is_sata(dev->id))
2619                        ap->cbl = ATA_CBL_SATA;
2620
2621        /* After the identify sequence we can now set up the devices. We do
2622           this in the normal order so that the user doesn't get confused */
2623
2624        ata_for_each_dev(dev, &ap->link, ENABLED) {
2625                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2626                rc = ata_dev_configure(dev);
2627                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2628                if (rc)
2629                        goto fail;
2630        }
2631
2632        /* configure transfer mode */
2633        rc = ata_set_mode(&ap->link, &dev);
2634        if (rc)
2635                goto fail;
2636
2637        ata_for_each_dev(dev, &ap->link, ENABLED)
2638                return 0;
2639
2640        return -ENODEV;
2641
2642 fail:
2643        tries[dev->devno]--;
2644
2645        switch (rc) {
2646        case -EINVAL:
2647                /* eeek, something went very wrong, give up */
2648                tries[dev->devno] = 0;
2649                break;
2650
2651        case -ENODEV:
2652                /* give it just one more chance */
2653                tries[dev->devno] = min(tries[dev->devno], 1);
2654        case -EIO:
2655                if (tries[dev->devno] == 1) {
2656                        /* This is the last chance, better to slow
2657                         * down than lose it.
2658                         */
2659                        sata_down_spd_limit(&ap->link, 0);
2660                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2661                }
2662        }
2663
2664        if (!tries[dev->devno])
2665                ata_dev_disable(dev);
2666
2667        goto retry;
2668}
2669
2670/**
2671 *      sata_print_link_status - Print SATA link status
2672 *      @link: SATA link to printk link status about
2673 *
2674 *      This function prints link speed and status of a SATA link.
2675 *
2676 *      LOCKING:
2677 *      None.
2678 */
2679static void sata_print_link_status(struct ata_link *link)
2680{
2681        u32 sstatus, scontrol, tmp;
2682
2683        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2684                return;
2685        sata_scr_read(link, SCR_CONTROL, &scontrol);
2686
2687        if (ata_phys_link_online(link)) {
2688                tmp = (sstatus >> 4) & 0xf;
2689                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2690                              sata_spd_string(tmp), sstatus, scontrol);
2691        } else {
2692                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2693                              sstatus, scontrol);
2694        }
2695}
2696
2697/**
2698 *      ata_dev_pair            -       return other device on cable
2699 *      @adev: device
2700 *
2701 *      Obtain the other device on the same cable, or if none is
2702 *      present NULL is returned
2703 */
2704
2705struct ata_device *ata_dev_pair(struct ata_device *adev)
2706{
2707        struct ata_link *link = adev->link;
2708        struct ata_device *pair = &link->device[1 - adev->devno];
2709        if (!ata_dev_enabled(pair))
2710                return NULL;
2711        return pair;
2712}
2713
2714/**
2715 *      sata_down_spd_limit - adjust SATA spd limit downward
2716 *      @link: Link to adjust SATA spd limit for
2717 *      @spd_limit: Additional limit
2718 *
2719 *      Adjust SATA spd limit of @link downward.  Note that this
2720 *      function only adjusts the limit.  The change must be applied
2721 *      using sata_set_spd().
2722 *
2723 *      If @spd_limit is non-zero, the speed is limited to equal to or
2724 *      lower than @spd_limit if such speed is supported.  If
2725 *      @spd_limit is slower than any supported speed, only the lowest
2726 *      supported speed is allowed.
2727 *
2728 *      LOCKING:
2729 *      Inherited from caller.
2730 *
2731 *      RETURNS:
2732 *      0 on success, negative errno on failure
2733 */
2734int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2735{
2736        u32 sstatus, spd, mask;
2737        int rc, bit;
2738
2739        if (!sata_scr_valid(link))
2740                return -EOPNOTSUPP;
2741
2742        /* If SCR can be read, use it to determine the current SPD.
2743         * If not, use cached value in link->sata_spd.
2744         */
2745        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2746        if (rc == 0 && ata_sstatus_online(sstatus))
2747                spd = (sstatus >> 4) & 0xf;
2748        else
2749                spd = link->sata_spd;
2750
2751        mask = link->sata_spd_limit;
2752        if (mask <= 1)
2753                return -EINVAL;
2754
2755        /* unconditionally mask off the highest bit */
2756        bit = fls(mask) - 1;
2757        mask &= ~(1 << bit);
2758
2759        /* Mask off all speeds higher than or equal to the current
2760         * one.  Force 1.5Gbps if current SPD is not available.
2761         */
2762        if (spd > 1)
2763                mask &= (1 << (spd - 1)) - 1;
2764        else
2765                mask &= 1;
2766
2767        /* were we already at the bottom? */
2768        if (!mask)
2769                return -EINVAL;
2770
2771        if (spd_limit) {
2772                if (mask & ((1 << spd_limit) - 1))
2773                        mask &= (1 << spd_limit) - 1;
2774                else {
2775                        bit = ffs(mask) - 1;
2776                        mask = 1 << bit;
2777                }
2778        }
2779
2780        link->sata_spd_limit = mask;
2781
2782        ata_link_warn(link, "limiting SATA link speed to %s\n",
2783                      sata_spd_string(fls(mask)));
2784
2785        return 0;
2786}
2787
2788static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2789{
2790        struct ata_link *host_link = &link->ap->link;
2791        u32 limit, target, spd;
2792
2793        limit = link->sata_spd_limit;
2794
2795        /* Don't configure downstream link faster than upstream link.
2796         * It doesn't speed up anything and some PMPs choke on such
2797         * configuration.
2798         */
2799        if (!ata_is_host_link(link) && host_link->sata_spd)
2800                limit &= (1 << host_link->sata_spd) - 1;
2801
2802        if (limit == UINT_MAX)
2803                target = 0;
2804        else
2805                target = fls(limit);
2806
2807        spd = (*scontrol >> 4) & 0xf;
2808        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2809
2810        return spd != target;
2811}
2812
2813/**
2814 *      sata_set_spd_needed - is SATA spd configuration needed
2815 *      @link: Link in question
2816 *
2817 *      Test whether the spd limit in SControl matches
2818 *      @link->sata_spd_limit.  This function is used to determine
2819 *      whether hardreset is necessary to apply SATA spd
2820 *      configuration.
2821 *
2822 *      LOCKING:
2823 *      Inherited from caller.
2824 *
2825 *      RETURNS:
2826 *      1 if SATA spd configuration is needed, 0 otherwise.
2827 */
2828static int sata_set_spd_needed(struct ata_link *link)
2829{
2830        u32 scontrol;
2831
2832        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2833                return 1;
2834
2835        return __sata_set_spd_needed(link, &scontrol);
2836}
2837
2838/**
2839 *      sata_set_spd - set SATA spd according to spd limit
2840 *      @link: Link to set SATA spd for
2841 *
2842 *      Set SATA spd of @link according to sata_spd_limit.
2843 *
2844 *      LOCKING:
2845 *      Inherited from caller.
2846 *
2847 *      RETURNS:
2848 *      0 if spd doesn't need to be changed, 1 if spd has been
2849 *      changed.  Negative errno if SCR registers are inaccessible.
2850 */
2851int sata_set_spd(struct ata_link *link)
2852{
2853        u32 scontrol;
2854        int rc;
2855
2856        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2857                return rc;
2858
2859        if (!__sata_set_spd_needed(link, &scontrol))
2860                return 0;
2861
2862        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2863                return rc;
2864
2865        return 1;
2866}
2867
2868/*
2869 * This mode timing computation functionality is ported over from
2870 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2871 */
2872/*
2873 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2874 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2875 * for UDMA6, which is currently supported only by Maxtor drives.
2876 *
2877 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2878 */
2879
2880static const struct ata_timing ata_timing[] = {
2881/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2882        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2883        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2884        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2885        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2886        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2887        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2888        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2889
2890        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2891        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2892        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2893
2894        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2895        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2896        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2897        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2898        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2899
2900/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2901        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2902        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2903        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2904        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2905        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2906        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2907        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2908
2909        { 0xFF }
2910};
2911
2912#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2913#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2914
2915static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2916{
2917        q->setup        = EZ(t->setup      * 1000,  T);
2918        q->act8b        = EZ(t->act8b      * 1000,  T);
2919        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2920        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2921        q->active       = EZ(t->active     * 1000,  T);
2922        q->recover      = EZ(t->recover    * 1000,  T);
2923        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2924        q->cycle        = EZ(t->cycle      * 1000,  T);
2925        q->udma         = EZ(t->udma       * 1000, UT);
2926}
2927
2928void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2929                      struct ata_timing *m, unsigned int what)
2930{
2931        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2932        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2933        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2934        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2935        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2936        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2937        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2938        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2939        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2940}
2941
2942const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2943{
2944        const struct ata_timing *t = ata_timing;
2945
2946        while (xfer_mode > t->mode)
2947                t++;
2948
2949        if (xfer_mode == t->mode)
2950                return t;
2951
2952        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2953                        __func__, xfer_mode);
2954
2955        return NULL;
2956}
2957
2958int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2959                       struct ata_timing *t, int T, int UT)
2960{
2961        const u16 *id = adev->id;
2962        const struct ata_timing *s;
2963        struct ata_timing p;
2964
2965        /*
2966         * Find the mode.
2967         */
2968
2969        if (!(s = ata_timing_find_mode(speed)))
2970                return -EINVAL;
2971
2972        memcpy(t, s, sizeof(*s));
2973
2974        /*
2975         * If the drive is an EIDE drive, it can tell us it needs extended
2976         * PIO/MW_DMA cycle timing.
2977         */
2978
2979        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2980                memset(&p, 0, sizeof(p));
2981
2982                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2983                        if (speed <= XFER_PIO_2)
2984                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2985                        else if ((speed <= XFER_PIO_4) ||
2986                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2987                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2988                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2989                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2990
2991                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2992        }
2993
2994        /*
2995         * Convert the timing to bus clock counts.
2996         */
2997
2998        ata_timing_quantize(t, t, T, UT);
2999
3000        /*
3001         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3002         * S.M.A.R.T * and some other commands. We have to ensure that the
3003         * DMA cycle timing is slower/equal than the fastest PIO timing.
3004         */
3005
3006        if (speed > XFER_PIO_6) {
3007                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3008                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3009        }
3010
3011        /*
3012         * Lengthen active & recovery time so that cycle time is correct.
3013         */
3014
3015        if (t->act8b + t->rec8b < t->cyc8b) {
3016                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3017                t->rec8b = t->cyc8b - t->act8b;
3018        }
3019
3020        if (t->active + t->recover < t->cycle) {
3021                t->active += (t->cycle - (t->active + t->recover)) / 2;
3022                t->recover = t->cycle - t->active;
3023        }
3024
3025        /* In a few cases quantisation may produce enough errors to
3026           leave t->cycle too low for the sum of active and recovery
3027           if so we must correct this */
3028        if (t->active + t->recover > t->cycle)
3029                t->cycle = t->active + t->recover;
3030
3031        return 0;
3032}
3033
3034/**
3035 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3036 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3037 *      @cycle: cycle duration in ns
3038 *
3039 *      Return matching xfer mode for @cycle.  The returned mode is of
3040 *      the transfer type specified by @xfer_shift.  If @cycle is too
3041 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3042 *      than the fastest known mode, the fasted mode is returned.
3043 *
3044 *      LOCKING:
3045 *      None.
3046 *
3047 *      RETURNS:
3048 *      Matching xfer_mode, 0xff if no match found.
3049 */
3050u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3051{
3052        u8 base_mode = 0xff, last_mode = 0xff;
3053        const struct ata_xfer_ent *ent;
3054        const struct ata_timing *t;
3055
3056        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3057                if (ent->shift == xfer_shift)
3058                        base_mode = ent->base;
3059
3060        for (t = ata_timing_find_mode(base_mode);
3061             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3062                unsigned short this_cycle;
3063
3064                switch (xfer_shift) {
3065                case ATA_SHIFT_PIO:
3066                case ATA_SHIFT_MWDMA:
3067                        this_cycle = t->cycle;
3068                        break;
3069                case ATA_SHIFT_UDMA:
3070                        this_cycle = t->udma;
3071                        break;
3072                default:
3073                        return 0xff;
3074                }
3075
3076                if (cycle > this_cycle)
3077                        break;
3078
3079                last_mode = t->mode;
3080        }
3081
3082        return last_mode;
3083}
3084
3085/**
3086 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3087 *      @dev: Device to adjust xfer masks
3088 *      @sel: ATA_DNXFER_* selector
3089 *
3090 *      Adjust xfer masks of @dev downward.  Note that this function
3091 *      does not apply the change.  Invoking ata_set_mode() afterwards
3092 *      will apply the limit.
3093 *
3094 *      LOCKING:
3095 *      Inherited from caller.
3096 *
3097 *      RETURNS:
3098 *      0 on success, negative errno on failure
3099 */
3100int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3101{
3102        char buf[32];
3103        unsigned long orig_mask, xfer_mask;
3104        unsigned long pio_mask, mwdma_mask, udma_mask;
3105        int quiet, highbit;
3106
3107        quiet = !!(sel & ATA_DNXFER_QUIET);
3108        sel &= ~ATA_DNXFER_QUIET;
3109
3110        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3111                                                  dev->mwdma_mask,
3112                                                  dev->udma_mask);
3113        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3114
3115        switch (sel) {
3116        case ATA_DNXFER_PIO:
3117                highbit = fls(pio_mask) - 1;
3118                pio_mask &= ~(1 << highbit);
3119                break;
3120
3121        case ATA_DNXFER_DMA:
3122                if (udma_mask) {
3123                        highbit = fls(udma_mask) - 1;
3124                        udma_mask &= ~(1 << highbit);
3125                        if (!udma_mask)
3126                                return -ENOENT;
3127                } else if (mwdma_mask) {
3128                        highbit = fls(mwdma_mask) - 1;
3129                        mwdma_mask &= ~(1 << highbit);
3130                        if (!mwdma_mask)
3131                                return -ENOENT;
3132                }
3133                break;
3134
3135        case ATA_DNXFER_40C:
3136                udma_mask &= ATA_UDMA_MASK_40C;
3137                break;
3138
3139        case ATA_DNXFER_FORCE_PIO0:
3140                pio_mask &= 1;
3141        case ATA_DNXFER_FORCE_PIO:
3142                mwdma_mask = 0;
3143                udma_mask = 0;
3144                break;
3145
3146        default:
3147                BUG();
3148        }
3149
3150        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3151
3152        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3153                return -ENOENT;
3154
3155        if (!quiet) {
3156                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3157                        snprintf(buf, sizeof(buf), "%s:%s",
3158                                 ata_mode_string(xfer_mask),
3159                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3160                else
3161                        snprintf(buf, sizeof(buf), "%s",
3162                                 ata_mode_string(xfer_mask));
3163
3164                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3165        }
3166
3167        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3168                            &dev->udma_mask);
3169
3170        return 0;
3171}
3172
3173static int ata_dev_set_mode(struct ata_device *dev)
3174{
3175        struct ata_port *ap = dev->link->ap;
3176        struct ata_eh_context *ehc = &dev->link->eh_context;
3177        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3178        const char *dev_err_whine = "";
3179        int ign_dev_err = 0;
3180        unsigned int err_mask = 0;
3181        int rc;
3182
3183        dev->flags &= ~ATA_DFLAG_PIO;
3184        if (dev->xfer_shift == ATA_SHIFT_PIO)
3185                dev->flags |= ATA_DFLAG_PIO;
3186
3187        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3188                dev_err_whine = " (SET_XFERMODE skipped)";
3189        else {
3190                if (nosetxfer)
3191                        ata_dev_warn(dev,
3192                                     "NOSETXFER but PATA detected - can't "
3193                                     "skip SETXFER, might malfunction\n");
3194                err_mask = ata_dev_set_xfermode(dev);
3195        }
3196
3197        if (err_mask & ~AC_ERR_DEV)
3198                goto fail;
3199
3200        /* revalidate */
3201        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3202        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3203        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3204        if (rc)
3205                return rc;
3206
3207        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3208                /* Old CFA may refuse this command, which is just fine */
3209                if (ata_id_is_cfa(dev->id))
3210                        ign_dev_err = 1;
3211                /* Catch several broken garbage emulations plus some pre
3212                   ATA devices */
3213                if (ata_id_major_version(dev->id) == 0 &&
3214                                        dev->pio_mode <= XFER_PIO_2)
3215                        ign_dev_err = 1;
3216                /* Some very old devices and some bad newer ones fail
3217                   any kind of SET_XFERMODE request but support PIO0-2
3218                   timings and no IORDY */
3219                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3220                        ign_dev_err = 1;
3221        }
3222        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3223           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3224        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3225            dev->dma_mode == XFER_MW_DMA_0 &&
3226            (dev->id[63] >> 8) & 1)
3227                ign_dev_err = 1;
3228
3229        /* if the device is actually configured correctly, ignore dev err */
3230        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3231                ign_dev_err = 1;
3232
3233        if (err_mask & AC_ERR_DEV) {
3234                if (!ign_dev_err)
3235                        goto fail;
3236                else
3237                        dev_err_whine = " (device error ignored)";
3238        }
3239
3240        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3241                dev->xfer_shift, (int)dev->xfer_mode);
3242
3243        ata_dev_info(dev, "configured for %s%s\n",
3244                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3245                     dev_err_whine);
3246
3247        return 0;
3248
3249 fail:
3250        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3251        return -EIO;
3252}
3253
3254/**
3255 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3256 *      @link: link on which timings will be programmed
3257 *      @r_failed_dev: out parameter for failed device
3258 *
3259 *      Standard implementation of the function used to tune and set
3260 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3261 *      ata_dev_set_mode() fails, pointer to the failing device is
3262 *      returned in @r_failed_dev.
3263 *
3264 *      LOCKING:
3265 *      PCI/etc. bus probe sem.
3266 *
3267 *      RETURNS:
3268 *      0 on success, negative errno otherwise
3269 */
3270
3271int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3272{
3273        struct ata_port *ap = link->ap;
3274        struct ata_device *dev;
3275        int rc = 0, used_dma = 0, found = 0;
3276
3277        /* step 1: calculate xfer_mask */
3278        ata_for_each_dev(dev, link, ENABLED) {
3279                unsigned long pio_mask, dma_mask;
3280                unsigned int mode_mask;
3281
3282                mode_mask = ATA_DMA_MASK_ATA;
3283                if (dev->class == ATA_DEV_ATAPI)
3284                        mode_mask = ATA_DMA_MASK_ATAPI;
3285                else if (ata_id_is_cfa(dev->id))
3286                        mode_mask = ATA_DMA_MASK_CFA;
3287
3288                ata_dev_xfermask(dev);
3289                ata_force_xfermask(dev);
3290
3291                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3292
3293                if (libata_dma_mask & mode_mask)
3294                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3295                                                     dev->udma_mask);
3296                else
3297                        dma_mask = 0;
3298
3299                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3300                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3301
3302                found = 1;
3303                if (ata_dma_enabled(dev))
3304                        used_dma = 1;
3305        }
3306        if (!found)
3307                goto out;
3308
3309        /* step 2: always set host PIO timings */
3310        ata_for_each_dev(dev, link, ENABLED) {
3311                if (dev->pio_mode == 0xff) {
3312                        ata_dev_warn(dev, "no PIO support\n");
3313                        rc = -EINVAL;
3314                        goto out;
3315                }
3316
3317                dev->xfer_mode = dev->pio_mode;
3318                dev->xfer_shift = ATA_SHIFT_PIO;
3319                if (ap->ops->set_piomode)
3320                        ap->ops->set_piomode(ap, dev);
3321        }
3322
3323        /* step 3: set host DMA timings */
3324        ata_for_each_dev(dev, link, ENABLED) {
3325                if (!ata_dma_enabled(dev))
3326                        continue;
3327
3328                dev->xfer_mode = dev->dma_mode;
3329                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3330                if (ap->ops->set_dmamode)
3331                        ap->ops->set_dmamode(ap, dev);
3332        }
3333
3334        /* step 4: update devices' xfer mode */
3335        ata_for_each_dev(dev, link, ENABLED) {
3336                rc = ata_dev_set_mode(dev);
3337                if (rc)
3338                        goto out;
3339        }
3340
3341        /* Record simplex status. If we selected DMA then the other
3342         * host channels are not permitted to do so.
3343         */
3344        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3345                ap->host->simplex_claimed = ap;
3346
3347 out:
3348        if (rc)
3349                *r_failed_dev = dev;
3350        return rc;
3351}
3352
3353/**
3354 *      ata_wait_ready - wait for link to become ready
3355 *      @link: link to be waited on
3356 *      @deadline: deadline jiffies for the operation
3357 *      @check_ready: callback to check link readiness
3358 *
3359 *      Wait for @link to become ready.  @check_ready should return
3360 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3361 *      link doesn't seem to be occupied, other errno for other error
3362 *      conditions.
3363 *
3364 *      Transient -ENODEV conditions are allowed for
3365 *      ATA_TMOUT_FF_WAIT.
3366 *
3367 *      LOCKING:
3368 *      EH context.
3369 *
3370 *      RETURNS:
3371 *      0 if @linke is ready before @deadline; otherwise, -errno.
3372 */
3373int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3374                   int (*check_ready)(struct ata_link *link))
3375{
3376        unsigned long start = jiffies;
3377        unsigned long nodev_deadline;
3378        int warned = 0;
3379
3380        /* choose which 0xff timeout to use, read comment in libata.h */
3381        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3382                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3383        else
3384                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3385
3386        /* Slave readiness can't be tested separately from master.  On
3387         * M/S emulation configuration, this function should be called
3388         * only on the master and it will handle both master and slave.
3389         */
3390        WARN_ON(link == link->ap->slave_link);
3391
3392        if (time_after(nodev_deadline, deadline))
3393                nodev_deadline = deadline;
3394
3395        while (1) {
3396                unsigned long now = jiffies;
3397                int ready, tmp;
3398
3399                ready = tmp = check_ready(link);
3400                if (ready > 0)
3401                        return 0;
3402
3403                /*
3404                 * -ENODEV could be transient.  Ignore -ENODEV if link
3405                 * is online.  Also, some SATA devices take a long
3406                 * time to clear 0xff after reset.  Wait for
3407                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3408                 * offline.
3409                 *
3410                 * Note that some PATA controllers (pata_ali) explode
3411                 * if status register is read more than once when
3412                 * there's no device attached.
3413                 */
3414                if (ready == -ENODEV) {
3415                        if (ata_link_online(link))
3416                                ready = 0;
3417                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3418                                 !ata_link_offline(link) &&
3419                                 time_before(now, nodev_deadline))
3420                                ready = 0;
3421                }
3422
3423                if (ready)
3424                        return ready;
3425                if (time_after(now, deadline))
3426                        return -EBUSY;
3427
3428                if (!warned && time_after(now, start + 5 * HZ) &&
3429                    (deadline - now > 3 * HZ)) {
3430                        ata_link_warn(link,
3431                                "link is slow to respond, please be patient "
3432                                "(ready=%d)\n", tmp);
3433                        warned = 1;
3434                }
3435
3436                ata_msleep(link->ap, 50);
3437        }
3438}
3439
3440/**
3441 *      ata_wait_after_reset - wait for link to become ready after reset
3442 *      @link: link to be waited on
3443 *      @deadline: deadline jiffies for the operation
3444 *      @check_ready: callback to check link readiness
3445 *
3446 *      Wait for @link to become ready after reset.
3447 *
3448 *      LOCKING:
3449 *      EH context.
3450 *
3451 *      RETURNS:
3452 *      0 if @linke is ready before @deadline; otherwise, -errno.
3453 */
3454int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3455                                int (*check_ready)(struct ata_link *link))
3456{
3457        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3458
3459        return ata_wait_ready(link, deadline, check_ready);
3460}
3461
3462/**
3463 *      sata_link_debounce - debounce SATA phy status
3464 *      @link: ATA link to debounce SATA phy status for
3465 *      @params: timing parameters { interval, duratinon, timeout } in msec
3466 *      @deadline: deadline jiffies for the operation
3467 *
3468 *      Make sure SStatus of @link reaches stable state, determined by
3469 *      holding the same value where DET is not 1 for @duration polled
3470 *      every @interval, before @timeout.  Timeout constraints the
3471 *      beginning of the stable state.  Because DET gets stuck at 1 on
3472 *      some controllers after hot unplugging, this functions waits
3473 *      until timeout then returns 0 if DET is stable at 1.
3474 *
3475 *      @timeout is further limited by @deadline.  The sooner of the
3476 *      two is used.
3477 *
3478 *      LOCKING:
3479 *      Kernel thread context (may sleep)
3480 *
3481 *      RETURNS:
3482 *      0 on success, -errno on failure.
3483 */
3484int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3485                       unsigned long deadline)
3486{
3487        unsigned long interval = params[0];
3488        unsigned long duration = params[1];
3489        unsigned long last_jiffies, t;
3490        u32 last, cur;
3491        int rc;
3492
3493        t = ata_deadline(jiffies, params[2]);
3494        if (time_before(t, deadline))
3495                deadline = t;
3496
3497        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3498                return rc;
3499        cur &= 0xf;
3500
3501        last = cur;
3502        last_jiffies = jiffies;
3503
3504        while (1) {
3505                ata_msleep(link->ap, interval);
3506                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3507                        return rc;
3508                cur &= 0xf;
3509
3510                /* DET stable? */
3511                if (cur == last) {
3512                        if (cur == 1 && time_before(jiffies, deadline))
3513                                continue;
3514                        if (time_after(jiffies,
3515                                       ata_deadline(last_jiffies, duration)))
3516                                return 0;
3517                        continue;
3518                }
3519
3520                /* unstable, start over */
3521                last = cur;
3522                last_jiffies = jiffies;
3523
3524                /* Check deadline.  If debouncing failed, return
3525                 * -EPIPE to tell upper layer to lower link speed.
3526                 */
3527                if (time_after(jiffies, deadline))
3528                        return -EPIPE;
3529        }
3530}
3531
3532/**
3533 *      sata_link_resume - resume SATA link
3534 *      @link: ATA link to resume SATA
3535 *      @params: timing parameters { interval, duratinon, timeout } in msec
3536 *      @deadline: deadline jiffies for the operation
3537 *
3538 *      Resume SATA phy @link and debounce it.
3539 *
3540 *      LOCKING:
3541 *      Kernel thread context (may sleep)
3542 *
3543 *      RETURNS:
3544 *      0 on success, -errno on failure.
3545 */
3546int sata_link_resume(struct ata_link *link, const unsigned long *params,
3547                     unsigned long deadline)
3548{
3549        int tries = ATA_LINK_RESUME_TRIES;
3550        u32 scontrol, serror;
3551        int rc;
3552
3553        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3554                return rc;
3555
3556        /*
3557         * Writes to SControl sometimes get ignored under certain
3558         * controllers (ata_piix SIDPR).  Make sure DET actually is
3559         * cleared.
3560         */
3561        do {
3562                scontrol = (scontrol & 0x0f0) | 0x300;
3563                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3564                        return rc;
3565                /*
3566                 * Some PHYs react badly if SStatus is pounded
3567                 * immediately after resuming.  Delay 200ms before
3568                 * debouncing.
3569                 */
3570                ata_msleep(link->ap, 200);
3571
3572                /* is SControl restored correctly? */
3573                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3574                        return rc;
3575        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3576
3577        if ((scontrol & 0xf0f) != 0x300) {
3578                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3579                             scontrol);
3580                return 0;
3581        }
3582
3583        if (tries < ATA_LINK_RESUME_TRIES)
3584                ata_link_warn(link, "link resume succeeded after %d retries\n",
3585                              ATA_LINK_RESUME_TRIES - tries);
3586
3587        if ((rc = sata_link_debounce(link, params, deadline)))
3588                return rc;
3589
3590        /* clear SError, some PHYs require this even for SRST to work */
3591        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3592                rc = sata_scr_write(link, SCR_ERROR, serror);
3593
3594        return rc != -EINVAL ? rc : 0;
3595}
3596
3597/**
3598 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3599 *      @link: ATA link to manipulate SControl for
3600 *      @policy: LPM policy to configure
3601 *      @spm_wakeup: initiate LPM transition to active state
3602 *
3603 *      Manipulate the IPM field of the SControl register of @link
3604 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3605 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3606 *      the link.  This function also clears PHYRDY_CHG before
3607 *      returning.
3608 *
3609 *      LOCKING:
3610 *      EH context.
3611 *
3612 *      RETURNS:
3613 *      0 on succes, -errno otherwise.
3614 */
3615int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3616                      bool spm_wakeup)
3617{
3618        struct ata_eh_context *ehc = &link->eh_context;
3619        bool woken_up = false;
3620        u32 scontrol;
3621        int rc;
3622
3623        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3624        if (rc)
3625                return rc;
3626
3627        switch (policy) {
3628        case ATA_LPM_MAX_POWER:
3629                /* disable all LPM transitions */
3630                scontrol |= (0x7 << 8);
3631                /* initiate transition to active state */
3632                if (spm_wakeup) {
3633                        scontrol |= (0x4 << 12);
3634                        woken_up = true;
3635                }
3636                break;
3637        case ATA_LPM_MED_POWER:
3638                /* allow LPM to PARTIAL */
3639                scontrol &= ~(0x1 << 8);
3640                scontrol |= (0x6 << 8);
3641                break;
3642        case ATA_LPM_MIN_POWER:
3643                if (ata_link_nr_enabled(link) > 0)
3644                        /* no restrictions on LPM transitions */
3645                        scontrol &= ~(0x7 << 8);
3646                else {
3647                        /* empty port, power off */
3648                        scontrol &= ~0xf;
3649                        scontrol |= (0x1 << 2);
3650                }
3651                break;
3652        default:
3653                WARN_ON(1);
3654        }
3655
3656        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3657        if (rc)
3658                return rc;
3659
3660        /* give the link time to transit out of LPM state */
3661        if (woken_up)
3662                msleep(10);
3663
3664        /* clear PHYRDY_CHG from SError */
3665        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3666        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3667}
3668
3669/**
3670 *      ata_std_prereset - prepare for reset
3671 *      @link: ATA link to be reset
3672 *      @deadline: deadline jiffies for the operation
3673 *
3674 *      @link is about to be reset.  Initialize it.  Failure from
3675 *      prereset makes libata abort whole reset sequence and give up
3676 *      that port, so prereset should be best-effort.  It does its
3677 *      best to prepare for reset sequence but if things go wrong, it
3678 *      should just whine, not fail.
3679 *
3680 *      LOCKING:
3681 *      Kernel thread context (may sleep)
3682 *
3683 *      RETURNS:
3684 *      0 on success, -errno otherwise.
3685 */
3686int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3687{
3688        struct ata_port *ap = link->ap;
3689        struct ata_eh_context *ehc = &link->eh_context;
3690        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3691        int rc;
3692
3693        /* if we're about to do hardreset, nothing more to do */
3694        if (ehc->i.action & ATA_EH_HARDRESET)
3695                return 0;
3696
3697        /* if SATA, resume link */
3698        if (ap->flags & ATA_FLAG_SATA) {
3699                rc = sata_link_resume(link, timing, deadline);
3700                /* whine about phy resume failure but proceed */
3701                if (rc && rc != -EOPNOTSUPP)
3702                        ata_link_warn(link,
3703                                      "failed to resume link for reset (errno=%d)\n",
3704                                      rc);
3705        }
3706
3707        /* no point in trying softreset on offline link */
3708        if (ata_phys_link_offline(link))
3709                ehc->i.action &= ~ATA_EH_SOFTRESET;
3710
3711        return 0;
3712}
3713
3714/**
3715 *      sata_link_hardreset - reset link via SATA phy reset
3716 *      @link: link to reset
3717 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3718 *      @deadline: deadline jiffies for the operation
3719 *      @online: optional out parameter indicating link onlineness
3720 *      @check_ready: optional callback to check link readiness
3721 *
3722 *      SATA phy-reset @link using DET bits of SControl register.
3723 *      After hardreset, link readiness is waited upon using
3724 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3725 *      allowed to not specify @check_ready and wait itself after this
3726 *      function returns.  Device classification is LLD's
3727 *      responsibility.
3728 *
3729 *      *@online is set to one iff reset succeeded and @link is online
3730 *      after reset.
3731 *
3732 *      LOCKING:
3733 *      Kernel thread context (may sleep)
3734 *
3735 *      RETURNS:
3736 *      0 on success, -errno otherwise.
3737 */
3738int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3739                        unsigned long deadline,
3740                        bool *online, int (*check_ready)(struct ata_link *))
3741{
3742        u32 scontrol;
3743        int rc;
3744
3745        DPRINTK("ENTER\n");
3746
3747        if (online)
3748                *online = false;
3749
3750        if (sata_set_spd_needed(link)) {
3751                /* SATA spec says nothing about how to reconfigure
3752                 * spd.  To be on the safe side, turn off phy during
3753                 * reconfiguration.  This works for at least ICH7 AHCI
3754                 * and Sil3124.
3755                 */
3756                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3757                        goto out;
3758
3759                scontrol = (scontrol & 0x0f0) | 0x304;
3760
3761                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3762                        goto out;
3763
3764                sata_set_spd(link);
3765        }
3766
3767        /* issue phy wake/reset */
3768        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3769                goto out;
3770
3771        scontrol = (scontrol & 0x0f0) | 0x301;
3772
3773        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3774                goto out;
3775
3776        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3777         * 10.4.2 says at least 1 ms.
3778         */
3779        ata_msleep(link->ap, 1);
3780
3781        /* bring link back */
3782        rc = sata_link_resume(link, timing, deadline);
3783        if (rc)
3784                goto out;
3785        /* if link is offline nothing more to do */
3786        if (ata_phys_link_offline(link))
3787                goto out;
3788
3789        /* Link is online.  From this point, -ENODEV too is an error. */
3790        if (online)
3791                *online = true;
3792
3793        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3794                /* If PMP is supported, we have to do follow-up SRST.
3795                 * Some PMPs don't send D2H Reg FIS after hardreset if
3796                 * the first port is empty.  Wait only for
3797                 * ATA_TMOUT_PMP_SRST_WAIT.
3798                 */
3799                if (check_ready) {
3800                        unsigned long pmp_deadline;
3801
3802                        pmp_deadline = ata_deadline(jiffies,
3803                                                    ATA_TMOUT_PMP_SRST_WAIT);
3804                        if (time_after(pmp_deadline, deadline))
3805                                pmp_deadline = deadline;
3806                        ata_wait_ready(link, pmp_deadline, check_ready);
3807                }
3808                rc = -EAGAIN;
3809                goto out;
3810        }
3811
3812        rc = 0;
3813        if (check_ready)
3814                rc = ata_wait_ready(link, deadline, check_ready);
3815 out:
3816        if (rc && rc != -EAGAIN) {
3817                /* online is set iff link is online && reset succeeded */
3818                if (online)
3819                        *online = false;
3820                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3821        }
3822        DPRINTK("EXIT, rc=%d\n", rc);
3823        return rc;
3824}
3825
3826/**
3827 *      sata_std_hardreset - COMRESET w/o waiting or classification
3828 *      @link: link to reset
3829 *      @class: resulting class of attached device
3830 *      @deadline: deadline jiffies for the operation
3831 *
3832 *      Standard SATA COMRESET w/o waiting or classification.
3833 *
3834 *      LOCKING:
3835 *      Kernel thread context (may sleep)
3836 *
3837 *      RETURNS:
3838 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3839 */
3840int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3841                       unsigned long deadline)
3842{
3843        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3844        bool online;
3845        int rc;
3846
3847        /* do hardreset */
3848        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3849        return online ? -EAGAIN : rc;
3850}
3851
3852/**
3853 *      ata_std_postreset - standard postreset callback
3854 *      @link: the target ata_link
3855 *      @classes: classes of attached devices
3856 *
3857 *      This function is invoked after a successful reset.  Note that
3858 *      the device might have been reset more than once using
3859 *      different reset methods before postreset is invoked.
3860 *
3861 *      LOCKING:
3862 *      Kernel thread context (may sleep)
3863 */
3864void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3865{
3866        u32 serror;
3867
3868        DPRINTK("ENTER\n");
3869
3870        /* reset complete, clear SError */
3871        if (!sata_scr_read(link, SCR_ERROR, &serror))
3872                sata_scr_write(link, SCR_ERROR, serror);
3873
3874        /* print link status */
3875        sata_print_link_status(link);
3876
3877        DPRINTK("EXIT\n");
3878}
3879
3880/**
3881 *      ata_dev_same_device - Determine whether new ID matches configured device
3882 *      @dev: device to compare against
3883 *      @new_class: class of the new device
3884 *      @new_id: IDENTIFY page of the new device
3885 *
3886 *      Compare @new_class and @new_id against @dev and determine
3887 *      whether @dev is the device indicated by @new_class and
3888 *      @new_id.
3889 *
3890 *      LOCKING:
3891 *      None.
3892 *
3893 *      RETURNS:
3894 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3895 */
3896static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3897                               const u16 *new_id)
3898{
3899        const u16 *old_id = dev->id;
3900        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3901        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3902
3903        if (dev->class != new_class) {
3904                ata_dev_info(dev, "class mismatch %d != %d\n",
3905                             dev->class, new_class);
3906                return 0;
3907        }
3908
3909        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3910        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3911        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3912        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3913
3914        if (strcmp(model[0], model[1])) {
3915                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3916                             model[0], model[1]);
3917                return 0;
3918        }
3919
3920        if (strcmp(serial[0], serial[1])) {
3921                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3922                             serial[0], serial[1]);
3923                return 0;
3924        }
3925
3926        return 1;
3927}
3928
3929/**
3930 *      ata_dev_reread_id - Re-read IDENTIFY data
3931 *      @dev: target ATA device
3932 *      @readid_flags: read ID flags
3933 *
3934 *      Re-read IDENTIFY page and make sure @dev is still attached to
3935 *      the port.
3936 *
3937 *      LOCKING:
3938 *      Kernel thread context (may sleep)
3939 *
3940 *      RETURNS:
3941 *      0 on success, negative errno otherwise
3942 */
3943int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3944{
3945        unsigned int class = dev->class;
3946        u16 *id = (void *)dev->link->ap->sector_buf;
3947        int rc;
3948
3949        /* read ID data */
3950        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3951        if (rc)
3952                return rc;
3953
3954        /* is the device still there? */
3955        if (!ata_dev_same_device(dev, class, id))
3956                return -ENODEV;
3957
3958        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3959        return 0;
3960}
3961
3962/**
3963 *      ata_dev_revalidate - Revalidate ATA device
3964 *      @dev: device to revalidate
3965 *      @new_class: new class code
3966 *      @readid_flags: read ID flags
3967 *
3968 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3969 *      port and reconfigure it according to the new IDENTIFY page.
3970 *
3971 *      LOCKING:
3972 *      Kernel thread context (may sleep)
3973 *
3974 *      RETURNS:
3975 *      0 on success, negative errno otherwise
3976 */
3977int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3978                       unsigned int readid_flags)
3979{
3980        u64 n_sectors = dev->n_sectors;
3981        u64 n_native_sectors = dev->n_native_sectors;
3982        int rc;
3983
3984        if (!ata_dev_enabled(dev))
3985                return -ENODEV;
3986
3987        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3988        if (ata_class_enabled(new_class) &&
3989            new_class != ATA_DEV_ATA &&
3990            new_class != ATA_DEV_ATAPI &&
3991            new_class != ATA_DEV_SEMB) {
3992                ata_dev_info(dev, "class mismatch %u != %u\n",
3993                             dev->class, new_class);
3994                rc = -ENODEV;
3995                goto fail;
3996        }
3997
3998        /* re-read ID */
3999        rc = ata_dev_reread_id(dev, readid_flags);
4000        if (rc)
4001                goto fail;
4002
4003        /* configure device according to the new ID */
4004        rc = ata_dev_configure(dev);
4005        if (rc)
4006                goto fail;
4007
4008        /* verify n_sectors hasn't changed */
4009        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4010            dev->n_sectors == n_sectors)
4011                return 0;
4012
4013        /* n_sectors has changed */
4014        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4015                     (unsigned long long)n_sectors,
4016                     (unsigned long long)dev->n_sectors);
4017
4018        /*
4019         * Something could have caused HPA to be unlocked
4020         * involuntarily.  If n_native_sectors hasn't changed and the
4021         * new size matches it, keep the device.
4022         */
4023        if (dev->n_native_sectors == n_native_sectors &&
4024            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4025                ata_dev_warn(dev,
4026                             "new n_sectors matches native, probably "
4027                             "late HPA unlock, n_sectors updated\n");
4028                /* use the larger n_sectors */
4029                return 0;
4030        }
4031
4032        /*
4033         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4034         * unlocking HPA in those cases.
4035         *
4036         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4037         */
4038        if (dev->n_native_sectors == n_native_sectors &&
4039            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4040            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4041                ata_dev_warn(dev,
4042                             "old n_sectors matches native, probably "
4043                             "late HPA lock, will try to unlock HPA\n");
4044                /* try unlocking HPA */
4045                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4046                rc = -EIO;
4047        } else
4048                rc = -ENODEV;
4049
4050        /* restore original n_[native_]sectors and fail */
4051        dev->n_native_sectors = n_native_sectors;
4052        dev->n_sectors = n_sectors;
4053 fail:
4054        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4055        return rc;
4056}
4057
4058struct ata_blacklist_entry {
4059        const char *model_num;
4060        const char *model_rev;
4061        unsigned long horkage;
4062};
4063
4064static const struct ata_blacklist_entry ata_device_blacklist [] = {
4065        /* Devices with DMA related problems under Linux */
4066        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4067        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4068        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4069        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4070        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4071        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4072        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4073        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4074        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4075        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4076        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4077        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4078        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4079        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4080        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4081        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4082        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4083        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4084        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4085        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4086        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4087        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4088        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4089        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4090        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4091        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4092        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4093        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4094        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4095        /* Odd clown on sil3726/4726 PMPs */
4096        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4097
4098        /* Weird ATAPI devices */
4099        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4100        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4101
4102        /* Devices we expect to fail diagnostics */
4103
4104        /* Devices where NCQ should be avoided */
4105        /* NCQ is slow */
4106        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4107        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4108        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4109        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4110        /* NCQ is broken */
4111        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4112        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4113        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4114        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4115        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4116
4117        /* Seagate NCQ + FLUSH CACHE firmware bug */
4118        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4119                                                ATA_HORKAGE_FIRMWARE_WARN },
4120
4121        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4122                                                ATA_HORKAGE_FIRMWARE_WARN },
4123
4124        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4125                                                ATA_HORKAGE_FIRMWARE_WARN },
4126
4127        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4128                                                ATA_HORKAGE_FIRMWARE_WARN },
4129
4130        /* Blacklist entries taken from Silicon Image 3124/3132
4131           Windows driver .inf file - also several Linux problem reports */
4132        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4133        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4134        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4135
4136        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4137        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4138
4139        /* devices which puke on READ_NATIVE_MAX */
4140        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4141        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4142        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4143        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4144
4145        /* this one allows HPA unlocking but fails IOs on the area */
4146        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4147
4148        /* Devices which report 1 sector over size HPA */
4149        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4150        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4151        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4152
4153        /* Devices which get the IVB wrong */
4154        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4155        /* Maybe we should just blacklist TSSTcorp... */
4156        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4157
4158        /* Devices that do not need bridging limits applied */
4159        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4160        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4161
4162        /* Devices which aren't very happy with higher link speeds */
4163        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4164        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4165
4166        /*
4167         * Devices which choke on SETXFER.  Applies only if both the
4168         * device and controller are SATA.
4169         */
4170        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4171        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4172        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4173        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4174        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4175
4176        /* End Marker */
4177        { }
4178};
4179
4180/**
4181 *      glob_match - match a text string against a glob-style pattern
4182 *      @text: the string to be examined
4183 *      @pattern: the glob-style pattern to be matched against
4184 *
4185 *      Either/both of text and pattern can be empty strings.
4186 *
4187 *      Match text against a glob-style pattern, with wildcards and simple sets:
4188 *
4189 *              ?       matches any single character.
4190 *              *       matches any run of characters.
4191 *              [xyz]   matches a single character from the set: x, y, or z.
4192 *              [a-d]   matches a single character from the range: a, b, c, or d.
4193 *              [a-d0-9] matches a single character from either range.
4194 *
4195 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4196 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4197 *
4198 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4199 *
4200 *      This function uses one level of recursion per '*' in pattern.
4201 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4202 *      this will not cause stack problems for any reasonable use here.
4203 *
4204 *      RETURNS:
4205 *      0 on match, 1 otherwise.
4206 */
4207static int glob_match (const char *text, const char *pattern)
4208{
4209        do {
4210                /* Match single character or a '?' wildcard */
4211                if (*text == *pattern || *pattern == '?') {
4212                        if (!*pattern++)
4213                                return 0;  /* End of both strings: match */
4214                } else {
4215                        /* Match single char against a '[' bracketed ']' pattern set */
4216                        if (!*text || *pattern != '[')
4217                                break;  /* Not a pattern set */
4218                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4219                                if (*pattern == '-' && *(pattern - 1) != '[')
4220                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4221                                                ++pattern;
4222                                                break;
4223                                        }
4224                        }
4225                        if (!*pattern || *pattern == ']')
4226                                return 1;  /* No match */
4227                        while (*pattern && *pattern++ != ']');
4228                }
4229        } while (*++text && *pattern);
4230
4231        /* Match any run of chars against a '*' wildcard */
4232        if (*pattern == '*') {
4233                if (!*++pattern)
4234                        return 0;  /* Match: avoid recursion at end of pattern */
4235                /* Loop to handle additional pattern chars after the wildcard */
4236                while (*text) {
4237                        if (glob_match(text, pattern) == 0)
4238                                return 0;  /* Remainder matched */
4239                        ++text;  /* Absorb (match) this char and try again */
4240                }
4241        }
4242        if (!*text && !*pattern)
4243                return 0;  /* End of both strings: match */
4244        return 1;  /* No match */
4245}
4246
4247static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4248{
4249        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4250        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4251        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4252
4253        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4254        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4255
4256        while (ad->model_num) {
4257                if (!glob_match(model_num, ad->model_num)) {
4258                        if (ad->model_rev == NULL)
4259                                return ad->horkage;
4260                        if (!glob_match(model_rev, ad->model_rev))
4261                                return ad->horkage;
4262                }
4263                ad++;
4264        }
4265        return 0;
4266}
4267
4268static int ata_dma_blacklisted(const struct ata_device *dev)
4269{
4270        /* We don't support polling DMA.
4271         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4272         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4273         */
4274        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4275            (dev->flags & ATA_DFLAG_CDB_INTR))
4276                return 1;
4277        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4278}
4279
4280/**
4281 *      ata_is_40wire           -       check drive side detection
4282 *      @dev: device
4283 *
4284 *      Perform drive side detection decoding, allowing for device vendors
4285 *      who can't follow the documentation.
4286 */
4287
4288static int ata_is_40wire(struct ata_device *dev)
4289{
4290        if (dev->horkage & ATA_HORKAGE_IVB)
4291                return ata_drive_40wire_relaxed(dev->id);
4292        return ata_drive_40wire(dev->id);
4293}
4294
4295/**
4296 *      cable_is_40wire         -       40/80/SATA decider
4297 *      @ap: port to consider
4298 *
4299 *      This function encapsulates the policy for speed management
4300 *      in one place. At the moment we don't cache the result but
4301 *      there is a good case for setting ap->cbl to the result when
4302 *      we are called with unknown cables (and figuring out if it
4303 *      impacts hotplug at all).
4304 *
4305 *      Return 1 if the cable appears to be 40 wire.
4306 */
4307
4308static int cable_is_40wire(struct ata_port *ap)
4309{
4310        struct ata_link *link;
4311        struct ata_device *dev;
4312
4313        /* If the controller thinks we are 40 wire, we are. */
4314        if (ap->cbl == ATA_CBL_PATA40)
4315                return 1;
4316
4317        /* If the controller thinks we are 80 wire, we are. */
4318        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4319                return 0;
4320
4321        /* If the system is known to be 40 wire short cable (eg
4322         * laptop), then we allow 80 wire modes even if the drive
4323         * isn't sure.
4324         */
4325        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4326                return 0;
4327
4328        /* If the controller doesn't know, we scan.
4329         *
4330         * Note: We look for all 40 wire detects at this point.  Any
4331         *       80 wire detect is taken to be 80 wire cable because
4332         * - in many setups only the one drive (slave if present) will
4333         *   give a valid detect
4334         * - if you have a non detect capable drive you don't want it
4335         *   to colour the choice
4336         */
4337        ata_for_each_link(link, ap, EDGE) {
4338                ata_for_each_dev(dev, link, ENABLED) {
4339                        if (!ata_is_40wire(dev))
4340                                return 0;
4341                }
4342        }
4343        return 1;
4344}
4345
4346/**
4347 *      ata_dev_xfermask - Compute supported xfermask of the given device
4348 *      @dev: Device to compute xfermask for
4349 *
4350 *      Compute supported xfermask of @dev and store it in
4351 *      dev->*_mask.  This function is responsible for applying all
4352 *      known limits including host controller limits, device
4353 *      blacklist, etc...
4354 *
4355 *      LOCKING:
4356 *      None.
4357 */
4358static void ata_dev_xfermask(struct ata_device *dev)
4359{
4360        struct ata_link *link = dev->link;
4361        struct ata_port *ap = link->ap;
4362        struct ata_host *host = ap->host;
4363        unsigned long xfer_mask;
4364
4365        /* controller modes available */
4366        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4367                                      ap->mwdma_mask, ap->udma_mask);
4368
4369        /* drive modes available */
4370        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4371                                       dev->mwdma_mask, dev->udma_mask);
4372        xfer_mask &= ata_id_xfermask(dev->id);
4373
4374        /*
4375         *      CFA Advanced TrueIDE timings are not allowed on a shared
4376         *      cable
4377         */
4378        if (ata_dev_pair(dev)) {
4379                /* No PIO5 or PIO6 */
4380                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4381                /* No MWDMA3 or MWDMA 4 */
4382                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4383        }
4384
4385        if (ata_dma_blacklisted(dev)) {
4386                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4387                ata_dev_warn(dev,
4388                             "device is on DMA blacklist, disabling DMA\n");
4389        }
4390
4391        if ((host->flags & ATA_HOST_SIMPLEX) &&
4392            host->simplex_claimed && host->simplex_claimed != ap) {
4393                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4394                ata_dev_warn(dev,
4395                             "simplex DMA is claimed by other device, disabling DMA\n");
4396        }
4397
4398        if (ap->flags & ATA_FLAG_NO_IORDY)
4399                xfer_mask &= ata_pio_mask_no_iordy(dev);
4400
4401        if (ap->ops->mode_filter)
4402                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4403
4404        /* Apply cable rule here.  Don't apply it early because when
4405         * we handle hot plug the cable type can itself change.
4406         * Check this last so that we know if the transfer rate was
4407         * solely limited by the cable.
4408         * Unknown or 80 wire cables reported host side are checked
4409         * drive side as well. Cases where we know a 40wire cable
4410         * is used safely for 80 are not checked here.
4411         */
4412        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4413                /* UDMA/44 or higher would be available */
4414                if (cable_is_40wire(ap)) {
4415                        ata_dev_warn(dev,
4416                                     "limited to UDMA/33 due to 40-wire cable\n");
4417                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4418                }
4419
4420        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4421                            &dev->mwdma_mask, &dev->udma_mask);
4422}
4423
4424/**
4425 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4426 *      @dev: Device to which command will be sent
4427 *
4428 *      Issue SET FEATURES - XFER MODE command to device @dev
4429 *      on port @ap.
4430 *
4431 *      LOCKING:
4432 *      PCI/etc. bus probe sem.
4433 *
4434 *      RETURNS:
4435 *      0 on success, AC_ERR_* mask otherwise.
4436 */
4437
4438static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4439{
4440        struct ata_taskfile tf;
4441        unsigned int err_mask;
4442
4443        /* set up set-features taskfile */
4444        DPRINTK("set features - xfer mode\n");
4445
4446        /* Some controllers and ATAPI devices show flaky interrupt
4447         * behavior after setting xfer mode.  Use polling instead.
4448         */
4449        ata_tf_init(dev, &tf);
4450        tf.command = ATA_CMD_SET_FEATURES;
4451        tf.feature = SETFEATURES_XFER;
4452        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4453        tf.protocol = ATA_PROT_NODATA;
4454        /* If we are using IORDY we must send the mode setting command */
4455        if (ata_pio_need_iordy(dev))
4456                tf.nsect = dev->xfer_mode;
4457        /* If the device has IORDY and the controller does not - turn it off */
4458        else if (ata_id_has_iordy(dev->id))
4459                tf.nsect = 0x01;
4460        else /* In the ancient relic department - skip all of this */
4461                return 0;
4462
4463        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4464
4465        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4466        return err_mask;
4467}
4468
4469/**
4470 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4471 *      @dev: Device to which command will be sent
4472 *      @enable: Whether to enable or disable the feature
4473 *      @feature: The sector count represents the feature to set
4474 *
4475 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4476 *      on port @ap with sector count
4477 *
4478 *      LOCKING:
4479 *      PCI/etc. bus probe sem.
4480 *
4481 *      RETURNS:
4482 *      0 on success, AC_ERR_* mask otherwise.
4483 */
4484unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4485{
4486        struct ata_taskfile tf;
4487        unsigned int err_mask;
4488
4489        /* set up set-features taskfile */
4490        DPRINTK("set features - SATA features\n");
4491
4492        ata_tf_init(dev, &tf);
4493        tf.command = ATA_CMD_SET_FEATURES;
4494        tf.feature = enable;
4495        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4496        tf.protocol = ATA_PROT_NODATA;
4497        tf.nsect = feature;
4498
4499        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4500
4501        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4502        return err_mask;
4503}
4504EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4505
4506/**
4507 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4508 *      @dev: Device to which command will be sent
4509 *      @heads: Number of heads (taskfile parameter)
4510 *      @sectors: Number of sectors (taskfile parameter)
4511 *
4512 *      LOCKING:
4513 *      Kernel thread context (may sleep)
4514 *
4515 *      RETURNS:
4516 *      0 on success, AC_ERR_* mask otherwise.
4517 */
4518static unsigned int ata_dev_init_params(struct ata_device *dev,
4519                                        u16 heads, u16 sectors)
4520{
4521        struct ata_taskfile tf;
4522        unsigned int err_mask;
4523
4524        /* Number of sectors per track 1-255. Number of heads 1-16 */
4525        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4526                return AC_ERR_INVALID;
4527
4528        /* set up init dev params taskfile */
4529        DPRINTK("init dev params \n");
4530
4531        ata_tf_init(dev, &tf);
4532        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4533        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4534        tf.protocol = ATA_PROT_NODATA;
4535        tf.nsect = sectors;
4536        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4537
4538        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4539        /* A clean abort indicates an original or just out of spec drive
4540           and we should continue as we issue the setup based on the
4541           drive reported working geometry */
4542        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4543                err_mask = 0;
4544
4545        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4546        return err_mask;
4547}
4548
4549/**
4550 *      ata_sg_clean - Unmap DMA memory associated with command
4551 *      @qc: Command containing DMA memory to be released
4552 *
4553 *      Unmap all mapped DMA memory associated with this command.
4554 *
4555 *      LOCKING:
4556 *      spin_lock_irqsave(host lock)
4557 */
4558void ata_sg_clean(struct ata_queued_cmd *qc)
4559{
4560        struct ata_port *ap = qc->ap;
4561        struct scatterlist *sg = qc->sg;
4562        int dir = qc->dma_dir;
4563
4564        WARN_ON_ONCE(sg == NULL);
4565
4566        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4567
4568        if (qc->n_elem)
4569                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4570
4571        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4572        qc->sg = NULL;
4573}
4574
4575/**
4576 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4577 *      @qc: Metadata associated with taskfile to check
4578 *
4579 *      Allow low-level driver to filter ATA PACKET commands, returning
4580 *      a status indicating whether or not it is OK to use DMA for the
4581 *      supplied PACKET command.
4582 *
4583 *      LOCKING:
4584 *      spin_lock_irqsave(host lock)
4585 *
4586 *      RETURNS: 0 when ATAPI DMA can be used
4587 *               nonzero otherwise
4588 */
4589int atapi_check_dma(struct ata_queued_cmd *qc)
4590{
4591        struct ata_port *ap = qc->ap;
4592
4593        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4594         * few ATAPI devices choke on such DMA requests.
4595         */
4596        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4597            unlikely(qc->nbytes & 15))
4598                return 1;
4599
4600        if (ap->ops->check_atapi_dma)
4601                return ap->ops->check_atapi_dma(qc);
4602
4603        return 0;
4604}
4605
4606/**
4607 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4608 *      @qc: ATA command in question
4609 *
4610 *      Non-NCQ commands cannot run with any other command, NCQ or
4611 *      not.  As upper layer only knows the queue depth, we are
4612 *      responsible for maintaining exclusion.  This function checks
4613 *      whether a new command @qc can be issued.
4614 *
4615 *      LOCKING:
4616 *      spin_lock_irqsave(host lock)
4617 *
4618 *      RETURNS:
4619 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4620 */
4621int ata_std_qc_defer(struct ata_queued_cmd *qc)
4622{
4623        struct ata_link *link = qc->dev->link;
4624
4625        if (qc->tf.protocol == ATA_PROT_NCQ) {
4626                if (!ata_tag_valid(link->active_tag))
4627                        return 0;
4628        } else {
4629                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4630                        return 0;
4631        }
4632
4633        return ATA_DEFER_LINK;
4634}
4635
4636void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4637
4638/**
4639 *      ata_sg_init - Associate command with scatter-gather table.
4640 *      @qc: Command to be associated
4641 *      @sg: Scatter-gather table.
4642 *      @n_elem: Number of elements in s/g table.
4643 *
4644 *      Initialize the data-related elements of queued_cmd @qc
4645 *      to point to a scatter-gather table @sg, containing @n_elem
4646 *      elements.
4647 *
4648 *      LOCKING:
4649 *      spin_lock_irqsave(host lock)
4650 */
4651void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4652                 unsigned int n_elem)
4653{
4654        qc->sg = sg;
4655        qc->n_elem = n_elem;
4656        qc->cursg = qc->sg;
4657}
4658
4659/**
4660 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4661 *      @qc: Command with scatter-gather table to be mapped.
4662 *
4663 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4664 *
4665 *      LOCKING:
4666 *      spin_lock_irqsave(host lock)
4667 *
4668 *      RETURNS:
4669 *      Zero on success, negative on error.
4670 *
4671 */
4672static int ata_sg_setup(struct ata_queued_cmd *qc)
4673{
4674        struct ata_port *ap = qc->ap;
4675        unsigned int n_elem;
4676
4677        VPRINTK("ENTER, ata%u\n", ap->print_id);
4678
4679        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4680        if (n_elem < 1)
4681                return -1;
4682
4683        DPRINTK("%d sg elements mapped\n", n_elem);
4684        qc->orig_n_elem = qc->n_elem;
4685        qc->n_elem = n_elem;
4686        qc->flags |= ATA_QCFLAG_DMAMAP;
4687
4688        return 0;
4689}
4690
4691/**
4692 *      swap_buf_le16 - swap halves of 16-bit words in place
4693 *      @buf:  Buffer to swap
4694 *      @buf_words:  Number of 16-bit words in buffer.
4695 *
4696 *      Swap halves of 16-bit words if needed to convert from
4697 *      little-endian byte order to native cpu byte order, or
4698 *      vice-versa.
4699 *
4700 *      LOCKING:
4701 *      Inherited from caller.
4702 */
4703void swap_buf_le16(u16 *buf, unsigned int buf_words)
4704{
4705#ifdef __BIG_ENDIAN
4706        unsigned int i;
4707
4708        for (i = 0; i < buf_words; i++)
4709                buf[i] = le16_to_cpu(buf[i]);
4710#endif /* __BIG_ENDIAN */
4711}
4712
4713/**
4714 *      ata_qc_new - Request an available ATA command, for queueing
4715 *      @ap: target port
4716 *
4717 *      LOCKING:
4718 *      None.
4719 */
4720
4721static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4722{
4723        struct ata_queued_cmd *qc = NULL;
4724        unsigned int i;
4725
4726        /* no command while frozen */
4727        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4728                return NULL;
4729
4730        /* the last tag is reserved for internal command. */
4731        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4732                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4733                        qc = __ata_qc_from_tag(ap, i);
4734                        break;
4735                }
4736
4737        if (qc)
4738                qc->tag = i;
4739
4740        return qc;
4741}
4742
4743/**
4744 *      ata_qc_new_init - Request an available ATA command, and initialize it
4745 *      @dev: Device from whom we request an available command structure
4746 *
4747 *      LOCKING:
4748 *      None.
4749 */
4750
4751struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4752{
4753        struct ata_port *ap = dev->link->ap;
4754        struct ata_queued_cmd *qc;
4755
4756        qc = ata_qc_new(ap);
4757        if (qc) {
4758                qc->scsicmd = NULL;
4759                qc->ap = ap;
4760                qc->dev = dev;
4761
4762                ata_qc_reinit(qc);
4763        }
4764
4765        return qc;
4766}
4767
4768/**
4769 *      ata_qc_free - free unused ata_queued_cmd
4770 *      @qc: Command to complete
4771 *
4772 *      Designed to free unused ata_queued_cmd object
4773 *      in case something prevents using it.
4774 *
4775 *      LOCKING:
4776 *      spin_lock_irqsave(host lock)
4777 */
4778void ata_qc_free(struct ata_queued_cmd *qc)
4779{
4780        struct ata_port *ap;
4781        unsigned int tag;
4782
4783        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4784        ap = qc->ap;
4785
4786        qc->flags = 0;
4787        tag = qc->tag;
4788        if (likely(ata_tag_valid(tag))) {
4789                qc->tag = ATA_TAG_POISON;
4790                clear_bit(tag, &ap->qc_allocated);
4791        }
4792}
4793
4794void __ata_qc_complete(struct ata_queued_cmd *qc)
4795{
4796        struct ata_port *ap;
4797        struct ata_link *link;
4798
4799        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4800        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4801        ap = qc->ap;
4802        link = qc->dev->link;
4803
4804        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4805                ata_sg_clean(qc);
4806
4807        /* command should be marked inactive atomically with qc completion */
4808        if (qc->tf.protocol == ATA_PROT_NCQ) {
4809                link->sactive &= ~(1 << qc->tag);
4810                if (!link->sactive)
4811                        ap->nr_active_links--;
4812        } else {
4813                link->active_tag = ATA_TAG_POISON;
4814                ap->nr_active_links--;
4815        }
4816
4817        /* clear exclusive status */
4818        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4819                     ap->excl_link == link))
4820                ap->excl_link = NULL;
4821
4822        /* atapi: mark qc as inactive to prevent the interrupt handler
4823         * from completing the command twice later, before the error handler
4824         * is called. (when rc != 0 and atapi request sense is needed)
4825         */
4826        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4827        ap->qc_active &= ~(1 << qc->tag);
4828
4829        /* call completion callback */
4830        qc->complete_fn(qc);
4831}
4832
4833static void fill_result_tf(struct ata_queued_cmd *qc)
4834{
4835        struct ata_port *ap = qc->ap;
4836
4837        qc->result_tf.flags = qc->tf.flags;
4838        ap->ops->qc_fill_rtf(qc);
4839}
4840
4841static void ata_verify_xfer(struct ata_queued_cmd *qc)
4842{
4843        struct ata_device *dev = qc->dev;
4844
4845        if (ata_is_nodata(qc->tf.protocol))
4846                return;
4847
4848        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4849                return;
4850
4851        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4852}
4853
4854/**
4855 *      ata_qc_complete - Complete an active ATA command
4856 *      @qc: Command to complete
4857 *
4858 *      Indicate to the mid and upper layers that an ATA command has
4859 *      completed, with either an ok or not-ok status.
4860 *
4861 *      Refrain from calling this function multiple times when
4862 *      successfully completing multiple NCQ commands.
4863 *      ata_qc_complete_multiple() should be used instead, which will
4864 *      properly update IRQ expect state.
4865 *
4866 *      LOCKING:
4867 *      spin_lock_irqsave(host lock)
4868 */
4869void ata_qc_complete(struct ata_queued_cmd *qc)
4870{
4871        struct ata_port *ap = qc->ap;
4872
4873        /* XXX: New EH and old EH use different mechanisms to
4874         * synchronize EH with regular execution path.
4875         *
4876         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4877         * Normal execution path is responsible for not accessing a
4878         * failed qc.  libata core enforces the rule by returning NULL
4879         * from ata_qc_from_tag() for failed qcs.
4880         *
4881         * Old EH depends on ata_qc_complete() nullifying completion
4882         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4883         * not synchronize with interrupt handler.  Only PIO task is
4884         * taken care of.
4885         */
4886        if (ap->ops->error_handler) {
4887                struct ata_device *dev = qc->dev;
4888                struct ata_eh_info *ehi = &dev->link->eh_info;
4889
4890                if (unlikely(qc->err_mask))
4891                        qc->flags |= ATA_QCFLAG_FAILED;
4892
4893                /*
4894                 * Finish internal commands without any further processing
4895                 * and always with the result TF filled.
4896                 */
4897                if (unlikely(ata_tag_internal(qc->tag))) {
4898                        fill_result_tf(qc);
4899                        __ata_qc_complete(qc);
4900                        return;
4901                }
4902
4903                /*
4904                 * Non-internal qc has failed.  Fill the result TF and
4905                 * summon EH.
4906                 */
4907                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4908                        fill_result_tf(qc);
4909                        ata_qc_schedule_eh(qc);
4910                        return;
4911                }
4912
4913                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4914
4915                /* read result TF if requested */
4916                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4917                        fill_result_tf(qc);
4918
4919                /* Some commands need post-processing after successful
4920                 * completion.
4921                 */
4922                switch (qc->tf.command) {
4923                case ATA_CMD_SET_FEATURES:
4924                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4925                            qc->tf.feature != SETFEATURES_WC_OFF)
4926                                break;
4927                        /* fall through */
4928                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4929                case ATA_CMD_SET_MULTI: /* multi_count changed */
4930                        /* revalidate device */
4931                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4932                        ata_port_schedule_eh(ap);
4933                        break;
4934
4935                case ATA_CMD_SLEEP:
4936                        dev->flags |= ATA_DFLAG_SLEEPING;
4937                        break;
4938                }
4939
4940                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4941                        ata_verify_xfer(qc);
4942
4943                __ata_qc_complete(qc);
4944        } else {
4945                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4946                        return;
4947
4948                /* read result TF if failed or requested */
4949                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4950                        fill_result_tf(qc);
4951
4952                __ata_qc_complete(qc);
4953        }
4954}
4955
4956/**
4957 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4958 *      @ap: port in question
4959 *      @qc_active: new qc_active mask
4960 *
4961 *      Complete in-flight commands.  This functions is meant to be
4962 *      called from low-level driver's interrupt routine to complete
4963 *      requests normally.  ap->qc_active and @qc_active is compared
4964 *      and commands are completed accordingly.
4965 *
4966 *      Always use this function when completing multiple NCQ commands
4967 *      from IRQ handlers instead of calling ata_qc_complete()
4968 *      multiple times to keep IRQ expect status properly in sync.
4969 *
4970 *      LOCKING:
4971 *      spin_lock_irqsave(host lock)
4972 *
4973 *      RETURNS:
4974 *      Number of completed commands on success, -errno otherwise.
4975 */
4976int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4977{
4978        int nr_done = 0;
4979        u32 done_mask;
4980
4981        done_mask = ap->qc_active ^ qc_active;
4982
4983        if (unlikely(done_mask & qc_active)) {
4984                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4985                             ap->qc_active, qc_active);
4986                return -EINVAL;
4987        }
4988
4989        while (done_mask) {
4990                struct ata_queued_cmd *qc;
4991                unsigned int tag = __ffs(done_mask);
4992
4993                qc = ata_qc_from_tag(ap, tag);
4994                if (qc) {
4995                        ata_qc_complete(qc);
4996                        nr_done++;
4997                }
4998                done_mask &= ~(1 << tag);
4999        }
5000
5001        return nr_done;
5002}
5003
5004/**
5005 *      ata_qc_issue - issue taskfile to device
5006 *      @qc: command to issue to device
5007 *
5008 *      Prepare an ATA command to submission to device.
5009 *      This includes mapping the data into a DMA-able
5010 *      area, filling in the S/G table, and finally
5011 *      writing the taskfile to hardware, starting the command.
5012 *
5013 *      LOCKING:
5014 *      spin_lock_irqsave(host lock)
5015 */
5016void ata_qc_issue(struct ata_queued_cmd *qc)
5017{
5018        struct ata_port *ap = qc->ap;
5019        struct ata_link *link = qc->dev->link;
5020        u8 prot = qc->tf.protocol;
5021
5022        /* Make sure only one non-NCQ command is outstanding.  The
5023         * check is skipped for old EH because it reuses active qc to
5024         * request ATAPI sense.
5025         */
5026        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5027
5028        if (ata_is_ncq(prot)) {
5029                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5030
5031                if (!link->sactive)
5032                        ap->nr_active_links++;
5033                link->sactive |= 1 << qc->tag;
5034        } else {
5035                WARN_ON_ONCE(link->sactive);
5036
5037                ap->nr_active_links++;
5038                link->active_tag = qc->tag;
5039        }
5040
5041        qc->flags |= ATA_QCFLAG_ACTIVE;
5042        ap->qc_active |= 1 << qc->tag;
5043
5044        /*
5045         * We guarantee to LLDs that they will have at least one
5046         * non-zero sg if the command is a data command.
5047         */
5048        if (WARN_ON_ONCE(ata_is_data(prot) &&
5049                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5050                goto sys_err;
5051
5052        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5053                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5054                if (ata_sg_setup(qc))
5055                        goto sys_err;
5056
5057        /* if device is sleeping, schedule reset and abort the link */
5058        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5059                link->eh_info.action |= ATA_EH_RESET;
5060                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5061                ata_link_abort(link);
5062                return;
5063        }
5064
5065        ap->ops->qc_prep(qc);
5066
5067        qc->err_mask |= ap->ops->qc_issue(qc);
5068        if (unlikely(qc->err_mask))
5069                goto err;
5070        return;
5071
5072sys_err:
5073        qc->err_mask |= AC_ERR_SYSTEM;
5074err:
5075        ata_qc_complete(qc);
5076}
5077
5078/**
5079 *      sata_scr_valid - test whether SCRs are accessible
5080 *      @link: ATA link to test SCR accessibility for
5081 *
5082 *      Test whether SCRs are accessible for @link.
5083 *
5084 *      LOCKING:
5085 *      None.
5086 *
5087 *      RETURNS:
5088 *      1 if SCRs are accessible, 0 otherwise.
5089 */
5090int sata_scr_valid(struct ata_link *link)
5091{
5092        struct ata_port *ap = link->ap;
5093
5094        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5095}
5096
5097/**
5098 *      sata_scr_read - read SCR register of the specified port
5099 *      @link: ATA link to read SCR for
5100 *      @reg: SCR to read
5101 *      @val: Place to store read value
5102 *
5103 *      Read SCR register @reg of @link into *@val.  This function is
5104 *      guaranteed to succeed if @link is ap->link, the cable type of
5105 *      the port is SATA and the port implements ->scr_read.
5106 *
5107 *      LOCKING:
5108 *      None if @link is ap->link.  Kernel thread context otherwise.
5109 *
5110 *      RETURNS:
5111 *      0 on success, negative errno on failure.
5112 */
5113int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5114{
5115        if (ata_is_host_link(link)) {
5116                if (sata_scr_valid(link))
5117                        return link->ap->ops->scr_read(link, reg, val);
5118                return -EOPNOTSUPP;
5119        }
5120
5121        return sata_pmp_scr_read(link, reg, val);
5122}
5123
5124/**
5125 *      sata_scr_write - write SCR register of the specified port
5126 *      @link: ATA link to write SCR for
5127 *      @reg: SCR to write
5128 *      @val: value to write
5129 *
5130 *      Write @val to SCR register @reg of @link.  This function is
5131 *      guaranteed to succeed if @link is ap->link, the cable type of
5132 *      the port is SATA and the port implements ->scr_read.
5133 *
5134 *      LOCKING:
5135 *      None if @link is ap->link.  Kernel thread context otherwise.
5136 *
5137 *      RETURNS:
5138 *      0 on success, negative errno on failure.
5139 */
5140int sata_scr_write(struct ata_link *link, int reg, u32 val)
5141{
5142        if (ata_is_host_link(link)) {
5143                if (sata_scr_valid(link))
5144                        return link->ap->ops->scr_write(link, reg, val);
5145                return -EOPNOTSUPP;
5146        }
5147
5148        return sata_pmp_scr_write(link, reg, val);
5149}
5150
5151/**
5152 *      sata_scr_write_flush - write SCR register of the specified port and flush
5153 *      @link: ATA link to write SCR for
5154 *      @reg: SCR to write
5155 *      @val: value to write
5156 *
5157 *      This function is identical to sata_scr_write() except that this
5158 *      function performs flush after writing to the register.
5159 *
5160 *      LOCKING:
5161 *      None if @link is ap->link.  Kernel thread context otherwise.
5162 *
5163 *      RETURNS:
5164 *      0 on success, negative errno on failure.
5165 */
5166int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5167{
5168        if (ata_is_host_link(link)) {
5169                int rc;
5170
5171                if (sata_scr_valid(link)) {
5172                        rc = link->ap->ops->scr_write(link, reg, val);
5173                        if (rc == 0)
5174                                rc = link->ap->ops->scr_read(link, reg, &val);
5175                        return rc;
5176                }
5177                return -EOPNOTSUPP;
5178        }
5179
5180        return sata_pmp_scr_write(link, reg, val);
5181}
5182
5183/**
5184 *      ata_phys_link_online - test whether the given link is online
5185 *      @link: ATA link to test
5186 *
5187 *      Test whether @link is online.  Note that this function returns
5188 *      0 if online status of @link cannot be obtained, so
5189 *      ata_link_online(link) != !ata_link_offline(link).
5190 *
5191 *      LOCKING:
5192 *      None.
5193 *
5194 *      RETURNS:
5195 *      True if the port online status is available and online.
5196 */
5197bool ata_phys_link_online(struct ata_link *link)
5198{
5199        u32 sstatus;
5200
5201        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5202            ata_sstatus_online(sstatus))
5203                return true;
5204        return false;
5205}
5206
5207/**
5208 *      ata_phys_link_offline - test whether the given link is offline
5209 *      @link: ATA link to test
5210 *
5211 *      Test whether @link is offline.  Note that this function
5212 *      returns 0 if offline status of @link cannot be obtained, so
5213 *      ata_link_online(link) != !ata_link_offline(link).
5214 *
5215 *      LOCKING:
5216 *      None.
5217 *
5218 *      RETURNS:
5219 *      True if the port offline status is available and offline.
5220 */
5221bool ata_phys_link_offline(struct ata_link *link)
5222{
5223        u32 sstatus;
5224
5225        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5226            !ata_sstatus_online(sstatus))
5227                return true;
5228        return false;
5229}
5230
5231/**
5232 *      ata_link_online - test whether the given link is online
5233 *      @link: ATA link to test
5234 *
5235 *      Test whether @link is online.  This is identical to
5236 *      ata_phys_link_online() when there's no slave link.  When
5237 *      there's a slave link, this function should only be called on
5238 *      the master link and will return true if any of M/S links is
5239 *      online.
5240 *
5241 *      LOCKING:
5242 *      None.
5243 *
5244 *      RETURNS:
5245 *      True if the port online status is available and online.
5246 */
5247bool ata_link_online(struct ata_link *link)
5248{
5249        struct ata_link *slave = link->ap->slave_link;
5250
5251        WARN_ON(link == slave); /* shouldn't be called on slave link */
5252
5253        return ata_phys_link_online(link) ||
5254                (slave && ata_phys_link_online(slave));
5255}
5256
5257/**
5258 *      ata_link_offline - test whether the given link is offline
5259 *      @link: ATA link to test
5260 *
5261 *      Test whether @link is offline.  This is identical to
5262 *      ata_phys_link_offline() when there's no slave link.  When
5263 *      there's a slave link, this function should only be called on
5264 *      the master link and will return true if both M/S links are
5265 *      offline.
5266 *
5267 *      LOCKING:
5268 *      None.
5269 *
5270 *      RETURNS:
5271 *      True if the port offline status is available and offline.
5272 */
5273bool ata_link_offline(struct ata_link *link)
5274{
5275        struct ata_link *slave = link->ap->slave_link;
5276
5277        WARN_ON(link == slave); /* shouldn't be called on slave link */
5278
5279        return ata_phys_link_offline(link) &&
5280                (!slave || ata_phys_link_offline(slave));
5281}
5282
5283#ifdef CONFIG_PM
5284static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5285                               unsigned int action, unsigned int ehi_flags,
5286                               int *async)
5287{
5288        struct ata_link *link;
5289        unsigned long flags;
5290        int rc = 0;
5291
5292        /* Previous resume operation might still be in
5293         * progress.  Wait for PM_PENDING to clear.
5294         */
5295        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5296                if (async) {
5297                        *async = -EAGAIN;
5298                        return 0;
5299                }
5300                ata_port_wait_eh(ap);
5301                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5302        }
5303
5304        /* request PM ops to EH */
5305        spin_lock_irqsave(ap->lock, flags);
5306
5307        ap->pm_mesg = mesg;
5308        if (async)
5309                ap->pm_result = async;
5310        else
5311                ap->pm_result = &rc;
5312
5313        ap->pflags |= ATA_PFLAG_PM_PENDING;
5314        ata_for_each_link(link, ap, HOST_FIRST) {
5315                link->eh_info.action |= action;
5316                link->eh_info.flags |= ehi_flags;
5317        }
5318
5319        ata_port_schedule_eh(ap);
5320
5321        spin_unlock_irqrestore(ap->lock, flags);
5322
5323        /* wait and check result */
5324        if (!async) {
5325                ata_port_wait_eh(ap);
5326                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5327        }
5328
5329        return rc;
5330}
5331
5332static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5333{
5334        unsigned int ehi_flags = ATA_EHI_QUIET;
5335        int rc;
5336
5337        /*
5338         * On some hardware, device fails to respond after spun down
5339         * for suspend.  As the device won't be used before being
5340         * resumed, we don't need to touch the device.  Ask EH to skip
5341         * the usual stuff and proceed directly to suspend.
5342         *
5343         * http://thread.gmane.org/gmane.linux.ide/46764
5344         */
5345        if (mesg.event == PM_EVENT_SUSPEND)
5346                ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5347
5348        rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5349        return rc;
5350}
5351
5352static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5353{
5354        struct ata_port *ap = to_ata_port(dev);
5355
5356        return __ata_port_suspend_common(ap, mesg, NULL);
5357}
5358
5359static int ata_port_suspend(struct device *dev)
5360{
5361        if (pm_runtime_suspended(dev))
5362                return 0;
5363
5364        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5365}
5366
5367static int ata_port_do_freeze(struct device *dev)
5368{
5369        if (pm_runtime_suspended(dev))
5370                pm_runtime_resume(dev);
5371
5372        return ata_port_suspend_common(dev, PMSG_FREEZE);
5373}
5374
5375static int ata_port_poweroff(struct device *dev)
5376{
5377        if (pm_runtime_suspended(dev))
5378                return 0;
5379
5380        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5381}
5382
5383static int __ata_port_resume_common(struct ata_port *ap, int *async)
5384{
5385        int rc;
5386
5387        rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5388                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5389        return rc;
5390}
5391
5392static int ata_port_resume_common(struct device *dev)
5393{
5394        struct ata_port *ap = to_ata_port(dev);
5395
5396        return __ata_port_resume_common(ap, NULL);
5397}
5398
5399static int ata_port_resume(struct device *dev)
5400{
5401        int rc;
5402
5403        rc = ata_port_resume_common(dev);
5404        if (!rc) {
5405                pm_runtime_disable(dev);
5406                pm_runtime_set_active(dev);
5407                pm_runtime_enable(dev);
5408        }
5409
5410        return rc;
5411}
5412
5413static int ata_port_runtime_idle(struct device *dev)
5414{
5415        return pm_runtime_suspend(dev);
5416}
5417
5418static const struct dev_pm_ops ata_port_pm_ops = {
5419        .suspend = ata_port_suspend,
5420        .resume = ata_port_resume,
5421        .freeze = ata_port_do_freeze,
5422        .thaw = ata_port_resume,
5423        .poweroff = ata_port_poweroff,
5424        .restore = ata_port_resume,
5425
5426        .runtime_suspend = ata_port_suspend,
5427        .runtime_resume = ata_port_resume_common,
5428        .runtime_idle = ata_port_runtime_idle,
5429};
5430
5431/* sas ports don't participate in pm runtime management of ata_ports,
5432 * and need to resume ata devices at the domain level, not the per-port
5433 * level. sas suspend/resume is async to allow parallel port recovery
5434 * since sas has multiple ata_port instances per Scsi_Host.
5435 */
5436int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5437{
5438        return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5439}
5440EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5441
5442int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5443{
5444        return __ata_port_resume_common(ap, async);
5445}
5446EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5447
5448
5449/**
5450 *      ata_host_suspend - suspend host
5451 *      @host: host to suspend
5452 *      @mesg: PM message
5453 *
5454 *      Suspend @host.  Actual operation is performed by port suspend.
5455 */
5456int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5457{
5458        host->dev->power.power_state = mesg;
5459        return 0;
5460}
5461
5462/**
5463 *      ata_host_resume - resume host
5464 *      @host: host to resume
5465 *
5466 *      Resume @host.  Actual operation is performed by port resume.
5467 */
5468void ata_host_resume(struct ata_host *host)
5469{
5470        host->dev->power.power_state = PMSG_ON;
5471}
5472#endif
5473
5474struct device_type ata_port_type = {
5475        .name = "ata_port",
5476#ifdef CONFIG_PM
5477        .pm = &ata_port_pm_ops,
5478#endif
5479};
5480
5481/**
5482 *      ata_dev_init - Initialize an ata_device structure
5483 *      @dev: Device structure to initialize
5484 *
5485 *      Initialize @dev in preparation for probing.
5486 *
5487 *      LOCKING:
5488 *      Inherited from caller.
5489 */
5490void ata_dev_init(struct ata_device *dev)
5491{
5492        struct ata_link *link = ata_dev_phys_link(dev);
5493        struct ata_port *ap = link->ap;
5494        unsigned long flags;
5495
5496        /* SATA spd limit is bound to the attached device, reset together */
5497        link->sata_spd_limit = link->hw_sata_spd_limit;
5498        link->sata_spd = 0;
5499
5500        /* High bits of dev->flags are used to record warm plug
5501         * requests which occur asynchronously.  Synchronize using
5502         * host lock.
5503         */
5504        spin_lock_irqsave(ap->lock, flags);
5505        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5506        dev->horkage = 0;
5507        spin_unlock_irqrestore(ap->lock, flags);
5508
5509        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5510               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5511        dev->pio_mask = UINT_MAX;
5512        dev->mwdma_mask = UINT_MAX;
5513        dev->udma_mask = UINT_MAX;
5514}
5515
5516/**
5517 *      ata_link_init - Initialize an ata_link structure
5518 *      @ap: ATA port link is attached to
5519 *      @link: Link structure to initialize
5520 *      @pmp: Port multiplier port number
5521 *
5522 *      Initialize @link.
5523 *
5524 *      LOCKING:
5525 *      Kernel thread context (may sleep)
5526 */
5527void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5528{
5529        int i;
5530
5531        /* clear everything except for devices */
5532        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5533               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5534
5535        link->ap = ap;
5536        link->pmp = pmp;
5537        link->active_tag = ATA_TAG_POISON;
5538        link->hw_sata_spd_limit = UINT_MAX;
5539
5540        /* can't use iterator, ap isn't initialized yet */
5541        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5542                struct ata_device *dev = &link->device[i];
5543
5544                dev->link = link;
5545                dev->devno = dev - link->device;
5546#ifdef CONFIG_ATA_ACPI
5547                dev->gtf_filter = ata_acpi_gtf_filter;
5548#endif
5549                ata_dev_init(dev);
5550        }
5551}
5552
5553/**
5554 *      sata_link_init_spd - Initialize link->sata_spd_limit
5555 *      @link: Link to configure sata_spd_limit for
5556 *
5557 *      Initialize @link->[hw_]sata_spd_limit to the currently
5558 *      configured value.
5559 *
5560 *      LOCKING:
5561 *      Kernel thread context (may sleep).